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Figure 1. Benchmarks overview. (a) Clean image pairs are corrupted to construct optical flow robustness benchmarks KITTI-FC and
GoPro-FC. (b) 29 model variants from 15 mainstream methods are evaluated through proposed robustness metrics in Out-Of-Domain
(OOD) and In-Domain (ID) settings. SAMFlow-H [89] with Vision Foundation Model (VFM) [23], RAFT [70], and ARFlow [31] are
taken as examples. (c) Comprehensive results and analyses of multiple models of a range of corruptions are presented.

Abstract

Optical flow estimation is extensively used in autonomous
driving and video editing. While existing models demon-
strate state-of-the-art performance across various bench-
marks, the robustness of these methods has been infre-
quently investigated. Despite some research focusing on
the robustness of optical flow models against adversar-
ial attacks, there has been a lack of studies investigating
their robustness to common corruptions. Taking into ac-
count the unique temporal characteristics of optical flow,
we introduce 7 temporal corruptions specifically designed
for benchmarking the robustness of optical flow models,
in addition to 17 classical single-image corruptions, in
which advanced PSF Blur simulation method is performed.
Two robustness benchmarks, KITTI-FC and GoPro-FC,
are subsequently established as the first corruption robust-
ness benchmark for optical flow estimation, with Out-Of-
Domain (OOD) and In-Domain (ID) settings to facilitate
comprehensive studies. Robustness metrics, Corruption Ro-
bustness Error (CRE), Corruption Robustness Error ratio
(CREr), and Relative Corruption Robustness Error (RCRE)

*Corresponding authors (e-mail: kailun.yang@hnu.edu.cn,
wangkaiwei@zju.edu.cn).

are further introduced to quantify the optical flow estima-
tion robustness. 29 model variants from 15 optical flow
methods are evaluated, yielding 10 intriguing observations,
such as 1) the absolute robustness of the model is heavily
dependent on the estimation performance; 2) the corrup-
tions that diminish local information are more serious than
that reduce visual effects. We also give suggestions for the
design and application of optical flow models. We antic-
ipate that our benchmark will serve as a foundational re-
source for advancing research in robust optical flow estima-
tion. The benchmarks and source code will be released at
https://github.com/ZhonghuaYi/optical_
flow_robustness_benchmark.

1. Introduction

Optical flow estimation [17, 35, 67, 70, 89] is a long-
standing problem in computer vision, which estimates the
pixel-level 2D motion of two continuous frames. Benefiting
from its provided spatial-temporal correspondence, optical
flow models are widely used in tasks such as autonomous
driving [5, 71] and video editing [7, 77]. Early optical
flow estimation methods [26, 35, 53] are knowledge-driven,
while in recent years more and more deep learning mod-
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els [9, 59, 79] are developed with promising performance.
Research on the robustness of optical flow models is

of paramount importance due to their widespread applica-
tion, particularly in safety-critical domains. In recent years,
though robustness benchmarking research has been studied
for various vision tasks like object detection [8, 90] and seg-
mentation [19, 76], there is relatively little literature on the
robustness of optical flow models, which are mainly in the
field of adversarial attacks [1, 51, 57]. The impact of do-
main perturbation, which commonly occurs in real-world
applications, especially autonomous driving and video edit-
ing, however, has not been well studied. Furthermore, as the
optical flow contains object motion information, the former
corruption robustness benchmarking methods [14, 50, 78]
designed for single-image perception tasks lack simulation
of temporal corruptions, making it impossible to simply
borrow them completely. As a result, building a thorough
benchmark with carefully considered corruptions for opti-
cal flow robustness research is necessary and urgent.

To our knowledge, we are the first to build such a cor-
ruption robustness benchmark. The overview is shown in
Fig. 1. We propose 7 temporal corruptions that fully con-
sider all the possible scenarios for optical flow applications.
In addition, 17 common corruptions designed for single im-
ages are also included in our benchmarks for a comprehen-
sive study. We upgrade the PSF Blur simulation method by
introducing an automatic lens design approach. For the two
most concerned applications, autonomous driving and video
editing, we build two benchmarks, KITTI-FC and GoPro-
FC for them respectively. We focus on large displace-
ment in KITTI-FC and small displacement in GoPro-FC
by performing different interframe intervals. Furthermore,
we construct In-Domain (ID) test in KITTI-FC and Out-
Of-Domain (OOD) test in both benchmarks, for real-world
deployment with or without optical flow ground-truth, to
research domain-related robustness.

To quantify the robustness under data perturbations, we
further propose robustness metrics Corruption Robustness
Error (CRE) and Relative Corruption Robustness Error
(RCRE), which can effectively represent the absolute ro-
bustness of the optical flow model when it receives pertur-
bations. We also propose Corruption Robustness Error ra-
tio (CREr) to evaluate the relative robustness of the model,
by eliminating the impact of model estimation performance.

Based on the constructed benchmarks and evaluation
metrics, we test 29 model variants from 15 optical flow es-
timation methods including traditional methods, supervised
methods, and unsupervised models. Through comprehen-
sive experiments, we found 7 interesting observations. For
example, the absolute robustness of the model is heavily de-
pendent on the estimation performance, and the corruptions
that diminish local information have more serious impacts
than those that reduce visual effects. The observations pro-

vide new views for the future optical flow model design, by
suggesting to: 1) improve estimation performance of the op-
tical flow model; 2) introduce Transformer-like architecture
and semantic information; 3) use unsupervised models or
introduce unsupervised training approaches; 4) reduce the
possibility of unreliable local information.

2. Related Work
Optical flow estimation. Early optical flow estimation
methods [3, 10, 16, 26, 35, 53] are knowledge-driven, focus-
ing on modeling spatial-temporal correspondences through
energy minimization. In recent years, data-driven methods
have gained traction, with CNN-based models [18, 59, 60,
67, 79] trained under supervised settings using ground truth
flows. RAFT [70] introduced iterative refinement, signifi-
cantly improving upon previous direct flow prediction ap-
proaches. Following works [20, 36, 69, 73, 84, 86] focus on
large displacement and occlusion challenges. Transformer-
based architectures have also been explored, yielding state-
of-the-art performance [17, 34, 63, 66]. SAMFlow [89]
fuses features from pre-trained SAM [23] with an optical
flow context encoder, surpassing FlowFormer [17] in accu-
racy. More recently, diffusion models [15, 64] have shown
promise in optical flow estimation, with DDVM [54] and
FlowDiffuser [37] demonstrating their effectiveness. Given
the lack of ground truth optical flow labels in real-world
videos, unsupervised learning approaches [31–33, 38, 40,
44, 52, 65, 82] have been investigated to overcome this lim-
itation. For challenging environmental conditions, such as
rain [28, 29], fog [75, 88], and low-light [87], tailored op-
tical flow models have been developed. When target do-
mains are known, domain adaptation methods [47, 81] are
also effective. While these methods offer advancements, a
comprehensive benchmark on the robustness of optical flow
models across various real-world corruptions remains criti-
cal to fully assess their reliability in diverse conditions.
Robustness of networks. The robustness of deep learn-
ing models remains a significant challenge, with adver-
sarial attacks, common corruptions, and distribution shifts
all impacting model performance. Robustness bench-
marks have been established across tasks such as classifi-
cation [14, 48, 78], segmentation [19, 22, 50, 76, 80, 85],
action detection [83], pose estimation [39], and object
detection [8, 46, 90]. Research on adversarial robust-
ness [2, 27, 74] explores how small, optimized perturbations
can significantly degrade model performance, effectively
misleading models into incorrect outputs. Domain robust-
ness also poses ongoing challenges [41, 62], as training data
domains rarely align with real-world deployment scenarios,
where varying conditions and settings create discrepancies.
Optical flow model robustness is especially crucial for ap-
plications like autonomous driving and robotics. Previous
studies [1, 51, 56] have primarily focused on adversarial ro-
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Figure 2. Effects of all the 24 corruptions under severity of 5. Corruptions are split into 6 classes. 7 temporal corruptions are in red
boxes. The previous and next frames are displayed on the left and right sides of the image respectively for Over Exposure and Under
Exposure for better visualization. Examples are from GoPro-FC.

bustness, manipulating pixel [25] or patch information [58]
to disrupt flow estimation. Recently, Schmalfuss et al. [57]
introduced a differentiable particle rendering framework to
simulate adversarial weather attacks on optical flow models.
To the best of our knowledge, there is a lack of systematic
benchmarking on the robustness of optical flow estimation
under common corruptions. Our study addresses this gap,
providing a foundational analysis of optical flow robustness
in corrupted real-world scenarios to support the develop-
ment of more resilient models.

3. Corruptions for Optical Flow

There are numerous successful corruption methods [8, 14,
22] proposed for benchmarking single-image vision tasks,
which arise from diverse real-world scenarios. Since optical
flows are derived from image pairs with temporal associa-
tions, it is essential to account for additional temporal cor-
ruptions that occur in real-world applications. We there-
fore propose temporal corruptions including Object Motion
Blur, Over Exposure, Under Exposure and Snow. Referring
to video-oriented benchmarking works [55, 72, 78], we fur-
ther introduce H.264 CRF Compression, H.264 ABR Com-
pression, and Bit Error for a more comprehensive temporal
robustness benchmark. We also introduce a more general

Point-Spread-Function (PSF) simulation method for accu-
rate and extensive PSF Blur corruption generation. All the
24 corruptions are visualized in Fig. 2 and summarized into
6 classes below. In experiments, every corruption is adopted
with 5 severity levels. The simulation details can be found
in the supplementary.

Digital corruptions. Digital change occurs during the dig-
ital distribution process on the web, resulting in changes to
image pixels, which are image-independent. These corrup-
tions are well explored by image understanding works [22].
We consider 4 digital corruptions: JPEG Compression, Pix-
elate, Contrast, and Saturate, as they are commonly ob-
served in web content delivery.

Illumination corruptions. In real-world situations, the
same scene will appear under different ambient light inten-
sities. Whether visual tasks can be robust to such changes
needs to be studied. In addition, cameras sometimes face il-
lumination problems, resulting in unsatisfied exposure and
histogram, especially in high dynamic range scenes. We
therefore use High-light and Low-light to simulate the var-
ious ambient light intensities, by increasing or decreasing
the same intensity for the whole image. Because the cam-
era’s metering module always has a delay when the scene
brightness changes rapidly, resulting in different exposure



levels of the front and back images, we further propose two
temporal corruptions for optical flow benchmarking: Over
Exposure and Under Exposure, in which one of the image
pair is overexposed or underexposed while the other is well-
exposed. We change Exposure values (EVs) to simulate
these two exposure-related corruptions.
Weather corruptions. Weather corruptions are always
considered by benchmarking methods [90], as they are
common in real applications. Referring to the previous
work [46], we introduce four types of weather corruptions:
Spatter, Fog, Frost, and Snow. We note that the first three
disturbances generally change slowly in the real world, so
the two images captured by the camera are affected by them
in approximately the same way. For Snow, the changes in
the rendering results over time can usually be captured by
the camera. Thus the rendering content is modified to be
different for the two continuous images in our practical im-
plementation. Due to the characteristics of texture render-
ing, Spatter, Frost and Snow tend to occlude objects, while
Fog tends to reduce the visible area of the image.
Noise corruptions. The noises are time-independent in
most situations, as they are usually caused by camera de-
fects. Here we consider three corruptions that sample Gaus-
sian, Shot, and Impulse noises for images.
Blur corruptions. Static blurry effects like Gaussian, De-
focus, and Glass blur have been investigated. However,
the influence of a physically realizable optical system is
rarely studied, in which a blurring effect results from the
Point-Spread-Function (PSF) of the optical system. Some
works consider optical systems designed by Zemax [22] or
Zernike polynomials [48], while the blurring effect is not
satisfiable, and the lens chosen can not represent a wide
range of low-quality optical systems, since the aberration
of some minimalist optical systems is more serious. Given
the recent success of the end-to-end optical system genera-
tion approaches [12], we generate and sample 5 low-quality
lenses, with the Root-Mean-Square (RMS) radius varying
from 0.02 to 0.19. The enhanced PSF Blur expands the
scope of research on optical systems and provides a valu-
able framework for studying the robustness of visual meth-
ods on low-quality optical systems [11]. For motion blur,
we propose two temporal corruptions with different motion
patterns, in which Camera Motion Blur is caused by camera
vibration and Object Motion Blur by scene moving.
Video corruptions. In modern vision tasks, video tasks
like editing [7, 77] heavily depend on optical flow. In such
applications, digital video processing also affects the fi-
nal image quality and information. Referring to the video
task benchmarking works, we introduce three corruptions:
H.264 CRF Compression, H.264 ABR Compression and Bit
Error, which all appear when applying H.264 encoding.
Comparison Fairness. Although a total of 24 corruptions
have been investigated, the simulation approaches and pa-

rameters vary, making it challenging to determine the ap-
propriate simulation parameters for different corruptions to
achieve a consistent real-world probability of occurrence.
Consequently, for the majority of corruptions, we are unable
to equally compare their impact. Currently, Hight-Light and
Low-Light can be compared with each other, as they are per-
formed with the same approach. Similarly, Over Exposure
and Under Exposure are also comparable.

4. Robustness Benchmarks for Optical Flow
4.1. Robustness Metrics
The performances of optical flow estimation are often eval-
uated by End-Point-Error (EPE), defined as the Euclidean
distance between predicted flow and ground truth. It re-
flects the absolute performance of the model, but cannot
reflect the performance degradation of the model on per-
turbed data (i.e. robustness). Therefore, we propose three
evaluation metrics for optical flow robustness benchmarks.

Given the ground-truth flow fgt, Corruption Robustness
Error (CRE) measures the EPE difference between pre-
dicted flow fclean on clean data and fc,s on corrupted data
for each corruption c at each severity s:

CREc,s =EPEc,s − EPEclean

=∥fc,s − fgt∥ − ∥fclean − fgt∥.
(1)

The CREc of corruption c is then computed as the average
CREc,s across all severity s, and CRE is averaged from all
corruptions of CREc to measure the absolute robustness.

Notice that the CRE may correspond to the EPEclean,
we propose Corruption Robustness Error ratio (CREr) to
investigate the relative stability of the model:

CREr =
CRE

EPEclean
. (2)

It removes the impact of the estimation performance of the
model on CRE, thus only reflecting the relative robustness.

For the situation fgt is not known, the Relative Corrup-
tion Robustness Error (RCRE) is performed. It straightly
measures the end-point-error between fclean and fc,s, with-
out the reference of fgt:

RCREc,s = ∥fc,s − fclean∥. (3)

RCREc and RCRE are then calculated the same way as
CREc and CRE. The calculating detail is illustrated in Fig 3.

4.2. Robustness Benchmarks
The most popular downstream applications of optical flow
are autonomous driving [5, 71] and video editing [6, 7, 30,
61]. To enhance the completeness of our robustness test
scenarios for optical flow estimation, we create benchmarks
for each application using real-world datasets.
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Figure 3. Calculating procedure of CREc,s and RCREc,s.
RCREc,s is computed without using ground-truth optical flow.

There are various proposed optical flow datasets, but
most of them are synthetic [4, 9, 42, 43]. Real datasets [13,
24, 45] need large and heavy devices to record data and
compute the optical flow ground-truth, thus all of them are
capturing the scenes in city roads. For autonomous driving,
we construct an optical flow corruption benchmark KITTI-
FC based on the current KITTI-2015 optical flow bench-
mark [45], which has 200 image pairs with optical flow
ground truth, recorded from a car driving through streets.
Another considered scenario is video editing, in which op-
tical flow is widely used to provide spatial-temporal con-
sistency. To enable the benchmark for this situation, Go-
Pro [49], a dataset commonly used in video tasks like video
interpolation [21] and deblurring [68], is performed to build
the proposed GoPro-FC corruption benchmark.

Supervised optical flow models [17, 20, 66, 70] always
face Out-Of-Domain (OOD) problems during real-world
deployment, as the ground-truth optical flow is hard to ob-
tain. Sometimes the ground-truth optical flow is known,
and OOD models could be fine-tuned to be In-Domain (ID),
leading to more satisfying performance. We thus research
both the OOD and ID robustness of supervised models to
provide a systematic evaluation framework.
KITTI-FC. The KITTI-FC is constructed upon 20 corrup-
tions, excluding Object Motion Blur and 3 video corrup-
tions, since 1) original KITTI data are recorded in 10FPS,
thus Object Motion Blur which performs video interpola-
tion and accumulation may cause artifacts, 2) optical flow
data provided by KITTI do not contain enough frames to
implement the proposed 3 video corruptions. Since the
KITTI optical flow dataset provides ground truth for 200
image pairs, we construct both OOD and ID benchmarks
based on them, by splitting 80 image pairs for robustness
evaluation and 120 for ID model training. It focuses on the
large displacement due to its 10FPS frame rate.
GoPro-FC. Based on GoPro, we construct GoPro-FC,
which consists of 5 challenging dynamic video sequences
under all the 24 corruptions we proposed in Sec. 3. The Go-
Pro dataset is recorded at 240Hz, and we sample images in
30FPS to construct the final test image pairs in GoPro-FC.
For object motion blur, we perform a video interpolation

Model Type Encoder Decoder Year
Farnebäck [10] Knowledge - - 2003
DIS [26] Knowledge - - 2016
RAFT [70] Supervised CNN GRU 2020
GMA [20] Supervised CNN GRU 2021
CSFlow [59] Supervised CNN GRU 2022
SKFlow [69] Supervised CNN GRU 2022
GMFlowNet [86] Supervised CNN GRU 2022
CRAFT [66] Supervised CNN&Transformer GRU 2022
FlowFormer [17] Supervised Transformer GRU 2022
FlowFormer++ [63] Supervised Transformer GRU 2023
SAMFlow [89] Supervised Transformer&SAM GRU 2024
FlowDiffuser [37] Supervised Transformer Diffusion 2024
ARFlow [31] Unsupervised CNN Pyramid 2020
UPFlow [38] Unsupervised CNN Pyramid 2021
BrightFlow [40] Unsupervised CNN GRU 2023

Table 1. All of the 15 evaluated methods. Traditional methods,
supervised models with different architectures, and unsupervised
models with different designs are included.

framework FLAVR [21] for 4× interpolation first, obtain-
ing a 960FPS high frame rate video. Then we sample the
same 30FPS test corrupted image pairs as the other corrup-
tions, while each corrupted image is blurred by accumulat-
ing the previous and next frames. Note that the consistent
frames in GoPro-FC are in 30FPS, the benchmark reflects
the robustness of models in small displacement scenarios.

5. Benchmarking Results

5.1. Implementation Details

We evaluate 29 model variants of 15 commonly used meth-
ods for comprehensive research of optical flow estimation
robustness, as categorized in Tab. 1.
Knowledge-driven methods. We use the OpenCV imple-
mentation for Farnebäck [10] method and official imple-
mentation for DIS [26] with default settings.
Supervised methods. Supervised models are firstly trained
on mixed data combining FlyingThings [42], Sintel [4],
and HD1K [24], utilizing the officially provided pre-trained
C+T checkpoints to obtain Out-Of-Domain (OOD) models.
These OOD models are evaluated on both the KITTI-FC
and GoPro-FC benchmarks. Subsequently, the OOD mod-
els are fine-tuned on the training split of KITTI-FC to estab-
lish the in-domain (ID) benchmark within KITTI-FC. For
SAMFlow, “-T” indicates the SAM-tiny [23] model, “-B”
indicates the SAM-B model, and “-H” indicates the SAM-
H model. Note that all the GRU decoders are trained and
tested with 12 iterations to promise fair comparison. The
training procedures adhere to the official setup outlined in
the supplementary materials to ensure optimal performance.
Unsupervised methods. Benefiting from their capability to
be trained on unlabeled data, the unsupervised methods are
evaluated exclusively on the ID benchmark of KITTI-FC,
utilizing models trained on the KITTI raw dataset.
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Farnebäck 25.60 26.02 26.71 32.82 25.33 25.76 27.54 27.56 28.60 27.84 31.19 29.68 27.62 24.35 24.33 24.16 31.00 31.39 28.75 28.78 30.60 28.00
DIS 20.56 21.02 20.44 20.82 20.38 20.09 21.97 24.35 27.23 24.33 24.59 27.23 23.20 21.40 21.05 21.41 20.13 20.14 20.37 20.33 20.13 22.03

out-of-domain (OOD)
RAFT 4.29 10.28 4.53 4.77 5.73 5.20 7.25 6.74 4.34 21.49 6.34 27.75 14.01 13.77 12.22 14.20 6.15 6.31 9.02 5.22 5.41 9.54
GMA 4.19 10.01 4.69 4.63 5.70 4.97 7.36 6.21 4.19 23.40 6.04 28.98 14.15 15.02 13.55 15.99 6.41 6.96 10.38 5.26 5.50 9.97
CSFlow 4.11 9.24 4.39 4.79 5.13 4.88 7.47 6.53 4.15 21.52 6.23 27.54 13.98 10.82 9.75 10.95 5.56 5.93 8.55 5.10 5.06 8.88
SKFlow 3.97 8.86 4.21 4.54 5.24 4.53 6.68 5.63 3.97 20.75 5.55 26.54 13.65 14.67 13.52 15.54 6.04 6.45 9.17 5.07 5.23 9.29
GMFlowNet 4.08 9.41 4.52 4.85 5.31 4.93 8.05 5.98 4.28 21.52 6.33 27.03 11.57 12.47 11.32 13.04 5.55 5.91 8.19 5.06 5.01 9.02
CRAFT 4.66 10.49 5.12 5.54 6.56 5.51 7.99 7.09 4.80 23.17 6.91 30.13 18.59 17.14 15.69 17.90 7.01 7.33 12.22 6.12 5.99 11.07
FlowFormer 4.78 9.86 5.31 7.16 6.33 5.70 8.51 6.73 4.71 23.25 7.06 28.98 15.10 13.32 11.95 14.20 6.84 6.82 10.51 5.87 6.00 10.21
FlowFormer++ 4.70 10.66 5.88 6.48 6.68 6.05 8.80 6.57 4.75 23.35 6.77 29.37 14.45 14.01 13.07 15.04 6.74 6.83 11.48 6.12 6.05 10.46
SAMFlow-T 4.22 9.23 4.76 5.67 5.56 5.11 6.82 5.94 4.12 21.59 5.69 27.66 13.18 11.87 12.51 15.04 6.16 6.18 9.03 4.86 5.39 9.32
SAMFlow-B 4.06 8.09 4.47 5.03 5.25 4.94 6.65 5.78 4.07 21.50 5.45 27.44 11.13 10.69 9.85 10.28 5.63 5.91 8.93 4.62 4.84 8.53
SAMFlow-H 3.78 7.08 4.14 4.98 5.37 4.73 6.27 5.50 3.77 21.16 5.30 27.32 10.73 11.81 10.61 10.58 5.42 5.60 8.49 4.18 4.75 8.39
FlowDiffuser 6.16 14.12 6.60 7.80 8.43 8.12 9.38 9.10 6.10 22.37 8.06 29.07 22.67 19.30 17.49 19.75 9.22 9.43 11.64 8.25 7.83 12.74

in-domain (ID)
RAFT 1.81 5.55 2.06 4.26 2.55 3.31 6.81 7.65 1.87 12.00 3.34 20.45 35.76 15.96 10.93 14.84 4.53 4.30 4.47 5.37 4.17 8.51
GMA 2.43 5.69 3.24 3.56 3.00 6.31 4.65 7.56 2.28 14.98 4.31 23.00 51.76 22.51 15.21 21.33 4.20 4.31 4.89 6.17 3.82 10.64
CSFlow 1.96 3.76 2.21 3.12 2.63 2.56 5.04 4.07 2.05 11.18 3.56 19.33 17.32 11.31 8.51 12.96 3.23 3.28 3.47 2.99 2.77 6.27
SKFlow 2.78 3.93 2.61 3.31 3.44 5.18 3.90 7.18 2.81 13.27 3.56 20.41 39.65 23.73 17.09 25.47 3.14 3.28 4.12 4.01 2.81 9.65
GMFlowNet 1.81 3.39 2.00 2.83 2.15 2.70 4.12 8.70 1.94 12.24 3.06 20.17 22.50 15.01 12.67 16.28 3.29 3.33 3.61 3.11 2.89 7.30
CRAFT 3.67 6.45 4.59 4.33 5.32 4.85 4.74 5.77 4.22 13.85 3.54 23.12 31.93 14.72 11.88 14.80 5.44 5.62 7.68 5.00 4.69 9.13
FlowFormer 1.72 3.69 2.32 4.58 2.21 2.67 4.45 3.81 1.96 16.35 3.94 22.63 21.92 8.81 6.78 9.54 4.39 4.40 4.06 3.58 3.56 6.78
FlowFormer++ 1.63 3.83 2.41 3.46 2.16 2.19 4.18 2.96 1.60 17.05 3.12 23.74 12.63 9.65 7.56 9.17 3.58 3.76 4.22 3.04 3.15 6.17
SAMFlow-T 1.54 3.19 2.00 3.77 1.86 1.97 3.29 2.15 1.66 16.89 2.86 22.16 11.24 5.14 4.48 5.36 2.97 2.95 3.47 2.77 2.60 5.14
SAMFlow-B 1.51 3.32 2.00 3.07 1.76 2.25 3.25 2.12 1.53 17.50 2.56 22.54 9.68 5.82 4.62 5.46 2.58 2.65 3.90 2.68 2.33 5.08
SAMFlow-H 1.45 2.82 1.91 2.52 1.78 1.84 2.94 2.01 1.52 16.82 2.38 21.71 10.56 4.68 3.29 4.70 2.40 2.51 3.43 2.37 2.04 4.71
FlowDiffuser 4.71 8.81 4.92 7.94 7.01 7.21 10.85 9.75 5.66 16.87 6.74 24.36 32.40 28.20 24.81 28.15 6.10 6.16 8.50 5.48 5.55 12.77
BrightFlow 3.17 4.78 3.40 3.37 3.36 3.88 4.87 4.23 3.15 17.26 6.04 23.29 14.66 6.56 5.08 6.24 4.03 4.19 4.53 3.85 3.86 6.53
UPFlow 3.52 5.20 3.79 7.22 4.07 4.55 6.31 5.21 4.02 12.64 7.81 22.62 14.87 8.87 7.07 8.26 4.78 4.91 5.15 4.52 4.74 7.33
ARFlow 3.02 3.94 3.06 7.69 3.36 4.66 6.88 3.66 3.44 8.76 7.12 18.52 10.59 5.30 4.79 5.36 3.29 3.32 3.83 3.86 3.75 5.76

* HL: High-light, LL: Low-light, OE: Over Exposure, UE: Under Exposure.

Table 2. EPE results on KITTI-FC. 29 model variants on 20 corruptions from 5 corruption classes are reported. Supervised models
are evaluated in both OOD and ID settings, whereas unsupervised models are tested solely in ID, given their capability to be trained on
unlabeled data. The best EPE results on each corruption are highlighted for OOD and ID respectively.

5.2. Results on KITTI-FC

We first report the EPE of all 29 model variants to give the
optical flow estimation performance in Tab. 2, then discuss
the absolute robustness CRE and relative robustness CREr
in Fig. 4 for deep research on optical flow robustness. Re-
lations between corruptions and representative models are
illustrated in Fig. 5. Relative robustness along with com-
puting costs is discussed in Tab. 3.

Since the estimation performance of knowledge-based
models and FlowDiffuser on both clean data and corrupted
data are not satisfactory, we do not give deep discussion on
them. The poor results of FlowDiffuser are mainly from its
unstable training process, which lies as a common problem
during training diffusion models.
Observation 1: Absolute robustness of the model depends
heavily on estimation performance. The optical flow es-
timation performance of the model on corrupted data in
Tab. 2 is positively correlated with the estimation perfor-
mance on clean data. The same pattern can be observed
in Fig. 4, where the CRE is positively correlated with the
estimation performance on clean data.
Observation 2: SAMFlow and CSFlow show remarkable
estimation performance and absolute robustness among
supervised models. Benefit from the Vision Foundation

Method Param.
(M)

FLOPs ↓
(G)

CREr↓ & Rank Average Rank
OOD ID OOD ID

RAFT 5.25 245.6 (4) 1.22 (6) 3.70 (14) 2 7
GMA 5.79 275.4 (6) 1.38 (11) 3.38 (13) 8 8
CSFlow 5.60 251.7 (5) 1.16 (3) 2.19 (5) 1 4
SKFlow 6.19 297.7 (8) 1.34 (9) 2.46 (9) 8 6
GMFlowNet 9.30 321.9 (9) 1.21 (5) 3.02 (12) 4 12
CRAFT 6.37 280.9 (7) 1.37 (10) 1.49 (4) 8 5
FlowFormer 16.08 418.5 (11) 1.13 (2) 2.93 (11) 3 14
FlowFormer++ 16.01 417.6 (10) 1.22 (6) 2.77 (10) 6 10
SAMFlow-T 28.00 444.3 (12) 1.17 (4) 2.33 (7) 6 8
SAMFlow-B 108.69 545.0 (13) 1.09 (1) 2.36 (8) 4 12
SAMFlow-H 653.84 1026.0 (14) 1.22 (6) 2.25 (6) 11 10
UPFlow 3.49 134.1 (2) - 1.08 (3) - 2
BrightFlow 5.25 245.5 (3) - 1.06 (2) - 2
ARFlow 2.23 22.6 (1) - 0.91 (1) - 1

Table 3. Average ranking of FLOPs and CREr. The number in
the bracket is the ranking of the model for the corresponding item.

Model (VFM), SAMFlow outperforms other supervised
models as shown in both Tab. 2 and Fig. 4, building upon
the same architecture of FlowFormer. Larger VFM provides
better performance and robustness. CSFlow shows close ro-
bustness to SAMFlow at the same time, ahead of the other
CNN-based models by a large margin.
Observation 3: Unsupervised methods are more stable to
corruptions. Although unsupervised methods do not per-
form well in clean data, they achieve better estimation re-
sults on corrupted data in Tab. 2 than most supervised mod-
els. The CRE results and CREr results in Fig. 4 also demon-
strate it. Among unsupervised models, ARFlow shows the
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Figure 4. The EPE, CRE, and CREr results of 12 optical flow models on OOD and ID benchmarks of KITTI-FC. CREr is represented
by the size of the bubble and its value is indicated below the model name. Purple circles represent CNN-based models, green circles
represent Transformer-based models, and blue circles represent unsupervised models.
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Figure 5. CREr of representative models on different corrup-
tion classes. Weather corruptions heavily influence the supervised
models from OOD to ID.

best absolute robustness and relative robustness.
Observation 4: The relative robustness of supervised meth-
ods drop in ID scenario. As illustrated in Fig. 4, the CREr
of all supervised methods increase from OOD to ID setup,
meaning they all experience a robustness drop. Although
the CRE of Transformer-based models have decreased, the
better absolute robustness is mainly from the estimation per-
formance improvement. This phenomenon shows the super-
vised models are more likely to trust the clean ID data when
fine-tuning, and thus more sensitive to data perturbation.
Observation 5: Relative robustness drop from OOD to ID
is mainly from the instability in Weather conditions. As

shown in Fig. 5, both supervised methods face a relative
robustness drop in all 5 types of corruption. However, the
influences of corruptions from Weather for two methods are
more serious. Furthermore, CSFlow also experiences se-
rious degradation of robustness in Illumination and Noise
conditions, with an observed increase of up to 291% in
CREr. On the other hand, ARFlow shows great robustness
in Weather and Noise conditions in ID setup, pointing out
where the main advantages of unsupervised methods are.
Observation 6: After considering computing cost, unsu-
pervised methods show the highest priority. As shown in
Tab. 3, ARFlow achieves the best robustness by relying on
the smallest computing cost. The other two unsupervised
methods also outperform the supervised methods in rank-
ings. Additionally, CSFlow ranks highest among all super-
vised models in both OOD and ID scenarios.
Observation 7: Low-Light and Over Exposure are more
serious than High-Light and Under Exposure respectively.
As described in Sec. 3, the corruptions are hard to com-
pare each other due to different implementation approaches.
However, it is possible to analyze Illumination corruptions,
as the simulation of HL is similar to LL, and so is OE to
UE. As shown in Tab. 2, All the models perform worse in
the Low-Light condition than in High-Light, suggesting the
low-light condition is more serious for optical flow models.
As for the exposure problem, Under Exposure does not pro-
vide enough difficulty as Over Exposure because increasing
the EV value will lose more information.
Observation 8: Corruptions that lose local information are
more influential than corruptions that lose visual effects.
We found that the corruptions that make local information
totally lost, such as noises, JPEG compression, and occlu-
sions (Spatter, Frost, Snow), are much more serious than
corruptions that only reduce visual effects (e.g. Contrast,



Corruption RAFT GMA CSFlow SKFlow GMFlowNet CRAFT FlowFormer FlowFormer++ SAMFlow-T SAMFlow-B SAMFlow-H

Digital

JPEG 1.30 1.10 1.38 0.81 1.38 0.82 1.07 1.10 1.85 1.76 1.52
Pixelate 0.19 0.18 0.19 0.17 0.19 0.19 0.24 0.29 0.35 0.28 0.26
Contrast 0.28 0.27 0.26 0.23 0.23 0.32 0.23 0.26 0.34 0.28 0.27
Saturate 0.45 0.27 0.50 0.28 0.37 0.29 0.24 0.24 0.99 0.44 0.72

Illumination

HL* 0.25 0.21 0.25 0.20 0.22 0.22 0.16 0.17 0.21 0.21 0.19
LL* 0.40 0.33 0.41 0.31 0.51 0.35 0.24 0.24 0.39 0.35 0.32
OE* 0.66 0.44 0.72 0.39 0.62 0.43 0.47 0.34 1.12 0.58 1.10
UE* 0.07 0.06 0.07 0.06 0.08 0.07 0.08 0.09 0.08 0.07 0.07

Weather

Spatter 7.62 7.63 7.57 7.44 7.55 7.37 6.99 7.51 7.90 7.77 7.93
Fog 0.73 0.53 0.75 0.31 0.80 0.48 0.41 0.38 0.70 0.68 0.57
Frost 11.13 11.19 10.92 10.09 10.76 10.88 10.30 10.73 11.05 11.11 11.13
Snow 3.61 1.21 2.40 1.18 2.04 1.24 1.20 0.99 2.61 2.11 3.56

Noise
Gaussian 1.36 1.38 1.59 1.35 1.32 1.30 0.59 0.80 0.92 1.04 0.99
Shot 1.29 1.33 1.44 1.33 1.27 1.27 0.61 0.79 0.91 1.03 0.91
Impulse 1.34 1.33 1.43 1.35 1.27 1.27 0.63 0.83 0.95 0.97 0.86

Blur

Gaussian 0.39 0.36 0.36 0.45 0.36 0.40 0.27 0.29 0.37 0.36 0.36
Defocus 0.40 0.37 0.38 0.43 0.36 0.38 0.27 0.29 0.38 0.38 0.37
Glass 0.74 0.68 0.72 0.70 0.64 0.73 0.63 0.67 0.70 0.71 0.72
Camera 0.38 0.35 0.37 0.38 0.36 0.35 0.28 0.32 0.39 0.36 0.35
Object 1.23 1.08 1.19 1.01 1.11 1.14 0.94 0.93 1.04 1.04 1.09
PSF 0.35 0.34 0.34 0.37 0.33 0.35 0.24 0.26 0.34 0.35 0.32

Video
ABR 1.64 1.49 1.68 1.42 1.61 1.46 1.73 1.73 1.80 1.77 1.80
CRF 2.57 2.36 2.67 2.31 2.57 2.32 2.72 2.70 2.86 2.76 2.83
BitError 0.53 0.40 0.56 0.37 0.78 0.40 0.52 0.56 0.80 0.62 0.75

AVG RCRE 1.62 1.45 1.59 1.37 1.53 1.42 1.29 1.35 1.63 1.54 1.62
* HL: High-light, LL: Low-light, OE: Over Exposure, UE: Under Exposure.

Table 4. RCRE results on GoPro-FC. 11 supervised OOD models are evaluated on all 24 corruptions from 6 classes.

(a)

(b)
Frame t Frame t+1

Frame t+1Frame t

Figure 6. SAM Segmentation results on (a) KITTI-FC and (b)
GoPro-FC. Small motions in GoPro-FC result the pixel-level seg-
mentation misalignment not helpful for optical flow estimation.

Saturate, Fog). For example, as shown in Fig. 2, the cor-
rupted image under JPEG Compression looks closer to the
clean image than that under Saturate, but the estimation per-
formance in Tab. 2 on Saturate images is much better than
JPEG Compression images for all tested models.

5.3. Results on GoPro-FC

As mentioned in Sec. 4, only OOD models are evaluated in
GoPro-FC, which consists of small displacement scenarios.
Since no optical flow ground truth is provided in GoPro,
only RCRE results are reported in Tab. 4, which reflects the
absolute robustness of the model.
Observation 9: FlowFormer shows as the best robust
model in small displacement condition. As shown in Tab. 4,
FlowFormer outperforms other supervised models in most
corruptions and achieves the best overall RCRE result.
In such small displacement conditions, a few corruptions
could change neighborhood information heavily, while the
Transformer encoder could avoid this high-frequency per-
turbation. In addition, SKFlow as a CNN-based method,

achieves great results in some corruption conditions and
performs as the best CNN method.
Observation 10: VFM does not help in small displacement
condition. While SAMFlow shines on KITTI-FC, it gets
as bad as most CNN methods on GoPro-FC. As shown in
Fig. 6, the motion in GoPro-FC is only a few pixels, much
smaller than KITTI-FC. In such cases, sufficient fine lo-
cal features can offer good local correlation search results.
However, the segmentation results from SAM may intro-
duce pixel-level misalignment, which is detrimental to the
extraction of fine local features, although it can facilitate
searching long-range relationships in KITTI-FC.

6. Discussion and Conclusion

This paper presents two optical flow robustness benchmarks
for real-world applications including autonomous driving
and video editing, along with 24 corruptions which consist
of 7 temporal corruptions and 17 single-image corruptions.
An advanced PSF Blur simulation method is included. Con-
sidering the common domain gap problem in practical ap-
plications, we established an OOD setting for both bench-
marks and an ID setting for KITTI-FC. Through compre-
hensive evaluation, the results of 29 models from 15 optical
flow methods provide 10 meaningful observations. Based
on those findings, we also give some suggestions for robust
optical flow model development:

• improve estimation performance of the optical flow
model for better absolute robustness;

• introduce Transformer-like architecture and semantic
information into the model;

• rely on unsupervised models or introduce unsuper-
vised training approach into supervised models;

• reduce the possibility of unreliable local information



in actual application.
We anticipate that our comprehensive benchmarks on cor-
ruptions, along with our in-depth findings and analyses, will
enhance the understanding of optical flow estimation ro-
bustness to corruptions and contribute to the development
of more resilient methods for real-world applications.
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A. Corruption Details
A.1. Digital corruptions
JPEG compression. We corrupt every image inde-
pendently by performing different compression qualities
with the JPEG algorithm. The qualities are set to be
[25, 18, 15, 10, 7] with the severity ranging from 1 to 5.
Pixelation. The image is first downsampled using a box fil-
ter and then resized to the original resolution. With severity
ranging from 1 to 5, the downsampled resolution is set to
[0.6, 0.5, 0.4, 0.3, 0.25] times the original resolution.
Elastic Transform. A random pixel offset is sampled for
every pixel. The sampling rule of the offset is as follows:

dx ∼αN
(
U (−0.05H, 0.05H) , (0.01W )

2
)
,

dy ∼αN
(
U (−0.05H, 0.05H) , (0.01H)

2
)
,

(4)

where H,W are the height and width of the image, and α is
set to [12.5, 16.25, 21.25, 25, 30] with the severity ranging
from 1 to 5. Once the dx and dy are sampled, a mesh grid is
then computed. The image is remapped into a transformed
image according to the mesh grid.
Contrast. The contrast corruption is operated as follows:

Î = (I −mean (I))× c+mean (I) , (5)

where the c is set to be [0.4, 0.3, 0.2, 0.1, 0.05] with the
severity ranging from 1 to 5.
Saturate. The RGB image is first transformed into HSV
space, and then the saturation value is modified:

Ŝ = S × α+ β, (6)

where (α, β) are in [(0.1, 0), (0.3, 0), (2, 0), (5, 0.1), (20, 0.2)]
with the severity ranging from 1 to 5.

A.2. Illumination corruptions
High-Light. The image is first transformed into HSV
space, and the brightness value is changed according to the
following equation:

V̂ = V + c, (7)

where c is in [0.1, 0.2, 0.3, 0.4, 0.5] with the severity rang-
ing from 1 to 5.
Low-Light. Similar to High-light corruption, the Low-light
is as follows:

V̂ = V − c, (8)

where c is in [0.1, 0.2, 0.3, 0.4, 0.5] with the severity rang-
ing from 1 to 5.
Over Exposure. The Over Exposure corruption considers
the two images are in different exposure environments, to
simulate the real-world situation that the camera cannot ad-
just the exposure parameters quickly when the ambient light

changes rapidly, resulting in one image being overexposed.
The over-exposure image is simulated by changing the EV
offset during image capture:

V̂ = V × 2ev, (9)

where the ev is in [0.4, 0.8, 1.2, 1.6, 2.0] with the severity
ranging from 1 to 5.
Under Exposure. The Under Exposure operation
is similar to Over Exposure, except the ev is in
[−0.4,−0.8,−1.2,−1.6,−2.0].

A.3. Weather corruptions
Weather corruptions overlay a particle rendering image on
the frame to simulate the weather effects. We refer [46]
to utilize these corruptions. Because the image pairs used
for optical flow estimation are continuous in time, only cor-
ruption that changes rapidly over time has time-dependent
changes for image pairs. As a result, we only modify Snow
as temporal corruptions. While for the other three corrup-
tions, we threat it unchanged for the image pair. For specific
parameters, please refer to the official repository. Below we
introduce their respective characteristics.
Spatter. The Spatter aims to simulate an environment in
which the camera suffers from spatter occlusion, which usu-
ally happens when the camera is not cleaned thoroughly or
is stained. For different severity, different occlusion ratios
are performed.
Fog. Foggy scenarios are a long-standing problem for vi-
sion problems, and it is particularly vital for autonomous
driving. For different severity, different contrasts of the fog
are deployed.
Frost. The Frost happens when the camera is covered with
a translucent layer of frost. For different severity, we cover
different predefined frost layers in the image.
Snow. The Snow is performed by rendering moving parti-
cles. Different severity levels are implemented via different
amounts of particles and motion blur. To have it be time-
dependent, we maintain the motion direction for particles
while re-generating the particles to have the different snow
context for the two images in one pair.

A.4. Noise corruptions
Gaussian Noise. The corruption is as follows:

Î = I + c× n, n ∼ N(0, 1), (10)

where c is set to be in [0.08, 0.12, 0.18, 0.26, 0.38] with the
severity ranging from 1 to 5.
Shot Noise. The corruption is as follows:

Î =
n

c
, n ∼ Pois(I × c), (11)

where c is set to be in [60, 25, 12, 5, 3] with the severity
ranging from 1 to 5.



Impulse Noise. The Impulse Noise corruption replaces the
values of pixels into 0 or 255. The ratio of the replaced pix-
els is [0.03, 0.06, 0.09, 0.17, 0.27] with the severity ranging
from 1 to 5.

A.5. Blur corruptions
Gaussian blur. We use the Gaussian filter to blur the image.
The standard deviation is changed according to the severity.
The utilized standard deviation is in [1, 2, 3, 4, 6].
Defocus Blur. A circular mean filter is created and used
to convolve the image. The radius of the filter is set to be
[3, 4, 6, 8, 10] with the severity ranging from 1 to 5.
Glass Blur. The image is first filtered using a Gaus-
sian filter with standard deviation σ. Then the pix-
els are shuffled in their neighborhoods, with neighbor-
hood range α and shuffle iterations β. (σ, α, β) are set
to be [(0.7, 1, 2), (0.9, 2, 1), (1, 2, 3), (1.1, 3, 2), (1.5, 4, 2)]
with the severity ranging from 1 to 5.
Camera Motion Blur. The Camera Motion Blur simu-
lates the camera shaking situation. In this case, the whole
frame is displaced in one direction and becomes blurred.
We assume the shaking direction is the same for both
frames, as the shaking is not likely to be rapidly chang-
ing in the real world. We first determine the motion radius
α and standard deviation σ for the Gaussian filter. Then
we sample a motion direction and then blur the two im-
ages in that motion direction. The (α, σ) are set to be
[(10, 3), (15, 5), (15, 8), (15, 12), (20, 15)] with the severity
ranging from 1 to 5.
Object Motion Blur. We only perform Object Motion Blur
for the GoPro-FC dataset, as it has native 240FPS frames
which avoids artifacts caused by interpolation and accumu-
lation. We first perform FLAVR [21], a high-quality video
interpolation model for 4× interpolation. Then we select
one frame every 31 frames to be the keyframes and accu-
mulate all frames within [i − c, i + c], where i is the key
frame index and c is the corruption parameter, ranging in
[3, 6, 9, 12, 15].
PSF Blur. We use PSF fields from 5 real existing lenses
designed by GSO [12] for each severity. For those PSF blur,
the blurry effects are varied from different fields of view.
The RMS radius of the used lens is 0.0296mm, 0.0832mm,
0.1102mm, 0.1588mm, and 0.1939mm. The pixel width
is set to 4µm. The blurred image is obtained by convolving
the image with the PSF field. The PSFs of the 5 lens are
illustrated in Fig. 7.

A.6. Video corruptions
H.264 CRF. We perform different Constant Rate Factor
(CRF) values to be in [23, 30, 37, 44, 51] for the 5 severity
following [78].
H.264 ABR. We perform different video bit rate values in
[25M, 12.5M, 6.25M, 3.125M, 1.5625M ] for the interpo-

Figure 7. PSF illustration from severity 1 to 5. The PSFs of 4
different fields of view are shown.

lated videos in GoPro-FC.
Bit Error. We apply the Bit Stream Filter (BSF) in FFM-
PEG with a noise option for the interpolated videos in
GoPro-FC, in which the noise parameter is set to be in
[50M, 25M, 15M, 10M, 1M ].

B. Model Implementation
For all tested models, we use the official repository to cre-
ate an unbiased benchmark. In this section, we describe the
implementations of different categories of the evaluated op-
tical flow estimation models.

B.1. Knowledge-driven methods
Gunnar Farnebäck’s algorithm. We use the OpenCV
implementation with the default parameters for Gunnar
Farnebäck’s algorithm [10].
DIS. The DIS [26] is implemented with its RGB version
following the official repository.

B.2. Supervised methods
We constrain the same training pipeline for all supervised
models, making sure they are trained on the same dataset
combination. All tested models perform the same train-
ing pipeline as RAFT [70] in their original paper. They



Model Training Step Learning Rate Batch Size Image Size Weight Decay Gamma Decoder Iteration Mix Precision
RAFT [70] 100k 1.25e-4 6 368× 768 1e-5 0.85 12
GMA [20] 120k 1.25e-4 6 368× 768 1e-5 0.85 12 ✓
CSFlow [59] 120k 1.25e-4 6 368× 768 1e-5 0.85 12
SKFlow [69] 180k 1.75e-4 6 368× 768 1e-5 0.85 12 ✓
GMFlowNet [86] 160k 1.75e-4 6 368× 768 1e-5 0.85 12
CRAFT [66] 120k 1.25e-4 6 368× 768 1e-5 0.85 12 ✓
FlowFormer [17] 120k 1.25e-4 6 432× 960 1e-5 0.85 12
FlowFormer++ [63] 120k 1.25e-4 6 432× 960 1e-5 0.75 12
SAMFlow [89] 240k 1.25e-4 3 432× 960 1e-5 0.85 12
FlowDiffuser [37] 120k 8.75e-5 6 432× 960 1e-5 0.85 12

Table 5. Implementation of supervised OOD models. Training parameters are listed.

first pretrain the model on FlyingChairs [9] (C) and then on
FlyingThings [42] (C+T). After that, the model is trained
on the mixed data consisting of FlyingThings, Sintel [4],
KITTI [45], and HD1K [24] (C+T+S+K+H) for Sintel vali-
dation. Finally, the model is further fine-tuned on KITTI for
KITTI validation. Regarding this, we establish our Out-Of-
Domain (OOD) benchmark and In-Domain (ID) benchmark
on KITTI-FC. For the OOD benchmark, we build on the
pre-trained model from the C+T stage and train on mixed
data combined with FlyingThings, Sintel, and HD1K, with-
out KITTI-FC training data. For the ID benchmark, we use
the KITTI-FC training data for in-domain information to
fine-tune the OOD model.

We have implemented 10 supervised methods, in which
the SAMFlow [89] consists of 3 model variants, SAMFlow-
T, SAMFlow-B, and SAMFlow-H, with different SAM [23]
encoders. The training implementation details are listed
in Tab. 5 and Tab. 6 for OOD and ID respectively. All
models are trained with the official recommended hyper-
parameters, except FlowDiffuser [37] for which we fine-
tuned the learning rate to avoid training collapse. Notice
that for supervised methods that utilize iterative flow es-
timation, the official iteration number is 12, thus we also
perform 12 estimation iterations during inference in OOD
and ID benchmarks for a fair comparison. In addition, the
SAMFlow uses gradient accumulation during training due
to the large memory requirement of SAM, so training with
3 batch size is equivalent to training with a batch size of 6.

B.3. Unsupervised methods

Since the unsupervised methods can be easily trained on
unlabeled data, thus we only test them on the ID benchmark
of KITTI-FC. Notice that for our evaluated 3 unsupervised
methods, ARFlow [31], UPFlow [38], and BrightFlow [40],
official checkpoints on KITTI data are available, we directly
test these checkpoints on our ID benchmark of KITTI-FC.
For these methods, official configurations are performed.

C. Benchmark Implementation

C.1. KITTI-FC
The 200 image pairs in the original KITTI [45] training set
are split into two parts, in which 120 pairs are used for
ID model training and the remaining 80 pairs are used for
benchmarking.

During data corruption, we corrupt the image pairs from
the validation set of KITTI-FC, with 20 corruption types.
The 3 Video corruptions and Object-motion-blur corruption
are not implemented, as the frames from KITTI optical flow
data are not sufficient.

C.2. GoPro-FC
We choose 5 different scenarios in GoPro [49] to construct
GoPro-FC robustness benchmark: GOPR0374 11 02,
GOPR0379 11 00, GOPR0384 11 02, GOPR0385 11 00
and GOPR0386 11 00. Due to the utilization of Video
corruptions, we first convert the image sequences into
videos through FFMPEG, then apply 4× interpolation with
FLAVR [21] for each video. All the corruptions and image
pairs are built upon those 4× videos, to ensure consistent
information sources across clean image pairs, non-video
corrupted image pairs, and Video corrupted image pairs.
Since the original GoPro data are recorded as 240Hz, the
4× videos are in 960FPS. We sample 30FPS images from
4× videos, i.e., sample final images every 32 frames in the
4× video. The image pairs are constructed from two adja-
cent frames of the video. Through the above construction
approach, each sequence could generate 135 image pairs.

During data corruption, the Video corruptions are per-
formed in those 4× videos, while non-video corruptions are
performed directly on the clean image pairs just like the op-
erations in KITTI-FC.

C.3. Comparison of KITTI-FC and GoPro-FC
Since the KITTI-FC data is recorded in 10Hz, whereas im-
ages in GoPro-FC are sampled in 30FPS, the pixel displace-
ment in KITTI-FC is much larger than in GoPro-FC, result-
ing in slight differences in the test results of the two bench-
marks. We counted the displacement distribution of the two



Model Training Step Learning Rate Batch Size Image Size Weight Decay Gamma Decoder Iteration Mix Precision
RAFT 50k 1e-4 6 288× 960 1e-5 0.85 12
GMA 50k 1.25e-4 6 288× 960 1e-5 0.85 12 ✓
CSFlow 50k 1e-4 6 288× 960 1e-5 0.85 12
SKFlow 50k 1.75e-4 6 288× 960 1e-5 0.85 12 ✓
GMFlowNet 50k 1.75e-4 6 288× 960 1e-5 0.85 12
CRAFT 50k 1.25e-4 6 288× 960 1e-5 0.85 12 ✓
FlowFormer 50k 1.25e-4 6 432× 960 1e-5 0.85 12
FlowFormer++ 50k 1.25e-4 6 432× 960 1e-5 0.85 12
SAMFlow 50k 1.25e-4 3 432× 960 1e-5 0.85 12
FlowDiffuser 50k 1e-4 6 288× 960 1e-5 0.85 12

Table 6. Implementation of supervised ID models. Training parameters are listed.
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Figure 8. Optical flow amplitude statistic of KITTI-FC and
GoPro-FC. GoPro-FC contains much more percent of small dis-
placement.

benchmarks, as shown in Fig. 8, where the displacement in
GoPro-FC is estimated by RAFT following [61]. The dis-
placement distribution of KITTI-FC is more biased towards
large displacements, while the displacement of GoPro-FC
is generally smaller. Different benchmark properties may
cause the model to perform slightly differently on the two
benchmarks.

D. More Results

CRE results on KITTI-FC. We report the complete CRE
results in Tab. 7. Notice that although SAMFlow does not
perform the best in all items, SAMFlow-B and ARFlow
achieve the best robustness in OOD and ID respectively. In
addition, due to the computation procedure of CRE, neg-
ative CRE values have appeared, demonstrating that the
model performs slightly better in corrupted data than in
clean data. Given that all observed negative values are
small, this suggests that the model is not affected by this
corruption in any significant manner.
RCRE results on KITTI-FC. Although the ground truth

is provided in KITTI-FC, we could also compute RCRE
without using it. The RCRE of KITTI-FC is reported in
Tab. 8. According to RCRE, SAMFlow-B and ARFlow also
achieve the best robustness in OOD and ID respectively. It
reaches the same conclusion as CRE results, as the CRE and
RCRE all represent absolute robustness.
Relationship between EPE, CRE, and RCRE. In our
benchmark results, several metrics are used for comparison
and analysis. We plot the relationship of them in Fig. 9.
EPE in corrupted data, CRE, and RCRE are all positively
correlated with the EPE in clean data in OOD or ID condi-
tions. It shows that the absolute performance in corrupted
data and absolute robustness are all related to the model per-
formance in clean data, suggesting that models with better
performance are generally more robust.

In addition, we investigate the relationship between CRE
and RCRE. The computation procedures of these two met-
rics have a slight difference, as CRE measures the EPE dif-
ference whereas RCRE measures the difference of the pre-
dicted flow on clean and corrupted data directly. However,
as shown in Fig. 9 (d), the CRE and RCRE have almost
the same linear correspondence for models. It demonstrates
that the CRE and RCRE could both reflect the same abso-
lute robustness of the model.

E. More Discussion
We give more discussion and analyses of the observations
in the paper.

Absolute robustness of the model depends heavily on es-
timation performance. As shown in Fig. 9 (a), (b), and (c),
the absolute robustness of the model is positively correlated
with the estimation performance on the clean data. How-
ever, it is not a linear relationship, as the relative robustness
of the model varies.

Low-Light and Over Exposure are more serious than
High-Light and Under Exposure respectively. The corrup-
tion details described in Sec. A show the difference of cor-
ruption in the Illumination class. For High-Light and Low-
Light, the images are added or subtracted from the same
brightness. However, for KITTI-FC, an autonomous driv-
ing dataset with sparse ground truth, we only compute all
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Farnebäck 0.42 1.11 7.21 -0.27 0.16 1.94 1.96 3.00 2.24 5.59 4.08 2.02 -1.25 -1.27 -1.44 5.40 5.79 3.15 3.18 5.00 2.40
DIS 0.45 -0.12 0.26 -0.19 -0.48 1.40 3.78 6.66 3.77 4.02 6.66 2.64 0.83 0.48 0.85 -0.44 -0.42 -0.20 -0.23 -0.43 1.47

Out-Of-Domain (OOD)
RAFT 5.99 0.24 0.48 1.44 0.90 2.95 2.45 0.05 17.20 2.05 23.46 9.71 9.48 7.92 9.91 1.85 2.02 4.72 0.93 1.11 5.24
GMA 5.82 0.51 0.45 1.51 0.79 3.17 2.02 0.00 19.22 1.86 24.79 9.97 10.83 9.37 11.81 2.23 2.78 6.20 1.07 1.32 5.78
CSFlow 5.14 0.28 0.69 1.03 0.78 3.37 2.42 0.04 17.41 2.13 23.43 9.87 6.71 5.64 6.85 1.45 1.83 4.45 0.99 0.96 4.77
SKFlow 4.89 0.24 0.57 1.28 0.56 2.71 1.66 0.00 16.79 1.58 22.57 9.68 10.70 9.55 11.57 2.08 2.49 5.20 1.10 1.26 5.32
GMFlowNet 5.33 0.44 0.77 1.23 0.85 3.96 1.89 0.20 17.43 2.25 22.95 7.49 8.39 7.24 8.96 1.46 1.83 4.11 0.97 0.93 4.93
CRAFT 5.83 0.46 0.88 1.90 0.85 3.33 2.43 0.14 18.50 2.24 25.46 13.92 12.48 11.03 13.24 2.34 2.66 7.55 1.46 1.33 6.40
FlowFormer 5.07 0.53 2.38 1.55 0.92 3.73 1.94 -0.07 18.46 2.27 24.19 10.32 8.54 7.16 9.42 2.06 2.03 5.73 1.09 1.21 5.43
FlowFormer++ 5.96 1.18 1.78 1.98 1.34 4.10 1.87 0.05 18.65 2.07 24.67 9.75 9.31 8.36 10.34 2.04 2.13 6.78 1.41 1.35 5.75
SAMFlow-T 5.01 0.53 1.45 1.33 0.88 2.43 1.72 -0.10 17.36 1.47 23.44 8.55 8.96 7.65 8.28 1.94 1.96 4.80 0.64 1.00 4.97
SAMFlow-B 4.03 0.42 0.97 1.19 0.88 2.33 1.72 0.02 17.44 1.39 23.38 7.07 6.64 5.79 6.23 1.58 1.85 4.88 0.56 0.52 4.44
SAMFlow-H 3.30 0.36 1.20 1.59 0.95 2.49 1.72 -0.01 17.38 1.52 23.54 6.95 8.03 6.83 6.79 1.63 1.82 4.71 0.39 0.97 4.61
FlowDiffuser 7.98 0.47 1.68 2.34 2.06 3.28 3.06 0.02 16.27 1.90 22.95 16.61 13.17 11.40 13.67 3.15 3.32 5.60 2.17 1.69 6.64

In-Domain (ID)
RAFT 3.75 0.25 2.46 0.74 1.51 5.00 5.84 0.06 10.19 1.53 18.64 33.96 14.15 9.13 13.03 2.72 2.49 2.66 3.57 2.36 6.70
GMA 3.26 0.81 1.13 0.57 3.89 2.23 5.14 -0.15 12.56 1.89 20.57 49.34 20.08 12.78 18.91 1.78 1.89 2.46 3.74 1.40 8.21
CSFlow 1.80 0.25 1.16 0.66 0.60 3.08 2.10 0.08 9.22 1.60 17.36 15.36 9.34 6.54 11.00 1.27 1.31 1.51 1.03 0.81 4.30
SKFlow 1.15 -0.18 0.53 0.65 2.39 1.12 4.40 0.02 10.49 0.78 17.63 36.87 20.94 14.30 22.69 0.35 0.50 1.34 1.23 0.03 6.86
GMFlowNet 1.58 0.19 1.01 0.34 0.88 2.30 6.89 0.13 10.43 1.25 18.35 20.69 13.20 10.86 14.47 1.48 1.52 1.79 1.30 1.08 5.49
CRAFT 2.78 0.92 0.67 1.65 1.19 1.08 2.10 0.55 10.18 -0.12 19.45 28.26 11.05 8.21 11.13 1.77 1.95 4.01 1.33 1.02 5.46
FlowFormer 1.97 0.59 2.86 0.49 0.95 2.73 2.09 0.24 14.63 2.21 20.91 20.20 7.09 5.06 7.81 2.67 2.68 2.34 1.85 1.84 5.06
FlowFormer++ 2.20 0.78 1.83 0.53 0.56 2.55 1.32 -0.03 15.41 1.48 22.10 11.00 8.02 5.93 7.54 1.95 2.13 2.58 1.41 1.52 4.54
SAMFlow-T 1.65 0.45 2.23 0.32 0.43 1.75 0.61 0.11 15.34 1.32 20.62 9.70 3.60 2.94 3.82 1.43 1.41 1.93 1.23 1.06 3.60
SAMFlow-B 1.81 0.49 1.56 0.25 0.75 1.74 0.61 0.02 15.99 1.06 21.03 8.18 4.31 3.11 3.96 1.07 1.14 2.39 1.17 0.83 3.57
SAMFlow-H 1.37 0.46 1.07 0.33 0.40 1.49 0.56 0.07 15.38 0.93 20.27 9.11 3.23 1.85 3.26 0.95 1.07 1.98 0.92 0.59 3.26
FlowDiffuser 4.12 0.22 3.26 2.32 2.45 6.11 5.02 0.94 12.14 2.03 19.56 27.60 23.48 20.17 23.38 1.32 1.43 3.90 0.77 0.80 8.05
BrightFlow 1.68 0.26 3.70 0.55 1.02 2.79 1.69 0.49 9.12 4.29 19.10 11.34 5.35 3.55 4.73 1.25 1.39 1.63 1.00 1.22 3.81
UPFlow 1.61 0.23 0.20 0.19 0.71 1.70 1.06 -0.01 14.09 2.87 20.12 11.49 3.39 1.91 3.07 0.86 1.02 1.36 0.68 0.69 3.36
ARFlow 0.92 0.05 4.67 0.34 1.64 3.86 0.64 0.42 5.74 4.10 15.51 7.58 2.28 1.77 2.35 0.28 0.30 0.81 0.84 0.73 2.74

* HL: High-light, LL: Low-light, OE: Over Exposure, UE: Under Exposure.

Table 7. CRE results on KITTI-FC.
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Figure 9. Relationship between clean EPE, corrupt EPE, CRE, and RCRE.
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Farnebäck 2.34 2.43 10.18 3.30 4.05 4.47 7.46 6.02 6.22 7.99 8.06 9.70 5.54 5.46 5.95 8.10 8.71 5.80 6.61 7.84 6.31
DIS 1.89 0.95 1.89 2.29 2.71 3.74 8.05 10.75 5.41 5.80 8.85 6.48 2.54 2.29 2.66 1.59 1.78 1.99 2.34 1.95 3.80

Out-Of-Domain (OOD)
RAFT 7.58 1.47 1.54 2.41 2.02 4.17 3.30 0.44 18.59 3.15 25.23 12.20 10.96 9.26 11.50 3.40 3.78 6.40 2.82 2.72 6.65
GMA 7.46 1.52 1.31 2.51 1.78 4.48 2.91 0.40 20.75 2.94 26.57 11.96 12.58 10.82 13.78 3.58 4.22 7.59 2.54 2.68 7.12
CSFlow 6.95 1.21 1.66 1.99 2.00 4.77 3.30 0.47 18.99 3.18 25.36 11.95 8.59 7.15 8.97 3.07 3.61 6.11 2.76 2.47 6.23
SKFlow 6.32 1.03 1.34 2.20 1.46 3.75 2.55 0.32 18.12 2.44 24.14 11.07 12.11 10.81 13.10 3.35 3.80 6.35 2.44 2.67 6.47
GMFlowNet 6.66 1.35 1.57 2.11 1.88 4.99 2.83 0.59 18.66 3.08 24.46 9.06 9.88 8.58 10.48 2.86 3.29 5.50 2.40 2.39 6.13
CRAFT 7.23 1.40 1.77 2.88 2.00 4.47 3.32 0.50 19.81 3.25 26.89 15.28 13.81 12.25 14.63 3.60 4.00 8.73 2.82 2.75 7.57
FlowFormer 6.54 1.64 3.54 2.89 2.07 5.01 3.19 0.96 19.77 3.37 25.52 11.96 9.70 8.35 10.62 3.58 3.65 7.04 2.69 2.70 6.74
FlowFormer++ 7.36 2.27 2.91 2.97 2.34 5.38 2.84 0.80 20.01 3.18 26.17 11.15 10.64 9.68 11.72 3.47 3.61 7.95 2.72 2.56 6.99
SAMFlow-T 6.70 1.47 2.70 2.70 1.80 3.68 2.61 0.43 18.55 2.44 24.89 10.07 10.17 8.93 9.77 3.14 3.32 6.06 2.56 2.50 6.22
SAMFlow-B 5.92 1.46 2.16 2.30 1.74 3.55 2.42 0.39 18.65 2.42 24.82 8.69 8.10 7.32 7.92 3.02 3.31 6.23 2.20 2.20 5.74
SAMFlow-H 5.16 1.79 2.41 2.74 2.02 3.83 2.70 0.44 18.55 2.45 24.90 8.58 9.45 8.36 8.53 3.01 3.33 6.10 2.28 2.54 5.96
FlowDiffuser 10.43 2.81 3.74 4.02 4.18 5.65 4.62 1.52 18.36 4.05 25.20 18.84 15.61 13.60 16.30 5.38 5.44 7.56 4.43 4.14 8.79

In-Domain (ID)
RAFT 4.65 0.83 3.22 1.38 2.33 5.77 6.52 0.29 11.32 2.47 19.99 35.16 15.20 10.09 14.06 3.64 3.49 3.59 4.50 3.29 7.59
GMA 4.22 1.52 2.49 1.47 4.55 3.42 6.31 0.44 14.19 2.99 22.39 51.06 21.14 13.84 19.96 3.06 3.31 3.91 4.64 2.60 9.37
CSFlow 2.87 0.87 1.89 1.38 1.83 3.97 2.83 0.32 10.00 2.31 18.31 16.75 10.74 7.66 12.36 2.37 2.47 2.49 2.35 2.02 5.29
SKFlow 3.46 1.19 1.84 1.22 3.17 3.25 5.00 0.33 12.72 2.25 20.40 38.37 22.05 15.26 23.82 2.84 3.12 3.45 2.97 2.36 8.45
GMFlowNet 2.82 0.75 1.95 0.95 1.56 3.43 7.64 0.37 11.68 2.41 19.84 21.78 14.10 11.71 15.39 2.57 2.70 2.76 2.25 2.25 6.45
CRAFT 4.71 1.68 3.40 2.22 2.42 4.77 2.89 0.76 14.50 3.95 23.97 31.99 13.04 9.76 12.84 3.27 3.51 4.79 2.97 2.52 7.50
FlowFormer 2.84 1.34 3.73 1.21 1.69 3.60 2.89 0.82 15.66 3.10 22.05 21.39 8.02 5.94 8.80 3.59 3.64 3.29 2.72 2.77 5.96
FlowFormer++ 3.10 1.62 2.64 1.31 1.32 3.40 2.10 0.55 16.33 2.27 23.14 12.13 9.01 6.91 8.54 2.95 3.18 3.62 2.32 2.50 5.45
SAMFlow-T 2.40 0.95 2.90 0.89 0.96 2.40 1.16 0.39 16.16 1.92 21.59 10.64 4.39 3.65 4.64 2.13 2.18 2.73 1.98 1.78 4.29
SAMFlow-B 2.55 0.98 2.19 0.75 1.29 2.36 1.06 0.24 16.80 1.65 21.99 9.06 5.08 3.83 4.74 1.74 1.86 3.16 1.91 1.52 4.24
SAMFlow-H 2.11 1.06 1.76 0.83 0.95 2.15 1.09 0.33 16.24 1.55 21.26 9.98 4.00 2.55 4.04 1.71 1.89 2.85 1.69 1.37 3.97
FlowDiffuser 6.45 2.63 5.82 4.45 4.73 8.80 7.70 3.00 15.59 4.74 23.64 31.01 26.20 22.59 26.34 4.25 4.46 6.04 3.82 3.91 10.81
BrightFlow 2.43 0.74 4.92 1.30 1.93 3.96 2.90 1.14 10.24 5.43 20.65 13.37 6.94 4.88 6.32 2.14 2.36 2.55 1.98 2.16 4.92
UPFlow 2.49 0.64 0.68 0.78 1.54 2.70 1.79 0.20 15.29 3.58 21.70 13.03 4.57 2.86 4.32 1.85 2.18 2.61 1.49 1.78 4.30
ARFlow 1.62 0.33 6.05 0.97 2.41 5.15 1.27 0.78 6.73 5.23 16.92 9.18 3.30 2.62 3.35 0.85 0.93 1.52 1.70 1.41 3.62

* HL: High-light, LL: Low-light, OE: Over Exposure, UE: Under Exposure.

Table 8. RCRE results on KITTI-FC.

the metrics in pixels with ground truth. In this case, the es-
timated results of the bright sky area will be ignored, while
the estimated results of the relatively dim road, vehicles,
buildings, and trees will be adopted. As a result, Low-Light
will lead to a more serious result, as the dim parts are more
likely to suffer from losing intensity information. For Over
Exposure and Under Exposure, the situation is a little differ-
ent. The brightness change of each pixel is independent and
only depends on its initial brightness, and this brightness
change is exponential. In this case, Under Exposure will
retain more information than Over Exposure, especially for
8-bit images.

Corruptions that lose local information are more influ-
ential than corruptions that lose visual effects. As shown
in the paper, the corruptions like Saturate that are quite vi-
sually different from the original image can be less influ-
ential than that with little visual difference like JPEG. This
is relevant to the task of the optical flow model as a corre-
lation estimation. Although some corruptions reduce visual
effects for humans, they contain the basic intensity and con-
text information for establishing the correlation between the
two images. However, corruptions like JPEG lose neighbor-
hood information, leading to ambiguous local correlation
and low-quality estimation results. the same reason is for

occlusion corruptions like Snow, Frost, and Spatter. How-
ever, Pixelate should be noticed. It also reduces the local
information in principle but does not have much impact on
the estimation results. The main reason is that all optical
flow estimation methods compute optical flow in the down-
sampled images to reduce computation cost, and the full-
resolution optical flow is obtained by upsampling the low-
resolution optical flow. As a result, the optical flow models
are robust to the Pixelate corruption.

F. Impacts and Limitations

F.1. Social impacts.

In real-world applications, the robustness of the model is
always a serious problem, especially for dense prediction
tasks like optical flow estimation, in which the degradation
of each pixel has a direct impact on the result. Since there
is no existing corruption robustness benchmark established
for optical flow estimation, this work provides a prelimi-
nary attempt to systematically research the robustness of
the optical flow model. The two benchmarks are from two
popular datasets, KITTI and GoPro, which have been used
for autonomous driving and video editing applications for
a long time. So our proposed two benchmarks could help



researchers deeply understand the robustness of the opti-
cal flow model in these two mainstream areas, and further
improve the effects of optical flow estimation in a wide of
downstream applications.

F.2. Limitations.
Although two comprehensive benchmarks are constructed,
along with the evaluation of 29 model variants, this work
still faces some limitations and there is space for further
improvement in the future.

First, while our benchmark considers a wide range of
corruptions, it does not account for scenarios in which the
model is subjected to multiple corruptions simultaneously.

In addition, our benchmark focuses on the two-frame op-
tical flow model, while some multi-frame optical flow es-
timation methods have been proposed recently, with great
estimation performance. As a result, investigating the ro-
bustness of them is also interesting and important.

Furthermore, this study is proposed towards image-
based optical flow methods and does not evaluate the ro-
bustness of optical flow methods designed for other types
of sensors. We intend to further incorporate other modali-
ties such as event sensors and panoramic cameras.
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