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BMS-LIKE ALGEBRAS: CANONICAL REALISATIONS AND BRST

QUANTISATION

CARLES BATLLE, JOSÉ M FIGUEROA-O’FARRILL, JOAQUIM GOMIS, AND GIRISH S VISHWA

Abstract. We generalise BMS algebras in three dimensions by the introduction of an arbitrary real
parameter λ, recovering the standard algebras (BMS, extended BMS and Weyl-BMS) for λ = −1. We
exhibit a realisation of the (centreless) Weyl λ-BMS algebra in terms of the symplectic structure on
the space of solutions of the massless Klein-Gordon equation in 2 + 1, using the eigenstates of the
spacetime momentum operator. The quadratic Casimir of the Lorentz algebra plays an essential rôle
in the construction. The Weyl λ-BMS algebra admits a three-parameter family of central extensions,
resulting in the (centrally extended) Weyl-BMS algebra, which we reformulate in terms of operator
product expansions. We construct the BRST complex of a putative Weyl-BMS string and show that
the BRST cohomology is isomorphic to the chiral ring of a topologically twisted N = 2 superconformal
field theory. We also comment on the obstructions to obtaining a conformal BMS Lie algebra – that is,
one that includes in addition the special-conformal generators – and the need to consider a W-algebra.
We then construct the quantum version of this W-algebra in terms of operator product expansions. We
show that this W-algebra does not admit a BRST complex.
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1. Introduction and summary of the results

The BMS algebra was introduced in [1, 2] as the asymptotic symmetry algebra of a four-dimensional
flat spacetime at null infinity. The BMS algebra extends the Poincaré algebra by an infinite number of
“super-translations”. Longhi and Materassi [3] found a canonical realisation of this algebra in terms of
the natural symplectic structure of the Fourier modes of a free Klein–Gordon (KG) field in Minkowski
spacetime. A comprehensive presentation of recent applications of BMS symmetries can be found in [4].

The BMS algebra was later extended to include an infinite number of “super-rotations” [5–7] (see
also [8] for more recent developments). There also exists a canonical realisation of this extended BMS
algebra in terms of a free massless KG field in three-dimensional Minkowski spacetime [9], expressed in
terms of plane waves. The massless KG equation is conformally invariant, so it is natural to ask whether
there is a way to further extend the algebra by adding (super-)dilatations and (super-)special-conformal
transformations. The answer for dilatations is positive and results in the Weyl–BMS algebra [10–13],
which further extends the extended BMS algebra by superdilatations. The answer for special-conformal
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transformations seems to be negative; although there is a W-algebra which may be argued to extend the
Weyl–BMS algebra [12].

One of the main aims of this paper is to generalise these algebras, in the case of 2 + 1 dimensions,
by the introduction of an arbitrary real parameter λ, recovering the standard algebras (BMS, extended
BMS and Weyl-BMS) for λ = −1. We call them (Weyl) λ-BMS algebras, but they should not be confused
with the cosmological Λ-BMS algebras discussed, for instance, in [14].

The paper is divided into three main sections. In Section 2 we will exhibit a realisation of the
(centreless) Weyl λ-BMS algebra in terms of the symplectic structure on the space of solutions of the
three-dimensional massless Klein–Gordon equation. Deriving inspiration from the case of the BMS
algebra (corresponding to λ = −1), we consider in Section 2.1 the semidirect product of the Lorentz
Lie algebra with the super-translations. The super-translations form an infinite-dimensional abelian Lie
algebra spanned by the eigenfunctions of eigenvalue λ(λ− 1) of the quadratic Casimir C2 of the Lorentz
Lie algebra, thought of as a second-order differential operator on the smooth functions on the lightcone
(i.e., the massless mass shell).

The Lorentz Lie algebra is realised as vector fields on the lightcone and naturally act on the super-
translations via the Lie derivative. In Section 2.2 we observe that not only the Lorentz Lie algebra, but
indeed any vector field on the lightcone which commutes with C2 also acts on the super-translations.
The additional such vector fields are the super-rotations and they form a Lie algebra isomorphic to the
Witt algebra (i.e., the centreless Virasoro algebra). Together with the super-translations, one obtains the
(extended) λ-BMS algebra. In Section 2.1.1 we determine the quadratic Casimirs of the λ-BMS algebra,
which might be a result of independent interest.

The massless Klein–Gordon field is not only Poincaré invariant, but actually conformally invariant. In
particular it is invariant under dilatations, whose generator acts on functions as a differential operator
of degree at most one, of which the super-translations form an eigenspace. We then ask whether there
are other differential operators of degree at most one which commute with C2 and which act on super-
translations with the same eigenvalue as the dilatation. The answer is positive and we obtain in this
way a family of such operators Dn(k1,k2,k3) depending on an integer parameter (n) and three real
parameters (ki). The real parameters are fixed by demanding that for n = 0 we should recover the
dilatation in the conformal algebra. This results in generators Dn, which we call superdilatations. The
resulting Lie algebra is the (centreless) Weyl λ-BMS Lie algebra.

A natural question is whether one can do the same with the special-conformal generators and extend
them to a “conformal” λ-BMS algebra. We argue in Section 2.4 that no such extension exists as a Lie
algebra. It is known, however, that there is an extension as a W-algebra [12], which is discussed in
Section 4.

In Section 3 we show that the Weyl λ-BMS algebra admits a three-parameter family of central ex-
tensions, resulting in the (centrally extended) Weyl–BMS algebra. We then reformulate the centrally
extended algebra in terms of operator product expansions. In that language we then proceed to con-
struct the BRST complex of putative Weyl–BMS strings, showing that that it exists provided the central
charges are chosen judiciously. We then show that the BRST cohomology is isomorphic to the chiral
ring of a topologically twisted N = 2 superconformal theory obtained by coupling the Weyl–BMS string
to topological gravity in the form of a Koszul topological conformal field theory. This provides further
evidence for a conjecture in [15,16] that the BRST cohomology of every topological conformal field theory
is isomorphic to the chiral ring of an N = 2 superconformal field theory.

In Section 4 we return to the case of λ = −1 and we first of all construct the fully quantum conformal
BMS W-algebra of [12] in terms of operator product expansions and then report on calculations showing
that, perhaps contrary to expectations, there is no BRST complex for this W-algebra.

The paper ends with a short Section 5 with conclusions and a look at future extensions of this work
and two appendices with technical results used in Section 2.

2. Canonical realisations

In this section we will consider a canonical realisation of a generalisation of the Weyl-BMS algebra
that depends on one parameter. We will see the crucial role of the Casimir of the Lorentz group. We
will start by including only the super-translations, and their λ-depending generalisations, and then will
proceed to include the super-rotations and the super-dilatations.
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The Lagrangian density for a real massless scalar field in flat Minkowski space time1 is

L = −
1

2
∂µφ∂

µφ. (2.1)

The solution to the equation of motion, Klein–Gordon equation, in terms of the Fourier modes a(~k),

φ(t,~x) =

∫

dk̃
(
a(~k)eikx + ā(~k)e−ikx

)
, (2.2)

with x = (t,~x), kx = −ωt + ~k · ~x, ω = k0 =
√
~k2. The solution is expressed in terms of the plane waves

that are eigenstates of the momentum operator and

dk̃ =
d2k

Ω(~k)
, Ω(~k) = (2π)22ω, (2.3)

and where the Fourier modes satisfy the non-zero Poisson brackets

{a(~k), ā(~q)} = −iΩ(~k)δ2(~k− ~q). (2.4)

Notice that we parameterise the mass-shell manifold of the massless scalar-field, k2 = 0, using ~k ∈ R2.
Alternatively, we could expand the solution in terms of other eigenfunctions, for example using the
eigenfunctions of a boost generator, which would lead in a natural way to celestial holography (see,
e.g., [17,18]) expressing the four dimensional theory in terms of two-dimensional complex conformal field
theory. In our case, in three dimensions, a chiral two-dimensional conformal field theory seems to appear
naturally.

The conserved charges associated to the translation and Lorentz generators are

Pµ =

∫

dk̃ ā(~k)kµa(~k), µ = 0, 1, 2, (2.5)

Mij = −i

∫

dk̃ ā(~k)

(
ki

∂

∂kj
− kj

∂

∂ki

)
a(~k), j = 1, 2 (2.6)

M0j = tPj − i

∫

dk̃ ā(~k)k0 ∂

∂kj
a(~k), j = 1, 2, (2.7)

while the charge associated to dilatations is

D = −tP0 + i

∫

dk̃ ā(~k)

(
kj

∂

∂kj
+

1

2

)
a(~k). (2.8)

From the above equations one can read, at t = 0, the differential operators for boosts, rotation and
dilatation:

B̂j = iω
∂

∂kj
, j = 1, 2, (2.9)

Ĵ = −i

(
k1 ∂

∂k2
− k2 ∂

∂k1

)
, (2.10)

D̂ = i

(
kj

∂

∂kj
+

1

2

)
, (2.11)

with Bj = M0j. As shown in Appendix B, the algebra of the Poisson brackets of the charges induced by
the symplectic structure of the Fourier coefficients is the same, up to a −i factor, of that of the associated
differential operators, and we will work with the later.

Using polar coordinates in the (k1,k2) plane, k1 = r cosφ, k2 = r sinφ, ω = r, one has

B̂1 = ir cosφ ∂r − i sinφ ∂φ, (2.12)

B̂2 = ir sinφ ∂r + i cosφ ∂φ, (2.13)

Ĵ = −i∂φ, (2.14)

D̂ = i

(
r∂r +

1

2

)
. (2.15)

In terms of these operators, the quadratic Casimir of the Lorentz group in 2 + 1, 1
2
MµνMµν, is

Ĉ2 = −B̂2
1 − B̂2

2 + Ĵ2 = r2∂2
r + 2r∂r. (2.16)

1The signature of the Minkowski metric is (−++)
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In this realisation, there is a fundamental relation between the Casimir and the square of the dilatation
generator,

Ĉ2 = −D̂2 −

(
1

2

)2

. (2.17)

2.1. Super-translations and λ-BMS algebras. Following [19], which generalises to arbitrary dimen-
sions the results in [3], we can construct BMS-like algebras by considering the solutions of

−Ĉ2ξ = αξ, (2.18)

where the minus sign is added in order to more easily connect with the standard notation of the repres-
entations of the Lorentz group. As shown in Appendix A, the solutions to (2.18) provide representations
of the Lorentz algebra.

The Casimir eigenvalue equation (2.18) in terms of polar coordinates is

r2∂2
rξ+ 2r∂rξ = −αξ, (2.19)

Since this does not depend on the angular coordinate, the solutions will be of the form ξn(r,φ) = f(r)einφ,
with n ∈ Z. Looking for radial solutions of the form

f(r) = rβ (2.20)

one finds

β =
−1 ±

√
1 − 4α

2
=

1

2
(−1± (1 − 2λ)), (2.21)

where we have defined

1 − 4α = (1− 2λ)2. (2.22)

with inverse relation

α = −λ(λ− 1). (2.23)

One gets thus the two families of solutions, with β = −λ and β = λ − 1. In order to get all possible
values of β ∈ R, it is enough to take λ ∈ R and consider only the solutions β = −λ.2

The complete solution, with the S1 angular coordinate, will be

ωn(r,φ) = r−λeinφ, n ∈ Z, (2.24)

and then

Ĉ2ωn = λ(λ− 1)ωn. (2.25)

The action of the Lorentz and dilatation generators on ωn(r,φ) is

B̂1ωn = −
i

2
(n+ λ)ωn+1 +

i

2
(n− λ)ωn−1,

B̂2ωn = −
1

2
(n+ λ)ωn+1 −

1

2
(n− λ)ωn−1,

Ĵωn = nωn,

(2.26)

These equations provide an infinite-dimensional realisation of the 2 + 1 Lorentz algebra in the space of
the {ωn}n∈Z. Looking at the zeros of the coefficients appearing in the above equations, several cases,
depending on the value of λ, can be considered:

(1) If λ /∈ Z, then the coefficients in the above equations can never be zero and the representation is
irreducible. This corresponds to the complementary series in the standard representation theory
of SO(2, 1) (see, e.g., [20]).

(2) In λ = −N, N ∈ N, then one has a finite representation in the space {ωn}|n|6N. In particular, for
λ = −1 one obtains the vector representation in the space of the {ω−1,ω0,ω1}.

(3) If λ = 0, one obtains the trivial representation spanned by {ω0}.
(4) If λ = N, N ∈ N, there appear two infinite-dimensional representations, spanned by {ωn}n6−N

and {ωn}n>N, respectively, which correspond to the highest and lowest weight representations of
the standard literature.

2One can also consider complex values of λ provided that the real part is 1/2, since in this case α remains real. In the
representation theory of SO(2, 1) this corresponds to the unitary principal series representation (see, e.g., [20]). However,
we will not pursue this possibility in this work.
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Up to this point, we have only talked about representations of the Lorentz group, which are provided
by the set of ωn. However, since the Lorentz operators are of first order (without zero order term) and
the ωn are of zeroth order, the above expressions coincide with the commutators

[B̂1,ωn] = −
i

2
(n+ λ)ωn+1 +

i

2
(n− λ)ωn−1, (2.27)

[B̂2,ωn] = −
1

2
(n+ λ)ωn+1 −

1

2
(n− λ)ωn−1, (2.28)

[̂J,ωn] = nωn. (2.29)

These commutators, together with those between B̂1, B̂2 and Ĵ, and adding the trivial ones between zero
order operators

[ωn,ωm] = 0 (2.30)

provide a realisation of an infinite dimensional algebra which, for λ = −1, is the standard BMS algebra
in 2+1, which contains the finite Poincaré algebra obtained by considering the subset {ω−1,ω0,ω1}. For
general λ ∈ R we obtain what we will call λ-BMS algebras.

As is the case for the representations of Lorentz, for λ = −N, N ∈ N, one can obtain finite subalgebras
of dimension 3 + (2N+ 1), with generators B̂1, B̂2, Ĵ and ω−N, . . . ,ωN, which we call λ-Poincaré.

Notice that λ = −1, which is the value that leads to the Poincaré subalgebra in d = 3 spacetime,
corresponds to α = 2 in equation (2.19), which is equal to d − 1 for d = 3. As shown in Appendix A,
d− 1 is the eigenvalue in (2.19) that makes Poincaré appear as a subalgebra of λ-Poincaré for arbitrary
spacetime dimension d.

It is customary to write the above algebras in terms of3 L0 = −J and the ladder operators L1 = −iB1+B2,
L−1 = iB1 + B2, which are explicitly given by

L1 = ieiφ(∂φ − ir∂r), (2.31)

L−1 = ie−iφ(∂φ + ir∂r), (2.32)

L0 = i∂φ. (2.33)

One has then the λ-algebra in the form

[L1,L−1] = 2L0, [L0,L1] = −L1, [L0,L−1] = L−1, (2.34)

[L1,ωn] = −(n+ λ)ωn+1, (2.35)

[L−1,ωn] = −(n− λ)ωn−1, (2.36)

[L0,ωn] = −nωn, (2.37)

[ωn,ωm] = 0. (2.38)

In terms of these operators, the Lorentz Casimir can be expressed as

C2 = −L1L−1 + L2
0 + L0. (2.39)

It should be noticed that, since the Lorentz Casimir C2 is a second order operator, the commutator
of C2 with ωn differs from the action of C2 on ωn, yielding a first order operator (with zeroth term)
instead of a function:

[C2,ωn] = [r2∂2
r + 2r∂r, r

−λeinφ] = λ(λ− 1)r−λeinφ − 2λr−λ+1einφ∂r

= C2ωn − 2λωnE,
(2.40)

where E = r∂r is the Euler operator, which in Cartesian coordinates has the expression E = k1∂k1
+k2∂k2

.

2.1.1. Quadratic Casimirs of the λ-BMS algebras. Since the quadratic Casimir of the Lorentz algebra
does not commute with the ωn, a general quadratic Casimir of the λ-BMS algebra can only involve the
ωn generators, and will be of the form

Cλ
2 =

∑

n∈Z

∑

m∈Z

Anm ωnωm, Anm = Amn. (2.41)

Demanding [L0,Cλ
2 ] = 0 leads to that Anm can be different from zero only if n+m = 0, so that

Cλ
2 =

∑

n∈Z

An ωnω−n, An = An(−n), (2.42)

3For the rest of this section we will suppress the ˆ on the differential operators.
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with An = A−n due to the symmetry of the Anm. Imposing [L1,Cλ
2 ] = 0, re-arranging terms and using

An = A−n, one obtains the set of equations

(−λ− n)An + (−λ+ n+ 1)An+1 = 0, n = 0, 1, 2, . . . , (2.43)

which are the same relations that are obtained imposing [L−1,Cλ
2 ] = 0. For λ /∈ Z, the recurrence relations

(2.43) can be solved for all the An in terms of A0, and the Casimir has infinite terms. We will discuss
(2.43) for λ ∈ Z, separating the cases λ < 0 and λ > 0 (the case λ = 0 is obviously trivial).

• If −λ = N ∈ N, equations (2.43) become

(N− n)An + (N+ n+ 1)An+1 = 0, n = 0, 1, 2, . . . (2.44)

which can be solved for A1,A2, . . . ,AN in terms of A0, and one obtains

An = (−1)n
N(N− 1) · · · (N− n+ 1)

(N+ n)(N+ n− 1) · · · (N+ 1)
A0, n = 1, 2, . . . ,N. (2.45)

However, the equation for n = N is just

0 ·AN + (2N+ 1)AN+1 = 0,

which implies AN+1 = 0, and subsequently also An = 0 for all n > N. Thus, using that An = A−n

and taking A0 = 1, the Casimir boils down to

Cλ
2 = ω2

0 + 2
N∑

n=1

(−1)n
N(N− 1) · · · (N− n+ 1)

(N+ n)(N+ n− 1) · · · (N+ 1)
ωnω−n, (2.46)

which will also be the Casimir for the finite dimensional λ-Poincaré algebra.
For instance, for λ = −1 one obtains the well-known Poincaré quadratic Casimir

Cλ=−1
2 = ω2

0 −ω1ω−1, (2.47)

while for λ = −2 one gets

Cλ=−2
2 = ω2

0 −
4

3
ω1ω−1 +

1

3
ω2ω−2. (2.48)

• If λ = N ∈ N the recurrence relation is

(−N− n)An + (−N+ n+ 1)An+1 = 0, n = 0, 1, 2, . . . (2.49)

For n = N− 1 one obtains

(−2N+ 1)AN−1 + 0 ·AN = 0, (2.50)

so that AN−1 = 0, which then forces AN−2 = . . . = A1 = A0 = 0, and the resulting Casimir has
infinite terms

C̃λ
2 = 2

∞∑

n=N

Anωnω−n, (2.51)

with all the An computed in terms of AN using the recurrence relation (2.49), which can be
solved for the generating function A(z) =

∑∞
n=0 An+Nzn as follows:

A(z) =
AN

(1− z)2N
. (2.52)

2.2. Super-rotations and extended λ-BMS algebras. In the same way that super-translations are
obtained by computing all the solutions of the Lorentz Casimir C2 eigenvalue equation, one may try to
obtain generalisations of the Lorentz generators by computing all the first order differential operators
that commute with C2.

Using polar coordinates in the massless mass-shell manifold we look for an operator

L(r,φ) = a(r,φ)∂r + b(r,φ)∂φ (2.53)

such that [L,C2] = 0, with C2 the second order differential operator in (2.16). One has

[L,C2] =
(
2ar− 2r2∂ra

)
∂2
r

+
(
2a− 2r∂ra − 2r∂rb− r2∂2

ra
)
∂r

− 2r2∂rb∂r∂φ − r2∂2
rb∂φ. (2.54)

The cancellation of the term in ∂r∂φ forces ∂rb = 0, so that b = b(φ). This also cancels the term in ∂φ,
and demanding that the two remaining terms are zero leads to ∂2

ra = 0 and to

r∂ra = a, (2.55)
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with general solution a(r,φ) = rc(φ), which also satisfies ∂2
ra = 0. Hence, the most general first-order

differential operator commuting with the Lorentz Casimir is

L = rc(φ)∂r + b(φ)∂φ. (2.56)

Besides commuting with the Casimir, the differential operators associated to the Lorentz generators
are also divergenceless. Since the Lorentz-invariant volume form on the massless mass-shell manifold
is proportional to dr ∧ dφ, the divergence of a field in polar coordinates is just the sum of the partial
derivatives (see also appendix B in [9]), and we have

0 = div L = c(φ) + ∂φb(φ), (2.57)

from which c(φ) = −b ′(φ). The first order differential operators that share all the relevant properties
with the Lorentz generators are thus

L = −rb ′(φ)∂r + b(φ)∂φ. (2.58)

Since φ ∈ S1, we can expand in Fourier series and obtain an infinite set of operators Ln indexed by n ∈ Z.
Writing b(φ) = ieinφ, the resulting operators, called super-rotations [5], are

Ln = ieinφ(∂φ − inr∂r), n ∈ Z, (2.59)

which coincide with the standard Lorentz generators for n = −1, 0, 1.
Adding the super-rotations one gets the extended λ-BMS algebras

[Ln,Lm] = (n−m)Ln+m, (2.60)

[Ln,ωm] = −(m+ λn)ωn+m, (2.61)

[ωn,ωm] = 0, (2.62)

with n,m ∈ Z. This algebra is the semi-direct sum of the Witt algebra with its tensor density modules
(see section 3). Following the notation of [21], we refer to it as gλ. It is a special case of the W(a,b)
algebras [22], where a ∈ Z and b = λ. Setting λ = −1 recovers the centreless BMS algebra, whose most
general deformation is shown to be W(a,b)4 (even when central extensions are included) [25].

From (2.61) one also obtains

Lnωm = −(m+ λn)ωn+m, (2.63)

which provides, for each λ ∈ R, a representation of the Witt algebra.
Notice that, using (2.60) and the Lorentz Casimir in the form (2.16)

[Ln,C2] = −(n− 1)Ln+1L−1 − (n+ 1)L1Ln−1 + nLnL0 + nL0Ln + nLn

= −(n− 1)Ln+1L−1 − (n+ 1)Ln−1L1 + 2nLnL0 − 2Ln.
(2.64)

By construction of the Ln this must be zero, and the following identity must hold:

−(n− 1)Ln+1L−1 − (n+ 1)Ln−1L1 + 2nLnL0 − 2Ln = 0, n ∈ Z. (2.65)

This can be checked directly by using the explicit form (2.59).5

2.3. Super-dilatations and the centreless Weyl λ-BMS algebras. Consider a general differential
operator of order up to one

D = a∂r + b∂φ + c. (2.66)

Demanding that the ωn provide a representation of D,

Dωn = αωm, (2.67)

with α possibly depending on m,n, one immediately gets

a = k1re
i(m−n)φ, b = k2e

i(m−n)φ, c = k3e
i(m−n)φ, (2.68)

with ki constants, and then

α = −k1λ + ik2n+ k3. (2.69)

One has then the operators

Dm−n = ei(m−n)φ(k1r∂r + k2∂φ + k3), (2.70)

4We refer the reader to [23, 24] for some appearances of W(0,−2) in physics.
5As a vector in the universal enveloping algebra U of the Witt algebra, (n−1)Ln+1L−1+(n+1)Ln−1L1−2nLnL0+2Ln 6=

0, but of course it is in the kernel of the algebra homomorphism from U to differential operators on the punctured plane
acting on smooth functions. The kernel of this homomorphism has been calculated in [26, Theorem 1.2] and it is a principal
two-sided ideal of U generated by Z1 := 1

2
(L2L−1−L1L0−L1). A quick calculation shows that [L−1,Z1] = C2 and therefore

[Ln,C2] = [Ln, [L−1,Z1]] = LnL−1Z1 − LnZ1L−1 − L−1Z1Ln +Z1L−1Ln indeed belongs to the two-sided ideal UZ1U.
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or, setting p = m− n,

Dp = eipφ(k1r∂r + k2∂φ + k3), (2.71)

which yields

Dpωn = (−k1λ+ ik2n+ k3)ωn+p. (2.72)

Demanding D0 = D fixes k1 = 1, k2 = 0 and k3 = 1/2, and one gets

Dn = einφ

(
r∂r +

1

2

)
, n ∈ Z, (2.73)

which, for n = 0 gives D0 = −iD, with D the standard dilatation operator defined in (2.15). Up to an
overall constant factor, these agree with the super-dilatation operators introduced in [11].

Adding the commutators of Dn with the super-translations and super-rotations one obtains the centre-
less Weyl λ-BMS algebra:

[Ln,Lm] = (n−m)Ln+m, (2.74)

[Ln,Pm] = −(m+ λn)Pn+m, (2.75)

[Pn,Pm] = 0, (2.76)

[Ln,Dm] = −mDm+n, (2.77)

[Dn,Pm] = −λPm+n, (2.78)

[Dn,Dm] = 0, (2.79)

where we have nominally replaced the super-translation functions ωn with the tensor densities6 Pn since,
as shown by (2.78), the ωn do not transform as true functions under super-dilatations, unless λ = 0.

Notice that (in the case λ 6= 0) by redefining Dn −→ −Dn/λ we can set the coefficient of the right-hand
side of (2.78) to unity without changing the other commutation relations. We note that the algebra is not
centrally extended in this realisation. We will see in Section 3 that this algebra admits a three-parameter
family of central extensions (see also [13] for the case of λ = −1).

2.4. BMS-like super-special-conformal generators. The conformal algebra adds generatorsD (dilata-
tions) and Kµ (special-conformal transformations) to the Poincaré algebra. As shown in [11], the corres-
ponding differential operators7 in 2 + 1 spacetime acting on the mass-shell manifold of a massless scalar
field are, besides D,

K0 = ω
∂2

∂ki∂ki
, (2.80)

Kj =

(
kj

∂

∂ki
− 2ki

∂

∂kj

)
∂

∂ki
−

∂

∂ki
, i = 1, 2, (2.81)

and the commutators involving them are, besides those of the Poincaré algebra,

[D,Kµ] = iKµ, (2.82)

[Kµ,Mνσ] = −i(ηµσKν − ηµνKσ), (2.83)

[Kµ,Pν] = −2i(ηµνD+Mµν), (2.84)

[Kµ,Kν] = 0, (2.85)

for µ,ν,σ = 0, 1, 2.
Equations (2.83) and (2.85) show, as is well known, that the conformal algebra contains a second

realisation of the Poincaré algebra, given by the Lorentz generators and the special-conformal ones.
One might wonder whether it is possible to repeat the construction of the BMS-like algebras using the

special-conformal generators instead of the translation ones. A proposal in this direction was discussed
in [11, 27], generalising the special-conformal generators by making them dependent on an arbitrary
integer index, but the resulting algebra was in fact a W-algebra, rather that a Lie algebra [12]. In this
context, W-algebras are studied in Section 4 from the point of view of conformal field theory.

One can also study whether it is possible to write down some master equation similar to (2.18) but
for the special conformal transformations. However, since in the canonical formalism these are second
order differential operators, one is led to consider the commutator with the Lorentz Casimir instead of

6See Section 3.
7We work here in Cartesian coordinates since the expression of the special-conformal operators in polar coordinates is

not particularly simple.
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the action of the Casimir on these operators. One can see that, if K is any of the 3 special conformal
generators in 2 + 1, one has

[C2,K] = −2KE, (2.86)

with E the Euler operator. It is possible to obtain other solutions to this equation, in the form of
second-order differential operators, but in the end one finds out that the resulting set of generators Kn,
containing K0 and the complex combinations of K1 and K2 for n = 0,±1, do not commute, except for
n = 0,±1, and hence do not qualify as super-special conformal transformations.

A separate but related question is whether it is possible to consider a generalised equation [C2,K] =
λKE, with λ arbitrary and with the restriction of K being a second-order differential operator. A detailed
study of the resulting set of differential equations shows that there are solutions only for λ = −2 and
λ = 0, and hence one does not have the liberty of adding the parameter λ that appears in the case of
super-translations.

3. The BRST complex of the Weyl λ-BMS algebra

We will now depart from the mode algebra in equations (2.74)–(2.79) and explore its possible central
extensions, resulting in the (centrally extended) Weyl λ-BMS algebra. We will then reformulate the
centrally extended algebra in terms of operator product expansions. We will then discuss the construction
of Weyl λ-BMS strings by constructing the BRST complex and showing that the BRST cohomology is
isomorphic to the chiral ring of a topologically twisted N=2 superconformal field theory.

3.1. The (centrally extended) Weyl λ-BMS algebra. Firstly, we reformulate the centreless Weyl
λ-BMS algebra, determine the possible central extensions and rewrite the centrally extended algebra in
terms of operator product expansions.

3.1.1. The centreless Weyl λ-BMS algebra. It is convenient to re-interpret the centreless Weyl λ-BMS
algebra in terms of natural objects associated to the punctured complex plane.8 To that end, we let
A = C[z, z−1] denote the associative algebra of Laurent polynomials in a complex variable z. The Lie
algebra W = DerC A of derivations is the Witt algebra, which is isomorphic to the Lie algebra of
polynomial vector fields on the circle. Let λ ∈ Z and let I(λ) denote the one-dimensional A-module
spanned by (dz)λ; that is, a typical vector in I(λ) is of the form f(z)(dz)λ with f(z) ∈ A. The tacit

understanding is that if λ < 0, (dz)λ =
(

d
dz

)−λ
. We introduce bases Dn := zn, Ln := −zn+1∂, where

∂f(z) = df
dz

and Pn := zn−λ(dz)λ, for n ∈ Z, for the A-modules A, W and I(λ), respectively.
We define a Lie algebra structure on the vector space W ⊕A⊕ I(λ) as follows:

• W is a Lie algebra under the Lie bracket of vector fields:

[Ln,Lm] = (n−m)Ln+m; (3.1)

• A is an abelian Lie algebra, is acted on by W as derivations:

[Ln,Dm] = −mDn+m; (3.2)

• I(λ) is an abelian Lie algebra and is acted on by W via the Lie derivative:

[Ln,Pm] = −(m+ λn)Pn+m (3.3)

and by A via the module action:

[Dm,Pn] = Pm+n. (3.4)

We could rescale Dm by any nonzero µ and arrive at [Dm,Pn] = µPm+n, without altering any of
the other Lie brackets. In particular, choosing µ = −λ we would arrive at the Lie bracket (2.78).
As mentioned earlier, we will take µ = 1 in what follows.

The Lie algebra generated by {Ln,Dn,Pn}n∈Z given by the above brackets is the double semi-direct
product of Lie algebras wλ = (W ⋉ A) ⋉ I(λ) and it is clearly isomorphic to the centreless Weyl λ-
BMS algebra in Section 2: see equations (2.74)–(2.79). The Lie subalgebra W ⋉ A is often called the
Heisenberg–Virasoro algebra [28–31], and corresponds to the algebra of differential operators of
degree at most 1. For λ = −1, w−1 agrees with the Weyl BMS Poisson algebra of [11]: see equations
(4.16)-(4.21) in that paper.

8The coordinates (r,φ) used for the lightcone in Section 2 are reminiscent of polar coordinates for the punctured
complex plane. There is however no change of variables relating (r,φ) to the complex coordinate z used in this section.
One way to see this is to consider the functions annihilated by the Witt generators Ln. For the realisation in this section, it
is clear that any anti-holomorphic function – i.e., any function of z̄ – is annihilated by Ln = −zn+1∂, whereas the operator
Ln given in equation (2.59) annihilates functions of reinφ, which clearly depends on n.
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3.1.2. Central extensions. Our first order of business is to determine the possible central extensions (up to
equivalence). They are classified by the second cohomology of wλ with values in the trivial representation.
We make use of the following lemma to simplify our computation.

Lemma 1. Let g be a Lie algebra and h ⊂ g an ideal such that [g, h] = h. Then the canonical surjective

homomorphism π : g → g/h induces an injective linear map π∗ : H2(g/h) → H2(g) in cohomology.

Proof. Recall9 that the space of p-cochains of any Lie algebra g with values in the base field (here R)
viewed as a trivial representation is given by Cp(g) = Hom(Λpg,R). We are particularly interested in the
first few terms:

C1(g) C2(g) C3(g)
d d (3.5)

where for β ∈ C1(g) and ϕ ∈ C2(g), their differentials are given by

dβ(X,Y) = −β([X,Y]) and dϕ(X,Y,Z) = −ϕ([X,Y],Z) +ϕ([X,Z],Y) −ϕ([Y,Z],X). (3.6)

If h ⊂ g is an ideal, the Chevalley–Eilenberg complex for the quotient Lie algebra g/h can be understood
as a subcomplex of C·(g). Namely, any ϕ ∈ Cp(g/h) may be extended uniquely to a ϕ ∈ Cp(g) such that
ϕ(X, · · · ) = 0 for all X ∈ h. Such cochains are preserved by the Chevalley–Eilenberg differential precisely
because h is an ideal and hence define a subcomplex.

Now suppose that a cocycle ϕ ∈ C2(g/h) is a coboundary in C2(g); that is, ϕ = dβ for some β ∈ C1(g);
that is, ϕ(X,Y) = −β([X,Y]). We claim that β ∈ C1(g/h). Indeed, suppose that Z ∈ h. By hypothesis,
there exist Xi ∈ h and Yi ∈ g such that Z =

∑
i[Xi,Yi]. Hence

β(Z) =
∑

i

β([Xi,Yi]) = −
∑

i

ϕ(Xi,Yi) = 0, (3.7)

since Xi ∈ h and ϕ ∈ C2(g/h). In other words, if π∗([ϕ]) = 0 ∈ H2(g), then [ϕ] = 0 ∈ H2(g/h). �

Remark. Lemma 1 requires [g, h] = h, as can easily be seen when h is the centre of g.

Proposition 2. The Lie algebra wλ = (W⋉A)⋉ I(λ) admits a 3-dimensional universal central extension

generated by the 2-cocycles

γLL(Ln,Lm) =
1

12
n(n2 − 1)δ0

m+n

γLD(Ln,Dm) =
1

6
n(n− 1)δ0

m+n

γDD(Dn,Dm) = nδ0
m+n.

(3.8)

Proof. Consider the Lie algebra g generated by {Ln,Pn,Dn, In}n∈Z, with (nonzero) Lie brackets

[Ln,Lm] = (n−m)Lm+n [Ln,Dm] = −mDm+n

[Ln,Pm] = −(m+ λn)Pm+n [Ln, Im] = (n−m)Lm+n

[Dm,Pn] = Pm+n [Dm, In] = −Im+n.

(3.9)

For λ = −1, this is known as the planar galilean conformal algebra (GCA). It was shown by Gao, Liu
and Pei that the second cohomology group of the planar GCA (with values in the trivial module C) is
3-dimensional [33]. It is easy to check that this statement holds true for any λ ∈ Z.

Let h denote the abelian ideal in g spanned by {In}n∈Z. Since wλ = g/h and [g, h] = h, we can make
use of Lemma 1 to deduce that the canonical surjective homomorphism π̃ : g → wλ induces an injective
map in cohomology π̃∗ : H

2(wλ) → H2(g). This implies that dimH2(wλ) 6 3.
Now let h denote the abelian ideal of wλ spanned by {Pn}n∈Z. Indeed, [wλ, h] = h, and we have

a surjective Lie algebra homomorphism π : wλ → wλ/h =: g0 (recall that gλ is given by eqs. (2.60)
to (2.62)). Once again, using Lemma 1, the injectivity of the induced map π∗ : H2(g0) → H2(wλ) implies
that dimH2(wλ) > dimH2(g0). Since dimH2(g0) = 3 (as shown by Arbarello, De Concini, Kac and
Procesi [29], see also [22]), we arrive at the nested inequality 3 6 dimH2(wλ) 6 3. Thus, dimH2(wλ) = 3
indeed. We may now obtain the explicit form of the representative 2-cocycles by pulling back the three
representative 2-cocycles on g0 [29]

γ1(Ln,Lm) =
1

12
n(n2 − 1)δ0

m+n

γ2(Ln,Dm) =
1

6
n(n− 1)δ0

m+n

γ3(Dn,Dm) = nδ0
m+n

(3.10)

9We refer the reader to [32] for a review of Lie algebra cohomology.
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by π∗ to get γLL = π∗(γ1), γLD = π∗(γ2) and γDD = π∗(γ3) as given by (3.8).10 �

Remark. One might have expected that for the values of λ for which the λ-BMS algebra admits addi-
tional central extensions (namely, λ = −1, 0, 1) so would the Weyl λ-BMS algebra. This however is not
the case. For example, for λ = −1, corresponding to the BMS algebra, the BMS algebra admits a central
extension cP in the bracket [Lm,Pn]. This however has to vanish in the Weyl BMS algebra: indeed, the
zero mode D0 of the super-dilatations acts diagonally with [D0,Lm] = 0 and [D0,Pm] = Pm and hence
by Jacobi [D0, [Lm,Pn]] = [Lm,Pn] and hence there can be no central terms in [Lm,Pn].

Definition 3. The universal central extension ŵλ of wλ is called the Weyl λ-BMS algebra. For
λ = −1, this is the three-dimensional version of the Weyl BMS algebra in [13].

3.1.3. The Weyl λ-BMS algebra in terms of OPEs. Next we reformulate the Lie bracket of the Weyl
λ-BMS algebra in terms of operator product expansions for the fields

T(z) =
∑

n∈Z

Lnz
−n−2, D(z) =

∑

n∈Z

Dnz
−n−1 and P(z) =

∑

n∈Z

Pnz
−n−(1−λ). (3.11)

The operator product algebra is given by

T(z)T(w) =
1
2
cL

(z−w)4
+

2T(w)

(z−w)2
+

∂T(w)

z−w
+ reg

T(z)D(w) =
cTD

(z−w)3
+

D(w)

(z−w)2
+

∂D(w)

z−w
+ reg

T(z)P(w) =
(1 − λ)P(w)

(z−w)2
+

∂P(w)

z−w
+ reg

D(z)P(w) =
P(w)

z−w
+ reg

D(z)D(w) =
cD

(z−w)2
+ reg

P(z)P(w) = reg,

(3.12)

where cL, cD and cTD are the three central charges. One can check that the above operator product
expansions are associative. This and many of the calculations below have been performed using the
Mathematica package OPEdefs written by Kris Thielemans [34–36].

For further reference, we remind the reader that the operator product expansion can be reformulated
in terms of a sequence of bilinear products indexed by the integers:

A(z)B(w) =
∑

n≪∞

[A,B]n(w)

(z−w)n
, (3.13)

where the sum is over all n less than some positive integer. The commutativity and associativity of the
operator product expansion translate into axioms for the brackets [−,−]n which are reminiscent to those
satisfied by the bracket in a Lie algebra. All the operator product algebras in this paper are conformal,
so that there is always a field T(z) satisfying the operator product expansion of the Virasoro algebra with
some central charge (as in the first operator product expansion in equation (3.12)). We assume that all
other fields have a well-defined conformal weight, so that for any field Φ(z), [T ,Φ]2 = hΦ, where h is the
conformal weight. If A(z) and B(z) have conformal weights hA and hB, respectively, we expand them in
modes according to

A(z) =
∑

n

Anz
−n−hA and B(z) =

∑

n

Bnz
−n−hB (3.14)

and the Lie algebra of modes can be read off from the singular part of the operator product expansion
via the formula

[An,Bm] =
∑

ℓ>1

(
n+ hA − 1

ℓ− 1

)
([A,B]ℓ)m+n , (3.15)

with
(
n
k

)
= n!

k!(n−k)!
the usual binomial coefficient.

10Likewise, γ̃1 = π̃∗ ◦ π∗(γ1), γ̃2 = π̃∗ ◦ π∗(γ2) and γ̃3 = π̃∗ ◦ π∗(γ3) agree with the expressions for the three
representative two-cocycles on g [33].
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3.2. The BRST complex of the Weyl λ-BMS algebra. We now construct the BRST complex for
the Weyl λ-BMS algebra above. Its cohomology, which is the semi-infinite cohomology of the λ-BMS
algebra relative to the centre and with values in an admissible representation, can be interpreted as the
spectrum of (a chiral sector of) a putative Weyl λ-BMS string, as was first observed for the bosonic string
in [37].

3.2.1. The ghosts BC systems. The ghosts are described by fermionic BC systems (bi, ci) for i = 1, 2, 3
with conformal weights (2,−1), (1, 0) and (1− λ, λ), respectively. Their operator product expansions are
the standard ones as in

bi(z)cj(w) =
δij

z−w
+ reg, bi(z)bj(w) = reg and ci(z)cj(w) = reg . (3.16)

The Virasoro element is given by

Tgh = −2(b1∂c1) − (∂b1c1) − (b2∂c2) − (1 − λ)(b3∂c3) + λ(∂b3c3), (3.17)

where parentheses indicate the normal-ordered product, which associates to the left so that (ABC) :=

(A(BC)), et cetera. We define the ghost number as usual by declaring bi to have ghost number −1 and
ci ghost number +1.

3.2.2. The ghost Weyl λ-BMS algebra. There is an embedding of the Weyl λ-BMS algebra in the operator
product algebra of the ghost BC systems. The Virasoro element is given by Tgh in equation (3.17), which
results in a central charge

c
gh
L = −6(5− 2λ+ 2λ2). (3.18)

One can find expressions for Dgh and Pgh after some trial and error11 and this leads to

Dgh = (b3c3) + ∂(c1b2) (3.19)

which results in central charges

c
gh
TD = 1 − 2λ and cD

gh = 1. (3.20)

Finally we find

Pgh = (c1∂b3) + (c2b3) + (1 − λ)(∂c1b3). (3.21)

One finds that Tgh, Dgh and Pgh obey the Weyl λ-BMS algebra with the above values for the central
charges. It should be mentioned that this is not the unique embedding of the Weyl λ-BMS algebra in
the operator product algebra of the ghosts, but it is the one induced by the BRST differential to be
introduced presently.

3.2.3. The BRST current. The BRST current J is a conformal weight 1 and ghost number 1 field of the
form

J = (c1T) + (c2D) + (c3P) + · · · (3.22)

where T , D and P are a representation of the Weyl λ-BMS algebra with opposite central charges:

cL = −c
gh
L = 6(5− 2λ+ 2λ2), cTD = −c

gh
TD = 2λ− 1 and cD = −c

gh
D = −1. (3.23)

The fundamental property of J is that its zero mode d is a differential: d2 = 0, where the action of d is
given by the first order pole of the operator product expansion with J; that is, d = [J,−]1. By a result
of Füsun Akman [38], d is a differential if and only if T tot := db1, Dtot := db2 and Ptot := db3 obey the
centreless Weyl λ-BMS algebra. The BRST current is of course only defined up to the addition of a total
derivative, since that does not change its zero mode.

Some experimentation results in the following expression for the BRST current:

J = (c1T) + (c2D) + (c3P) + (b1c1∂c1) + (b2c1∂c2) + (b3c1∂c3) − λ(b3c3∂c1) + (c2b3c3), (3.24)

which up to a total derivative takes the more usual form

J ′ = (c1T) + (c2D) + (c3P) +
1
2
(c1T

gh) + 1
2
(c2D

gh) + 1
2
(c3P

gh). (3.25)

One checks that [J ′, J ′]1 is indeed a total derivative and that T tot = [J ′,b1]1 = T + Tgh, Dtot = [J ′,b2]1 =

D+Dgh and Ptot = [J ′,b3]1 = P+ Pgh indeed give a representation of the centreless Weyl λ-BMS algebra.
The form of the BRST current (3.25) indicates that the fields Tgh, Dgh and Pgh are indeed generating

functionals formed from the semi-infinite wedge (i.e., fermionic Fock) representation of the Weyl λ-BMS
algebra.

11Alternatively, one can follow the prescription given in [21, Section 3] for gλ and apply it to wλ.
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3.3. Quasi-isomorphism with a twisted N=2 superconformal algebra. The BRST cohomology
is not just a graded vector space, but admits a richer algebraic structure, first formalised in the context
of the bosonic string in [39] based on initial observations of the BRST cohomology of noncritical bosonic
strings in [40]. The relevant structure is that of a Batalin–Vilkovisky (BV) algebra: a special kind
of Gerstenhaber algebra where the bracket measures the failure of a second order operator (here the
Virasoro antighost zero mode) being a derivation over the normal ordered product. We refer to [39] for
the relevant facts and definitions.

A paradigmatic example of BV algebra is provided by the chiral ring of a topologically twisted N = 2
superconformal algebra [41, 42]. The twisting gives the two supercharges G±, originally of conformal
weight 3

2
, conformal weights 1 and 2. The zero mode of the supercharge with conformal weight 1 plays

the rôle of the BRST differential and the zero mode of the supercharge with conformal weight 2 plays
the rôle of the Virasoro antighost zero mode.

As the case of the bosonic string theory shows, not every topological conformal field theory is of this
form. Indeed, this is typical of most string theories, with the exception of the N = 2 string itself [43,44].
Nevertheless, exploiting the embedding [45] of the N = 1 NSR string into the N = 2 string, it was
shown in [46], that the BRST cohomology of the N = 1 string is isomorphic to the chiral ring of an
N = 2 superconformal field theory. This then suggested how to prove the same result for other string
theories [47], resulting in a natural conjecture that the BRST cohomology of any string theory and, more
generally, of any two-dimensional topological conformal field theory is isomorphic to the chiral ring of
some twisted N = 2 superconformal field theory [15, 16].

In this section we will test this conjecture (and show that it holds) for the BRST cohomology of the
Weyl λ-BMS algebra.

To do this we will embed into the tensor product of the BRST complex of the Weyl λ-BMS algebra
with a Koszul topological conformal algebra a topologically twisted N=2 superconformal algebra. This
embedding will turn out to be quasi-isomorphic, in that the BRST cohomology of the Weyl λ-BMS
algebra will be isomorphic (as a BV algebra) to the chiral ring of the N=2 superconformal algebra. This
gives further evidence to the conjecture in [47, 15, 16].

We start by modifying the BRST current by a total derivative in order to simplify its operator product.
Let us define

G
+
W := J+ ∂

(
(c1b2c2) + (1 + λ)(c1b3c3) + c2 + 1

2
(7− 4λ)∂c1

)

G
−
W := b1

JW := −(b1c1) − (b2c2) − (b3c3)

TW := T tot.

(3.26)

The resulting operator product expansions are

G
+
W(z)G+

W(w) =
(λ− 1)∂(c1∂

2c1)(w)

z−w
+ reg

G
+
W(z)G−

W(w) =
(7 − 4λ)

(z−w)3
+

JW(w)

(z−w)2
+

TW(w)

z−w
+ reg

G
−
W(z)G−

W(w) = reg

TW(z)JW(w) =
(2λ− 5)

(z−w)3
+

JW(w)

(z−w)2
+

∂JW(w)

z−w
+ reg

TW(z)G+
W(w) =

6(λ− 1)c1(w)

(z−w)4
+

2(λ− 1)∂c1(w)

(z−w)3
+

G
+
W(w)

(z−w)2
+

∂G+
W(w)

z−w
+ reg

TW(z)G−
W(w) =

2G
−
W(w)

(z−w)2
+

∂G−
W(w)

z−w
+ reg

JW(z)JW(w) =
3

(z−w)2

JW(z)G+
W(w) =

6(1− λ)c1(w)

(z−w)3
+

4(1 − λ)∂c1(w)

(z−w)2
+

G
+
W(w)

z−w
+ reg

JW(z)G−
W(w) =

−G
−
W(w)

z−w
+ reg,

(3.27)

which are clearly not those of a topologically twisted N = 2 superconformal algebra. For example, G
+
W

does not have regular operator product expansion with itself.
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3.3.1. The Koszul topological conformal algebra. We now tensor with a Koszul topological conformal
algebra consisting of one fermionic BC system (b, c) and one bosonic BC system (β,γ), both of conformal
weights (1− µ,µ), with basic operator product expansions:

b(z)c(w) =
1

z−w
+ reg and β(z)γ(w) =

1

z−w
+ reg . (3.28)

The Koszul topological conformal algebra embeds a twisted N=2 superconformal algebra given by the
following fields:

G
+
K := (bγ)

G
−
K := (1 − µ)(∂cβ) − µ(c∂β)

JK := µ(bc) + (1− µ)(βγ)

TK := (1 − µ)(β∂γ) − µ(∂βγ) − (1 − µ)(b∂c) + µ(∂bc).

(3.29)

These fields obey a twisted N=2 superconformal algebra on the nose:

G
±
K(z)G±

K(w) = reg

G
+
K(z)G−

K(w) =
(2µ− 1)

(z−w)3
+

JK(w)

(z−w)2
+

TK(w)

z−w
+ reg

JK(z)G±
K(w) =

±G
±
K(w)

z−w
+ reg,

(3.30)

from which the remaining operator product expansions follow by associativity, as shown independently
in [48] and [49]:

JK(z)JK(w) =
(2µ− 1)

(z−w)2

TK(z)JK(w) =
(1 − 2µ)

(z−w)3
+

JK(w)

(z−w)2
+

∂JK(w)

z−w
+ reg

TK(z)G+
K(w) =

G
+
K(w)

(z−w)2
+

∂G+
K(w)

z−w
+ reg

TK(z)G−
K(w) =

2G
−
K(w)

(z−w)2
+

∂G−
K(w)

z−w
+ reg

TK(z)TK(w) =
2TK(w)

(z−w)2
+

∂TK(w)

z−w
+ reg .

(3.31)

3.3.2. A twisted N=2 superconformal algebra. Now let

X := (1 − λ) ((∂c1c1cβ) + (c1βγ) − (c1bc) − ∂c1) (3.32)

and define the following fields

G
+ := G

+
W + G

+
K + ∂X

G
− := G

−
W + G

−
K.

(3.33)

It follows by calculation that

G
±(z)G±(w) = reg

G
+(z)G−(w) =

2(2+ µ− λ)

(z−w)3
+

J(w)

(z−w)2
+

T(w)

z−w
+ reg,

(3.34)

which defines J and T:

J = JW + JK + (1 − λ) ((bc) − (βγ) + ∂(c1cβ))

T = TW + TK.
(3.35)

Another calculation shows that

J(z)G±(w) =
±G±(w)

z−w
+ reg, (3.36)
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from which the other operator product expansions of the twisted N=2 superconformal algebra follow by
associativity:

J(z)J(w) =
2(2 + µ− λ)

(z−w)2
+ reg

T(z)J(w) =
−2(2+ µ − λ)

(z−w)3
+

J(w)

(z−w)2
+

∂J(w)

z−w
+ reg

T(z)G+(w) =
G+(w)

(z−w)2
+

∂G+(w)

z−w
+ reg

T(z)G−(w) =
2G−(w)

(z−w)2
+

∂G−(w)

z−w
+ reg

T(z)T(w) =
2T(w)

(z−w)2
+

∂T(w)

z−w
+ reg .

(3.37)

Notice that by choosing µ appropriately, we can bring the central charges to any desired values, e.g., if
µ = λ− 2, then all central terms vanish. Notice that since G+ differs from G

+
W +G

+
K by a total derivative,

the N=2 differential dN=2 = [G+,−]1 is the sum of the Weyl λ-BMS and Koszul differentials and hence
we may apply the Künneth theorem to deduce that the chiral ring of the N=2 superconformal algebra
is isomorphic to the graded tensor product of the cohomology of the Weyl λ-BMS differential d and the
cohomology of the Koszul differential dK = [G+

K,−]1. Since (once we choose a picture for the βγ system)
the latter cohomology is trivial except in degree 0 and isomorphic to C there, we obtain that the chiral
ring is isomorphic to the BRST cohomology of the Weyl λ-BMS algebra.

It is also the case that the isomorphism is one of BV algebras. Indeed, that the BRST cohomology
of the Weyl λ-BMS algebra admits the structure of a BV algebra follows from results in [47, 50], which
guarantee this is the case simply because the Virasoro antighost is a conformal primary with weight 2.
In the BRST cohomology of the Weyl λ-BMS algebra, the BV differential is given by the zero mode of
the Virasoro antighost (G−

W), whereas in the case of the topologically N = 2 superconformal algebra it
is given by the zero mode of G− = G

−
W + G

−
K, which acts the same way in cohomology, since G

−
K acts

trivially on the Kozul cohomology.

4. The conformal BMS W-algebra

Consider again the Weyl BMS algebra, which is the Weyl λ-BMS algebra with λ = −1. There is no
way to extend it to a Lie algebra by the addition of a field K(z) of conformal weight 2 in such a way
that the operator expansion K(z)P(w) is nonzero, but as shown in [12], such an extension exists as a
W-algebra. In this section we show that contrary to many of the W-algebras which have been studied in
this context, this one does not admit a BRST complex and hence there is no natural notion of W-strings
for it.

4.1. The W-algebra. We consider the VOA generated by fields T ,D,K,P with the following operator
product expansions:

T(z)T(w) =
1
2
cL

(z−w)4
+

2T(w)

(z−w)2
+

∂T(w)

z−w
+ reg

T(z)D(w) =
D(w)

(z−w)2
+

∂D(w)

z−w
+ reg

T(z)P(w) =
2P(w)

(z−w)2
+

∂P(w)

z−w
+ reg

T(z)K(w) =
2K(w)

(z−w)2
+

∂K(w)

z−w
+ reg

D(z)D(w) =
cD

(z−w)2
+ reg

D(z)K(w) = −
K(w)

z−w
+ reg

D(z)P(w) =
P(w)

z−w
+ reg

K(z)K(w) = reg

P(z)P(w) = reg,

(4.1)
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and the operator product expansion K(z)P(w) has the following singular terms

K(z)P(w) =

4∑

ℓ=1

[K,P]ℓ(w)

(z−w)ℓ
(4.2)

with

[K,P]4 =
3(cD − 1)c2

D

1 + cD

[K,P]3 =
3(1− cD)cD

1 + cD
D

[K,P]2 = −cDT +
3(1− cD)cD

2(1+ cD)
∂D+

2cD − 1

1 + cD
D2

[K,P]1 = − 1
2
cD∂T −

1 + c2
D

2(1 + cD)
∂2D+

2cD − 1

1 + cD
D∂D+ TD−

1

1 + cD
D3.

(4.3)

Associativity of the operator product forbids any other central charges and even forces the Virasoro
central charge to be

cL =
−2(6c2

D − 8cD + 1)

1 + cD
. (4.4)

The structure of the above operator product algebra can be understood a bit better if we define the
following primary fields:

Φ2 =
2cD − 1

1 + cD

(
D2 −

2cD
cL

T

)

Φ3 = −
1

1 + cD
D3 +

1

3 − 2cD

(
TD− 1

2
∂2D

)
,

(4.5)

of conformal weights 2 and 3, respectively. Then the operator product expansion K(z)P(w) simply
contains the conformal families of the identity, D, Φ2 and Φ3 with coefficients

K(z)P(w) =
3c2

D(cD − 1)

1 + cD

[1](w)

(z−w)4
+

3cD(1− cD)

1 + cD

[D](w)

(z−w)3
+

[Φ2](w)

(z−w)2
+

[Φ3](w)

z−w
+ reg, (4.6)

where for a primary field φ, the notation [φ] stands for its conformal family. Explicitly, in the above
equation and up to regular terms, we have

[1](w) = 1 +
4

cL
(z−w)2T(w) +

2

cL
(z−w)3∂T(w)

[D](w) = D(w) + 1
2
(z−w)∂D(w) +

2(1+ cD)

3cD(3− 2cD)
(z−w)2

(
(TD)(w) −

2c2
D − cD + 2

4(1+ cD)
∂2D(w)

)

[Φ2](w) = Φ2(w) + 1
2
(z−w)∂Φ2(w)

[Φ3](w) = Φ3(w).

(4.7)

4.2. Non-existence of BRST complex. The proof of non-existence of the BRST complex for the
above W-algebra is computational, but we will give some details setting up the calculation and then
explain the result.

We have four quasiprimary fields in the W-algebra: T ,D,P,K of conformal weights 2, 1, 2, 2, respect-
ively. We introduce fermionic ghost systems (bi, ci) for i = 1, 2, 3, 4 of weights (2,−1) for i = 1, 3, 4 and
weights (1, 0) for i = 2. As usual we assign ghost numbers 1 to the ci and −1 to the bi. The putative
BRST current has ghost number 1 and conformal weight 1 and takes the form

J = c1T + c2D+ c3P + c4K+ · · · (4.8)

where · · · refers to any terms of with one or more antighosts bi. Our methodology is naive. We write
the most general J of the above form and of conformal weight 1 and ghost number 1 and demand that
d2 = 0, with d := [J,−]1 its zero mode. The calculations have been performed in Mathematica on a 2020
MacBook Pro laptop with a 2.3 GHz Quad-Core Intel Core i7 processor and 16Gb of RAM, using the
package OPEdefs (version 3.1 beta 4) written by Kris Thielemans [34–36]. A notebook is available upon
request.

Table 1 lists the ingredients out of which we may write the terms in J of the form BC2, along with
their conformal weights. This and the following table is to be supplemented with the following table of
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the fields of low conformal weight made out of the generators of the original W-algebra:

ωX fields

0 1

1 D

2 T ,P,K,D2,∂D.

All the BC2 terms are obtained by picking one term from each table and ensuring that the sum of the
conformal weights ωB + ωC2 + ωX = 1. It is easy to see that the possible triples (ωB,ωC2 ,ωX) of
conformal weights are (1,−2, 2)15, (1,−1, 1)12, (1, 0, 0)18, (2,−2, 1)12, (2,−1, 0)48 and (3,−2, 0)12, where
the subscript is the multiplicity. This means there are 117 such terms, which despite being easy to
enumerate, we will refrain from doing so here.

Table 1. Ingredients of BC2 terms with their conformal weights

ωB fields

1 b2

2 b1,∂b2,b3,b4

3 ∂b1,∂2b2,∂b3,∂b4

ωC2 fields

−2 c1c3, c1c4, c3c4

−1 c1∂c3,∂c1c3, c1∂c4,∂c1c4, c3∂c4,∂c3c4,
c1∂c1, c3∂c3, c4∂c4, c1c2, c2c3, c2c4

0 c1∂
2c3,∂c1∂c3,∂2c1c3, c1∂

2c4,∂c1∂c4,
∂2c1c4, c3∂

2c4,∂c3∂c4,∂2c3c4, c1∂
2c1

c3∂
2c3, c4∂

2c4,∂c1c2, c1∂c2,∂c2c3,
c2∂c3,∂c2c4, c2∂c4

Table 2 lists the ingredients in terms of the form B2C3 along with their conformal weights. Again
all terms are obtained by picking one term from each table and ensuring that the sum of the conformal
weights ωB2 +ωC3 +ωX = 1. It is again easy to see that the possible triples (ωB2 ,ωC3 ,ωX) of conformal
weights are (4,−3, 0)10, (3,−3, 1)4 and (3,−2, 0)48 for a total of 62, which we will also refrain from listing.
There are no terms with three (or more) antighosts because the conformal weight of any term of the form
B3C4X is bounded below by 2 and this only increases with terms with higher number of antighosts. In
total there are 179 possible terms of ghost number 1 and conformal weight 1 we could add to the BRST
current.

Table 2. Ingredients of B2C3 terms with their conformal weights

ωB2 fields

3 b1b2,b2b3,b2b4,b2∂b2

4 b1b3,b1b4,b3b4,b2∂
2b2,

∂b1b2,b1∂b2,∂b2b3,
b2∂b3,∂b2b4,b2∂b4

ωC3 fields

−3 c1c3c4

−2 c1c2c3, c1c2c4, c2c3c4, c1∂c1c3,
c1∂c1c4, c1c3∂c3, c1c4∂c4, c3∂c3c4,
c3c4∂c4,∂c1c3c4, c1∂c3c4, c1c3∂c4

Given the most general J, depending on 179 parameters, we calculate the first-order pole [J, J]1 in
the operator product expansion of the putative BRST current with itself. The equations are then
[[J, J]1,φ]1 = 0 for φ one of the generating fields of the VOA: bi, ci, T , D, P and K. This results in 3288
equations, which admit no solutions. The basic reason is the following. There are two central charges
in the W-algebra: the Virasoro central charge cL and that of the field D, denoted cD. The existence of
the BRST complex requires both of them to be critical, by which we mean that the values of cL and cD
should cancel the ones of the ghost representation. However these central charges are not independent:
associativity of the operator product expansion relates them:

cL =
−2(1− 8cD + 6c2

D)

1 + cD
. (4.9)

The critical values are cL = 80 and cD = −2, which do not satisfy the above equation. Indeed, when
cD = −2, one finds that cL = 82. (It is intriguing that the excess is small and integral.)

This result is perhaps surprising given our experience with other W-algebras. Deformable W-algebras,
those which exist for generic values of the Virasoro central charge cL, are typically constructed via
Drinfel’d–Sokolov reduction [51,52]. The starting point of this reduction is the affine Kac–Moody algebra
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associated to the vacuum-preserving subalgebra g (a contraction cL → ∞ of the algebra of the vacuum-
preserving modes) [53]. The vacuum-preserving Virasoro modes L±1,L0 define an sl(2,R) ∼= so(2, 1)
subalgebra of g and these are in bijective correspondence with adjoint orbits of nilpotent elements in
g, at least for g semisimple, which is typically the case. The best known W-algebras are associated
to the principal nilpotent orbits, those with the smallest stabiliser, namely so(2, 1) itself. Perhaps the
best known such example is the W3 algebra [54], whose BRST differential was constructed in [55] and
whose cohomology was studied in detail in [56]. Those W-algebras always admit a BRST complex and
indeed a reasonable notion of semi-infinite cohomology [57], as is the case for Lie algebras [58]. We
also have constructions of BRST complexes for W-algebras associated with minimal nilpotent orbits, as
in [59], which constructs a W-algebra out of the minimal nilpotent orbit of sl(3,R); although we are not
aware of any general result for the existence of a semi-infinite cohomology theory for the minimal orbits.
The conformal BMS W-algebra is one of four W-algebras which can be obtained by Drinfel’d–Sokolov
reduction of the three-dimensional conformal algebra so(3, 2) [60], but it is not the W-algebra associated
to the principal nilpotent orbit (whose BRST differential was constructed in [61]), nor indeed to the
minimal nilpotent orbit (with stabiliser so(2, 2) ∼= so(2, 1) ⊕ so(2, 1)), but to an intermediate nilpotent
orbit with stabiliser so(2, 1)⊕ so(1, 1). (There is another intermediate orbit with stabiliser so(2, 1)⊕ so(2)
which can also be shown to lack a BRST complex.) There are, to our knowledge, no theorems about the
existence of a semi-infinite differential for such W-algebras and this example suggests that perhaps we
should not expect them to exist.

5. Conclusions and outlook

We have constructed the Weyl λ-BMS algebra in three dimensions: an extension of the three-dimensional
Lorentz algebra so(2, 1) by super-translations, super-rotations and super-dilatations, which agrees for
λ = −1 with the Weyl–BMS algebra in the literature. We construct this algebra out of the Fourier modes
of a free massless Klein–Gordon field, a construction in which the quadratic Casimir of so(2, 1) plays a
crucial rôle. We then reformulate the Weyl λ-BMS algebra in terms of operator product expansions and
show that it admits a three-parameter family of central extensions. We construct the BRST complex
for critical values of the three central charges and show that the BRST cohomology is isomorphic to the
chiral ring of a topologically twisted N = 2 superconformal field theory. Returning to the classical case
of λ = −1, we argue that there is no “conformal” BMS Lie algebra obtained by further extending the
Weyl–BMS Lie algebra by super special-conformal transformations. There exists a classical conformal
BMS W-algebra which we fully quantise in the language of operator product expansions and argue that
the resulting W-algebra does not admit a BRST complex.

Some of these results can be extended to define a Weyl λ-BMS Lie superalgebra and a fully quantum
conformal BMS W-superalgebra and we will report on this in future work.

An interesting question we do not know the answer to is whether the conformal BMS W-algebra
admits a canonical realisation.

Another interesting question is whether there exist string sigma models with gauge algebra given by
the Weyl–BMS Lie algebra. It is worth remarking that the flat ambitwistor string [62] gives a realisation
of the Weyl–BMS Lie algebra. Indeed, if we let (Xµ,Πµ) be d + 1 bosonic BC systems with conformal
weights (0, 1) which describe the flat ambitwistor string, then

T = −∂XµΠµ, D = 1
2
XµΠµ and P = 1

2
ηµνΠµΠν (5.1)

provide a realisation of the Weyl–BMS Lie algebra with central charges cL = 2(d + 1), cD = − 1
4
(d + 1)

and cTD = − 1
2
(d + 1). The critical values of the central charges of a Weyl–BMS string are given by

cL = 54, cD = − 27
4

and cTD = − 27
2

. Even if we were to rescale D, we would not find the critical values
for a putative Weyl–BMS string.
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Appendix A. Casimir eigenvalue corresponding to Poincaré

The reason why the solutions to (2.18) provide representations of the Lorentz algebra is the following.
[19] Assume that the {ωℓ} provide a complete set of solutions to

−C2ωℓ = αωℓ, (A.1)

where, in general dimension, ℓ is a multi-index. Acting with a Lorentz generator Mµν on (A.1) one has

−MµνC2ωℓ = αMµνωℓ, (A.2)

and, because Mµν and C2 commute,

−C2Mµνωℓ = αMµνωℓ, (A.3)

which means that Mµνωℓ is also a solution of (A.1). Now, since the {ωℓ} are all the solutions to the
eigenvalue equation (2.18), one has necessarily that

Mµνωℓ =
∑

ℓ′

aℓ′

ℓ;µνωℓ′ , (A.4)

which indicate that indeed the ωℓ provide a representation of the Mµν via the matrices Kµν with elements

(Kµν)
ℓ′

ℓ = aℓ′

ℓ;µν,

for each µ,ν.
That the eigenvalue −α = d − 1 in (2.19) corresponds to an algebra which contains Poincaré can be

proved in general in any dimension by considering the algebra commutator

[Mµν,Pρ] = i(ηρνPµ − ηρµPν), (A.5)

which yields12

[MµνMµν,Pρ] = 4iPµMµρ + 2(d− 1)Pρ, (A.6)

and hence, if C2 = 1/2MµνMµν,

[C2,Pµ] = 2iPνMνµ + (d− 1)Pµ. (A.7)

If we represent the generators in terms of differential operators (not necessarily acting on the mass-shell
hyperboloid), C2 is a second-order operator and the first term on the right-hand side of (A.7) will be a
pure first-order one, without a zeroth-order contribution. From this it can be read that

Ĉ2Pµ = (d− 1)Pµ, (A.8)

as stated.

Appendix B. Algebra of conserved charges

Consider two conserved charges, computed at t = 0, in terms of the corresponding differential operators
acting on the Fourier coefficients of the scalar field,

P =

∫

dk̃ ā(~k)P̂a(~k),

Q =

∫

dk̃ ā(~k)Q̂a(~k).

(B.1)

Using the Poisson brackets of the Fourier modes, it can be shown, without resorting to any integration
by parts, and hence without having to consider boundary contributions, that

{P,Q} = −i

∫

dk̃ ā(~k)[P̂, Q̂]a(~k), (B.2)

which shows that if the algebra of the differential operators does not exhibit any central extension, neither
does the Poisson algebra of the charges.

12For the interpretation that follows, it is important to obtain an expression with the M to the right of the P. One can
also get [MµνMµν,Pρ] = 4iMµρP

µ − 2(d− 1)Pρ.
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