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Abstract

Image manipulation can lead to misinterpretation of visual
content, posing significant risks to information security. Im-
age Manipulation Localization (IML) has thus received in-
creasing attention. However, existing IML methods rely
heavily on task-specific designs, making them perform well
only on one target image type but are mostly random guess-
ing on other image types, and even joint training on mul-
tiple image types causes significant performance degrada-
tion. This hinders the deployment for real applications as it
notably increases maintenance costs and the misclassifica-
tion of image types leads to serious error accumulation. To
this end, we propose Omni-IML, the first generalist model
to unify diverse IML tasks. Specifically, Omni-IML achieves
generalism by adopting the Modal Gate Encoder and the
Dynamic Weight Decoder to adaptively determine the opti-
mal encoding modality and the optimal decoder filters for
each sample. We additionally propose an Anomaly En-
hancement module that enhances the features of tampered
regions with box supervision and helps the generalist model
to extract common features across different IML tasks. We
validate our approach on IML tasks across three major sce-
narios: natural images, document images, and face images.
Without bells and whistles, our Omni-IML achieves state-
of-the-art performance on all three tasks with a single uni-
fied model, providing valuable strategies and insights for
real-world application and future research in generalist im-
age forensics. Our code will be publicly available.

1. Introduction
The rapid advancement of image processing software and
deep generative models has considerably enriched human
capability to create innovative visual content. Users can ef-
fortlessly manipulate the visual appearance and create new
images that do not exist [27]. Inevitably, such forged images
can lead to fraud and the spread of rumors, posing signifi-
cant risks to politics, economics, and personal privacy [26].
Consequently, Image Manipulation Localization (IML) has
become an emerging issue in social media security [30].
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Figure 1. The proposed Omni-IML is the first generalist model
for image manipulation localization. It that can simultaneously
achieve high performance forgery localization on natural images,
document images and face images with a single model, without
task-specific or benchmark-specific fine-tuning.

Despite the progress made in recent years, existing IML
models are designed for individual image types (e.g. nat-
ural style images, document images, face images). Al-
though these specialized models can handle multiple tam-
pering methods on the images of a single target type, they
always fall short on other types of forged images. The lack
of generality notably increases the maintenance costs of
IML, since an additional image type classifier and multiple
IML models must be maintained for different image types.
In addition, the error accumulation caused by image type
misclassification is still severe, as the existing IML models
perform poorly on the image types they are not designed
for. This significantly hinders the real-world application of
IML. It is crucial to develop a generalist IML model that
can simultaneously perform well on all image types.

Jointly training an IML model on diverse image types
can slightly alleviate the random guessing issue on differ-
ent image types. However, in most cases, the joint training
will lead to an obvious performance degradation on all im-
age types, making the predictions unreliable. For example,
HiFi-Net [11] suffers from joint training and thus uses two
different sets of model parameters for natural images and
face images separately. There are two main reasons why
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existing IML methods suffer so much from joint training:
First, existing IML methods rely heavily on specific ar-

chitecture designs, input modalities, and training strategies
to detect specific tampering clues on specific image types.
These designs work well for the target image type, but
usually not so well for other image types. For example,
edge anomaly enhancement modules [6] and object atten-
tion modules [32] have made significant progress in iden-
tifying forged natural objects. However, they can hardly
work well on document and face images where edge arti-
facts are not obvious. Early frequency-vision [26] fusion
achieves satisfactory performance on document images but
has obvious performance degradation on natural and face
images that cover much more noise and diversity. The high-
resolution representation learning design with shallow lay-
ers [11, 19] performs well in capturing the texture anoma-
lies left by deepfake models but falls short on natural and
document images where the tampered regions are small and
the texture anomalies are not obvious.

Second, existing IML methods lack the design to alle-
viate the confusion in unified IML modeling. The IML
task is already challenging since various tampering meth-
ods have already produced different unobvious tampering
cues on each single image type, learning a general repre-
sentation for tampering cues on different image types could
be even more challenging. Without a suitable design, mod-
els will be easily confused when learning to distinguish so
many tampering features from authentic ones.

To address the above issues, we propose Omni-IML, the
first generalist model that can simultaneously perform well
on all three major IML tasks with a single model, as shown
in Fig 1. Specifically, a Modal Gate Encoder is proposed
to automatically select the optimal encoding modality for
each input sample, based on the characteristics of the input
image. Additionally, a Dynamic Weight Decoder is pro-
posed to adaptively select the optimal decoder filters for
each sample, assisting the generalist model to better cope
with the highly diverse tampering features from different
tampering methods on multiple image types. These sample-
adaptive designs effectively help the model achieve gener-
alism through flexibly adapting itself to each sample. Fur-
ther, an Anomaly Enhancement module is introduced be-
tween the encoder and decoder. It enhances the features of
tampered regions with a novel box supervision design and
suppresses the noise introduced by the joint learning on dif-
ferent tampering methods and image types.

We validate the effectiveness of our Omni-IML on three
representative IML tasks, including natural IML, document
IML, and face IML. Without bells and whistles, experimen-
tal results showcase that our single model achieves state-of-
the-art performance simultaneously on all three tasks, sig-
nificantly surpassing previous specialized methods on indi-
vidual tasks. These strong results verify the design of our

generalist model in the field of image forensics.
By unifying the IML on natural images, document im-

ages and face images with a single model, our Omni-IML
successfully eliminates the trouble of judging image type
at first and maintaining different models for diverse image
types. The issues of severe error accumulation and high
maintenance costs are thus well solved, significantly pro-
moting the real-world applications of IML. The develop-
ment of Omni-IML is also in line with the current main
trend towards Artificial General Intelligence (AGI).

In summary, our main contributions are as follows:
• We propose Omni-IML, the first generalist model for

image manipulation localization, which serves as a pio-
neering effort in this field.

• Our technical innovations lie in the novel and effec-
tive modules: (1) Modal Gate Encoder to effectively se-
lect sample-specific encoding modality, facilitating bet-
ter modality collaboration. (2) Anomaly Enhancement,
which enhances the common features of the forged re-
gions through task collaboration. (3) Dynamic Weight
Decoder, which adaptively selects the sample-specific de-
coder filters and reduces conflicts in the unified training.

• Extensive experiments demonstrate that our generalist
model can simultaneously achieve state-of-the-art re-
sults with a single model on natural image IML, docu-
ment IML and face IML.

2. Related works

2.1. Specialized Image Manipulation Localization
Natural Image Manipulation Localization aims to iden-
tify the tampered regions in daily-life style images. Mantra-
Net [37] proposes to perform natural IML with noise filters
SRM and Bayar Conv. MVSS-Net [6] introduces ESB mod-
ule to enhance boundary inconsistency. ObjectFormer [32]
proposes an object encoder to learn object-level attention
for better feature extraction and proposes BSCIM module to
enhance the edge inconsistency. TruFor [10] benefits from
the noise filters Noiseprint++. UnionFormer [28] introduces
a new backbone to enhance edge artifacts, and proposes to
model the inconsistency between tampered objects and au-
thentic objects. These model designs have achieved signif-
icant progress in natural images, but their performance in
document and face forensics scenarios is unsatisfactory due
to the the absence of natural object, edge artifacts and noise
artifacts in these scenarios.
Document Image Manipulation Localization aims to lo-
calize the forged regions in document images. Early
works [3, 31] achieve document forensics through template-
matching based methods. These methods work well on
clean documents but do not excel on complex documents
such as photographed documents, and even cannot work on
natural or face images. Document Tampering Detector [26]
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improves document IML through early fusion of vision and
frequency features. However, the model will be seriously
distorted in many cases of natural and face images where
the frequency features are too noisy. TIFDM [8] proposes
high-level spatial attention to suppress the false alarms in
documents, but it is limited on complex natural images.
Face Image Manipulation Localization aims to localize
fake human faces. The advancement of deepfake tech-
niques makes it easy to generate a face that does not ex-
ist [5, 15]. To ensure the security of face images and im-
prove the interpretability of deepfake detection, some recent
works have explored face image forgery localization, char-
acterized by a shallow network design for texture artifacts
detection. HiFiNet [11] utilizes metric learning for better
texture anomaly capturing. DA-HFNet [20] proposes Dual
Attention Feature Fusion to better capture the AIGC arti-
facts. These methods show generalization on face IML but
are sub-optimal on natural and document images, where the
tampered regions are small in size and the visual anomalies
are less obvious.

2.2. Generalist Model
Recently, generalist model has attracted increasing atten-
tion since it is more convenient for academic and applica-
tion [33]. Despite the progress in unified object detection
and segmentation [34], most of the previous generalist mod-
els do not cover all image forensic tasks. EVP [18] unifies
natural image forensics with other low-level tasks such as
shadow detection, but it can only perform IML on natu-
ral images and its performance is not satisfactory enough.
Therefore, EVP cannot be considered as a generalist model
for IML. For image forgery localization, none of the ex-
isting work realizes a unified model that can be simultane-
ously generalized to natural images, document images and
face images. It is still unexplored towards a generalist IML
model that can generalize on various tampering methods
across different image types.

3. Methodology
As shown in Figure 2, the overall architecture of the pro-
posed Omni-IML is roughly based on encoder-decoder ar-
chitecture. The Modal Gate Encoder of the Omni-IML con-
sists of four modules: (1) Visual Perception Head (VPH)
to extract visual features from the original images; (2) Fre-
quency Perception Head (FPH) to convert the Discrete Co-
sine Transform (DCT) coefficients of the images to fre-
quency domain features; (3) a Modal Gate to automatically
determine the optimal modality for the following encod-
ing process; (4) a backbone model to extract multi-scale
high-level features from the output of the Modal Gate. The
Dynamic Weight Decoder of the Omni-IML adaptively se-
lects the sample-specific optimal decoder filters and outputs
the final mask prediction. We also design an Anomaly En-

hancement module between the encoder and decoder, to en-
hance the common features of tampered regions from vari-
ous image types.

3.1. Modal Gate Encoder

Key Idea. The frequency feature is a double-edged sword
for the IML generalist. The frequency feature can help to
detect visually consistent tampering in some cases, but it
can also degrade the model performance when the image
is complex and noisy, or the frequency information is not
prominent in the original image. As a result, neither pure
vision modeling nor vision+frequency modeling can con-
sistently provide the optimal solution. In order to achieve
general IML through a flexible encoding modality, we pro-
pose the Modal Gate, which automatically determines the
optimal encoding modality (frequency+vision or pure vi-
sion) for each input sample. The key idea of our Modal Gate
Encoder is to automatically identify the optimal modal-
ity by analyzing whether the frequency features contain
too much noise, and which coarse prediction seems more
confident, reliable, and accurate.

Image Encoding. As shown in Figure 2, the Omni-IML
considers both vision domain modeling and frequency do-
main modeling. Given an input image X ∈ RH×W×3

and its Y-channel quantization table QT ∈ R8×8, we ex-
tract vision features Frgb using Visual Perception Head
(VPH), Frgb = V PH(X). We obtain frequency fea-
tures Ffreq from the DCT coefficients and quantization ta-
bles (QT) of the images using Frequency Perception Head
(FPH), Ffreq = FPH(DCT (X), QT ). We use the same
VPH and FPH architectures as those proposed in Docu-
ment Tampering Detector [26]. The Ffreq is fused with
Frgb by a channel-spatial attention module Attn to get
the fused features Ffused, Ffused = Attn(Frgb, Ffreq).
Two coarse binary mask predictions Prgb and Pfused are
further obtained from Frgb and Ffused with two auxiliary
heads AuxHead respectively, Prgb = AuxHead1(Frgb),
Pfused = AuxHead2(Ffused), each of the auxiliary heads
consists of two conv-layers.

Modal Gate. As shown in Figure 3, the input of the
proposed Modal Gate has four parts: Frgb, Ffused, Prgb

and Pfused; We repeat Prgb, Pfused and concatenate them
with Frgb, Ffused to get Fcat, which is then fed into a
binary classifier for optimal modality prediction. Pcls =
CLS(Fcat), Pmodal = Round(σ(Pcls)), where σ is the
sigmoid function and Round is the rounding up function.
The classifier CLS consists of several conv-layers, a global
average pooling layer and a linear layer, and is used to de-
termine whether to use the fused feature Ffused or the pure
vision feature as the encoder input Frgb, by observing the
noise level and anomaly significance level of Ffused, Frgb

and their corresponding coarse predictions Prgb and Pfused.
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Figure 2. The overall framework of the proposed Omni-IML.
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Figure 3. The proposed Modal Gate.

Loss Function. The Modal Gate Encoder is optimized with
LMG, the sum of two segmentation losses and one classifi-
cation loss. CE denotes the cross-entropy loss function,
Lm is the ground-truth mask indicating tampered region
and Lc ∈ {0, 1} is the classification label indicating the
optimal modality. Lc is obtained by choosing the most ac-
curate coarse prediction. IoU(x, y) denotes the Insert over
Union between inputs x and y.

LMG = CE(Prgb, Lm)+CE(Pfused, Lm)+CE(Pcls, Lc)

Lc =

{
1 IoU(Prgb, Lm) > IoU(Pfused, Lm) + 0.1)

0 otherwise

The Modal Gate Encoder maximizes the advantages
of frequency domain modeling especially when the visual
anomalies are limited (e.g. document images), and avoids
its drawbacks when the image is too complex and noisy (e.g.
natural images). Our Modal Gate Encoder extracts the best
features from different image types and thus considerably
benefits the generalist IML model.
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Figure 4. The proposed Anomaly Enhancement module.

3.2. Anomaly Enhancement

Key Idea. Sophisticated tampering leaves very obscure
anomaly clues. The encoder’s output feature from such
challenging sample can be very noisy. Different image
types produce different features and thus joint training
brings much more noise to the features and confuses IML
model. To tackle this, we propose to enhance the features of
forged regions and suppress the noise through including an
extra box supervision during training. Since the detection
framework has a clear different characteristic from the orig-
inal segmentation one, training the model under both frame-
works further highlights anomaly features by reducing the
learning bias: If a feature region reports positive under both
the detection and segmentation frameworks, it can mostly
be the actual tampered region. However, if a feature region
reports positive under only one framework, it is likely to be
a false-positive noise and will be punished under the other
framework. As a result, the contrast between the features of
forged regions and authentic regions can be strengthened,
noise can be suppressed and the common tampering fea-
tures can be learned. However, directly training the model
with the two frameworks may also cause task competition
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for model parameters [12] and weaken model performance,
while directly scaling up the model parameters could alle-
viate the competition but will increase computation burden.
To address this issue, we propose a novel effective collabo-
ration module Anomaly Enhancement (AE).
Method. As shown in Figure 4, for the input features F2

and F3, we first extract task-agnostic features Fa and Fb

with query-based attention, the learnable attention queries
contain prior knowledge to decouple and to minimize neg-
ative impact from the segmentation supervision. After that,
Fa and Fb are processed by the detection modules, includ-
ing two Feature Pyramid Networks (FPNs) [17] and the
Faster R-CNN’s [29] RPN and RoI-Heads. The detection
modules (black arrows in Figure 4) are only present dur-
ing training. Including the two cascaded FPNs reduces pa-
rameter competition from the detection framework and dis-
carding them during inference ensures the computation effi-
ciency, successfully addressing the dilemma. After training,
the Fa and Fb contain positive features enhanced by the de-
tection supervision, we add them to the original features F2

and F3 and fuse them with conv-layer to get F2′ and F3′ .
Loss Function. As shown in Figure 4, the AE module is op-
timized by bounding box losses as Faster R-CNN [29] from
the RPN and RoI-Head. LAE = LRPN

cls + LRPN
regression +

LRoIHead
cls + LRoIHead

regression. The ground-truth boxes are the
bounding boxes of the mask labels’ connected regions.

The AE module is tested in an end2end manner as shown
in Figure 4. The proposed AE effectively achieves task
collaboration while keeping the inference cost almost un-
changed. With the proposed AE module, the tampered re-
gions in features F2 and F3 can be enhanced and the false-
positive noise can be reduced. Consequently, our AE mod-
ule helps to extract better common features and thus benefits
the generalist model.

3.3. Dynamic Weight Decoder
Key Idea. Different types of tampered image result in a
wide range of manipulation clues. For example, forged ob-
jects in natural style images may have abnormal contrast
or edge artifacts [32], tampered text in document images

might be visually consistent but has discontinuous BAG in
frequency domain [26], fake faces may have unnatural tex-
ture [11]. These wide variations of tampering clues further
cause a large variation of the encoded features of tampered
regions. Merely using a fixed set of filters for the decoder
causes it being confused by the diverse encoder features,
especially in the unified training process. To address this
challenge, we propose to adaptively select the optimal de-
coder filters for each input image based on the characteris-
tics of the image and the initial predicted tampered region.
To achieve this, we propose the DWD, as shown in Figure 5.
Method. In the proposed Dynamic Weight Decoder, the
low-level input features are fused with high-level input
features by Pyramid Pooling Module [39] and Feature
Pyramid Network [17] to obtain multi scale features
F1, F2, F3, F4. A global feature vector Vg is obtained
by average pooling F4. A coarse mask prediction Pco is
obtained from the lowest-level feature F1 by a conv-layer,
Pco = Conv(F1). A light-weight network CNN is used
to extract features Fco from the coarse prediction Pco,
Fco = CNN(Pco). The extracted feature is concatenated
to the multi-scale features and it helps the model to pay
attention to the suspicious regions and analyze the forgery
type, Fcat = Concat(F1, F2, F3, F4, Fco). The concate-
nated features are channel dimension reduced and processed
by a series of Dynamic Weight Filters (DWF) with different
dilation rates, Fdec1 = Concat(Avg(Fcat), Fdw, Fcat),
Fdw = Concat([DWFn(Fcat, Vg) for n in (2, 3, 6)]),
DWFn denotes the proposed DWF with dilation rate
n. The final prediction PDWD is obtained by PDWD =
Conv(DWD2(DWD2(Conv(Fdec1), Vg), Vg)), where
Conv denotes 1 × 1 conv-layer. The DWD is sur-
prised by minimizing the cross-entropy loss be-
tween PDWD, Pco and the ground-truth mask Lm.
LDWD = CE(PDWD, Lm) + CE(Pco, Lm)

Dynamic Weight Filters. As shown in the top-right of Fig-
ure 5, to obtain the dynamic filters, we first average pool
the input feature to obtain a current global representation
Vc (orange box in Figure 5), then interact Vc with the global
image vector Vg (blue box in Figure 5) with a fully con-
nected layer and identify the optimal dynamic filters Dopt

by weighted summation of four common convolutional fil-
ters. Ai = σ(FC(Vc, Vg)), Dopt =

∑4
i=1 Ai ∗ Wi, σ is

the sigmoid function, FC is the linear layer, Wi is the ith
filter in the DWF. Finally, we depth-wise convolve the input
feature with Dopt and then perform point-wise convolution
with 1× 1 conv-layer to obtain the output.

The proposed DWD achieves sample-specific filters se-
lection by analyzing the characteristics of the input image,
the input features and the forgery types in the initially pre-
dicted tampered region. The selected optimal filters effec-
tively help the generalist model to simultaneously distin-
guish tampered regions in different image types.
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Table 1. Comparison study on natural image manipulation localization. The training data of ’CAT-Netv2’ and ’TruFor’ includes the entire
IMD20 dataset, thus their performance on IMD20 is not evaluated.

CASIAv1 Coverage CocoGlide NIST16 IMD20 Avg. (w.o. IMD) Avg. (w/ IMD)Method Omni IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 mIoU mF1 mIoU mF1
ManTraNet No .086 .130 .181 .271 .310 .408 .040 .062 .098 .146 .154 .218 .143 .203
RRU-Net No .330 .380 .165 .260 .223 .304 .080 .129 .169 .256 .200 .268 .193 .266

MVSS-Net No .403 .455 .389 .454 .278 .360 .243 .294 .243 .294 .328 .391 .311 .371
PSCC-Net No .410 .463 .340 .446 .333 .422 .067 .110 .115 .192 .288 .360 .253 .327
CAT-Netv2 No .684 .738 .238 .292 .290 .366 .238 .302 - - .363 .425 - -

IF-OSN No .465 .509 .181 .268 .259 .364 .247 .326 .259 .364 .288 .367 .282 .366
EVP No .438 .502 .078 .114 .232 .346 .188 .239 .177 .268 .234 .300 .223 .294

TruFor No .630 .692 .446 .522 .294 .362 .279 .348 - - .412 .481 - -
APSC-Net No .810 .848 .498 .568 .392 .455 .525 .590 .679 .760 .556 .615 .581 .644

Ours Yes .798 .834 .524 .576 .448 .505 .556 .630 .662 .740 .582 .636 .598 .657

Table 2. Comparison study on document image manipulation localization.

SACP DocTamper-TestingSet DocTamper-FCD DocTamper-SCDMethod Omni IoU F1 IoU P R F1 IoU P R F1 IoU P R F1
DFCN [41] No .466 .607 - - - - - - - - - - - -

MVSS-Net [6] No .401 .534 - - - - - - - - - - - -
SE-Net [38] No .459 .587 - - - - - - - - - - - -
RRU-Net [4] No .517 .651 - - - - - - - - - - - -
CFL-Net [24] No .433 .571 - - - - - - - - - - - -

TIFDM [8] No .576 .703 - - - - - - - - - - - -
ManTraNet [37] No - - .180 .123 .204 .153 .170 .175 .261 .209 .160 .124 .218 .157
MVSS-Net [6] No - - .430 .494 .383 .431 .410 .480 .381 .424 .400 .478 .366 .414
PSCC-Net [19] No - - .170 .309 .506 .384 .160 .440 .580 .420 .190 .286 .540 .374
BEiT-Uper [2] No - - .590 .564 .451 .501 .350 .550 .436 .487 .340 .408 .395 .402
Swin-Uper [21] No - - .700 .671 .608 .638 .410 .642 .475 .546 .510 .541 .612 .574
CAT-Netv2 [14] No - - .710 .768 .680 .721 .600 .795 .695 .741 .540 .674 .665 .670

DTD [26] No - - .828 .814 .771 .792 .749 .849 .786 .816 .691 .745 .762 .754
Omni-IML (Ours) Yes .714 .820 .842 .837 .802 .819 .750 .901 .760 .824 .685 .760 .786 .773

Table 3. Comparison study on models trained on all tasks.

Official model trained on specific tasks Re-trained on all tasks with the same settings
Natural SACP DocTamper Face Natural Document Face Avg.Method

mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1
EVP .223 .294 .030 .053 .016 .035 .305 .453 .455 .501 .411 .447 .814 .886 .560 .611

HiFi-Net .023 .032 .106 .116 .078 .109 .784 .815 .447 .492 .427 .461 .815 .892 .563 .615
DTD .037 .059 .140 .224 .756 .787 .003 .005 .314 .372 .468 .501 .820 .901 .534 .591

TIFDM - - .576 .703 - - - - .473 .515 .432 .473 .820 .900 .575 .629
APSC-Net .581 .644 .088 .133 .139 .184 .151 .197 .587 .653 .616 .657 .818 .900 .674 .737

Ours - - - - - - - - .598 .657 .748 .809 .822 .902 .723 .789
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Figure 6. Visualization for the ablation of the AE module.

Image Ground-Truth Baseline w.o. MG w.o. MG* w.o. DWD w.o. DWF w.o. AE Ours

Figure 7. Qualitative results for visual comparison.
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4. Experiments
4.1. Experiment Setup
Training Data. The training data includes three parts:
(1) Natural style image. We utilize the tampCOCO [14],
CASIAv2 [7], MIML [28], and COCO [16] datasets as the
training set of the natural image part, following the standard
practice in the IML field [10, 28].
(2) Document image. SACP [1] and DocTamper [26] are
high-quality, large-scale document IML datasets with var-
ied tampering methods. We include the training sets of
SACP and DocTamper as the document image part.
(3) Face image. We use the training set of the FaceShifter
subset from HiFi-IFDL [11] and 24k random images from
CelebaHQ [13] as the face image part.
Test Data. The test data of Omni-IML includes three parts:
(1) Natural style image. We adopt the widely used bench-
marks CASIAv1 [7], Coverage [35], NIST16 [9] and
IMD20 [25] for evaluation. These benchmarks include di-
verse tampered objects of various styles and diverse hand-
crafted forgeries of various types (e.g. copy-move, splic-
ing, removal). We also include the CocoGlide dataset [10]
which contains forgeries produced by diffusion model.
(2) Document image. We use the test set of SACP [1],
which contains handcrafted forgeries of various types (e.g.,
copy-move, splicing, removal, printing, AIGC-based edit-
ing) and heavy post-processing. We also include the three
test sets from the DocTamper benchmark [26], which con-
tains high-quality forgeries and can evaluate IML models in
both in-domain and out-of-domain scenarios.
(3) Face image. The FaceShifter test set [11] is adopted as
the face image part. These fake faces are produced by the
representative DeepFake model FaceShifter [15].
Implementation Details. The backbone model of our
Omni-IML is ConvNeXt-Base [22] initialized with its of-
ficial ADE20k [40] pre-trained weights, following previous
works [10, 28]. The Omni-IML is trained with the cross-
entropy loss for 370k iterations, using the AdamW opti-
mizer [23], with a batch size of 16 and an input size of
512×512. The initial learning rate is set to 1e-4 and decays
to 1e-6 in a linear schedule. A fixed threshold of 0.5 is used
to binarize model predictions during inference.
Evaluation Metrics. For the DocTamper benchmark, we
use the official scripts to evaluate model performance. For
other benchmarks, we calculate fore-ground IoU and pixel-
level Precision (P), Recall (R), and F1-score (F) for each
sample and then compute the average score following the
previous work [28] for fair comparison.

4.2. Comparison Study
The proposed generalist model Omni-IML is evaluated on
all of the natural IML, document IML, and face IML bench-
marks using a single set of model parameters, without any

task-specific or benchmark-specific fine-tuning. The com-
parison with the state-of-the-art methods of natural im-
age forensics is shown in Table 1, the methods compared
include Mantra-Net [37], RRU-Net [4], MVSS-Net [6],
PSCC-Net [19], CAT-Netv2 [14], IF-OSN [36], EVP [18],
TruFor [10], APSC-Net [28]. The comparison with the
state-of-the-art methods for document IML and face IML
tasks are shown in Table 2 and Table 4, respectively. Ev-
idently, our generalist Omni-IML can simultaneously out-
perform existing specialized methods on each individual
task, demonstrating the strong generalization ability. This
is because our Omni-IML can adaptively select the optimal
input modality and decoder parameters for each sample, ef-
fectively producing the best features for IML on different
image types. In addition, the Anomaly Enhancement mod-
ule drives the model to learn common features for the forg-
eries from different image types, and reveals the inconsis-
tencies between forged and authentic regions with the extra
box supervision. Consequently, it suppresses feature noise
and reduces model confusion in joint training.

It’s worth noting that in Table 4, the HiFi-Net provides
two separate official models for IML on natural images and
face images respectively. This is because the HiFi-Net suf-
fers greatly from join training, and it is necessary to train
it separately for each task. Furthermore, HiFi-Net and Tru-
For only perform well with their specialist face IML mod-
els, while our Omni-IML excels with a generalist model,
demonstrating the effectiveness of our methods.

To further explore the generalist capability of previ-
ous IML methods, we re-train the state-of-the-art models
with their official model code, the same training data and
pipeline as ours, the results are shown in Table 3. In Ta-
ble 3, the left part is the performance of their official model
trained on specific tasks. Evidently, all the models perform
well on only one task. The right part of Table 3 is the perfor-
mance of the re-trained models. The average performance
of the re-trained models improves as joint training alleviates
the random guessing issue on other image types. Including
the MIML dataset for training also counteracts the signifi-
cant performance degradation brought by joint training on
diverse image types. Despite this, they still perform signif-
icantly worse than our Omni-IML (e.g. 5-20 points mIoU
lower than ours). This is because existing IML methods
rely heavily on designs and strategies targeted at one image
type, and such designs and strategies usually do not work
so well on other image types (e.g. noise filters, edge en-
hancement and object-level attention are beneficial for nat-
ural images but not for document images). Moreover, the
tampering features among diverse image types differ a lot
from each other, making it challenging for models to si-
multaneously learn them well. As a result, training IML
models jointly on image types for which they are not de-
signed causes considerable confusion and significantly lim-
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Table 4. Comparison study on face forgery localization. ’Face re-
trained’ denotes the model re-trained on the FaceShifter data using
official code. ’Natural model’ and ’Face model’ denote the official
models trained on natural images and face images respectively.

Method Omni IoU P R F1
TruFor (Official model) [10] No .631 .984 .638 .774
TruFor (Face re-trained) [10] No .814 .990 . 819 .896

HiFi-Net (Natural model) [11] No .255 .439 .379 .407
HiFi-Net (Face model) [11] No .784 .866 .800 .815

Omni-IML (Ours) Yes .822 .993 .826 .902

Table 5. Ablation study on the proposed modules.

Natural Document Face AverageAblation mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1
Baseline .451 .544 .509 .580 .809 .888 .589 .670
w.o. MG .500 .552 .609 .672 .810 .890 .639 .704
w.o. MG* .568 .632 .625 .673 .811 .889 .668 .731
w.o. DWD .477 .567 .515 .580 .815 .894 .602 .680
w.o. DW .562 .625 .692 .765 .820 .901 .691 .763
w.o. AE .547 .601 .662 .726 .819 .900 .676 .742

Ours .598 .657 .748 .809 .822 .902 .723 .789

Table 6. Ablation study on the backbone model size.

Natural Document Face AverageBackbone mIoU mF1 mIoU mF1 mIoU mF1 mIoU mF1
ConvNeXt

Small .588 .648 .736 .793 .821 .901 .715 .781

ConvNeXt
Base .598 .657 .748 .809 .822 .902 .723 .789

ConvNeXt
Large .605 .665 .770 .829 .836 .910 .737 .801

its their performance. Our Omni-IML does not rely on mod-
ules or strategies that designed for only one image type. In
contrast, the adaptive selection of optimal encoding modal-
ity and decoder parameters helps our model to effectively
handle diverse tampering clues and extract the best features
from various image types. Additionally, the anomaly en-
hancement also benefits all domains by enhancing the fea-
tures of tampered regions and driving the model to learn
common features from diverse image types. Consequently,
our Omni-IML demonstrates strong generalization across
different image types and has minimal performance degra-
dation during joint training.
Ablation Study on the Proposed Modules. The ablation
results are shown in Table 5. ’w.o. MG’ denotes the model
without the Modal Gate, it has 8.4 points lower mIoU than
Omni-IML. This is because the frequency features in some
samples are unstable, and without the Modal Gate to filter
them out, these features introduce too much noise to the en-
coder and thus cause performance degradation. ’w.o. MG*’
represents the model without Modal Gate and using the pure

vision modality, it has 5.5 points lower mIoU than Omni-
IML. This is because frequency domain modeling can also
be helpful in some cases, especially when the tampered re-
gion is visually consistent (e.g. on document images). ’w.o.
DWD’ represents the model without the Dynamic Weight
Decoder, it has 12.1 points lower mIoU than Omni-IML.
This is because the diversity of tampering features is too
high for the encoder to learn them well, thus confusing the
model, confirming the necessity of the proposed DWD for
the generalist model. ’w.o. DW’ is the model with the
DWD structure but the filter weights in the decoder keep
all the same for each input, it has 3.2 points lower mIoU
than Omni-IML, this verifies that the adaptive selection of
optimal decoder weights for each sample can reduce con-
fusion in joint training. ’w.o. AE’ is the model without
the proposed Anomaly Enhancement (AE) module, it has
4.7 points lower mIoU than Omni-IML. This is because the
proposed AE module can enhance the forged regions in the
features, and can drive the model to learn common features.
Without the AE module, the encoder’s output features will
have much more noise and confuse the decoder, as visual-
ized in Figure 6, The model without any of the proposed
modules serves as the ’Baseline’ model, its mIoU is 13.4
points lower than Omni-IML. These results have proved the
effectiveness of our methods.
Ablation Study on the Model Size. We conduct an ab-
lation study on the model size. As shown in Table 6, the
model performance improves slightly with a larger size.
These results indicate the scaling law behind our Omni-IML
and there is a great potential for further improvement.

5. Conclusion
In this paper, we propose Omni-IML, the first generalist
model designed for image manipulation localization to ad-
dress the drawbacks of specialist models. Specifically, mul-
tiple novel and effective modules are proposed to achieve
generalism through sample-specific adaptation, including a
Modal Gate Encoder that automatically determines the op-
timal encoding modality for each input image, and a Dy-
namic Weight Decoder that adaptively selects the optimal
decoder parameters for each input sample. In addition, an
Anomaly Enhancement module is proposed to reduce con-
fusion by enhancing the features of tampered regions and
driving the model to learn common features from diverse
image types. To verify the generalist capability, extensive
experiments are conducted on three major IML tasks, cov-
ering natural IML, document IML, and face IML. The ex-
perimental results demonstrate that our single model simul-
taneously achieves state-of-the-art performance on all tasks.
Comprehensive ablation studies and visual analyses are also
presented to provide in-depth insights. We believe that our
work can inspire future research and promote the real-world
applications of unified image forensics models.
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