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In recent years, extensive research has been dedicated to the study of parity-time (PT ) symmetry,
which involves the engineered balance of gain and loss in non-Hermitian optics. Complementary to
PT symmetry, the concept of anti-PT symmetry has emerged as a natural framework for describing
the dynamics of open systems with dissipations. In this letter, we study spectral transitions and
photon transmission in a linear spinning resonator perturbed by nanoparticles. First, we demon-
strate that by precisely manipulating the nanoparticle perturbations, the eigenvalues(or spectra)
of a non-Hermitian system satisfying anti-PT symmetry can transit to that of a quasi-closed Her-
mitian system. Second, we outline the essential conditions for constructing a quasi-closed system
and analyze its dynamic behavior with respect to photon transmission. By adjusting the rotational
angular velocity of the spinning resonator and the strength of the nanoparticle perturbations, the
quasi-closed system enables a variety of photon distribution behaviors, which may have significant
applications in quantum devices. Our findings offer valuable insights for the design of dissipative
quantum devices under realistic conditions and for understanding their responses to external per-
turbations.

Introduction. Non-hermiticity has emerged as a pow-
erful framework for describing open quantum systems,
revealing exotic phase transitions and dynamic behav-
iors around exceptional points (EPs) [1–3]. Notably, Carl
M. Bender and Stefan Boettcher introduced the concept
of parity-time (PT ) symmetry, characterized by a bal-
ance of gain and loss, within the context of optics, which
has since attracted significant attention across the nat-
ural sciences [4–6]. In the PT -symmetric phase, non-
Hermitian Hamiltonians can exhibit entirely real spectra,
a phenomenon that has been experimentally observed
in various physical platforms, including optical micro-
cavities [7, 8], atomic systems [9, 10], and acoustic de-
vices [11, 12]. When the system parameters surpass the
EP, PT symmetry is spontaneously broken, leading to
a phase transition from the PT -symmetric phase to the
PT -symmetry-broken phase [13, 14].

Anti-PT symmetry is a complementary concept to PT
symmetry, characterized by the anti-commutation of par-
ity and time inversion operations. Unlike PT -symmetric
systems, which typically require gain media [15], anti-
PT symmetry can arise naturally in dissipative sys-
tems [16, 17]. Various experimental systems have demon-
strated anti-PT symmetry, including thermal and cold
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atoms [18, 19], magnetic materials [20, 21], electrical cir-
cuits [22], diffusive systems [23], and optical waveguides
or microcavities [24–26]. Anti-PT symmetric systems
have garnered significant interest due to their distinctive
effects, such as chiral mode switching [27, 28] and optical
energy-difference-conserving dynamics [29, 30].

Optical microcavities perturbed by nanoparticles are
particularly promising for modern sensing applica-
tions [31, 32]. The evanescent coupling between nanopar-
ticles and the microcavity boundary induces backscat-
tering of light in both clockwise and counterclockwise
propagating modes. Under specific conditions, this ef-
fect can lead to detectable changes in the frequency
splitting of whispering-gallery-mode pairs, as observed
in microdisks [33, 34], microspheres [35, 36], and micro-
toroids [37, 38]. Recently, achieving optical anti-PT sym-
metry breaking by spinning a linear resonator with single
nanoparticle has been proposed [39, 40]. Subsequent re-
search has focused on investigating photon blockade and
slow-light effects in non-Hermitian optomechanical sys-
tems with two nanoparticles [41, 42]. In this letter, we
extend these studies by introducing multi-particle per-
turbations into an anti-PT symmetric system. Specif-
ically, we explore how multi-nanoparticle perturbations
can control spectral transitions and photon transmis-
sion in an anti-PT symmetric spinning resonator. First,
we demonstrate the transition of the eigenvalue spec-
trum from a non-Hermitian system, satisfying anti-PT
symmetry, to a Hermitian system through perturbation
modulation. Second, we investigate the dynamical pho-
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FIG. 1. A linear spinning resonator with rotational angular
velocity Ω is perturbed by multiple nanoparticles. Here, ϑk

represents the azimuthal angle of the k-th nanoparticle. Two
lasers with the same frequency ωd drive the optical resonator
from the left and right, exciting the clockwise (CW) and coun-
terclockwise (CCW) traveling modes. The total optical loss
is denoted as γ = (γ0 + γc)/2, including the intrinsic loss
of the optical resonator γ0 and the loss due to the coupling
of the optical resonator with fiber taper γc. A dissipative
coupling iκ arises from taper-scattering, which induces dissi-
pative backscattering between the counter-circulating modes.
Additionally, in the case where gain gas is introduced into the
optical resonator, γg represents the gain strength.

ton transmission in the quasi-closed system. Our results
provide a promising approach for manipulating spectral
transitions and photon transmission in lossy optical sys-
tems, which holds significant potential for the develop-
ment of dissipative quantum devices.

Model and Setup. As illustrated in Fig. 1, we consider a
linear optical resonator perturbed by multiple nanopar-
ticles. The resonator is driven by two lasers with the
same frequency ωd from the left and right sides, exciting
the clockwise (CW) and counterclockwise (CCW) trav-
eling modes. Moreover, we use the biorthogonal basis

(â†+, â
†
−)

T , where â†+ and â†− represent the creation op-
erators for the CW and CCW modes, with ℏ = 1 here
and throughout, then the effective Hamiltonian in the
rotating frame at frequency ωd describes the linear opti-
cal resonator in the absence of rotation and nanoparticle
perturbation, can be expressed as

Ĥ0 =

(
∆− iγ iκ
iκ ∆− iγ

)
. (1)

The detuning ∆ = ω0 − ωd represents the detuning be-
tween the optical resonator frequency ω0 and the driv-
ing laser frequency ωd. The total optical loss, γ =
(γ0 + γc)/2, consists of two components: the intrinsic loss
of the resonator, γ0 = ω0/Q, where Q is the quality fac-
tor, and the loss due to coupling between the resonator
and the fiber taper, γc. Additionally, dissipative cou-
pling iκ arises from taper-scattering-induced backscat-
tering between the counter-circulating modes [43].

Considering the influence of multiple nanoparticles
acting as Rayleigh scatterers, which either fall into or
pass through the evanescent field of the resonator, these

nanoparticles are fabricated by wet etching tapered fiber
tips, prepared through heating and stretching standard
optical fibers [44]. The nanopositioner controls the po-
sition of each nanoparticle, allowing for adjustments
in both their relative positions and effective sizes [38].
Within the two-mode approximation [45, 46], the mod-
ified effective Hamiltonian of the perturbed system, ex-
pressed in the traveling-wave basis (CW and CCW), is
represented by a 2× 2 non-Hermitian matrix [45]:

Ĥδ =

(
∆− iγ + φ iκ+ υ1
iκ+ υ2 ∆− iγ + φ

)
. (2)

Here, the real part of the diagonal element corresponds
to the characteristic frequency of the system, while the
imaginary part represents the decay rate of the reso-
nant traveling waves. The complex off-diagonal ele-
ments υ1 and υ2 represent the backscattering coefficients
describing the scattering from the CCW (CW) to the
CW (CCW) wave. The backscattering between CW
and CCW traveling waves is asymmetric, i.e., |υ1| ≠
|υ2|. In the specific case of two scatters [41], while ig-
noring frequency shifts for negative-parity modes, we
have φ =

∑
k ξk, υ1 =

∑
k ξk exp (2imϑk), and υ2 =∑

k ξk exp (−2imϑk), where ξk = ϖk − iλk characterizes
the complex perturbation induced by the k-th nanoparti-
cle, with a frequency shift ϖk and linewidth broadening
λk [45–47]. The azimuthal mode number is denoted by
m, and ϑk represents the azimuthal angle of the k-th
nanoparticle [45]. By using nanopositioners to control
the distance between the nanoparticle and the resonator,
we can adjust the magnitudes of ϖk and λk. Addition-
ally, tuning the angle ϑk can drive the system to excep-
tional points (EPs), as has been experimentally demon-
strated [48, 49].
In order to validate the two-mode approximation un-

der nanoparticle perturbations, both the optical spin-
ning resonator and nanoparticles shall remain relatively
stationary. In this scenario, the nanoparticles rotate
synchronously with the optical resonator, both sharing
the same angular velocity Ω. When the system un-
dergoes perturbation and rotates with Ω, the Sagnac-
Fizeau effect induces a frequency shift in the resonator,
and thereby causes the frequency Ω0 to change as ω0 →
ω0 ±∆sag, as described in [45, 50]

∆sag =
nRΩω0

c

(
1− 1

n2
− λ

n

dn

dλ

)
, (3)

where n and R correspond to the refractive index and ra-
dius of the optical resonator, respectively, and ω0 = c/λ
is the eigenfrequency of a non-spinning resonator, with c
and λ denoting the speed and wavelength of light. The
dispersion term dn/dλ characterizes the relativistic ori-
gin of the Sagnac effect, which is typically negligible in
conventional materials [39]. We define ∆sag and −∆sag

to represent the Sagnac effects in the CW and CCW trav-
eling modes, respectively. In general, to compensate for
resonator losses, a gain medium is introduced into the
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FIG. 2. Phase transition behavior of a spinning optical res-
onator under nanoparticle perturbations. The real (red) and
imaginary (cyan) parts of eigenfrequencies versus Ω and κ. (a)
and (c) depict a normal perturbation scenario, with experi-
mental parameters ξ1 = 1.5γ − 0.355iγ, ξ2 = 1.4γ − 0.645iγ,
ϑ = π/4, and m = 4 as in Ref. [45]. (b) and (d) illustrate the
unperturbed case where the system satisfies Anti-PT symme-
try. The remaining numerical simulation parameters for (a)-
(d) are set as Q = 1012, λ = 1550nm, n = 1.44, R = 50µm,
γ = (γ0 + γc)/2, γg = 0, ω0 = 1.94 × 1014Hz, ∆ = 0, and
γ0 = 2γc = 194Hz, following Refs. [45, 54–56].

system [51–53], which provides a gain of iγg in both CW
and CCW modes. Taking into account the rotation of
the optical resonator, the inclusion of the gain medium,
and the perturbation from multiple nanoparticles, the
Hamiltonian of the system is rewritten as [40]

Ĥ =

(
∆+ − iγ

′
+ φ iκ+ υ1

iκ+ υ2 ∆− − iγ
′
+ φ

)
. (4)

Here, ∆± = ∆ ±∆sag are the detunings of the CW and

CCWmodes, including the Sagnac effect, and γ
′
= γ−γg

denotes the actual loss of the system after incorporating
the gain in both CW and CCW modes. Details of the
derivations of Hamiltonian (4) are provided in Appendix
A. Next, we investigate the spectral transitions of the
Hamiltonian (4) by manipulating the nanoparticles. The
eigenvalue structure of the system will provide insights
into its response to nanoparticle-induced perturbations
and reveal the underlying physical mechanisms

Perturbation-induced spectral transition. Without loss
of generality, we consider the perturbation caused by two
nanoparticles as an example, observing the spectral tran-
sition of the system from a general non-Hermitian system
to one that satisfies anti-PT symmetry, and eventually
to a quasi-closed system.

For the case of two nanoparticles, setting the azimuthal
angles to ϑ1 = 0 and ϑ2 = −ϑ modifies the Hamiltonian

(4) to become:

Ĥ ′ =

(
∆+ − iγ

′
+ ε0 iκ+ ε1

iκ+ ε2 ∆− − iγ
′
+ ε0

)
. (5)

Here, we define ε0 = ξ1+ξ2, ε1 = ξ1+ξ2 exp (2imϑ), and
ε2 = ξ1+ξ2 exp (−2imϑ). By solving the secular equation

det(Ĥ ′ − EI) = 0, where I is the 2×2 identity matrix, we
obtain the eigenvalues and the corresponding eigenstates
of the general non-Hermitian system (5), yielding

E± =∆± i∆′ + ε0 − iγ
′
, (6)

|E±⟩ =
1

C±

(
∆sag ±∆′

iκ+ ε2
, 1

)T

, (7)

where ∆′ =
[
∆2

sag + (iκ+ ε1) (iκ+ ε2)
]1/2

is the normal-
ized frequency, including the Sagnac-Fizeau effect and
the influence of perturbations from two nanoparticles,
and the normalized constants C± are given by

C± =

√
1 + |(∆sag ±∆′)/(iκ+ ε2)|2. (8)

The eigenvalues (6) demonstrate the spectral structure
exhibited by the non-Hermitian Hamiltonian (5) in the
general case. In Figs. 2(a) and 2(c), we present the real
and imaginary components of E±, using experimental
parameters from Ref. [45]. Figures 2(a) and 2(c) show
that when the angular frequency Ω increases or the dis-
sipation rate κ decreases, the level splitting indicated
by Re (E±) intensifies, while the dissipative trend rep-
resented by Im (E±) diminishes. Notably, under high-
speed rotation and low dissipation, the coupling between
counter-circulating modes causes the eigenfrequencies to
transition from complex to real values. Next, we explore
three specific cases associated with the Hamiltonian (5),
where two nanoparticles are manipulated to observe in-
triguing changes in the spectral structure of the system.
Firstly, we place two nanoparticles at positions

far from the optical resonator. When the condition
max {ξ1, ξ2} ≪ min {γ′, κ} is satisfied, the perturba-
tion from the nanoparticles can be neglected, and the
Hamiltonian (5) reduces to the intrinsic form without
nanoparticle-induced perturbations. When the driving
laser frequency ωd resonates with the inherent frequency
of the system ω0, i.e., ∆ = 0, the system is simplified to:

ĤAPT =

(
∆sag − iγ

′
iκ

iκ −∆sag − iγ
′

)
, (9)

which satisfies the anticommutation relation with the PT
operator, i.e., {ĤAPT,PT } = 0, indicating that anti-
PT symmetry can naturally exist in a linear spinning
resonator driven by a laser, without requiring gain [24],
nonlinearity [18], or complex spatial structures [17, 28].
What is fundamentally different from PT symmetry is
that anti-PT is completely independent of the spatially
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FIG. 3. The dynamic photon distribution in a quasi-closed
system. (a) and (b) plot the probability amplitudes of the CW
and the CCW modes over time at varying angular velocities

Ω, with parameters ξ = γ
′
= 145Hz and ∆ = 500Hz. (c)

and (d) show the probability amplitudes of the CW and the
CCW modes over time for different perturbation strength ξ,
where Ω = 10Hz and ∆ = 500Hz. All other parameters are
the same as in Fig. 2.

separated gain-loss blanced structure. The eigenfrequen-
cies of the anti-PT -symmetric system are

EAPT
± = −iγ

′
±
√
(∆sag + κ) (∆sag − κ). (10)

Here, a phase transition occurs as Ω varies. Figures
2(b) and 2(d) demonstrate that when ∆sag < κ, the
eigenmodes preserve anti-PT symmetry, maintaining
identical resonance frequencies while exhibiting different
linewidths. In the anti-PT -symmetric regime, the eigen-
frequencies and eigenstates are expressed as EAPT

± =

−i(γ′ ∓ ∆̃) and |EAPT
± ⟩ = (−i∆sag ± ∆̃, κ)

T
/
√
2κ, re-

spectively, where ∆̃ = (κ2 −∆2
sag)

1/2. In this regime,
the system experiences significant dissipation because
EAPT

± is purely imaginary. As Ω increases, an excep-
tional point (EP) occurs at ∆sag = κ, where the eigen-
states coalesce. At the EP, the eigenfrequency and eigen-

state are EEP = −iγ′
and |EEP⟩ = (−i, 1)T /

√
2. When

∆sag > κ, the system transitions into a phase where
anti-PT symmetry broken, leading to bifurcating eigen-
modes. The eigenfrequencies in this phase form anti-

conjugate pairs, and satisfies EB−APT
+ = −

(
EB−APT

−
)∗
,

with EB−APT
+ = −iγ′+∆̄. The corresponding eigenstates

are given by
∣∣EB−APT

±
〉
=

(
−i∆sag ± i∆̄, κ

)T
/C•

±, where

∆̄ =
(
∆2

sag − κ2
)1/2

and C•
± = [κ2 + (∆sag ∓∆)

2
]1/2.

Secondly, while keeping one nanoparticle stationary at
a distant location, we move another nanoparticle closer
to the linear spinning resonator. The anti-PT symmetry
described by Hamiltonian (9) breaks immediately under
the perturbation caused by a single nanoparticle. The-
oretically, the sensitive responses of the anti-PT sym-
metric system to perturbations can be revealed by mea-
suring variations in the transmission spectrum [44, 57].

Meanwhile, sensitivity defined by frequency splitting in
experiments [49, 58] can be evaluated by monitoring the
separation of spectral lines in the transmission spectrum.
The sensitivity of anti-PT symmetric systems (9) to
nanoparticle-induced perturbations has laid the founda-
tion for the development of anti-PT sensors [40].
Thirdly, we position two nanoparticles close to the lin-

ear spinning resonator to introduce a dual-perturbation.
Remarkably, intriguing effects arise when delicately ma-
nipulating two nanoparticles while simultaneously satis-
fying the following conditions:

Im (ξ1) =
γ

′ − κ

2
, Im (ξ2) =

γ
′
+ κ

2
, ϑ =

2ℓ+ 1

2m
π, (11)

where ℓ ∈ Z. When the conditions of Eq. (11) are met,
the non-Hermitian Hamiltonian (5) transforms into a
Hermitian Hamiltonian HR, marking a transition from
an open system to a quasi-closed system, while en-
ergy is conserved. In the quasi-closed system, under
stable dynamic flow equilibrium, energy is conserved.
As a result, the Hamiltonian (5) converts into a real

form give by Re(Ĥ ′). The eigenfrequencies and eigen-
states of this quasi-closed system are represented by
ER

± = ωd ± Λ + ξ and
∣∣ER

±
〉
= (∆sag ± Λ, ξ)/C±ξ, where

Λ =
(
∆2

sag + ξ
)1/2

, Re (ξ1 + ξ2) = ξ, and the normalized
constants are given by

C± =

√
1 + |(∆sag ± Λ)/ξ|2. (12)

Photonic transmission in a quasi-closed system. In
contrast to the energy conservation associated with an
entire real spectrum under PT -symmetry [59], anti-PT
symmetry corresponds to a purely imaginary spectrum,
signifying a strongly dissipative or gain-dominated pro-
cess. In general, the non-Hermitian systems governed by
Hamiltonians, such as Eq. (5) and Eq. (9), do not con-
serve energy, rendering the dynamical transfer of photon
distribution inconsequential. Therefore, we focus on an-
alyzing the dynamic transfer of photon distribution in
a quasi-closed system. We restrict the quasi-closed sys-
tem to the subspace spanned by the basis {|1; 0⟩ , |0; 1⟩},
where |a; b⟩ = |a⟩ ⊗ |b⟩, and |n⟩ (n = a, b) represents
the Fock states of the CW and CCW modes, respec-
tively. The wave function at any time t is expressed as
|ψ(t)⟩ = α(t)|10⟩ + β(t)|01⟩. Under the semi-classical
approximation [60], quantum noise which contributes to
photonic correlations [61–64], can be neglected, which
allows us to focus on the dynamical behavior of the
quasi-closed system by solving the Schödinger equation
i∂t |ψ (t)⟩ = ĤR |ψ (t)⟩. We assume that initially, the
photon is excited in the CW mode, with α (0) = 1 and
β (0) = 0. By solving the steady-state amplitudes αs (t)
and βs (t), the probabilities of finding the photon in the
CW and CCW modes can be determined

αs (t) = [cos (Λt)−∆sag sin (Λt)/Λ] Γ, (13)

βs (t) =−Γ sin (Λt) ξ/Λ, (14)
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where Γ = exp {−it (ωd + ξ)}. Details of the derivations
of Eqs. (13) and (14) are provided in Appendix B.

In our setup, the angular velocity of the optical res-
onator Ω and the nanoparticle perturbation strength
ξ = γ

′
are two crucial factors influencing the dynami-

cal behavior of system. Here, we plot the probabilities
|αs (t) |2 and |βs (t) |2 as functions of time for different

values of Ω and ξ = γ
′
. On the one hand, Figs. 3(a) and

3(b) numerically demonstrate that, under the condition

of a fixed perturbation ξ = γ
′
, the dynamical exhibit

regular periodic oscillations. If the photon is initially
excited in the CW mode, i.e., αs (0) = 1, |αs (t)|2 first
decays to zero, followed by a revival. When Ω = 0, the
photon distribution between CW and CCW modes ex-
hibits Rabi oscillations, corresponding to a swap behavior
that is relevant to the charge-discharge process in quan-
tum batteries [65–67]. As Ω increases, the oscillations

of |αs (t)|2 and |βs (t)|2 become more pronounced, with
shorter periods and a gradual reduction in the maximum
exchange amplitude. At a higher rotational frequency
of Ω = 40Hz, the photon exchange between CW and
CCW modes becomes nearly isolated. This frequency-
dependent control of photon dynamics can be harnessed
to design non-reciprocal quantum devices, such as iso-
lators [68–70] and single-photon resources [71–73]. On
the other hand, Figs. 3(c) and 3(d) demonstrate that,
when the angular velocity is fixed at Ω = 10Hz, the pho-
ton distribution becomes highly sensitive to the intensity
of nanoparticle perturbations, highlighting its potential
for sensor applications [40, 74, 75]. The above analysis

demonstrates that fine-tuning both Ω and ξ = γ
′
allows

for precise control over the photon distribution between
the CW and CCW modes, offering potential for the de-
sign and implementation of versatile quantum devices.
Conclusion and outlook. In this work, we have ex-

plored the impact of nanoparticle-induced perturbations
on the energy spectrum of an anti-PT symmetric sys-
tem. In the absence of perturbations, the system ini-
tially exhibited anti-PT symmetry. However, the in-
troduction of a single nanoparticle quickly broke this
symmetry, demonstrating the potential of this sensitivity
for the development of anti-PT sensors. Notably, when
multiple nanoparticles and a gain medium were intro-
duced, the non-Hermitian system transitioned into a Her-
mitian one, forming an energy-conserving quasi-closed
system. By investigating the dynamics of such systems,
we showed that precise control over the angular velocity
of the optical resonator and the strength of nanoparti-
cle perturbations enabled the design of various quantum
devices, including energy storage and non-reciprocal de-
vices. Looking ahead, exploring the dynamical behavior
near exceptional points in time-dependent anti-PT sym-
metric quantum systems represents a promising direction
for future research [76]. Additionally, investigating the
symmetry and higher-order exceptional points in anti-
PT topological materials could provide further exciting
avenues for development [77].
Acknowledgments. C. S. acknowledges financial sup-

port from the China Scholarship Council, the Japanese
Government (Monbukagakusho-MEXT) Scholarship un-
der Grant No. 211501, the RIKEN Junior Research As-
sociate Program, and the Hakubi projects of RIKEN.
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Appendix A: Details of the derivation of Eq. (4)

The optical resonator model comprises rotatable optical cavities and fibers with mutual coupling. By introducing
two laser driving fields with a frequency ωd on either side of the fiber, clockwise (CW) and counter-clockwise (CCW)
traveling modes can be excited within the optical cavity from the left and right, respectively. When the laser driving
frequency deviates from the intrinsic frequency of the cavity, the driving laser induces detuning for both propagation
modes (acw and accw) inside the optical cavity. The detuning magnitude is given by ∆ = ω0 − ωd. The intrinsic
frequency of the optical cavity is given by ω0 = c/λ, where c is the speed of light and λ is the wavelength of the light.
The optical cavity has intrinsic losses, and the loss rate is γ0 = ω0/Q, where Q is the quality factor representing
the resistance of the optical cavity to loss. Additionally, coupling losses occur between the optical cavity and the
fiber, characterized by γc. The propagation modes in both directions, acw and accw, experience the same loss rate
γ = (γ0 + γc)/2. The scattering-induced backscattering between the CW and CCW modes results in dissipative
coupling in the fiber, characterized by a magnitude of iκ [43, 74]. In this setting, the Hamiltonian of the system is
written as

Ĥ′
0 = (ω0 − iγ) â†+â+ + iκ0â

†
−â+ + iκ0â

†
+â− + (ω0 − iγ) â†−â−, (A1)

where â+ (â−) and â†+ (â†−) represent the annihilation and creation operators for the CW (CCW) mode photons,

respectively. By introducing Ĥ′
0 = φ†Ĥ ′

0φ, where φ = (â+, â−)
T , the effective Hamiltonian of the system in the σz

representation is given by Ĥ ′
0 = (ω0 − iγ)I + iκσ̂x, where I is the 2 × 2 identity matrix, and σ̂x is the Pauli matrix.
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Here, the CW and CCW modes are represented by the basis vectors (1, 0) and (0, 1). As the microcavity rotates in the
system, we adopt a rotating reference frame with frequency ωd and define the transformation matrix U = eiωdtI. After
applying the unitary transformation, the effective Hamiltonian Ĥ0 of the system in the σz representation becomes
[40] Ĥ0 = (∆− iγ)I+ iκσ̂x, which is identical to Eq. (1) in the main text.
Since the size of the nanoparticles (typically around 10 nm) is much smaller than the wavelength of the driving

laser in the optical cavity (approximately 1550 nm in the model), they meet the Rayleigh scattering condition, where
rj ≪ λ. Consequently, we treat the nanoparticles as Rayleigh scatterers, either traversing the evanescent field of
the resonator or falling into it. The nanoparticles couple only to the fixed modes of the optical microdisk [45],
so we analyze their effect on the optical modes within the standing wave basis. In the Rayleigh scattering limit,
perturbations caused by nanoparticles at x = 0 do not affect the odd-parity modes in the standing wave basis. Thus,
the perturbation due to a single nanoparticle can be expressed in the standing wave basis as Ĥp = 2ξâ†evenâeven,
where ξ = ϖ − iλd characterizes the strength of the nanoparticle perturbation. Here, ϖ denotes the frequency shift
introduced by the nanoparticle, reflecting its coupling strength with the system, while λd represents the spectral
linewidth of the nanoparticle, accounting for its dissipation effects [45–47]. In the σz representation, the effective
Hamiltonian of the nanoparticle in the standing wave basis, for even parity (1,0) and odd parity (0,1), is written as

Ĥp = ξ(I+ σ̂z), where σ̂z is the Pauli matrix, Ĥp = ϕ†
ˆ̂
Hpϕ, and ϕ = (âeven, âodd)

T
.

To account for the effects of nanoparticles positioned at different azimuthal angles, it is necessary to transform the
nanoparticle perturbations from the standing wave basis to the traveling wave basis. The traveling wave basis states,
characterized by specific propagation directions and phase angles, can be seen as superpositions of the standing wave
basis states. Consequently, the creation and annihilation operators for the two propagation directions in the traveling
wave basis can be expressed as linear combinations of the odd and even mode operators in the standing wave basis,

a+ =
1√
2

(
aevene

imφ + iaodde
imφ

)
, a− =

1√
2

(
aevene

−imφ − iaodde
−imφ

)
. (A2)

Here, the nanoparticle perturbation at the azimuthal angle φ = θ can be transformed into the traveling wave basis,
consisting of CW (1, 0) and CCW (0, 1), through the transformation matrix

M =
1√
2

(
eimφ ieimφ

e−imφ −ie−imφ

)
. (A3)

The transformed effective Hamiltonian for the nanoparticle perturbations in the traveling wave basis is given by

Ĥ ′
p =MĤpM

† = ξ

(
1 e2imθ

e−2imθ 1

)
. (A4)

By neglecting the extremely weak interactions between nanoparticles, the effective Hamiltonian of multiple nanopar-
ticle perturbations is given by [45]

Ĥ ′
δ =

∑
k

ξk

(
1 e2imθk

e−2imθk 1

)
, (A5)

where ξk represents the effect of the k-th nanoparticle on the system, θk denotes the azimuthal angle of the k-th
nanoparticle, and m is the azimuthal mode number of the nanoparticles [45].

Under the two-mode approximation [44, 46], where there is only one mode in each of the CW and CCW directions,
the total effective Hamiltonian of the system, perturbed from the traveling-wave basis (CW and CCW), can be
expressed as follows [45]:

Ĥ0 + Ĥ ′
δ =

 ∆d − iγ +
∑
k

ξk iκ+
∑
k

ξke
2imθk

iκ+
∑
k

ξke
−2imθk ∆d − iγ +

∑
k

ξk

 . (A6)

To ensure the validity of the two-mode approximation under nanoparticle perturbations Eq. (A6), we keep the
nanoparticle and the micro-ring cavity relatively stationary. A nanopositioner is used to ensure that the nanoparticle
and the micro-ring cavity rotate together with an angular velocity Ω on the base. When the entire micro-ring cavity
rotates clockwise with angular velocity Ω, this rotation induces a Sagnac-Fizeau effect within the resonator [50]:

∆sag =
nRΩω0

c

(
1− 1

n2
− λ

n

dn

dλ

)
, (A7)
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where n and R represent the refractive index and the microdisk radius, respectively. Here, ω0 → ω0±∆sag represents
the eigenfrequency of a non-rotating resonator, where c and λ denote the speed of light and its wavelength, respectively.
The inherent frequencies ω0 in the two directions of the micro-ring cavity undergo opposite shifts, i.e., ω0 → ω0±∆sag.

For classical materials, the dispersion term dn
dλ , which accounts for relativistic effects in the Sagnac frequency shift,

is typically very small (less than 1%) [39] and can be neglected in the calculations presented here. The optical
detuning for the propagation modes in the CW and CCW directions is given by ∆cw = ∆+ = ∆d + ∆sag and
∆ccw = ∆− = ∆d − ∆sag, respectively. Here, ∆sag represents the Sagnac frequency shift, which occurs in opposite
directions due to the rotation of resonator, while ∆ = ω0 − ωd denotes the optical drive detuning, which is the same
in both directions and induced by the laser drive.

By introducing a gain medium into the optical system, a gain of iγg with equal magnitude in both traveling modes
can be produced [51–53]. Finally, the total effective Hamiltonian of the system in the traveling-wave basis reads:

Ĥ =

 ∆+ − iγ
′
+
∑
k

ξk iκ+
∑
k

ξke
2imθk

iκ+
∑
k

ξke
−2imθk ∆− − iγ

′
+

∑
k

ξk

 , (A8)

where γ
′
= γ − γg. We ultimately reproduce the same equations as Eq. (4) presented in the main text.

Appendix B: Details of the derivation of Eqs. (13) and (14)

Under the semi-classical approximation [60], the time evolution of the photonic distribution in the system can be
derived. By substituting the wavefunction |ψ(t)⟩ = α(t)|10⟩ + β(t)|01⟩ into the Schödinger equation i∂t |ψ (t)⟩ =

ĤR |ψ (t)⟩, the steady-state amplitude αs (t) and βs (t) can be obtained explicitly by solving the equations

i
dαs (t)

dt
= (∆+ + ξ)αs (t) + βs (t) ξ = 0, i

dβs (t)

dt
= αs (t) ξ + (∆− + ξ)βs (t) = 0. (B1)

To solve Eqations (B1), we define the transformation matrix RR =
(
|ER

+⟩, |ER
−⟩

)
and the diagonal matrix DR =

diag
[
ER

+, E
R
−
]
, where |ER

+⟩ and |ER
−⟩ are the eigenstates of the quasi-closed system, with corresponding eigenvalues

ER
+ and ER

−, respectively. The transformation matrix RR composed of eigenstates, possesses the following properties:

HR = RRDRR
−1
R and DR = R−1

R HRRR, where RR can convert the diagonal matrix DR containing the Hamiltonian
eigenvalues into the Hamiltonian HR. Conversely, it also diagonalizes HR into the matrix DR.

Thus, we can utilize the transformation matrix RR to reformulate the Schödinger equation i∂t[αs, βs]
T
= HR[αs, βs]

T

into a more tractable form. By defining R−1
R (αs, βs)

T
= (x, y)

T
, we obtain

i
d

dt
(x, y)

T
= D (x, y)

T
. (B2)

The solutions to Eq. (B2) are x = c1 exp
(
iER

+t
)
and y = c2 exp

(
iER

−t
)
, where c1 and c2 are constants determined

by the initial conditions. By multiplying both sides of R−1
R (αs, βs)

T
= (x, y)

T
by RR, we obtain RRR

−1
R (αs, βs)

T
=

RR (x, y)
T
. Since RRR

−1
R = 1, the inverse transformation yields (αs, βs)

T
= RR (x, y)

T
. For the initial conditions

α(0) = 1 and β(0) = 0, we have RR (c1, c2) = (1, 0), which gives the values of c1 = a/2Λ and c2 = −a/2Λ, where
Λ =

(
∆2

sag + ξ
)1/2

. Thus far, we have reproduced Eqs. (13) and (14) as presented in the main text.
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and A. Alù, Observation of anti-parity-time-symmetry,
phase transitions and exceptional points in an optical
fibre, Nature Communications 12, 486 (2021).

[27] Z. Feng and X. Sun, Harnessing dynamical encircling
of an exceptional point in anti-PT -symmetric integrated
photonic systems, Phys. Rev. Lett. 129, 273601 (2022).

[28] X.-L. Zhang, T. Jiang, and C. T. Chan, Dynamically en-
circling an exceptional point in anti-parity-time symmet-
ric systems: asymmetric mode switching for symmetry-
broken modes, Light: Science & Applications 8, 88
(2019).

[29] S. Park, D. Lee, K. Park, H. Shin, Y. Choi, and J. W.
Yoon, Optical energy-difference conservation in a syn-
thetic anti-pt-symmetric system, Phys. Rev. Lett. 127,
083601 (2021).

[30] Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Ob-
servation of an anti-pt-symmetric exceptional point and
energy-difference conserving dynamics in electrical cir-
cuit resonators, Nature communications 9, 2182 (2018).

[31] J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R.
Chen, and L. Yang, On-chip single nanoparticle detection
and sizing by mode splitting in an ultrahigh-q microres-
onator, Nature photonics 4, 46 (2010).

[32] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan,
and K. J. Vahala, Label-free, single-molecule detection
with optical microcavities, Science 317, 783 (2007).

[33] L. Deych, M. Ostrowski, and Y. Yi, Defect-induced
whispering-gallery-mode resonances in optical microdisk
resonators, Optics letters 36, 3154 (2011).

[34] Q. Song and Y. L. Kim, Perturbation of nanoparticle on
deformed microcavity, Journal of lightwave technology
28, 2818 (2010).

[35] J. T. Rubin and L. Deych, Ab initio theory of defect scat-
tering in spherical whispering-gallery-mode resonators,
Phys. Rev. A 81, 053827 (2010).
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