
FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for
Error-Resilient, Fast, and Efficient Transformer Acceleration
Donghyeon Yi1, Seoyoung Lee1, Jongho Kim1,

Junyoung Kim1

KAIST1

Republic of Korea
{yicoreen,seoyoung,jongho,lotanda17}@kaist.ac.kr

Sohmyung Ha2∗
NYU Abu Dhabi2

United Arab Emirates
sh169@nyu.edu

Ik-Joon Chang3∗
Kyung Hee University3

Republic of Korea
ichang@khu.ac.kr

Minkyu Je1∗
KAIST1

Republic of Korea
mkje@kaist.ac.kr

Abstract
Encoder-based transformers, powered by self-attention layers, have
revolutionized machine learning with their context-aware repre-
sentations. However, their quadratic growth in computational and
memory demands presents significant bottlenecks. Analog-Mixed-
Signal Process-in-Memory (AMS-PiM) architectures address these
challenges by enabling efficient on-chip processing. Traditionally,
AMS-PiM relies on Quantization-Aware Training (QAT), which
is hardware-efficient but requires extensive retraining to adapt
models to AMS-PiMs, making it increasingly impractical for trans-
former models. Post-Training Quantization (PTQ) mitigates this
training overhead but introduces significant hardware inefficien-
cies. PTQ relies on dequantization-quantization (DQ-Q) processes,
floating-point units (FPUs), and high-ENOB (Effective Number of
Bits) analog-to-digital converters (ADCs). Particularly, High-ENOB
ADCs scale exponentially in area and energy (2ENOB), reduce sens-
ing margins, and increase susceptibility to process, voltage, and
temperature (PVT) variations, further compounding PTQ’s chal-
lenges in AMS-PiM systems. To overcome these limitations, we
propose FLARE, an AMS-PiM architecture that eliminates DQ-Q
processes, introduces FPU- and division-free nonlinear process-
ing, and employs a low-ENOB-ADC-based sparse Matrix Vector
multiplication technique. Using the proposed techniques, FLARE
improves error resiliency, area/energy efficiency, and computational
speed while preserving numerical stability. Experimental results
demonstrate that FLARE outperforms state-of-the-art GPUs and
conventional PiM architectures in energy efficiency, latency, and
accuracy, making it a scalable solution for the efficient deployment
of transformers.

Keywords
Self-Attention, Analog-Mixed-Signal, Process-in-Memory, PTQ, Bit-
wise Sparsity, Error Resiliency, Floating-Point Unit (FPU)
ACM Reference Format:
Donghyeon Yi1, Seoyoung Lee1, Jongho Kim1, Junyoung Kim1, Sohmyung
Ha2, Ik-Joon Chang3, and Minkyu Je1. “FLARE: FP-Less PTQ and Low-ENOB

∗Corresponding Authors

arXiv Preprint, Research Preview, 2024

ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Ac-
celeration,” arXiv Preprint. 2024.

1 Introduction
Transformer models [1, 8, 16, 17, 37, 50], built on the attention
mechanism [50], have become foundational in machine learning
across diverse domains. While decoder-based architectures [1, 8],
such as those powering chatbot services, have gained substantial
popularity, encoder-based models [16, 17, 37], like BERT and Vision
Transformers (ViT), remain critical for many tasks. However, it
is important to note that encoder-based transformers process en-
tire input sequences within their self-attention layers. Due to this
processing, as the sequence length increases, the computational
intensity and intermediate memory traffic of self-attention layers
grow quadratically, posing a significant challenge in efficiently
processing encoder-based transformers especially in edge devices.

Analog-Mixed-Signal Process-in-Memory (AMS-PiM) [6, 11, 24,
26, 29, 31, 35, 39, 41, 43, 45, 46, 54, 55, 57, 58] has emerged as a
promising solution to address those challenges, enabling efficient
execution of level-2 and level-3 BLAS operations (Basic Linear Alge-
bra Subprograms, primarily matrix multiplications) directly within
memory. These BLAS operations represent a significant portion
of the self-attention layers, making AMS-PiM highly effective for
reducing off-chip data movement and energy consumption. Be-
sides, AMS-PiM’s effectiveness does not extend to non-BLAS tasks,
such as quantization processes or nonlinear-layer computations,
requiring additional hardware and computational support. Concur-
rently, most AMS-PiM architectures rely on integer quantization
techniques for both stationary weights (e.g., weights for Q (query),
K (key), V (value), and O projections) and dynamic activations (e.g.,
input embeddings, Q/K/V values, attention scores, and final out-
puts), which are crucial for attention operations in transformers.
Despite recent advancements in low-precision floating-point (FP)
quantization methods [15, 53], AMS-PiM remains constrained to
integer quantization due to the substantial overhead required for
exponent alignment in FP arithmetic, or the significant accuracy
degradation if alignment is omitted.

Quantization-Aware Training (QAT) [21, 23, 59] and Post-Training
Quantization (PTQ) [5, 53] are two primary techniques for en-
abling quantization. QAT, widely adopted in AMS-PiM, optimizes

ar
X

iv
:2

41
1.

14
73

3v
1

 [
cs

.L
G

]
 2

2
N

ov
 2

02
4

arXiv Preprint, Research Preview, 2024 Donghyeon Yi1 , Seoyoung Lee1 , Jongho Kim1 , Junyoung Kim1 , Sohmyung Ha2 , Ik-Joon Chang3 , and Minkyu Je1

QAT vs. PTQ and Nonlinear Layers

(b)

Nonlinear Layer in QAT Nonlinear Layer in PTQ

→While QAT adapts to the attributes of INT-based nonlinear layers,

PTQ does not allow deviated computation results from loss of exponent

IN
T-

Q
u

an
ti

ze
d

 In
p

u
t

IN
T-

Q
u

an
ti

ze
d

 In
p

u
t

IN
T-

Q
u

an
ti

ze
d

 O
u

tp
u

t

IN
T-

Q
u

an
ti

ze
d

 O
u

tp
u

t

(i) Activations

(ii) Normalizations

11

26

2

9
51

0

0

0

0
255

Input
Softmax

Normalization
Pr.

(i) Activations

(ii) Normalizations

1.1

2.6

0.2

0.9
5.1

0.02

0.07

0.01

0.01
0.89

Input
Softmax

Normalization
Pr.

D
eq

u
an

ti
ze

 (
F

P
U

)

Q
u

an
ti

ze
 (

F
P

U
)

FPU-Processed

Nonlinear Layer

INT-Approximated

Nonlinear Layer

F
P

32

F
P

32

IN
T

8

IN
T

8

IN
T

8

IN
T

8

(a)

AMS-PiM for QAT

In
p

u
t

High-ENOB ADC

or (ADC + Shift/Add Unit)

AMS-PiM for PTQ

(2
E

N
O

B
)

O
ve

rh
ea

d
Low-ENOB ADC

Direct-Quantized Outputs Quantized Outputs

→While QAT adapts to the direct-quantization patterns at low-ENOB ADC,

dequantization-quantization of PTQ does not allow lossy computations

Discrete (Almost) Continuous

Dequantize (FPU)

QAT vs. PTQ in AMS-PiM Devices

e.g., INT8, INT4, …

(Direct-Quantized)

>INT16 (accurate sum)

Quantize (FPU)

FP32

INT8, INT4, …

In
p

u
t

Figure 1: Limitations of PTQ during inference optimizations.
(a) The Dequantization-Quantization (DQ-Q) process and (b)
nonlinear layers induce high-ENOB ADCs and FPUs that
induce extreme area/energy overhead.

area/energy efficiency by enabling direct quantization with low-
ENOB (Effective Number of Bits) ADCs (Analog-to-Digital Con-
verters). Through retraining, QAT allows models to adapt to char-
acteristics of ADCs and integer-approximated nonlinear layers,
eliminating the need for dequantization-quantization (DQ-Q) steps
and FPUs, as visualized in the left side of Fig. 1-(a). However, QAT’s
retraining process introduces substantial overhead, making it in-
creasingly impractical for growing transformer models.

Accordingly, PTQ has become a preferred method as a retraining-
free alternative to Quantization-Aware Training (QAT). However,
as shown on the right side of Fig. 1-(a), PTQ introduces three major
obstacles in AMS-PiM architectures as well, including (1) reliance
on high-ENOB ADCs, (2) susceptibility to process, voltage, and
temperature (PVT) variations, and (3) the need for Floating-Point
Units (FPUs).

Typically, PTQ requires precise partial sums and scaling factors
to maintain accuracy, for transformer models with large embed-
ding depths (≥1k) and high bit-precision requirements (≥4 bits
per activation and weight). These demands necessitate ADCs with
ENOB of ≥18 bits to prevent quantization errors, as PTQ lacks

the adaptability of QAT to lower-ENOB ADCs via retraining. At-
tempting PTQ with low-ENOB ADCs is not impossible, but would
result in excessive latency bottleneck due to the immense computa-
tion cycles from segmenting computations into smaller units. The
main concern with the High-ENOB ADCs is that they exacerbate
hardware inefficiencies, Their area and power consumption scale
exponentially with 2ENOB [12], and the narrower sensing margins
that increase with ENOB make the system more vulnerable to er-
rors caused by PVT variations. Furthermore, PTQ’s reliance on
accurate scaling factors during the DQ-Q process necessitates FPUs
to handle division operations and avoid cumulative rounding errors,
adding to system complexity.

Moreover, nonlinear layers for PTQs introduce additional chal-
lenges, as depicted in Fig. 1-(b). While integer-based approxima-
tions of nonlinear functions and normalization layers [32, 37] work
effectively in QAT-based systems, they often lead to significant com-
putation deviations when applied to PTQ. As a result, PTQ relies on
dequantization-quantization (DQ-Q) processes and floating-point
units (FPUs) to ensure accurate nonlinear-layer processing. This
dependency further increases system complexity and overhead.

To address these challenges, we propose FLARE, a novel AMS-
PiM architecture that holistically tackles PTQ’s inefficiencies. FLARE
eliminates high-ENOB ADC, division arithmetics, and FPUs while
introducing dequantization-free PTQ and integer-processed non-
linear layers. Furthermore, by leveraging low-ENOB-ADC-based
sparse General Matrix Vector (GEMV) operations with bitwise spar-
sity, FLARE ensures fast, error-resilient, and efficient computa-
tion. With a detailed analysis of end-to-end attention computations
throughout our design, we enable on-device end-to-end kernel
fusion.

In summary, FLARE achieves:

• end-to-end on-chip processing of self-attention layers, re-
ducing quadratic off-chip tensor traffic;
• INT-only, yet accurate, dequantization-free PTQ and nonlinear-
layer processing, to maintain precision without high-ENOB
ADC, division, or FPUs;
• fast, accurate, and efficient sparse GEMV operations with
6-𝜎 confidence leveraging low-ENOB ADC within MRAM-
SRAM hybrid AMS-PiM arrays.

These advancements provide a scalable and energy-efficient solu-
tion for transformer inference, addressing the distinct inference-
time bottlenecks of encoder-based models.

2 Backgrounds
2.1 Analog-Mixed-Signal Process-in-Memory

(AMS-PiM)
Process-in-Memory (PiM) [6, 10, 18, 19, 22, 24, 26, 29, 31, 35, 36, 39,
41, 44–48, 51, 54, 55, 57, 58] architectures are highly regarded for
their ability to execute level-2 (i.e., GEMV) and level-3 (i.e., GEMM)
BLAS operations inherently and efficiently, which contribute to a
major portion of most deep neural networks (DNNs). PiM devices
allocate matrices onto memory arrays and fetch vectors (which
can also form matrices) along wordlines (WLs), bitlines (BLs), or
sourcelines (SLs) to execute such BLAS operations, as illustrated in

FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration arXiv Preprint, Research Preview, 2024

Input Vectors

(Streamed-In; Not Stored)

E
m

b
ed

d
in

g
(1

,
L

S
B

)

E
m

b
ed

d
in

g
(1

, n
th

S
B

)

E
m

b
ed

d
in

g
(1

,
 …

)

E
m

b
ed

d
in

g
(1

,
M

S
B

)

E
m

b
ed

d
in

g
(N

,
L

S
B

)

E
m

b
ed

d
in

g
(N

, n
th

S
B

)

E
m

b
ed

d
in

g
(N

,
 …

)

E
m

b
ed

d
in

g
(N

,
M

S
B

)

…

GEMV GEMV

Peripheral Processors
(ADC + SHIFT-ADD)

WL1

WL2

WL3

WL4

WL5

WL6

WLD
W

1,
L

S
B

W
1,

 …

W
1,

M
S

B

W
2,

L
S

B

W
2,

 …

W
2,

M
S

B

…

W
F

,M
S

B

Dimension of Target Process

Level-2 and Level-3 BLAS in PiM

F filters×(LSB~MSB)

Weights (Memory-Stored)

bit-serialbit-serial

GEMM (N vectors)

V
ec

to
r

L
en

g
th

 =
 D

→ Digital PiM: (single WL activation)/cycle

→ AMS PiM: (multiple WL activation)/cycle

Figure 2: Design example for typical PiM devices, where the
level-2 (GEMV) and level-3 (GEMM) BLAS operations are
processed inherently.

Fig. 2. In the illustrated configuration, weights of 𝐹 filters are stored
across the memory array, inputs of depth 𝐷 are fetched to WL1∼𝐷
bit-serially for m-bit representation, and partial sums for each bit
position are obtained at BLs. By integrating BLAS operations [7]
directly within the memory storage, PiM drastically reduces data
movement overhead and associated latency.

Analog-Mixed-Signal Process-in-Memory (AMS-PiM) [6, 10, 18,
24, 26, 31, 35, 36, 39, 44–47, 55, 57] architectures, particularly, en-
hance the computational efficiency over their digital counterparts.
This is achieved by enabling the simultaneous activation of multiple
memory interfaces, such as WLs, BLs, and SLs, allowing multiple
concurrent computations within a memory array. While in digital
PiM a single WL is activated per cycle to perform the column sum
operations; i.e., pop (“1” or “on-cell”)-count operations, similar to a
conventional read operation, contrarily, AMS-PiM simultanesouly
activates multiple WLs and converts the analog sum into digital
signal via Analog-to-Digital Converters (ADCs), enabling multiple
concurrent computations.

2.2 Self-Attention Layer in Transformer
Encoders

For the attention mechanism in a transformer model (described in
Fig. 3), each token in the input is represented as a vector of dimen-
sion𝐷 . Each sequence/image of 𝐵 input batches to the self-attention
layer consists of 𝑁 tokens, resulting in an input tensor of dimension
[𝐵, 𝑁, 𝐷]. The input is processed through the attention mechanism
with several steps, each contributing to the tensor traffic.
1. QKV Projections: The initial step involves projecting each input
sequence into three distinct weight matrices to produce: Query
(Q), Key (K), and Value (V). These projections are computed using
stationary weight matrices𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 of dimension [𝐷,𝑑𝑘],
where 𝑑𝑘 is a (separate) weight dimension per attention head. This
results in tensors 𝑄 = 𝑋 ·𝑊𝑄 , 𝐾 = 𝑋 ·𝑊𝐾 , and 𝑉 = 𝑋 ·𝑊𝑉 , each
with dimension of [𝐵, 𝑁,𝑑𝑘] per head. Given 𝐻 = 𝐷/𝑑𝑘 heads, the
dimension for each Q, K, and V becomes [𝐵,𝐻, 𝑁,𝑑𝑘].
2. Logit Calculation: The core of the attention mechanism is
computing the logit scores 𝐿 by performing a dot product between
the query and key: 𝐿 = 𝑄 · 𝐾𝑇 . This results in a score tensor of
dimension [𝐵,𝐻, 𝑁, 𝑁]. The quadratic nature of this operation,

Tensor FootprintComputations in

Attention Layer

Multi-Head Attentions

Multi-Head Attention
Separate Heads

Embedding

Q K

Attention layer involves

two types (, ,)

of GEMV operations

[B, N, D]

A-W GEMV

→ Only input/output

requires out-of-device

tensor traffic

: high weight reuse

A-A GEMV

→ Every tensor requires

out-of-device traffic

: cannot reuse any tensor

GEMV Types
~ 4BHNdk + 2BHN2

elements involve

Out-of-PiM traffic
1.

Stages

1. QKV Projections

2. Logit Calculation

3. Softmax Normalization

4. Weighted Sum of V

5. Concatenation and

Final Output Projection

Summarized Self-Attention Mechanism in Transformer Encoders

Dequantization-

Quantization in FPU

DQ-Q DQ-Q

Final Projection

QKT

S-MAX
(FPU)

Attend (A)

… …

[B, H, N, N]

[B, H, N, N]

[B, H, N, dk]

[B, N, D]

3×[B, H, N, dk]

2.

3.

4.

5.

DQ-Q

DQ-Q

DQ-Q

V

DQ-Q

DQ-Q (FPU)

→ Accurate PTQ requires

(1) Dequantization (DQ)

: INT-partial sum to FP32

(2) Quantization (Q)

: FP32 to output INT

Figure 3: Overview of self-attention, with operation type
and tensor traffic analysis. Self-attention comprises multiple
linear projection layers with two types of GEMV operations,
connected by Softmax, dimensional adjustments (transpose
and concatenation), and DQ-Q operations. Unlike QAT, the
DQ-Q process and nonlinear layers in PTQ create a deadlock
between hardware overhead and tensor traffic.

requiring 𝑂 (𝑁 2𝑑) operations per head, significantly contributing
to the tensor traffic and computational load.
3. Softmax Normalization: The computed logits are scaled and
passed through the Softmax layer to normalize the summed score.
This normalization step, involving nonlinear operations, incorpo-
rates tensor traffic of [𝐵,𝐻, 𝑁, 𝑁].
4. Weighted Sum of Values: The normalized attention scores are
then used to compute a weighted sum of the value (𝑉) vectors,
yielding an output tensor of dimension [𝐵,𝐻, 𝑁,𝑑𝑘].
5. Concatenation and Final Output Projection: Finally, the
outputs from all heads are concatenated and projected together
once again, using a weight matrix (𝑊𝑂) to produce the final output
tensor of [𝐵, 𝑁, 𝐷].
- DQ-Q Process and FPU: Not only the Softmax process involving
nonlinear functions and accurate divisions, but also each of the
stages (from step 1. to 5.) with PTQ necessitates the DQ-Q process,
involving high-ENOBADC, division, and FPUs. These requirements
easily deteriorate the efficacy of PiM, motivating us to design a
PiM-based accelerator that alleviates these limitations.

2.3 Kernel Fusion and Self-Attention Inference
Optimization

The unique characteristics of the self-attention mechanism have
delivered remarkable performance; however, they also introduce
quadratic computational load and memory traffic, prompting the

arXiv Preprint, Research Preview, 2024 Donghyeon Yi1 , Seoyoung Lee1 , Jongho Kim1 , Junyoung Kim1 , Sohmyung Ha2 , Ik-Joon Chang3 , and Minkyu Je1

Figure 4: We alleviate not only the reliance on high-ENOB
ADCs and FPUs but also the need for division arithmetic in
our PiM hardware.

development of various innovative techniques to alleviate these
limitations. Alike PTQ, kernel (operation) fusion techniques also
effectively achieve the given goal without impacting the model
inference accuracy [2, 13, 28]. Kernel fusion techniques combine
operations involving massive intermediate tensor traffic, reducing
memory access overhead for these intermediate tensors.

The out-of-PiM tensor traffic for the self-attention computations
without any on-device kernel fusion technique can be expressed as:

Original (Out-of-Device Tensor) traffic
= 𝐵 × 𝑁 × 𝐷 (in) + 𝐵 × 𝑁 × 𝐷 (out)

+ 2 × 𝐵 × 𝐻 × 𝑁 2 + 4 × 𝐵 × 𝐻 × 𝑁 × 𝑑𝑘 (in-and-out).

As previously mentioned, PiM devices are only suited for processing
BLAS layers on-device. Hence, without adequate optimization, the
kernel fusion with their inherent limitations - high-ENOB ADCs
and FPUs - deteriorate the effectiveness of PiM architectures.

Subsequently, our FLARE architecture proposes innovative quan-
tization and nonlinear-layer processing techniques enabling the
end-to-end kernel fusion with low hardware overhead, where the
revised tensor traffic with our technique is:

Revised Tensor Traffic = 2 × 𝐵 × 𝑁 × 𝐷 (in) + 𝐵 × 𝑁 × 𝐷 (out),

where the quadratic 𝑂 (𝑁 2) tensor traffic reduces to a linear 𝑂 (𝑁).

3 Motivations
Our study reveals that the effectiveness of PiM architectures is
notably hindered by the high-ENOB ADC and FPUs. Additionally,
among various arithmetic operations required for the execution
of self-attention, division arithmetic - not only in FP but also in
integer formats - hinders the hardware efficiency, as illustrated in
Fig. 4. Thus, our optimization strategy tackles these challenging
overheads while preserving accuracy and performance, focusing
on the following principles:
• Accurate Quantization
– Lossless quantization: Our method must accurately represent
quantized values even without FP or division arithmetic.

– Outlier preservation: Attention layers often generate channels
with extreme outliers, which standard integer quantization in

PTQ cannot capture well. To address this, we use token-wise
quantization to reflect these outliers accurately.

• Accurate Nonlinear (Non-BLAS)-Layer Executions
– Transformermodels depend heavily on nonlinear layers, which
require complex exponentiation and division operations. Our
approach preserves the exponential trend and proportional
relationships between values without FP or division arithmetic.

• PVT-Robust and Error-Resilient AMS-PiM
– Despite its high efficiency, AMS-PiM has frequently been criti-
cized for computation errors due to PVT variations. However,
design solutions for those errors often conflict with the effi-
cient exploitation of PiM devices. Our proposed techniques
resolve this dilemma effectively.

In the following sections, we analyze these principles more deeply,
before presenting our solutions as a breakthrough.

3.1 Motivation for PTQ and Non-BLAS Layer
Optimizations

(a)

(b) (c)

1) Compute linear projections of
“V1~5 = IN1~5 · W” & “VQ = Q · W”
where W are weight vector of

[[

W =
T–1, 3, 5, 7, 11

4, – 1, –9, 0, 4

[[

V = –0.193, 19.3, 193000, 193, 1930
–0.006, –0.6, –6000, –6, –60

2) The projection results become

∴ All result are scaled version of VQ

[VQ =

[193
–6

e.g., Compute Softmax of inputs
IN1~5 in its original value SMax(IN1~5)

1) Exponential exaggerations
 E(IN1~5) = [eX1, eX2, eX3, eX4, eX5]1~5

[0.984127, 0.993024, 1.00100, 1.00401, 1.01511],
[0.852144, 0.932394, 1.01005, 1.04081, 1.16183],
[0.00000, 0.00000, 1.9E434, 1.5E1737, 2.6E6514],
[1.125E-7, 9.119E-4, 2.71828, 54.5982, 3.269E6],
[3.25E-70, 2.97E-31, 22026.5, 2.35E17, 1.39E65]

=

2) Normalization
 SMax(IN1~5)

[0.197, 0.199, 0.200, 0.201, 0.203],
[0.026, 0.064, 0.142, 0.192, 0.576],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1],
[0, 0, 0, 0, 1]
[0, 0, 0, 0, 1]

Dynamic range MUST BE preserved

Non-Linear Layers:Linear Projections:

SMax(Q) =

IN1

–0.016,
–0.007,

0.001,
0.004,
0.015

IN2

–1.6,
–0.7,

0.1,
0.4,
1.5

IN3

–16000,
–7000,

1000,
4000,

15000

Floating-Point Inputs

IN4

–16,
–7,

1,
4,

15

Q

Integer Inputs Result

–16,
–7,

1,
4,

15

IN5

–160,
–70,

10,
40,

150

Example of “Lossless” Quantization

 All numbers (IN1~IN5) produce the same lossless quantization result (Q)
regardless of their original dynamic range

CF)

Figure 5: (a) Even for a lossless quantization, values lose the
exponent information. (b) The linear projections are consis-
tent without exponent. (c) Softmax with the values shown at
(a) - the absence of exponents deteriorates the computation
result of nonlinear layers.

While there are numerous quantization methods that we may
not be able to cover in this literature, the fundamental steps for
the accurate yet efficient quantization processes are as follows: (1)
identify the minimum andmaximum values among the given inputs
(𝑥𝑖 ∈ X), (2) for n-bit quantization, define a “quantization step (S),”

FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration arXiv Preprint, Research Preview, 2024

by dividing the minimum-maximum range by 2𝑛 levels, and (3)
divide 𝑥𝑖 ’s by S to obtain the quantized values.

Along the process, as illustrated in Fig. 5-(a), we say a quantiza-
tion is “lossless” when the ratios between quantized values retain
the original proportions. That is:

quantize(𝑥𝑖)/quantize(𝑥 𝑗) ≈ 𝑥𝑖/𝑥 𝑗 , ∀𝑥𝑖 , 𝑥 𝑗 ∈ X . (1)

However, the original exponent is not retained, even when “loss-
less” quantization is achieved using FPUs. Nonetheless, the issue
of omitting exponents is less severe in linear projection operations
(as depicted in Fig. 5-(b)), as operations keep their inherent quality
without exponent information, i.e.,

𝑎 × 𝑓 (X) = 𝑓 (𝑎 × X) . (2)

On the other hand, nonlinear layers are completely disrupted when
the exponent information is omitted, as shown in Fig. 5-(c). That is,

𝑎 × 𝑓 (X) ≠ 𝑓 (𝑎 × X) . (3)

Some recent studies simplify FP-based computations [9, 32, 37] to
integer-based lightweight alternatives with satisfactory reliability.
However, this approach can reduce the accuracy of PTQ-based
inference, from the lack of retraining to adapt the model for these
approximations.

In response, in section 4.2 and 4.3, we propose an integrated
quantization-computation method that preserves the exponent for
nonlinear layers while replacing division operations only with pars-
ing and bit-shifting. While prior works [4, 20] introduced capturing
the MSB’s position, utilizing parsing(s), they rely on group-wise
quantization, incurring large storage overhead and limited scala-
bility. In contrast, our method combines token-wise quantization
with VDR-Softmax in a fused manner, temporarily storing only a
single-token value in compact registers and discarding them af-
ter processing, and linking quantization to penetrate through the
end-to-end attributes of each stages in attention layer.

3.2 Motivation for Accurate and Efficient AMS
Computation

Analog-Domain Signal (Column-Sum Computation Result)

P
o

p
u

la
ti

o
n

s

B
it

w
is

e
w

.

w
.

Analog-Domain Signal (Column-Sum Computation Result)

P
o

p
u

la
ti

o
n

s

Sensing Margin for Accurate Computations

Confidence level

Bitwise popcount = #(on-cells)

Narrower Sensing Margin (~1/2ENOB)

for Accurate Computations

Low-ENOB ADC

High-ENOB ADC

Higher Probability of Computation Error

Decision
Boundary

Decision
Boundary

on-cells

Figure 6: AMS-PiM with high-ENOB ADCs are more suscep-
tible to computation errors due to PVT variation, resulting
from reduced sensing margins.

As mentioned in section 1, transformer models with PTQ de-
mand a high precision for partial sum, easily exceeding ≥18 bits
with𝑑𝑚𝑜𝑑𝑒𝑙≥1k and with activation/weight operands of ≥4bit. This

high-precision summation, for which direct quantization is infea-
sible, requires ADCs with higher ENOBs: this increases not only
area/energy overhead but also the likelihood of errors.

Ensuring precise analog computation for PTQ requires the num-
ber of decision boundaries to exceed the distinct analog signal levels.
This requirement is fundamental in PTQ, as accurate quantization
relies on precise summation and digital conversion of the analog val-
ues. However, achieving this narrows the sensing margin of ADCs,
which worsens error resilience, as depicted in Fig. 6. Errors occur
when analog signals cross decision boundaries during analog-to-
digital conversion, and this challenge intensifies as sensing margins
(the distance between decision boundaries) narrow.

The computational error resilience, which prompts us to our
proposed technique, can be analyzed as follows. Analog signals
are proportional to the number of “on-cell”s generating on-current
within the activated word lines (WLs), as illustrated in Fig. 2. Recent
studies [3, 30, 56] show that reducing the activated “on-cell”s along
the partial sum process reduces the error rates. Meanwhile, the num-
ber of Simultaneously Activated WLs (SAWL) determines the direct
upper limit of the “on-cell”s contributing to the analog summation.
Therefore, we can also limit the SAWL to limit the number of ac-
tive “on-cell”s and segment unit computations with shorter input
vectors for more reliable computation. This approach reduces the re-
quired ENOB of ADC, lowering the area/energy overhead of ADCs
by 2ENOB, significantly relaxing the hardware complexity [12]. By
integrating strategic segmentation reducing ADC overhead with
error mitigation techniques described in section 4.4, FLARE can
significantly improve PVT robustness.

3.3 Massive GEMVs with Quadratic Latency
Bottleneck

As delineated in Section 3.2, the error-free analog computation can
be achieved by limiting the maximum number of SAWL and seg-
menting computations over multiple cycles with sliced inputs (e.g.,
dividing 𝐷 in Fig. 2 into 𝐷/𝑁 using 𝑁 cycles). However, this sliced
processing — with a constrained vector length — results in signifi-
cantly more processing cycles. Furthermore, the increasing model
size and the resultant quadratic GEMV demand in the attention
layer further exacerbate the suboptimal performance.

For example, consider a length(𝑙)-restricted GEMM operation
where SAWL≤𝑙=8, with: 𝐷 = 1024 hidden states and 𝑁 = 512
tokens per batch - resulting in 512 (=𝑁) GEMVs -, using 8-bit integer
representation (Bit-Precision, 𝐵𝑃=8) for both input and weight
values. This necessitates 𝐷/𝑙 = 1024/8 = 128 cycles to process a
GEMV for each bit-serial vector of a token. It involves partitioning
each bit-serial part of the input token into 8-WL chunks to limit
SAWL≤8. Subsequently, the bitwise GEMV operations of𝐷/𝑙 (=128)-
cycles-per-bit are required for 𝑁 × 𝐵𝑃 = 512 × 8 = 4, 096 times
to process every GEMVs of bit-vectors and tokens composing the
aforementioned GEMM, culminating in (𝐷/𝑙) × 𝑁 × 𝐵𝑃 = 524, 288
cycles to process a GEMM of an embedding input with static weight
matrices.

Assuming 10ns per bitwise GEMV, which is a fast figure for
an AMS-PiM array, a GEMM operation for generating Q, K, or V
would take approximately 0.5 milliseconds (ms). Other steps in-
volving activation-activation GEMV with quadratic computational

arXiv Preprint, Research Preview, 2024 Donghyeon Yi1 , Seoyoung Lee1 , Jongho Kim1 , Junyoung Kim1 , Sohmyung Ha2 , Ik-Joon Chang3 , and Minkyu Je1

8t
h

7t
h

6t
h

5t
h

4t
h

3r
d

2n
d

1s
t

V
W

N
-V

W

N
C

W

Considered as nonzero (not skipped)Considered as zero (skipped)

Bitwise Sparsity (BitSift-GEMV)

Input Vector (Bit-Serial)

(
L

S
B

)

(2
n

d
L

S
B

)

(3
rd

L
S

B
)

(
4th

L
S

B
)

(
5th

L
S

B
)

(6
th

L
S

B
)

(
7th

L
S

B
)

(
M

S
B

)

1 1 1

1

1

1

11 1

1

1

00 0 0 0

00 0 0 0 0 0

00 0 0 0 0 0

0 0 0 0 0 0 0

00 0 0 0 0 0 0

0 0 0 0 0

00 0 0 0 0 0

00 0 0 0 0 0 0

00 0 0 0 0 0

WL1

WL2

WL3

WL4

WL5

WL6

WL7

…

WLD–1

WLD

…

Est. Skip Rate = 61÷72 ≒ 84.7%

Valuewise (VW) Sparsity

Input Vector (Bit-Serial)

01 1 0 0 1 0 0

00 0 0 0 0 0 1

00 0 0 0 0 1 0

10 0 0 0 0 0 0

10 0 0 1 0 1 0

00 0 0 0 0 0 1

00 0 0 0 0 0 0

00 0 0 0 0 0 0

00 0 0 1 0 0 0

WL1

WL2

WL3

WL4

WL5

WL6

WL7

…

WLD–1

WLD

…

Est. Skip Rate = 16÷72 ≒ 22.2%

(a) (b)

N-Valuewise (N-VW) Sparsity
(e.g., N=4)

Input Vector (Bit-Serial)

01 1 0 0 1 0 0

00 0 0 0 0 0 1

00 0 0 0 0 1 0

10 0 0 0 0 0 0

00 0 0 0 0 0 0

10 0 0 1 0 1 0

00 0 0 0 0 0 1

00 0 0 0 0 0 0

00 0 0 1 0 0 0

WL1

WL2

WL3

WL4

WL5

WL6

WL7

…

WLD–1

WLD

…

Est. Skip Rate = 0÷72 = 0%

N(Column)-BitSlicewise (NCW) Sparsity
(e.g., N=4)

Input Vector (Bit-Serial)

01 1 1 0 0

00 0 0 0 1

00 0 0 1 0

10 0 0 0 0

00 0 0 0

11 0 1 0

00 0 0 1

0

1

0 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

00 0 0 0 0 0

00 0 0 0 0 0

WL1

WL2

WL3

WL4

WL5

WL6

WL7

…

WLD–1

WLD

…
Est. Skip Rate = 31÷72 ≒ 43.1%

(c) (d)

(
L

S
B

)

(2
n

d
L

S
B

)

(3
rd

L
S

B
)

(
4th

L
S

B
)

(
5th

L
S

B
)

(6
th

L
S

B
)

(
7th

L
S

B
)

(
M

S
B

)

(
L

S
B

)

(2
n

d
L

S
B

)

(3
rd

L
S

B
)

(
4th

L
S

B
)

(
5th

L
S

B
)

(6
th

L
S

B
)

(
7th

L
S

B
)

(
M

S
B

)

(
L

S
B

)

(2
n

d
L

S
B

)

(3
rd

L
S

B
)

(
4th

L
S

B
)

(
5th

L
S

B
)

(6
th

L
S

B
)

(
7th

L
S

B
)

(
M

S
B

)

M
em

o
ry

 In
te

rf
ac

e
(W

L
 In

te
rf

ac
e)

M
em

o
ry

 In
te

rf
ac

e
(W

L
 In

te
rf

ac
e)

M
em

o
ry

 In
te

rf
ac

e
(W

L
 In

te
rf

ac
e)

M
em

o
ry

 In
te

rf
ac

e
(W

L
 In

te
rf

ac
e)

8t
h

7t
h

6t
h

5t
h

4t
h

3r
d

2n
d

1s
t

V
W

N
-V

W

N
C

W

Vision TransformersNLP Transformers

0.58

0.664

0.748

0.832

0.916

1

0.5
0.6

0.7

0.8

0.9

1

(e) (f)

Figure 7: Comparison of sparsity measured in various granu-
larity. (a)∼(d) visualizes numerous sparsities where the same
8-bit-integer vectors are bit-serially inputted. Sparsities are
measured and exploited; (a) bitwise manner, (b) valuewise
(VW) manner (when 8-bit integer is of complete “0”s), N -
valuewise (N -VW) manner, and (d) N -column-BitSlicewise
manner (NCW, when a part of bitwise input is all “0”s in
column direction). The activation sparsities are measured
and averaged with input, Q, K, V, and output layers in trans-
former blocks for (e) NLP task and (f) vision task.

complexity and nonlinear layers may induce substantially greater
latency, rendering the PiM device noncompetitive due to poor la-
tency performance. Consequently, the latency for processing only
the linear projections across the attention layers in tens of encoder
blocks could be approximately in the order of 100 ms.

To address the latency issue, we take advantage of the high “bit-
wise” sparsity found in the activation values of bitwise GEMVs in
the attention layer. Our findings suggest collecting only “1”s along
a bitwise embedding input can significantly boost GEMV - and

GEMMs composed of GEMVs - operations. Our investigation visu-
alized in Fig. 7-(e), (f) shows that when split into bitwise elements
(Fig. 7-(a)), the activation matrices exhibit much higher sparsity
than when measured in coarser value grains (Fig. 7-(b) ∼ (d)). With
our findings, we propose BitSift-GEMV technique, where all bitwise
“0”s of bit-serial fetched input activations are skipped from GEMV
within AMS-PiM arrays.

In section 4.4, we propose a hardware-oriented technique that
designates the longest combination(s) of parsed input slices, incor-
porating a fixed, desired number of “1”s. By parsing and merging
the bit-serial-fetched token vectors, we can significantly stretch the
length of a processible input vector for a unit GEMV. Furthermore,
our proposed technique fully exploits the highest utilization of the
designed ADCs, stabilizing its operation by limiting flexibility.

4 FLARE Architecture

FLARE PE Array
PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Unit FLARE PE

L=QKT & A=SV Computation
SRAM-PiM w. KV-caching

Fused Arithmetic (SHIFT/ADD)-(eMSB-Q)

popcount

Fused Arithmetic (SHIFT/ADD)-(eMSB-Q)

WV
MRAM-PiM

popcount

WK
MRAM-PiM

popcount

WQ
MRAM-PiM

popcount

WO
MRAM-PiM

popcount

(a) (b)

VDR-Softmax
> eMSB-Aware,

> approximated-

-based softmax

Figure 8: (a) Overall FLARE Architecture. (b) Hardware con-
figurations of each FLARE PE.

Building upon our findings and discussions, we present our
FLARE architecture — an FP- and division-less, end-to-end atten-
tion accelerator based on MRAM-SRAM hybrid AMS-PiM with
low-ENOB ADCs. The architecture overview is visualized in Fig. 8.
Our proposed architecture ensures accurate, reliable, efficient, and
fast on-device attention-layer computations and is validated at the
post-layout level using a 28nm FD-SOI process.

4.1 MRAM-SRAM Hybrid AMS-PiM Design
The basement of our system - MRAM-SRAM hybrid AMS-PiM de-
sign - utilizes the intrinsic advantages of each memory for two
distinct types of GEMVs: activation-weight (A-W) and activation-
activation (A-A) GEMVs, during the DNN’s main, and PIM’s core;
BLAS accelerations. The MRAM-PiM are well-suited to A-W-pair
GEMVs , owing to its non-volatile property which allows for sig-
nificant weight reuse. Furthermore, MRAM maximizes array-level
parallelism with a small memory cell size (∼ 1/3 of SRAM). On the
other hand, A-A-pair GEMVs , which require both operands to be
dynamic, are handled using SRAM-PiM devices. SRAM offers the
advantages of low write energy and high write speed compared to
MRAM, making it ideal for A-A GEMVs.

The size and number of arrays are configured to fully encom-
pass all parameters and computations of the self-attention layers,
which is a fundamental requirement for achieving the end-to-end
acceleration of the target model. The following paragraphs and
Fig. 9-(a) outline the minimum array configuration requirements
for implementing our FLARE architecture, while our specific design
choices are summarized in TABLE 1.

FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration arXiv Preprint, Research Preview, 2024

Error-Suppressed Design: 6- Sensing Margin Guaranteed with SAWL ≤ 8

Hybrid MRAM-SRAM AMS-PiM

8T-SRAM-PiM: A-A ProjectionsMRAM-PiM: A-W Projections

→ Our Monte-Carlo simulation result verifies

6- sensing margin at SAWL ≤ 8 (MRAM, SRAM 14)

<Our Monte-Carlo Mismatch Test Result> <Applied to AMS-PiM Array>

→We limit SAWL ≤ 8

based on our simulation result

• Memory Comparison

– MRAM is selected for...

: High Density

: Low static power

: Non-Volatile property

– 8T-SRAM is selected for…

: Dual-port Operation

: Low write energy

: Fast write speed

(a)

(b)

AMS-AiM ArrayAMS-PiM Array

Figure 9: (a) Attribute and size requirements of each memory
type, and (b) Monte-Carlo-simulation-guided SAWL selection
for lossless computations.

First, the MRAM-CiM arrays for A-W GEMVs should store D2

weight elements for each query-, key-, value-, and the final-output
projection layers. For each array, the total number of WLs must be
larger than the hidden dimension 𝐷 so that the input tokens can
be full-parallelly fetched, and the total number of BLs should be
larger than 𝐷 ×𝑊𝐵𝑃 (weight-bit-precision) to independently store
and compute the multi-bit weights at independent BLs.

Second, for the SRAM-PiM array, the number of WLs should be
guaranteed so that it can handle 𝐷/𝐻 = 𝑑𝑘 dimensions, while 𝐻 in-
dependent arrays are needed to handle multi-head projections. The
columns of the SRAM(s) must store 𝑁 weight features, requiring
𝑁 × 𝐼𝐵𝑃 (IBP: input-activation-bit-precision) BLs.

Meanwhile, to ensure a stable, error-free computation in AMS-
PiM devices, we limit SAWL≤8 to guarantee stable, 6-𝜎 error-free
computation, which is verified by Monte-Carlo simulation using
our AMS-PiM arrays, where the results are summarized in Fig. 9-
(b). This configuration effectively ensures lossless computation,
however, for the latency risk tackled in section 3.3, we propose our
fast, accurate, and efficient BitSift-GEMV method in section 4.4.

4.2 Dequantization-Free PTQ Technique
In this section, we propose a dequantization-free PTQ that pene-
trates all computations within the attention layer, replacing the FP
and division arithmetics while retaining accuracy. As previously
discussed, our proposed quantization method enables lossless inte-
ger quantization using only shifting and parsing, accommodating
important attributes discussed in section 3.

As discussed in section 3.1, an integer quantization is “lossless”
when the requirement from equation 1 is satisfied, which occurs if
the quantization step size is smaller than that derived from floating-
point representations. This implies that the original input can be

Proposed eMSB-Q with Linear Projections in AMS-PiM Array

Q-bit INT Quantization – Conventional FP Divisions vs. eMSB-Q

Q-bit INT Quantization – Proposed eMSB-Q

eMSB Search

1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

MSB

0 0 110 0

eMSB

(a)

(b)

Representing Max Value requires: (N-bit)

Quantization Step
: (N – Q)-bit

÷

Divisions and Rounding Operations in FP32 → round(input÷max×(2Q)

Quantized Output: Q-bit

i) For unsigned integers:

ii) For signed integers:

Bitslice-Parse Process → Acquire eMSB & Parse

Quantized Output
: (Q+1)-bit

Sign Extension or ‘0’sMeaningless ‘0’s

Quantized Output:

Redundant (processings skipped)

(c)

i) Obtain Quantization Step: S = MAXinput/2Q

ii) Quantization of input value: Output = Input/S

Both stage requires

floating-point divisions

Input: high-bit-precision integer from various types of operations

Operation

Skipping

Strategy
in PiM

During

Bit-Serial

GEMV

with

eMSB-Q

Figure 10: Our FP- and division-less integer quantization
method, eMSB-Q. (a) Definition of eMSB for negative and
positive (or unsigned) numbers. (b) eMSB-Q achieves lossless
quantization at the expense of 1 more bit. (c) When applying
our eMSB-Q for the AMS-PiM array, bit-serial inputs also
benefit from skipping irrelevant computations.

divided by any 2𝑛 , as long as 2𝑛<S, where S represents the quantiza-
tion step size used in FP-based quantization. Therefore, we decided
to replace the dequantization and division process, as depicted
and compared with the conventional method, in Fig. 10-(a) and
(b). Our method, termed effective-MSB-based Quantization (eMSB-
Q), ensures numerical integrity while replacing the dequantization
and quantization-step acquisition process with eMSB detection,
and division operations with arithmetic shifting and parsing. The
eMSB-search process simply identifies the location of the actual
MSB within a group of bitwise values, eliminating the need for
sorting to determine the maximum “value” and its “index.”

To prevent outliers from being clipped during eMSB-Q, we ap-
ply per-token quantization for Q, QK𝑇 , and the final output. This
approach leverages that each token vector in the Q-matrix is in-
dependently processed throughout the self-attention mechanism.

arXiv Preprint, Research Preview, 2024 Donghyeon Yi1 , Seoyoung Lee1 , Jongho Kim1 , Junyoung Kim1 , Sohmyung Ha2 , Ik-Joon Chang3 , and Minkyu Je1

Algorithm 1 VDR-Softmax
Input: 𝑥 [Q𝐼 -1:0][(N-1):0], n𝑒
N = number of the input elements
Q𝐼 = input bit precision, Q𝑂 output bit precision
n𝑒 =

∑
(MSB-eMSB) over input→Q→QK𝑇

Parameters:
𝑎,𝑏, 𝑐, 𝑆, 𝑙 ← 𝑎 (𝑛𝑒), 𝑏 (𝑛𝑒), 𝑐 (𝑛𝑒), 𝑆 (𝑛𝑒), 𝑙 (𝑛𝑒)
⇒ once for𝑄𝐼 , incorporates exponent information.
⇒ LUT-processed, 100 bytes
Output: 𝑥𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 [Q𝑂 -1:0][(N-1)):0]

function VDR_iPOLY(r, n𝑒)
𝑥𝑃𝑂𝐿𝑌 ← 𝑟 × (𝑟 + 𝑏) + 𝑐
𝑆𝑃𝑂𝐿𝑌 ← 𝑎 × 𝑆
return 𝑥𝑃𝑂𝐿𝑌 , 𝑆𝑃𝑂𝐿𝑌

function VDR_iEXP(x𝑠𝑢𝑏 , n𝑒)
𝑄 ← clip(𝑖𝑛𝑡 (𝑋𝑠𝑢𝑏/𝑙), 2 × 𝑄𝐼)
𝑟 ← 𝑥𝑠𝑢𝑏 − 𝑄 − 𝑙
𝑟𝑃𝑂𝐿𝑌 , 𝑆𝑃𝑂𝐿𝑌 ← iPOLY(𝑟, 𝑆)
𝑟𝐸𝑋𝑃 = 𝑟𝑃𝑂𝐿𝑌 << 𝑄

𝑆𝐸𝑋𝑃 = 𝑆𝑃𝑂𝐿𝑌 >> 𝑄

return 𝑟𝐸𝑋𝑃 , 𝑆𝐸𝑋𝑃

function VDR_Norm(x, S)
𝑥𝑠𝑢𝑏 = 𝑥 − max(𝑥)
𝑟𝐸𝑋𝑃 , 𝑆𝐸𝑋𝑃 = 𝑖𝐸𝑋𝑃 (𝑥𝑠𝑢𝑏 , 𝑆)
𝑥𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 = eMSB-Q(𝑟𝐸𝑋𝑃)
return 𝑥𝑆𝑜𝑓 𝑡𝑚𝑎𝑥 , 𝑆𝐸𝑋𝑃

However, KV generations - which must preserve global context -
involve storing all vectors of 𝑁 tokens. It differentiates the parsing
strategy: we parse bits starting fromMSBs rather than eMSBs, using
a longer bit to reserve a wider dynamic range for the global context.

Note that, the inherent quality of linear operations is kept with
eMSB-Q. However, to save the distinct attributes within the non-
linear layer using our per-token quantization process, we transfer
the eMSB information to the VDR-Softmax block, enabling it to
incorporate exponent data during processing. This step is essential
for the precise functioning of the Softmax layer, which relies on
accurate exponent handling, unlike linear layers. In the following
section, we further describe integer-processed Softmax for PTQ.

4.3 Proposed VDR-Softmax Fused with eMSB-Q
The simplified yet accurate implementation of the Softmax layer in
PTQ requires a precise understanding of its characteristics and a
more sophisticated integer-processing technique. The implementa-
tion involves several key steps, outlined in the Algorithm 1. Our
approach utilizes per-token eMSB information to ensure accurate
yet FP-less processing and uses only shifting and parsing of integers
to normalize and quantize the score into integer format.

While accommodating exponent information in processing the
nonlinear layer is critical, as visualized in Fig. 5-(c), directly multi-
plying/dividing the integer 𝑥 makes the number exceed the repre-
sentable range of the integers with designated bit-precision, leading
to loss of information. The key to handling Softmax processing with
integer arithmetic lies in adapting the exponent indirectly while ap-
proximating the 𝑒𝑥/𝑛 function, where 𝑥 is an integer-format input

value and 𝑛 is a representation of the exponent. To accomplish that,
we adjust the base (𝑒) of the exponential function from 𝑒 to 𝑛

√
𝑒 ,

rather than adjusting the integer-represented 𝑥 in order to avoid the
loss of information. Using well-established, 𝑒𝑥 -approximating func-
tions from previous works [32, 37]. This adjustment is accomplished
by modifying the internal parameters of the proposed method, with-
out requiring division arithmetic.

Additionally, the base adjustment along the exponentiation pro-
cess - from 𝑒 to 𝑛

√
𝑒 - is performed per token, using eMSB data from

the eMSB-Q stage. Since Softmax is computed per token, aligned
with our quantization approach (in section 4.2) and dataflow control
mechanism (in section 4.5), we do not need to store eMSB positions
for all Q vectors, enhancing our architecture’s scalability.

After the exponentiations, we apply eMSB-Q to a group of expo-
nentiated outputs for each token, maximizing the utilization of the
dynamic range provided by a Q𝑂 -bit (Softmax output precision)
integer. This approach avoids division while preserving the orig-
inal proportions of the values, ensuring that the maximum value
is mapped to the highest possible representation, with sufficient
range allocated for smaller values.

Consequently, our VDR-Softmax achieves both efficiency and
accuracy, making it well-suited for end-to-end, integer-based ac-
celeration within our PTQ-based attention accelerator architecture.
This approach not only retains the critical properties of the expo-
nentiation and divisions in Softmax, but also alleviates the compu-
tational overhead, leading to significantly enhanced efficiency with
secured performance.

4.4 BitSift-GEMV Processor
Along the end-to-end, on-device fusion of the self-attention layer,
our BitSift-GEMV technique for AMS-PiM significantly boosts
sparse GEMV, which composes most of the computations in the
attention layer. BitSift-GEMV is motivated by two key factors: (1)
the highlighted bitwise sparsity of activation data illustrated in
Fig. 7 and (2) the constant-maximum number of “1”s (=8) WL ac-
tivations, which allows the highest-utilization-rate operation and
strengthened robustness of ADC designs.

Existing AMS-PiM designs require flexibility in the number of
processible SAWL as input vectors have a random number of “1”s
along the bit-slice. One thing to note here is that a flexible SAWL
can lead to worse computation reliability with higher overhead
for the ADC design (Fig. 11-(b)). For SAWL-flexible configurations,
the ADCs should handle a wider, variable dynamic range, higher
resolution, and varying threshold during the analog-to-digital con-
versions. This also compromises the utilization rate when the actual
SAWL lowers, wasting power/area implemented for higher SAWL.
Therefore, our design sets “SAWL=MAX” for all time without flex-
ibility, by incorporating dummy-“1” inputs to maintain a fixed,
maximum number of “1”s.

To maintain a constant number of SAWL at 8 (= maximum SAWL
that allows 6-𝜎 reliability), the SAWL𝐷 controller in Fig. 11-(a)
supplements the SAWL with additional “1”s, when the input vec-
tor has fewer “1”s than 8. Specifically, the SAWL𝐷 controller acti-
vates SAWL𝐷 = (8−SAWL) WLs at the bottom of the array. This
is achieved by incorporating a dummy array and WL interfaces
consisting of seven rows at the bottom. The memory cells within

FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration arXiv Preprint, Research Preview, 2024

<SAWLD Controller>
for consistent SAWL(=8)

Weight Storage

Bit-Serial Input Vectors

E
m

b
ed

d
in

g
(1

,
L

S
B

)

WL1

WL2

WL3

WL4

WL5

WL6

WL7

WL8

WLD

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

1

0

0

1

0

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

01

W
1,

L
S

B

W
1,

 …

W
1,

M
S

B

W
2,

L
S

B

W
2,

 …

W
2,

M
S

B

…

W
F

,M
S

B

E
m

b
ed

d
in

g
(1

, n
th

S
B

)

E
m

b
ed

d
in

g
(1

,
 …

)

E
m

b
ed

d
in

g
(1

,
M

S
B

)

E
m

b
ed

d
in

g
(N

,
L

S
B

)

E
m

b
ed

d
in

g
(N

, n
th

S
B

)

E
m

b
ed

d
in

g
(N

,
 …

)

E
m

b
ed

d
in

g
(N

,
M

S
B

)

…

popcount (bitwise MAC)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

S
A

W
L

D

C
o

n
tr

o
lle

r

. . .

0

0

0

(1) Count SAWL from input

(WL1 ~ WLD)

(2) Make “SAWL = 8”, by fetching

(SAWLD = 8 – SAWL) to

7-row dummy area at the bottom

(a) (b)

0

1
0

2

1 0

1

3

2

0

1

2

4

3

0

1

2

4

5

3

0

1

2

4

6

5

3

SAWL

A
n

al
o

g
 P

ar
ti

al
 S

u
m

 (
C

u
rr

en
t,

 V
o

lt
ag

e,
…

)

Numbers ()

= column popcount result

Fixed SAWL

with narrower

dynamic range

Variable SAWL

with wider

dynamic

range

Figure 11: (a) SAWL𝐷 controller enabling a fixed number
of SAWL(=8) when the input data is insufficient of “1”s. (b)
Relation between SAWL and the dynamic range variation
of analog-signal-domain popcount. Limiting flexibility with
SAWL relaxes the ADC-design challenges for AMS-PiM.

these dummy rows are all set to “0” (off-cells), emulating compu-
tations with dummy inputs. The array configuration serves two
purposes: (1) isolating dummy operations - it prevents the dummy
array from affecting the actual computation output, and (2) enhanc-
ing variation resiliency - by consistently returning “0”s, the dummy
array area improves the system’s robustness against variations. I.e.,
While processing only “1”s along the input vector, the bitwise “0”s
along the vector(s) are skipped from the actual computation.

The fixed-SAWL processing incorporating SAWL𝐷 controller
employs a two-step approach. First, the input vector is scanned to
identify the longest slice containing eight “1”s. The slice is then
selected for processing. Second, for the tail end of a vector with
fewer “1”s (or, for a very sparse input vector), the SAWL𝐷 processor
supplements the existing “1”s with additional ones from the dummy
array. This ensures a consistent maximum SAWL for all compu-
tations, regardless of the input vector’s density. By maintaining a
constant SAWL of 8, this method fixes the input dynamic range
for ADC and enables lower area/energy/error overhead, even with
varying input sparsity.

To support the SAWL𝐷 controller by identifying the longest
segment(s) of the input with the largest number of SAWL that re-
main constrainted of being ≤8, we introduce our BitSift-GEMV
controller, depicted in Fig. 12. This strategy introduces a novel ap-
proach for highly efficient sparse GEMV processing, achieving low
latency and minimal area/energy overhead. Instead of a hypotheti-
cal brute-force method that might scan the entire input vector bit
by bit - resulting in significant latency penalties as vector length
and sparsity increase - the BitSift-GEMV controller leverages a
hierarchical design with high parallelism. This includes (1) a local-
pop controller (LPC) and (2) a global-pop controller (GPC), where
“pop-count” refers to the number of “1”s in the input vector.

(1) The LPC efficiently counts the number of “1”s within short,
fixed-length slices of the input vector using dedicated “pop de-
tector” and “popcount” blocks. This localized processing ensures
low-latency computation of the popcount within each slice. (2)
The GPC aggregates the popcounts from LPCs to rapidly identify
the highest possible number of “1”s, constrained to a maximum of
8, for further processing. Once aggregation is complete, the GPC

Global-Pop
Controller

Local-Pop
Controller

32

ou
tp

ut
 [3

1:
0]

...

ou
tp

ut
 [6

3:
32

]
ou

tp
ut

 [D
:D

 –
31

]

po
p

de
te

ct
or

po
p

m
ar

ke
r

in
pu

t [
31

:0
]

...

po
p

de
te

ct
or

po
p

m
ar

ke
r

po
p

de
te

ct
or

po
p

m
ar

ke
r

in
pu

t [
63

:3
2]

in
pu

t [
D

:D
 –

31
]

...

popcount

popcount

popcount

. . .

global popcount adder

. . .

ctq

1

1

1

...

slice_enable[1]

slice_enable[0]

MASK
[D/32 - 1] 1

32

1

32

MASK
[1] 1

32

1

32

MASK
[D/32 - 1] 1

32

1

444

×
4

111

. . .

×32

×32 ×32

×32

×32 ×32

×
4

×
4

32

32

32

sl
ic

e

slice_enable[D/32-1]

sl
ic

e
sl

ic
e

(The fixed-length input slices)

 All inputs [D:0] are fetched
and processed simultaneously,
but in separate blocks each for
multiple fixed-length input slices.

(P
re

pr
oc

es
se

d
ou

tp
ut

 s
lic

es
)

Fe

tc
he

d
to

 W
L

In
te

rf
ac

e(
s)

Figure 12: Our BitSift-GEMV controller parses, selects, and
fetches the longest portion(s) of the input - that contains
designated SAWL - to WL interface(s).

activates the “MASK” to fetch the corresponding vector to the out-
put and WLs. If the total number of “1”s identified by the GPC is
fewer than 8, the SAWL𝐷 controller (Fig. 11-(a)) supplements the
input by adding “1”s from the dummy array before forwarding it
to the WLs of PiM array. This hierarchical and parallel architecture
enables our AMS-PiM arrays to sustain high performance, even as
input vector lengths and sparsity increase. The design is specifically
optimized for extremely sparse inputs, especially whose popcount
within each LPC’s slice remains ≤ 8. This emphasis on sparsity
aligns with the activation values frequently observed in neural
networks, as illustrated in Fig. 7-(e), (f).

However, recognizing that real-world data can exhibit varying
sparsity patterns, the BitSift-Controller also incorporates dedicated
circuitry to handle denser input segments. That is, our BitSift-GEMV
controller dynamically adjusts the processing flow when an LPC
encounters eight or more “1”s within its slice, or when the GPC
detects a global popcount exceeding 8. This dynamic adjustment
mechanism is as follows. When the “pop detector” block in LPC
detects 8×“1”s before reaching the end of the sliced input, the inputs
are marked from the beginning to the point where the 8-th “1” is
found, using the “pop marker” block. The marked section is then
fetched first, consuming a column-sum cycle in the AMS-PiM array.
After that, the marker marks from the next section of the inputs to
be processed - excluding the section fetched so far - and continues
until the process reaches the end of the LPC’s processible input
section. After the LPC-level sparsity requirement (popcount<8) is
all met, in the GPC, when the global popcount adder returns >8,
the ctq (compute-token queue) circuit block controls the “MASK”s,
gating the LPCs from fetching the input to the PiM array so that

arXiv Preprint, Research Preview, 2024 Donghyeon Yi1 , Seoyoung Lee1 , Jongho Kim1 , Junyoung Kim1 , Sohmyung Ha2 , Ik-Joon Chang3 , and Minkyu Je1

the LPCs of having summed popcount under 8 can be only fetched.
Thus along the input vector of length [D], it takes processing cycles
up to roundup(𝐷×(1-bitwise_sparsity)8). Therefore, our BitSift-GEMV
technique reduces the processing latency by (1 − bitwse_sparsity),
fully utilizing the finest grain of sparsity.

4.5 Reduced Tensor Traffic

Fused StagesFLARE Dataflow with Reduced Tensor Traffic

2.

1.
WV

MRAM-PiM
popcount

WK
MRAM-PiM

popcount

Fused Arithmetic: (SHIFT/ADD)-(eMSB-Q)

popcount

L=QKT & A=SV Computation
SRAM-PiM w. KV-caching

Fused Arithmetic

WO
MRAM-PiM

popcount

Fused Arithmetic

2×[B, H, N, dk]

popcount

L=QKT & A=SV Computation
SRAM-PiM w. KV-caching

Fused Arithmetic

[B
,

H
, N

,
d

k]

W
Q

M
R

A
M

-P
iM

po
pc

ou
nt

Fu
se

d
A

rit
hm

et
ic

[B, H, N, N]

[B, H, N, N]

[B
,

H
, N

,
d

k]

[B
,

N
, D

]
[B

,
N

, D
]

[B
,

N
, D

]

: In-PiM Tensor Traffic : Out-of-PiM Tensor Traffic

1. K & V Projections

• Embedding fetched
token-by-token

• Each token fetched
bit-by-bit

2.

• All pipelined and fused
w. per-token operations

 Reduce overall latency

• Embedding fetched ×2
 Reduce FIFO overhead

Whole K (and V)
must be ready before
GEMM with Q (& S)

Tensor Traffic reduces to
 3BND

eMSB-Aware, -approximation based VDR-Softmax Per-Token Fused Process

Figure 13: Visualized Dataflow and tensor traffic of FLARE:
QKV generation, on-the-fly processing, and fused operations.

Conclusively, our FLARE architecture minimizes tensor traffic
in attention mechanisms by fusing the end-to-end attention layer
with combined novel techniques. The dataflow of our FLARE archi-
tecture (depicted in Fig. 13) can be understood as follows: (1) K & V
Projections and (2) end-to-end fused, per-token (𝑄-𝐿-𝐴-𝑂) process.

(1) K & V projections: This stage involves A-WGEMM (a series of
GEMV) operations on input tokens with weight matrice W𝐾 &W𝑉 ,
requiring input streaming to generate the complete KV matrices.

(2) Per-token fused process: After generating KV matrices, the
end-to-end-fused attention process is handled, requiring a second
input stream-in. Rather than storing an input in an internal buffer,
we stream data twice for improved area efficiency and scalability.

Hence, the revised tensor traffic can be represented as:

Revised Tensor Traffic = 2 × 𝐵 × 𝑁 × 𝐷 (in) + 𝐵 × 𝑁 × 𝐷 (out) ,

achieving substantial tensor traffic reduction by leveraging our
proposed techniques.

5 FLARE Evaluations
Our proposed FLARE architecture and its design components are all
embedded into a compact ASIC with superior energy and latency
performance per token. We validate our design through meticu-
lous circuit simulations, including Monte Carlo simulations (result
summarized in Fig. 9-(b) and post-layout circuit simulations for
physical-level feasibility, using our custom-designed ASIC on 28nm
FD-SOI technology, and our design is summarized in TABLE 1.

We tested our FLARE using 8-bit integer-quantizedmodels across
different NLP (withGLUE benchmarks [52]) and vision (ImageNet [14]
Classification) tasks, as well as with various transformer mod-
els [16, 17, 38, 49]. We compared the results with state-of-the-art

Table 1: Summary of our FLARE design in 28nm process

Component Area (mm
2
) Power (mW) Parameters & Specifications

BitSift-

GEMV

Controller

SHIFT/ADD 0.221 2.47

eMSB-Q 0.0202 0.213

BitSift-

GEMV

Controller

SRAM

+ ADC

SHIFT/ADD 0.553 6.24

eMSB-Q 0.11 1.17

iPoly 1.17 48.4

iEXP 1.29 18.6

VDR-Norm

(eMSB-Q)

29.665 Per Single Attention LayerFLARE
Unit PE (≒ 1.86*) (*Approximated in 7nm process)

492.44 16 PEs for multi-layer processingFLARE
 PE Array (≒ 30.78*) (*Approximated in 7nm process)

Total Bit Cells: 512×64×1024
5.384

45.2

(power gated unless used)

FLARE Properties in 28nm Process

A-W Linear Projection Modules

0.003468 8.11

Total Bit Cells: 72×1024×1024
19.546

2,535

iPoly: 2
nd

-order polynomial

iEXP with Max. integer bit inside: 24’b

MRAM

+ ADC

14.4

(power gated unless used)

VDR-SoftMax Module

0.23 2.29

FLARE Architecture (PE with All Modules / PE Array)

150.8

A-A Linear Projection Modules

0.001156 3.6

GPUs (Nvidia RTX 3090, RTX 4090, T4, and A100), as well as a PiM
baseline where we excluded our proposed techniques.

Our experimental results validate the FLARE architecture’s di-
verse efficacy. The design exploration highlights the significance
of customizing inner-array configurations and parallelism levels
to optimize performance. The eMSB-Q and VDR-Softmax tech-
niques maintain high inference accuracy while eliminating FP op-
erations, thereby enhancing computational efficiency. Additionally,
the BitSift-GEMV technique leverages bitwise sparsity to signifi-
cantly accelerate GEMV operations. Collectively, these innovations
establish our architecture as a robust and scalable solution for
transformer acceleration, delivering substantial reductions in both
latency and energy consumption.

5.1 Hardware Customization Exploration

1

5

25

125
Design Customization with ×N Parallelism (DC“N”)

Chip Size Latency Power Energy

DC1 DC64DC32DC16DC8DC4DC2

Higher Parallelism

Figure 14: Design study on array-level device parallelism.
Larger values imply better characteristics.

We conducted a design exploration study to understand how
different array-parallelism configurations affect the overall per-
formance of our proposed architecture. Fig. 14 shows the normal-
ized metrics of various design choices, including chip size, latency,
power, and energy consumption. For the summary in Table 1, our
choice for the parallelism is 8× array (i.e., DC8), to show the design
result with a medium benchmark.

FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration arXiv Preprint, Research Preview, 2024

5.2 Impact of eMSB-Q and VDR-Softmax

Accuracy Results on Various Model & Tasks Benchmarks

ImageNet Classifications
Natural Language Processing Tasks

Model BERT-Base BERT-Large

Model Method
Accuarcy

(%)
Benchamark Method

Accuarcy

(%)
Method

Accuarcy

(%)

ViT-S

fp32 81.14

MNLI-m

fp32 89.56 fp32 91.80

Conventional 80.69 Conventional 86.63 Conventional 89.50

Proposed 81.08 Proposed 89.70 Proposed 91.72

ViT-L
fp32 84.28

MNLI-mm

fp32 89.25 fp32 91.70

Conventional 83.10 Conventional 86.53 Conventional 89.40

Proposed 84.23 Proposed 88.98 Proposed 91.51

DeiT-T

fp32 71.99

QQP

fp32 92.21 fp32 94.66

Conventional 71.66 Conventional 90.30 Conventional 92.07

Proposed 71.94 Proposed 91.54 Proposed 93.62

DeiT-S

fp32 79.61

QNLI

fp32 94.66 fp32 95.98

Conventional 79.39 Conventional 91.87 Conventional 93.56

Proposed 79.58 Proposed 93.54 Proposed 95.74

DeiT-B

fp32 81.60

SST-2

fp32 96.49 fp32 98.23

Conventional 81.14 Conventional 94.25 Conventional 95.44

Proposed 81.54 Proposed 96.27 Proposed 97.95

CoLA

fp32 62.42 fp32 69.36

Quantization Methods Conventional 61.88 Conventional 68.31

Proposed 62.45 Proposed 69.55

•Conventional

= Quantized INT8 with fp32

dequantization-quantization

+ fp32 softmax

STS-B

fp32 92.92 fp32 94.04

Conventional 89.89 Conventional 91.28

Proposed 91.71 Proposed 94.06

MRPC

fp32 92.72 fp32 93.64

Conventional 90.19 Conventional 92.07

•Proposed

= INT(8+1) using eMSB-Q

+ VDR-Softmax

Proposed 92.84 Proposed 93.01

RTE

fp32 79.56 fp32 88.03

Conventional 78.61 Conventional 86.13

Proposed 79.61 Proposed 88.00

Figure 15: Comparison of inference accuracy results: various
NLP tasks and ImageNet classification tasks with different
transformer models.

Fig. 15 presents the inference accuracy benchmarks across vari-
ous tasks and models. The comparison includes the FP32 baseline,
a traditionally-integer-quantized model utilizing the FP32-based
DQ-Q process, and our proposed method employing eMSB-Q quan-
tization combined with the VDR-Softmax technique. The results
demonstrate that our approach sustains high accuracy while elimi-
nating FP operations, thereby achieving substantial improvements
in computational efficiency.

5.3 Impact of BitSift-GEMV

Figure 16: Average amount of how much GEMV operations
were boosted. The boosting factors were almost directly the
same as our anticipated values, revealing our BitSift-GEMV’s
efficacy.

Fig. 16 presents the impact of our proposed BitSift-GEMV tech-
nique on the average number of boosting factors in GEMV opera-
tion cycles, compared to PiM baseline with fixed-length processed
GEMV. Note that the boosting is marked without the effect of array

parallelism, and the measurement result is solely boosted by the
BitSift-GEMV only. The boosting factor observed correlates closely
with our anticipated values, demonstrating the effectiveness of
exploiting bitwise sparsity to enhance GEMV processing speed.

5.4 Impact on Latency Performance

Figure 17: Comparison of normalized token/sec performance.
The CiM Baseline was omitted due to its poor performance
from significant latency with out-of-PiM tensor traffic and
segmented GEMV.

We measured and compared the token/sec performance with
various tasks, models, and hardware. Fig. 17 shows that our design
achieves competitive latency performance, outperforming not only
the PiM baseline but also famous SOTA GPUs. This improvement
is primarily attributed to the integration of the end-to-end fusion
technique and the BitSift-GEMV approach.

5.5 Impact on Energy Performance

Figure 18: Comparison of normalized token/Joule perfor-
mance.

Fig. 18 illustrates the energy efficiency of our FLARE architecture
compared to various SOTA GPUs and a PiM baseline across diverse
NLP and vision tasks. The results highlight that our architecture
achieves outstanding energy efficiency, positioning it as a practical
solution for energy-constrained applications. Notably, without our

arXiv Preprint, Research Preview, 2024 Donghyeon Yi1 , Seoyoung Lee1 , Jongho Kim1 , Junyoung Kim1 , Sohmyung Ha2 , Ik-Joon Chang3 , and Minkyu Je1

on-device end-to-end kernel fusion technique, the reliance on FPUs
or the substantial out-of-PiM tensor traffic significantly undermines
the baseline PiM devices’ inherent efficiency.

6 Discussion - Related Works
FLARE’s design offers an accurate, fast, and efficient foundation
for accelerating self-attention layers in encoder models. Beyond its
standalone capabilities, FLARE seamlessly integrates with optimiza-
tion techniques to further enhance performance without hardware
revisions. For instance, FLARE complements FlashAttention [13]
by processing tiles independently in a FLARE PE, effectively scaling
to long sequences or oversized models while preserving its core
strengths. Also, FLARE aligns with Dynamic Attention Modulation
techniques [40], dynamically allocating resources based on input
complexity to reduce redundant computations and optimize energy
efficiency. Moreover, FLARE supports hot-expert routing [33] in
Mixture-of-Experts models, efficiently handling intensive computa-
tions while reducing tensor traffic. Finally, representation compres-
sion techniques [25, 27, 34, 42] align with FLARE’s processing to
lower computational demands without sacrificing accuracy.

7 Conclusion
This work presents FLARE, an AMS-PiM-based architecture de-
signed to overcome the computational and hardware bottlenecks
of transformer models. By introducing dequantization-free PTQ,
integer-only nonlinear processing, and BitSift-GEMV for sparse
GEMV acceleration, FLARE achieves robust energy efficiency, er-
ror resilience, and computational performance. FLARE’s hybrid
MRAM-SRAM design enables on-chip processing of self-attention
layers while eliminating the need for high-ENOB ADCs and FPUs,
reducing area and power overhead. Experimental results confirm
FLARE’s superiority over GPUs and PiM baselines in latency, en-
ergy efficiency, and scalability, making it a practical solution for
deploying transformers in diverse environments.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. 2016. Fused-layer
CNN accelerators. In 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1–12.

[3] Tanner Andrulis, Joel S Emer, and Vivienne Sze. 2023. RAELLA: Reforming the
arithmetic for efficient, low-resolution, and low-loss analog PIM: No retraining
required!. In Proceedings of the 50th Annual International Symposium on Computer
Architecture. 1–16.

[4] Anonymous. 2024. QRazor: Reliable and Effortless 4-bit LLM Quantization by
Significant Data Razoring. In Submitted to The Thirteenth International Conference
on Learning Representations. https://openreview.net/forum?id=lwcnZmyojm
under review.

[5] Ron Banner, Yury Nahshan, and Daniel Soudry. 2019. Post training 4-bit quan-
tization of convolutional networks for rapid-deployment. Advances in Neural
Information Processing Systems 32 (2019).

[6] Avishek Biswas and Anantha P Chandrakasan. 2018. CONV-SRAM: An energy-
efficient SRAM with in-memory dot-product computation for low-power con-
volutional neural networks. IEEE Journal of Solid-State Circuits 54, 1 (2018),
217–230.

[7] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry,
et al. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM
Trans. Math. Software 28, 2 (2002), 135–151.

[8] Tom B Brown. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[9] Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Alberto
Nannarelli, Marco Re, and Sergio Spanò. 2021. A pseudo-softmax function for
hardware-based high speed image classification. Scientific reports 11, 1 (2021),
15307.

[10] Wei-Hao Chen, Kai-Xiang Li, Wei-Yu Lin, Kuo-Hsiang Hsu, Pin-Yi Li, Cheng-
Han Yang, Cheng-Xin Xue, En-Yu Yang, Yen-Kai Chen, Yun-Sheng Chang, et al.
2018. A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-
16ns multiply-and-accumulate for binary DNN AI edge processors. In 2018 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 494–496.

[11] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu
Wang, and Yuan Xie. 2016. PRIME: A Novel Processing-in-Memory Architec-
ture for Neural Network Computation in ReRAM-Based Main Memory. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
IEEE, 27–39.

[12] Loai Danial, Nicolás Wainstein, Shraga Kraus, and Shahar Kvatinsky. 2018. Break-
ing through the speed-power-accuracy tradeoff in ADCs using a memristive
neuromorphic architecture. IEEE Transactions on Emerging Topics in Computa-
tional Intelligence 2, 5 (2018), 396–409.

[13] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. Flashat-
tention: Fast and memory-efficient exact attention with io-awareness. Advances
in Neural Information Processing Systems 35 (2022), 16344–16359.

[14] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[15] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2024.
Qlora: Efficient finetuning of quantized llms. Advances in Neural Information
Processing Systems 36 (2024).

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[18] Xinjie Guo, F Merrikh Bayat, M Bavandpour, M Klachko, MR Mahmoodi, M
Prezioso, KK Likharev, and DB Strukov. 2017. Fast, energy-efficient, robust, and
reproducible mixed-signal neuromorphic classifier based on embedded NOR flash
memory technology. In 2017 IEEE International Electron Devices Meeting (IEDM).
IEEE, 6–5.

[19] Saransh Gupta, Mohsen Imani, Harveen Kaur, and Tajana Simunic Rosing. 2019.
Nnpim: A processing in-memory architecture for neural network acceleration.
IEEE Trans. Comput. 68, 9 (2019), 1325–1337.

[20] Nguyen-Dong Ho and Ik-Joon Chang. 2023. O-2A: Ourlier-Aware Compression
for 8-bit Post-Training Quantization Model. IEEE Access (2023).

[21] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2018. Quantized neural networks: Training neural networks with low
precision weights and activations. Journal of Machine Learning Research 18, 187
(2018), 1–30.

[22] Mohsen Imani, Saransh Gupta, Yeseong Kim, Minxuan Zhou, and Tajana Rosing.
2019. Digitalpim: Digital-based processing in-memory for big data acceleration.
In Proceedings of the 2019 on Great Lakes Symposium on VLSI. 429–434.

[23] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for efficient integer-arithmetic-only inference. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2704–2713.

[24] Zhewei Jiang, Shihui Yin, Jae-Sun Seo, and Mingoo Seok. 2020. C3SRAM: An in-
memory-computing SRAMmacro based on robust capacitive coupling computing
mechanism. IEEE Journal of Solid-State Circuits 55, 7 (2020), 1888–1897.

[25] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, FangWang,
and Qun Liu. 2019. Tinybert: Distilling bert for natural language understanding.
arXiv preprint arXiv:1909.10351 (2019).

[26] Seungchul Jung, Hyungwoo Lee, Sungmeen Myung, Hyunsoo Kim, Seung Keun
Yoon, Soon-Wan Kwon, Yongmin Ju, Minje Kim, Wooseok Yi, Shinhee Han, et al.
2022. A crossbar array of magnetoresistive memory devices for in-memory
computing. Nature 601, 7892 (2022), 211–216.

[27] Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128. https://doi.org/10.1109/TPAMI.2010.57

[28] Sheng-Chun Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh,
and Tushar Krishna. 2023. Flat: An optimized dataflow for mitigating attention
bottlenecks. In Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Volume 2.
295–310.

[29] Arman Kazemi, Mohammad Mehdi Sharifi, Zhuowen Zou, Michael Niemier,
X Sharon Hu, and Mohsen Imani. 2021. Mimhd: Accurate and efficient hyperdi-
mensional inference using multi-bit in-memory computing. In 2021 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED). IEEE,

https://openreview.net/forum?id=lwcnZmyojm
https://doi.org/10.1109/TPAMI.2010.57

FLARE: FP-Less PTQ and Low-ENOB ADC Based AMS-PiM for Error-Resilient, Fast, and Efficient Transformer Acceleration arXiv Preprint, Research Preview, 2024

1–6.
[30] Hyungjun Kim, Hyunmyung Oh, and Jae-Joon Kim. 2020. Energy-efficient

XNOR-free in-memory BNN accelerator with input distribution regularization.
In Proceedings of the 39th International Conference on Computer-Aided Design.
1–9.

[31] Hyeonuk Kim, Jaehyeong Sim, Yeongjae Choi, and Lee-Sup Kim. 2019. Nand-net:
Minimizing computational complexity of in-memory processing for binary neural
networks. In 2019 IEEE international symposium on high performance computer
architecture (HPCA). IEEE, 661–673.

[32] Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
2021. I-bert: Integer-only bert quantization. In International conference on machine
learning. PMLR, 5506–5518.

[33] Taehyun Kim, Kwanseok Choi, Youngmock Cho, Jaehoon Cho, Hyuk-Jae Lee,
and Jaewoong Sim. 2024. MoNDE: Mixture of Near-Data Experts for Large-Scale
Sparse Models. arXiv preprint arXiv:2405.18832 (2024).

[34] Z Lan. 2019. Albert: A lite bert for self-supervised learning of language represen-
tations. arXiv preprint arXiv:1909.11942 (2019).

[35] Hunjun Lee, Minseop Kim, Dongmoon Min, Joonsung Kim, Jongwon Back,
Honam Yoo, Jong-Ho Lee, and Jangwoo Kim. 2022. 3D-FPIM: An extreme energy-
efficient DNN acceleration system using 3D NAND flash-based in-situ PIM unit.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 1359–1376.

[36] Huize Li, Zhaoying Li, Zhenyu Bai, and Tulika Mitra. 2024. ASADI: Accelerating
Sparse Attention Using Diagonal-based In-Situ Computing. In 2024 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
774–787.

[37] Zhikai Li and Qingyi Gu. 2023. I-vit: Integer-only quantization for efficient vision
transformer inference. In Proceedings of the IEEE/CVF International Conference on
Computer Vision. 17065–17075.

[38] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[39] Yun Long, Taesik Na, and Saibal Mukhopadhyay. 2018. ReRAM-Based Processing-
in-Memory Architecture for Recurrent Neural Network Acceleration. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 26, 12 (2018), 2781–
2794. https://doi.org/10.1109/TVLSI.2018.2819190

[40] AbhishekMoitra, Abhiroop Bhattacharjee, and Priyadarshini Panda. 2024. PIVOT-
Input-aware Path Selection for Energy-efficient ViT Inference. In Proceedings of
the 61st ACM/IEEE Design Automation Conference. 1–6.

[41] Sourjya Roy, Mustafa Ali, and Anand Raghunathan. 2021. PIM-DRAM: Accel-
erating machine learning workloads using processing in commodity DRAM.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 11, 4 (2021),
701–710.

[42] V Sanh. 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108 (2019).

[43] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). IEEE, 14–26.

[44] Xin Si, Jia-Jing Chen, Yung-Ning Tu, Wei-Hsing Huang, Jing-Hong Wang, Yen-
Cheng Chiu, Wei-Chen Wei, Ssu-Yen Wu, Xiaoyu Sun, Rui Liu, et al. 2019. 24.5 A
twin-8T SRAM computation-in-memory macro for multiple-bit CNN-based ma-
chine learning. In 2019 IEEE International Solid-State Circuits Conference-(ISSCC).
IEEE, 396–398.

[45] Xin Si, Jia-Jing Chen, Yung-Ning Tu, Wei-Hsing Huang, Jing-Hong Wang, Yen-
Cheng Chiu, Wei-Chen Wei, Ssu-Yen Wu, Xiaoyu Sun, Rui Liu, et al. 2019. A
twin-8T SRAM computation-in-memory unit-macro for multibit CNN-based AI
edge processors. IEEE Journal of Solid-State Circuits 55, 1 (2019), 189–202.

[46] Shrihari Sridharan, Jacob R Stevens, Kaushik Roy, and Anand Raghunathan. 2023.
X-former: In-memory acceleration of transformers. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems 31, 8 (2023), 1223–1233.

[47] Fang Su, Wei-Hao Chen, Lixue Xia, Chieh-Pu Lo, Tianqi Tang, Zhibo Wang,
Kuo-Hsiang Hsu, Ming Cheng, Jun-Yi Li, Yuan Xie, et al. 2017. A 462GOPs/J
RRAM-based nonvolatile intelligent processor for energy harvesting IoE system
featuring nonvolatile logics and processing-in-memory. In 2017 Symposium on
VLSI Technology. IEEE, T260–T261.

[48] Baohua Sun, Daniel Liu, Leo Yu, Jay Li, Helen Liu, Wenhan Zhang, and Terry
Torng. 2018. MRAM co-designed processing-in-memory CNN accelerator for
mobile and IoT applications. arXiv preprint arXiv:1811.12179 (2018).

[49] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In International conference on machine learning.
PMLR, 10347–10357.

[50] A Vaswani. 2017. Attention is all you need. Advances in Neural Information
Processing Systems (2017).

[51] Naveen Verma, Hongyang Jia, Hossein Valavi, Yinqi Tang, Murat Ozatay, Lung-
Yen Chen, Bonan Zhang, and Peter Deaville. 2019. In-memory computing: Ad-
vances and prospects. IEEE Solid-State Circuits Magazine 11, 3 (2019), 43–55.

[52] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. 2018. GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. 353–355.

[53] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song
Han. 2023. Smoothquant: Accurate and efficient post-training quantization for
large language models. In International Conference on Machine Learning. PMLR,
38087–38099.

[54] Cheng-Xin Xue, Wei-Hao Chen, Je-Syu Liu, Jia-Fang Li, Wei-Yu Lin, Wei-En Lin,
Jing-Hong Wang, Wei-Chen Wei, Ting-Wei Chang, Tung-Cheng Chang, et al.
2019. 24.1 A 1Mb multibit ReRAM computing-in-memory macro with 14.6 ns
parallel MAC computing time for CNN based AI edge processors. In 2019 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 388–390.

[55] Xiaoxuan Yang, Bonan Yan, Hai Li, and Yiran Chen. 2020. ReTransformer: ReRAM-
based processing-in-memory architecture for transformer acceleration. In Pro-
ceedings of the 39th International Conference on Computer-Aided Design. 1–9.

[56] Donghyeon Yi, Seoyoung Lee, Injun Choi, Gichan Yun, Edward Jongyoon
Choi, Jonghee Park, Jonghoon Kwak, Sung-Joon Jang, Sohmyung Ha, Ik-Joon
Chang, et al. 2024. Skew-CIM: Process-Variation-Resilient and Energy-Efficient
Computation-in-Memory Design Technique With Skewed Weights. IEEE Trans-
actions on Circuits and Systems I: Regular Papers (2024).

[57] Shihui Yin, Zhewei Jiang, Jae-Sun Seo, and Mingoo Seok. 2020. XNOR-SRAM:
In-memory computing SRAM macro for binary/ternary deep neural networks.
IEEE Journal of Solid-State Circuits 55, 6 (2020), 1733–1743.

[58] Minxuan Zhou, Weihong Xu, Jaeyoung Kang, and Tajana Rosing. 2022. Transpim:
A memory-based acceleration via software-hardware co-design for transformer.
In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 1071–1085.

[59] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou.
2016. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016).

https://doi.org/10.1109/TVLSI.2018.2819190

	Abstract
	1 Introduction
	2 Backgrounds
	2.1 Analog-Mixed-Signal Process-in-Memory (AMS-PiM)
	2.2 Self-Attention Layer in Transformer Encoders
	2.3 Kernel Fusion and Self-Attention Inference Optimization

	3 Motivations
	3.1 Motivation for PTQ and Non-BLAS Layer Optimizations
	3.2 Motivation for Accurate and Efficient AMS Computation
	3.3 Massive GEMVs with Quadratic Latency Bottleneck

	4 FLARE Architecture
	4.1 MRAM-SRAM Hybrid AMS-PiM Design
	4.2 Dequantization-Free PTQ Technique
	4.3 Proposed VDR-Softmax Fused with eMSB-Q
	4.4 BitSift-GEMV Processor
	4.5 Reduced Tensor Traffic

	5 FLARE Evaluations
	5.1 Hardware Customization Exploration
	5.2 Impact of eMSB-Q and VDR-Softmax
	5.3 Impact of BitSift-GEMV
	5.4 Impact on Latency Performance
	5.5 Impact on Energy Performance

	6 Discussion - Related Works
	7 Conclusion
	References

