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A Benchmark Dataset for Collaborative SLAM in
Service Environments

Harin Park1, Inha Lee1, Minje Kim1, Hyungyu Park1 and Kyungdon Joo2,†

Abstract—We introduce a new multi-modal collaborative
SLAM (C-SLAM) dataset for multiple service robots in various
indoor service environments, called C-SLAM dataset in Service
Environments (CSE). We use the NVIDIA Isaac Sim to generate
data in various indoor service environments with the challenges
that may occur in real-world service environments. By using
the simulator, we can provide precisely time-synchronized sensor
data, such as stereo RGB/depth, IMU, and ground truth (GT)
poses. We configure three common indoor service environments
(Hospital, Office, and Warehouse), each featuring dynamic objects
performing motions suited to the environment. In addition, we
drive the robots to mimic the actions of real service robots.
Through these factors, we generate a realistic C-SLAM dataset
for multiple service robots. We demonstrate our CSE dataset
by evaluating diverse state-of-the-art single-robot SLAM and
multi-robot SLAM methods. Additionally, we provide a detailed
tutorial on generating C-SLAM data using the simulator. Our
tutorial and dataset are available at https://github.com/
vision3d-lab/CSE_Dataset.

Index Terms—Data Sets for SLAM, Simulation and Animation,
Multi-Robot SLAM, Service Robotics

I. INTRODUCTION

INTELLIGENT agents, such as personal robots and
autonomous vehicles, have increasingly become a part of

our daily lives and play significant roles. In particular, service
robots have started to replace simple yet human resources-
required tasks, such as serving, path guidance, cleaning,
delivery, etc. [1], [2]. To this end, service robots are required
to understand unknown environments [2], where simultaneous
localization and mapping (SLAM), which estimates the pose of
the robot itself and builds a map of an unknown environment
simultaneously, is one of the most fundamental techniques for
service robots [3]. Through SLAM, service robots can perceive
their surroundings and perform their tasks.
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Specifically, service environments, where robots operate and
may interact with people [4], have become diverse (e.g., from
static spaces to complex indoor or outdoor environments)
and have begun to require more complex tasks that are
difficult for a single agent to handle. These changes
naturally have led to an interest in multiple agents from
single agents. Furthermore, SLAM algorithms, the basis of
robot perception, have also begun promoting performance
improvement through collaboration between multiple agents.
Accordingly, a new SLAM task, Collaborative SLAM (C-
SLAM in short) for multiple agents, has been developed in
the robotics community [5], [6] and aims to improve the
robustness, and accuracy of localization and mapping by
exchanging spatial information among multiple agents [1].

Despite this progress, C-SLAM remains limited in terms
of benchmarking [7]. While standardized benchmarks for
SLAM for a single robot have emerged extensively, systematic
evaluation techniques and datasets for C-SLAM are still
lacking [7]. For example, the OpenLORIS-Scene dataset [3],
as a SLAM dataset for a single service robot, encompasses
various challenges encountered in service environments, such
as textureless scenes, dynamic objects, and viewpoint changes.
However, early datasets for C-SLAM [8], [9] are acquired
only in static and indoor experimental environments, excluding
dynamic objects. To alleviate these gaps, a few datasets that
include dynamic objects, such as humans, have recently been
proposed [10], [11], [12], [13], but they are mainly acquired
from urban outdoor scenes or limited indoor environments
(e.g., only a small corridor or a room-size laboratory). In other
words, there is still a lack of diversity in service environments
for multi-robot in terms of benchmark datasets (see Table I).

In the case of service robots, they operate for long periods of
time in various indoor environments, where they have diverse
interactions. Concretely, the service robots navigate complex
indoor spaces, collaborate with others, or interact with people
in service environments, such as hospital, restaurant, and
office [1], [2]. Notably, while multiple service robots are
in operation, challenging scenarios arise for performing C-
SLAM. For example, the robots may encounter homogeneous
scenes or severe occlusions/large rotations caused by dynamic
objects. Motivated by this fact, in this work, we introduce a
new multi-modal C-SLAM dataset for multiple service robots
in indoor service environments, called CSE dataset; especially,
our dataset includes various indoor service environments, such
as Hospital, Office, and Warehouse (see Office in Fig. 1), and
mimics diverse and challenging scenarios for service robots.

In constructing our dataset, we consider several essential
factors that must be satisfied as a C-SLAM dataset for service
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(a) Robot-to-robot

: Human

(b) Occlusion

Robot

(c) Complex Illumination

(d) Context-Aware Motion

Fig. 1: Illustration of the CSE dataset in Office environments. The CSE dataset is obtained from realistic service environments, including
multiple dynamic objects, indicated by a red circle. Our environments contain diverse characteristics, and each box shows the features as
seen from the robot camera view. (a) Robot-to-robot interaction (Follow). The blue circle is the robot driving in front of it. (b) Occlusion from
dynamic objects. (c) Complex illumination due to reflective material. (d) Dynamic objects performing motions suitable for the environment.

robots. 1) Each robot must provide time-synchronized and
abundant sensor modalities that can allow us to demonstrate
SLAM for different sensor combinations. 2) Multi-robot
should explore diverse paths in various service environments,
and precisely time-synchronized GT poses for each robot
are essential for evaluating C-SLAM. It should be noted
that acquiring accurate time-synchronized sensor data and
GT poses among multi-robot is non-trivial in the real world.
3) Multi-robot must reproduce various scenarios that can occur
in real service environments, such as avoiding dynamic objects
during path planning. To satisfy the above factors, we propose
a new synthetic C-SLAM dataset for multiple service robots
using a simulator, NVIDIA Isaac Sim [14], which provides
photo-realistic sensor data. Based on the NVIDIA Isaac Sim,
we acquire time-synchronized sensor data and accurate GT
poses. We also configure various service environments with
the challenges that arise in real service environments. Each
environment is separated into static and dynamic, based on
the on/off of dynamic objects. In addition, we build a realistic
dataset by simulating real service robot actions. The main
characteristics of our datasets are as follows:

• We propose a new synthetic C-SLAM dataset for
multiple service robots. Each robot includes precisely
time-synchronized stereo RGB, stereo depth, inertial
measurement unit (IMU), and GT pose.

• We acquire data in diverse service environments:
Hospital, Warehouse, Office. For each environment, we
place the dynamic objects with suitable actions and
include diverse challenging cases.

• We construct the scenarios considering intra/inter-robot
loop closures to facilitate the appropriate evaluation of
C-SLAM. In addition, we separate each environment into
static and dynamic to acquire data in the same scenario.
This allows us to evaluate the efficiencies of SLAM
algorithms dealing with dynamic objects.

• We validate our dataset by evaluating diverse state-of-the-
art single-robot SLAM and multi-robot SLAM.

II. RELATED WORK

A. SLAM Datasets for Single-Robot

Various datasets for a single robot that incorporates diverse
environments and sensor modalities have been proposed in
the literature. In particular, there are several public SLAM

datasets that are widely used for single-robot [15], [16],
[17], [18]. Among them, KITTI [16], EuRoC-MAV [15],
and TUM RGB-D [17] are well-known public benchmark
datasets for single-robot SLAM. However, they are acquired
in limited scenarios and do not reflect the complexity of real-
world environments [18]. Furthermore, they lack diversity in
environments and conditions, such as weather and lighting.

To address these limitations, Wang et al. [18] propose
a synthetic SLAM dataset, TartanAir, which considers
challenging conditions in various environments. They build
data focusing on challenging environments with diverse
motion patterns, adverse weather, and dynamic objects. By
using simulations, they provide accurate sensor data, such
as stereo RGB image, depth image, camera poses, etc. In
contrast, the OpenLORIS-Scene [3] is a lifelong SLAM dataset
acquired in real service environments with diverse challenges.
It includes elements found in real service environments (e.g.,
dynamic objects and textureless scenes) and collects data from
offices and markets where service robots operate.

Unfortunately, despite advances in datasets for a single
robot, they still have limitations in handling complex situations
and performing multiple tasks simultaneously.

B. C-SLAM Datasets for Multi-Robot

The goal of C-SLAM is to enhance the efficiency and
accuracy that surpass the capabilities of single-robot SLAM by
integrating data from each robot to form globally consistent
maps and state estimates [7]. Due to their advantages, such
as enabling mapping over large areas and facilitating efficient
task execution, C-SLAM has gained significant attention in
research. Nevertheless, there is still a lack of benchmark
datasets for evaluating and developing C-SLAM.

UTIAS [8] is the first dataset for multi-robot SLAM.
UTIAS presents a 2D multi-robot SLAM dataset based on 15
distinct landmarks in a 15m×8m indoor environment, using
five robots equipped with a monocular camera. However, it
is limited to a constrained indoor experimental space and
offers only 2D GT poses. AirMuseum [9] and GRACO [12]
are multi-robot SLAM datasets utilizing heterogeneous agent
platforms. AirMuseum is collected in an indoor environment
with multiple ground robots and drones equipped with Apriltag
markers, providing GT trajectories through Structure from
Motion (SfM). But it assumes a static indoor environment.
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TABLE I: Comparison of existing C-SLAM datasets for multi-robot. Time synchronization columns are referenced by [10].

Dataset Sensors Platforms Environment Ground Truth Pose Time sync
RGB Depth IMU LiDAR Type Static / Dynamic Intra Inter

UTIAS [8] ✓† UGV Indoor S Motion capture Sw NTP
AirMuseum [9] ✓† ✓ UGV, UAV Indoor S SfM Sw NTP
Ford-AV [11] ✓ ✓ ✓ Vehicle Outdoor D GPS-IMU, SLAM corrected – GNSS

S3E [10] ✓ ✓ ✓ UGV Outdoor, Indoor S RTK, Motion capture Hw GNSS, PTPv2
GRACO [12] ✓ ✓ ✓ UGV, UAV Outdoor D GNSS / INS Hw GNSS

Tian et al. [13] ✓ ✓ ✓ ✓ UGV, UAV Outdoor, Indoor D Point-cloud by LiDAR, GPS – NTP
SubT-MRS [19] ✓ ✓ ✓ ✓ UGV, UAV, Legged Outdoor, Indoor S 3D Scanner Hw –

CERBERUS [20] ✓ ✓ ✓ UGV, UAV, Legged Outdoor, Indoor S DARPA-provided map, point cloud Sw PTP

Ours ✓ ✓ ✓ ✓* UGV Service Env. (Indoor) S + D Simulator (NVIDIA Isaac Sim) Simulator Simulator

† Only monocular RGB modality.
* We provide a function that converts depth images to pseudo-LiDAR data.

GRACO involves the use of ground robots and drones in
outdoor urban scenes. However, they do not include challenges
like occlusions from dynamic objects that robots may face
in the real world. Additionally, S3E [10] proposes a long-
term multi-modal dataset using multiple ground robots in
both indoor and outdoor environments based on four well-
designed trajectory paradigms. Tian et al. [13] acquire data
using eight ground robots, including dynamic objects (e.g.,
vehicles and pedestrians) and varying lighting conditions
in environments, such as urban outdoor scenes and indoor
environments like tunnels. In addition, the SubT-MRS [19]
and CERBERUS [20] datasets are collected during the DARPA
Subterranean Challenge, and they include various challenging
cases, such as featureless surfaces and self-similar layouts.

Unlike most C-SLAM datasets that are mainly acquired
in urban outdoor scenes or limited indoor environments, our
CSE dataset covers various indoor environments specialized
for service robots. Furthermore, existing C-SLAM datasets
do not reflect the characteristics that occur when real robots
move since humans control the robot manually. In contrast,
we leverage the ROS Navigation Stack1 for robot driving,
which enable more realistic scenarios, allowing the robots to
recognize their environment and avoid dynamic objects.

III. DATASET FOR C-SLAM IN SERVICE ENVIRONMENTS

The CSE dataset is built upon the NVIDIA Isaac Sim [14].
The NVIDIA Isaac Sim is a robotics simulator powered
by the Omniverse platform that provides photo-realistic and
physically accurate virtual environments. Thus, it allows us
to collect accurate GT poses and time-synchronized sensor
data. Our CSE dataset is acquired using three robots in three
indoor service environments with challenging cases, including
serious occlusions by dynamic objects, homogeneous floors,
and redundant objects, etc. Each environment is categorized
into static and dynamic, thereby providing 18 sequences for
SLAM (6 sequences for C-SLAM). In addition, we provide
GT point clouds for each environment, which are available
on the project page. Details of our dataset, including the
characteristics of scenes and scenarios, are available in the
supplementary video.

A. Robot Configurations
As a robot platform, we utilize the NVIDIA Carter provided

by Isaac Sim (see Fig. 2(a)). Carter2 is a differentiable drive

1https://wiki.ros.org/navigation
2https://docs.nvidia.com/isaac/archive/2020.2/doc/

tutorials/carter_hardware.html

① Stereo (right) ② Stereo (left)

③ IMU X

Z

Y

(a) (b)

Fig. 2: Robot configuration and sensor data example. (a) The
NVIDIA Carter, our robot platform. (b) Examples of acquired sensor
data (stereo RGB, stereo depth, GT poses and IMU).

robot with two wheels on each side that is designed to verify
the capabilities of the Isaac SDK. Isaac SDK is intended
to develop applications for complicated use cases, such as
delivery robots, and the Carter is developed as a delivery
robot. Accordingly, we choose Carter as our robot platform for
generating the dataset tailored for service robots. We deploy
three Carters as service robots in the target environments. We
operate this Carter using ROS Navigation Stack integrated
within Isaac Sim. ROS Navigation Stack is a 2D navigation
stack that generates a path to a target pose using odometry
and sensor data. It is utilized in real-world robot navigation,
employing a global planner to plan the global path and a local
planner to detect and avoid surrounding dynamic objects. By
utilizing the ROS Navigation Stack, we can simulate behaviors
that occur when real robots navigate.

Note that our approach reflects realistic scenarios where
robots are aware of their surroundings and interact with
dynamic objects. On the other hand, existing datasets [10],
[9], [12], [13] are generated by humans controlling the
robots manually. These approaches do not reflect the actions
shown by real robots as they perceive their surroundings and
encounter unexpected dynamic objects.

B. Sensor Configurations

For each robot, we attach several sensor modalities for
perception in service environments, as shown in Fig. 2(a).
Specifically, the sensor system of each robot is equipped with
stereo RGB/depth cameras and an IMU sensor. The resolution
of both stereo RGB and depth cameras is 1280×720, and the
baseline length is set to 12cm, following the specification2

of the camera on board Carter. We also provide camera
parameters, such as intrinsic and extrinsic between sensors,
with the left RGB camera as the reference. For IMU, we
provide empirically tuned IMU parameters.

Using this sensor system, we can acquire stereo RGB
images, stereo depth images, IMU measurements, and GT
poses for each robot through the ROS, as shown in Fig. 2(b).
In addition, we provide a function that extracts 3D sparse

https://wiki.ros.org/navigation
https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
https://docs.nvidia.com/isaac/archive/2020.2/doc/tutorials/carter_hardware.html
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Fig. 3: Example of service environments in the proposed CSE dataset. Each row shows the service environments we built (Hospital,
Warehouse, and Office in order) from several viewpoints. Odd columns represent static environments, while even columns represent dynamic
environments. In particular, we can observe dynamic objects having suitable actions and clothes for each environment.

(a) (b) (c)

Fig. 4: Challenging cases in the CSE dataset. (a) Occlusions from
dynamic objects. (b) Place recognition failure due to similar structure
at different location. (c) Invalid feature matching due to a dynamic
object at different times. (b) and (c) are cases where SLAM failed.

point clouds (i.e., pseudo-LiDAR measurements) from the
depth images. We employ this method due to constraints in
extracting the 3D point cloud from the simulator. Details of
sensor specifications, ROS topics, noise levels and pseudo-
LiDAR are available in our project page.

C. Service Environments
We select three common indoor service environments:

Hospital, Warehouse, and Office, where real service robots
operate. Furthermore, we categorize each environment into
static and dynamic, building a total of six environments.
Figure 3 shows the examples of each environment, including
static and dynamic environments. By categorizing each
environment into static and dynamic, we expect the following
effects from our dataset. 1) It becomes possible to generate
data with challenging cases in the service environment
itself (static) and external challenges that occur due to
the addition of dynamic objects. 2) These categorizations
provide an opportunity to evaluate the effectiveness of SLAM
algorithms handling dynamic objects. 3) Moreover, the robot
navigates with the same goal point in both static and dynamic
environments, which makes the evaluation more valid.
Service Scenes. We utilize basic scenes provided by NVIDIA
and modify them with additional construction for our purposes.
In the case of Hospital and Office, we proceed with structural
and textural modifications to reflect the challenging cases. In
addition, we build realistic environments by manually placing
various assets suitable for each environment. For Warehouse,
we use the SceneBlox tool of NVIDIA Omniverse Replicator
to generate a basic scene. After building the basic scene, we
do the same post-processing as Hospital and Office.

Hospital, with 76m×45m, mainly consists of narrow and
long corridors. Specifically, the walls and floors of Hospital
are homogeneous, making it hard to extract the visual
information and re-localization difficult. For example, there
are a series of doors and objects with the same design in
the corridors. In other words, there are lots of redundant
objects placed, which can create ambiguity in feature matching
and significantly reduce pose estimation accuracy. Office, with
31m×94m, comprises two large spaces connected by short
corridors. It includes the various challenging cases since it has
homogeneous walls/floors and ceilings with repetitive patterns.
The floor is made up of reflective materials; these reflective
properties, especially, can cause another challenge by light
reflections. Warehouse is a cuboid shape with 56m×74m,
where large grid structures are regularly arranged. Similar to
Hospital, it consists of homogeneous walls and floors, as well
as a large number of redundant doors and boxes, which can
make feature matching challenging.
Dynamic Objects. All dynamic environments are built by
placing dynamic objects based on each static environment.
As dynamic objects, we utilize human assets provided by
NVIDIA and purchased assets from ActorCore3. Dynamic
objects are evenly distributed spatially and perform suitable
actions to each environment. For example, in the Hospital,
there are doctors walking around the rooms or nurses talking
at the reception desk. For Office, as shown in Fig. 3, the
office workers are either sitting in chairs or talking to each
other. In addition, dynamic objects move around specific areas
continuously. Through these motions, severe occlusions can
occur, obstructing the camera view (see Fig. 4(a)).

D. Scenarios

C-SLAM involves multiple robots collaborating to explore
the environments and build a map. During this process, each
robot visits the same location repeatedly (i.e., intra-robot
loop closure) and frequently encounters each other (i.e., inter-
robot loop closure). Such intra-/inter-robot loop closures are
essential for the robots to estimate their pose and build the
map accurately. Based on this fact, we design the scenarios
considering the various interactions, including intra-/inter-
robot loop closures.

3https://actorcore.reallusion.com/

https://actorcore.reallusion.com/
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Robot 3Robot 2Robot 1 End pointStart point
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Fig. 5: Scenarios in the proposed CSE dataset. We visualize scenarios for each dynamic environment on its 2D occupancy map with the
same scale. Note that scenarios in this illustration only show dynamic environments.

Specifically, the interactions we considered are categorized
into three types: Intra-robot, Robot-to-robot, and Robot-to-
human interactions. Firstly, the intra-robot interaction refers
to all cases where intra-robot loop closure occurs. Secondly,
robot-to-robot interaction is defined by all phenomena that
lead to inter-robot loop closure through the exchange of
data between robots. We categorize this case into three main
scenarios (Follow, Intersection, and Revisit). Follow describes
a situation where one robot follows behind another, and
Intersection means different robots crossing each other while
facing one another simultaneously. Finally, Revisit refers to
a situation where a robot passes through the same path that
another robot passed earlier, but at a different time. Details of
each type are available in the supplementary video. Lastly, our
dataset includes cases where a human recognizes and avoids
a robot at close range, which we define as robot-to-human
interaction. In summary, we design the scenarios considering
these various interactions. However, our dataset is generated
under the assumption that the given indoor environments
would have constant communication. Therefore, we do not
consider the concept of bandwidth or links between the robots.

For each environment, the static and dynamic scenarios
share the same goal points for robot navigation. However,
due to variability introduced by the ROS Navigation Stack,
the paths between goal points in static and dynamic scenarios
are not perfectly identical but are almost similar. Additionally,
across all environments, the dynamic scenarios share the
common feature of people avoiding the robot at close range,
leading to challenges such as occluding the view of the robot,
as illustrated in Fig. 4(a). For this reason, the following part
of this section focuses on explaining the static scenarios.
It should be noted that the dynamic scenario includes all
features of the static scenario in each environment. The robot
scenarios for each environment can be found in Fig. 5, and
their characteristics are detailed in Table II.

Hospital. The scenarios for Hospital are depicted in Fig. 5(a).
All robots start from different starting points and complete
their navigation by returning to their starting points.

The scenarios for all robots consist of driving down
long corridors and exploring small spaces. In common, they
perform large rotations when exploring small spaces to avoid
collision. These large rotations can quickly change the view
of the camera, making pose estimation difficult. ROBOT 1 and
ROBOT 3 perform intra-robot loop closures when they reach
the endpoints, while ROBOT 2 does not. Instead, ROBOT 2
explores the hospital as a whole, resulting in frequent Revisit,
which lead to numerous inter-robot loop closures. In addition,

ROBOT 3 encounters other robots (Intersection) and follows
ROBOT 1 (Follow), both leading to inter-robot loop closures.
Office. Figure 5(b) is the scenarios for Office. Similar to
scenarios in Hospital, every robot has different starting points.
ROBOT 2 and ROBOT 3 finish their navigation near their
starting points, whereas ROBOT 1 ends at the different location
from its starting point.

ROBOT 2 and ROBOT 3 drive over a specific region
repeatedly, and ROBOT 1 drives throughout the overall
area of office. In the case of ROBOT 2, it consists of
complicated scenarios that involve driving through both rooms
and corridors. This causes ROBOT 2 to make large rotations
when going through the narrow doors. The scenarios for
ROBOT 2 and ROBOT 3 have many intra-robot loop closures
due to repeatedly driving over the same areas. However, in
the case of ROBOT 1, there are no intra-robot loop closures.
Instead, it has lots of Revisit that leads the inter-robot loop
closures because it drives through the entire environment.
Warehouse. Figure 5(c) shows Warehouse scenarios, where
all robots start from different locations and complete their
navigation at the same space.

In Warehouse, the robots drive between large, regularly
aligned structures. The scenarios for ROBOT 2 and ROBOT
3 involve intra-robot loop closures, while ROBOT 1 does not
contain any. However, for Warehouse scenarios, all robots
contain many inter-robot loop closures. For example, ROBOT
1 drive back through the area that ROBOT 3 passed through
(Revisit), and ROBOT 2 drive behind ROBOT 1 (Follow).
In particular, ROBOT 1 and ROBOT 2 intersect each other,
which leads to the challenges of observing one another
at close range, resulting in extreme occlusion. In addition,
ROBOT 1 and ROBOT 2 overlap their driving paths in narrow
sections, causing ROBOT 2 to perform a recovery behavior.
Recovery behavior means the robot independently recognizes
and solves unexpected obstacles and dynamic changes during
path planning to continue driving. Specifically, ROBOT 2 sees
ROBOT 1 as a dynamic obstacle and stops, then resumes
driving once it is sure that it is no longer obstructing its path.
These scenarios well reflect real-world situations encountered
by service robots.

IV. EXPERIMENTS

In this section, we describe SLAM algorithms utilized to
evaluate our dataset. We also provide the experimental analysis
and visualization results of various SLAM baselines (see
Hospital in Fig. 6). Visualization results for all environments
are available in the supplementary video.
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TABLE II: Dynamic scenario configurations.

Environment Robot Duration (s) Length (m)
Loop Closure

Characteristics / Challenges† Size
# of

Intra Inter dynamic
Follow Intersection Revisit objects*

Hospital
ROBOT 1 373.1 124.0 ✓ ✓ ✓

Long corridors / Homogeneous floor 76m×45m 3 + 16ROBOT 2 563.1 200.6 ✓ ✓
ROBOT 3 509.1 182.8 ✓ ✓ ✓ ✓

Office
ROBOT 1 604.5 210.1 ✓ ✓ Complex space with rooms and corridors /

31m×94m 3 + 37ROBOT 2 703.5 238.2 ✓ ✓ ✓ Repetitive pattern (floor, ceiling),
ROBOT 3 508.5 175.9 ✓ ✓ Reflective material floor

Warehouse
ROBOT 1 645.0 250.1 ✓ ✓ ✓

Large regular grid structures / Homogeneous floor 56m×74m 3 + 38ROBOT 2 643.1 254.7 ✓ ✓ ✓
ROBOT 3 631.1 251.0 ✓ ✓ ✓ ✓

† In common, service environments in our dataset include visual redundancy, dynamic objects, and homogeneous walls.
* The number of objects that include robots and humans.

A. Baseline

SLAM for Single-Robot. To evaluate our dataset, we
utilize ORB-SLAM3 [21] and VINS-Fusion [22] as baselines
for single-robot SLAM. ORB-SLAM3 facilitates a range
of camera configurations and demonstrates outstanding
performance by leveraging pre-constructed maps in
scenarios with restricted visual data. VINS-Fusion is an
optimization-based odometry framework that utilizes visual
and inertial information, integrating sensor data into pose
graph optimization for accurate position estimation.

C-SLAM for Multi-Robot. Unlike SLAM for single-
robot, C-SLAM for multi-robot performs SLAM tasks using
multiple robots. COVINS [23] is a centralized visual-
inertial SLAM system that utilizes data collected from
multiple robots. This system gathers data generated by
ORB-SLAM3 from numerous robots to perform global
optimization, and it enhances joint estimation by incorporating
place recognition and eliminating redundant data. Swarm-
SLAM [24] employs a decentralized approach, utilizing novel
techniques for efficient communication between robots and
rapid convergence. This framework is well-suited for large-
scale deployment, and its effectiveness in terms of accuracy
and resource utilization efficiency has been demonstrated
through empirical experiments.

Additionally, to evaluate the impact of dynamic objects,
we develop Swarm-SLAM-D and COVINS-D by applying
the dynamic feature removal module that handles dynamic
objects into Swarm-SLAM and COVINS. This module is
modified based on the moving consistency check module of
DS-SLAM [25], and identifies and removes dynamic features
using both previous and current frames. Detailed explanation
and code are available on the project page.

B. Experimental Setup

To evaluate various sensor modalities offered by our
dataset, we conduct evaluations using RGB-D, stereo-inertial,
and mono-inertial modalities provided by each baseline
algorithm. The trajectories from each baseline are measured
for performance using the absolute trajectory error (ATE). The
all evaluation is conducted with EVO [26].

For single-robot SLAM algorithms, we set the play rate
to 1.0× and evaluate all sequences. For multi-robot SLAM
algorithms, we use the 0.5× play rate and evaluate with three
robots concurrently. This adjustment ensures smooth running,
given the high computational demands of multi-robot SLAM.

C. Results and Analysis

SLAM for Single-Robot. In Table III, the evaluation results
using single-robot SLAM are presented. We observe that both
ORB-SLAM3 and VINS-Fusion achieve high accuracy with
the stereo-inertial setup on average. Notably, in Hospital,
the presence of numerous static objects, such as chairs and
desks, facilitates easier feature matching, thereby enhancing
the accuracy of pose estimation. However, due to the
challenging cases of each environment, specific sequences
lead to poor estimation results. For example, we observe
that the ROBOT 3 performs incorrect place recognition in
ORB-SLAM3. This occurs due to redundant objects, as
shown in Fig. 4(b), resulting in low accuracy. Additionally,
ORB-SLAM3 sometimes halts during operation. Specifically,
in certain scenarios, relatively small IMU values occur,
at which time the IMU processing logic of ORB-SLAM3
reacts sensitively, leading to algorithmic failures. For VINS-
Fusion, we observe that inadequate feature matching occurs
in Warehouse when robots encounter each other at close
range, as the other robot is treated as a dynamic object.
Through this result, we believe that by exchanging their
positions, robots could better handle dynamic objects (i.e.,
other robots), improving performance. Furthermore, we can
see that these challenges adversely affect the accuracy of
SLAM, highlighting the need to address dynamic objects and
environmental complexities to enhance overall performance.

C-SLAM for Multi-Robot. Table IV shows the evaluation
results of multi-robot SLAM on our dataset. In static
environments, Swarm-SLAM shows robust performance
compared to other multi-robot SLAM algorithms on RGB-D
and stereo setups. In contrast, in dynamic environments, there
is a notable reduction in performance, particularly in Hospital.
However, Swarm-SLAM-D shows higher accuracy compared
to Swarm-SLAM due to the dynamic feature removal module.
It indicates that the dynamic objects have a significant impact
on the performance of Swarm-SLAM. However, the results of
Swarm-SLAM-D degrade for specific sequences. This happens
because the naive dynamic feature removal approach may
result in improper feature removal in specific sequences.

For COVINS, it shows inferior performance and numerous
failures throughout our dataset. This is because centralized
SLAM shares a single server (i.e., backend) among
all robots; a failure case occurring in a single robot
can also affect another. Additionally, COVINS sometimes
halts during operation when relatively small IMU values
occur due to similar issues to those in ORB-SLAM3.
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TABLE III: Evaluation of SLAM for single-robot.

ORB-SLAM3 [21] VINS-Fusion [22]

Sequences RGB-D Mono
Inertial

Stereo
Inertial

Mono
Inertial

Stereo
Inertial

Static

Hospital
R1 0.015 0.191 0.017 4.863 0.331
R2 0.057 16.056 0.061 0.513 0.210
R3 0.040 7.897 ✕ 2.555 0.387

Office
R1 0.058 3.764 0.038 2.042 0.213
R2 0.023 8.903 6.676 3.513 0.471
R3 3.432 0.094 3.040 4.244 0.170

Warehouse
R1 0.565 ✕ ✕ 17.027 1.809
R2 0.030 0.198 0.030 10.726 0.328
R3 16.490 0.373 4.707 5.832 1.957

Dynamic

Hospital
R1 0.023 0.108 0.019 2.244 0.525
R2 0.098 ✕ ✕ 1.999 0.346
R3 0.030 10.340 0.033 3.376 0.348

Office
R1 0.090 0.256 13.424 2.546 0.253
R2 0.060 ✕ ✕ 6.740 0.442
R3 0.067 0.072 0.022 3.450 0.263

Warehouse
R1 0.054 0.552 0.068 4.322 1.322
R2 0.021 0.259 0.035 4.268 0.496
R3 16.682 0.399 0.076 5.385 0.364

✕ Fail to obtain trajectory due to algorithm halt during operation.
R1-3 indicate the robot names (e.g., R1 means Robot 1).
Note that the best result for each scenario are bolded.
The metric represents RMS ATE in meters.‘

However, for COVINS-D, we observe significant performance
improvements in specific sequences, such as Robot 2 in
the dynamic Warehouse, by handling dynamic objects. On
the other hand, we also observe a performance degradation
compared to COVINS in specific sequences. This issue
arises when extreme occlusion from dynamic objects occurs
in the robot view, causing the dynamic feature removal
module to remove an excessive number of keypoints. In such
cases, the RANSAC-based dynamic feature removal module is
affected by the number of features, leading to misclassification
of static and dynamic keypoints, which negatively impacts
performance. Based on these results, we believe that utilizing
the information from dynamic objects (e.g., dynamic object
tracking) may be more effective than simply removing them.

In addition, we observe that multi-robot SLAM can fail
even if the place recognition module performs well. For
example, in Swarm-SLAM, although a robot recognizes the
same static environment by the place recognition module (see
Fig. 4(c)), dynamic objects observed in the viewpoint can
cause invalid feature matching. This can lead to inaccurate
bundle adjustment. This rare edge case in single-robot SLAM
becomes more common in multi-robot SLAM, where robots
exchange observations in various encounter cases. Moreover,
we observe that when there are lots of overlapping regions
between robots, it leads to excessive inter-robot loop closures,
which significantly increase optimization complexity and
processing time. We believe this issue is inevitable for service
robots continuously operating in the same space, and more
efficient backend solutions are needed.

In summary, the proposed CSE dataset can help analyze
how the characteristics contained in the service environments
affect SLAM algorithms and have the potential to improve
SLAM performance in the service environments.

V. DISCUSSION
In this section, we discuss the limitations of our dataset,

particularly the gap between simulation and the real world.
We also highlight the potential for enhancing SLAM research
using the CSE dataset and propose our future work.

TABLE IV: Evaluation of C-SLAM for multi-robot.

COVINS
[23]

COVINS-D
(w/ Dynamic) Swarm-SLAM [24] Swarm-SLAM-D

(w/ Dynamic)

Sequences Mono
Inertial

Mono
Inertial RGB-D Stereo RGB-D Stereo

Static

Hospital
R1 9.431 12.959 0.176 0.387 0.213 0.312
R2 2.010 1.346 0.149 0.405 0.339 0.445
R3 △ △ 0.130 0.318 0.298 0.404

Office
R1 9.232 10.921 1.281 0.104 0.157 0.107
R2 8.917 9.1428 1.288 0.121 1.517 2.030
R3 8.774 1.129 0.739 0.067 1.704 0.198

Warehouse
R1 ✕ ✕ 0.827 0.189 3.326 0.397
R2 ✕ ✕ 0.697 0.165 1.309 0.140
R3 ✕ ✕ 0.588 0.120 2.336 0.217

Dynamic

Hospital
R1 ✕ ✕ 9.441 13.670 0.585 0.323
R2 ✕ ✕ 1.797 0.426 1.586 0.440
R3 ✕ ✕ 8.431 1.522 2.343 0.739

Office
R1 ✕ ✕ 0.888 0.113 0.198 0.089
R2 ✕ ✕ 0.721 0.111 0.376 0.072
R3 ✕ ✕ 0.491 0.079 0.229 0.126

Warehouse
R1 9.560 8.252 0.894 0.228 15.721 0.313
R2 7.203 2.176 0.582 0.192 0.231 0.159
R3 11.539 13.168 0.670 0.151 15.031 0.122

△ Only ROBOT 3 fail due to the algorithm’s shutdown.

A. Limitation

The gap between simulation and the real world exists due
to complex factors, including lighting and sensor noise. In
response, prior studies [18], [27] have focused on reducing the
sim-to-real gap by increasing the diversity of the environment.
On the other hand, our work focuses on building a synthetic
C-SLAM dataset that is difficult to obtain in real service
environments due to various issues, such as handling dynamic
objects and obtaining precise time-synchronized sensor data
between multi-robot, rather than focusing on reducing this
gap. For example, we can reproduce diverse scenarios that
robots may experience in real service environments (e.g.,
facing unexpected dynamic objects), and provide precisely
time-synchronized sensor data. In addition, we confirmed
that the various challenging cases (e.g., dynamic objects,
visual redundancy) included in the CSE dataset influence the
performance of SLAM algorithms. As a result, we believe
that the CSE dataset includes various challenges that SLAM
still needs to solve, and can be a valuable resource for
SLAM research. Moreover, the CSE dataset can be realistically
modeled with factors such as sensor noise, motion blur, and
contrast changes through post-processing methods [28], [29].
We also provide a method that allows noise to be added to
the depth image and the maximum depth range to be adjusted
based on [28]. This code is available on our project page.
Through these aspects, we believe that the CSE dataset can
contribute to the development of C-SLAM research.

B. Future Work

In real service environments, various interactions cause
frequent temporal scene changes [30]. Therefore, C-SLAM
also needs to be equipped with long-term scene understanding
capabilities to effectively handle such changes. With this
in mind, we plan to provide data for life-long SLAM that
includes scene changes and diverse robot trajectories. We
have already built sample data considering scene changes
in Office environment, and it is available on the project
page. Additionally, we also plan to offer GT labels (e.g.,
semantic segmentation, dynamic object poses) as well as
additional sensor modalities (e.g., fisheye camera) to support
the development and use of various algorithms.
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Fig. 6: The visualization results of SLAM algorithms in our dataset. Note that we only visualize Hospital experiments that success in
full sequences. Results from other environments are available in the supplementary video.

VI. CONCLUSION

In this work, we propose the CSE dataset, a new synthetic C-
SLAM benchmark dataset for multiple service robots. Unlike
previous C-SLAM datasets that are mainly acquired in urban
outdoor scenes or limited indoor environments (e.g., corridors
or room-size laboratories), we focused on acquiring C-
SLAM dataset with three robots from common indoor service
environments that reflect diverse, challenging cases that may
occur in real-world service environments. Each environment is
divided into static and dynamic with dynamic objects, and each
robot drives through the same scenario in both environments.
This design strategy provides an opportunity to evaluate the
effectiveness of single-robot SLAM and multi-robot SLAM in
dealing with a variety of dynamic objects. We also generate
data that reflects the driving properties of real-world service
robots since the robots recognize their surroundings and
drive themselves in the simulation. Through all these various
characteristics, we expect our dataset will contribute to the
advancement of C-SLAM research for multiple service robots.
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