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We derive a family of similarity solutions to the nonlinear non-equilibrium Marshak wave problem
for an inhomogeneous planar medium which is coupled to a time dependent radiation driving source.
We employ the non-equilibrium gray diffusion approximation in the supersonic regime. The solutions
constitute a generalization of the non-equilibrium nonlinear solutions that were developed recently
for homogeneous media. Self-similar solutions are constructed for a power law time dependent
surface temperature, a spatial power law density profile and a material model with power law
temperature and density dependent opacities and specific energy density. The extension of the
problem to non-homogeneous media enables the existence of similarity solutions for a general power
law specific material energy. It is shown that the solutions exist for specific values of the temporal
temperature drive and spatial density exponents, which depend on the material exponents. We also
illustrate how the similarity solutions take various qualitatively different forms which are analyzed
with respect to various parameters. Based on the solutions, we define a set of non-trivial benchmarks
for supersonic non-equilibrium radiative heat transfer. The similarity solutions are compared to gray
diffusion simulations as well as to detailed implicit Monte-Carlo and discrete-ordinate transport
simulations in the optically-thick regime, showing a great agreement, which highlights the benefit
of these solutions as a code verification test problem.

I. INTRODUCTION

The theory of radiation hydrodynamics is at the heart
of various high energy density systems, such as inertial
confinement fusion and astrophysical phenomena [1–7].
Analytic solutions for the equations of radiation hydro-
dynamics are an important and practical aspect of the
analysis and design of high energy density experiments
[5, 8–14] and are frequently used for the verification of
computer simulations [15–29].

The theory of Marshak waves which was developed in
the seminal work [30] and was further generalized in Refs.
[10, 16, 28, 31–43], is a fundamental phenomena that de-
scribes the nonlinear propagation of radiation and the
subsequent thermalization of a material that is illumi-
nated by an intense radiation energy source. In most
cases, radiative heat conduction plays a pivotal role in
the process. At high temperatures and for non-opaque
materials, the radiative heat wave may propagate faster
than the speed of sound, resulting in a supersonic Mar-
shak wave [12, 27, 28, 38, 39, 42, 44–46], for which the
material motion is negligible.

Originally, the Marshak wave problem was addressed
under the assumption of local thermodynamic equilib-
rium between the radiation field and the heated mate-
rial. This scenario is only valid for systems which are
optically thick with respect to the emission-absorption
process. Pomraning and subsequently Su and Olson, in
their seminal works [47, 48], derived a widely used [49–58]
solution for a non-equilibrium linear Marshak wave prob-
lem in the diffusion limit of radiative transfer, assuming a
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temperature independent opacity, a material energy den-
sity that depends on temperature as ∼ T 4 and a spatially
homogeneous media. This solution was further extended,
yet in the linear regime, in Refs. [59–63]. However, opac-
ities of real materials usually depend strongly on tem-
perature, so that nonlinear conduction prevails in most
high-energy-density systems. Recently, in Ref. [27], a
family of new solutions to the non-equilibrium Marshak
wave problem was developed for nonlinear conduction
scenarios. These solutions were developed by employing
a dimensional analysis, that results in solutions which
are self-similar under the assumptions of a general power
law temperature dependent opacities, a material energy
density that varies as ∼ T 4 (as in the Pomraning-Su-
Olson linear solution) and a spatially homogeneous me-
dia. Since the material energy density of most materials
vary as ∼ T β where usually β ̸= 4, the nonlinear solu-
tions in Ref. [27] cannot be applied for a general (and
more realistic) material energy density. In fact, these
nonlinear solutions are not self-similar for β ̸= 4.

In this work, we develop new self-similar solutions
to the non-equilibrium nonlinear Marshak wave prob-
lem, which are essentially a generalization of the solu-
tions of Ref. [27], to non-homogeneous media. The self-
similarity of the solutions is enabled, by introducing a
more general setup, for which the material has a non-
homogeneous power law spatial density profile of the form
ρ (x) = ρ0x−ω. The time dependent surface temperature
drive is of the form Ts (t) = T0tτ , and the material model
obey a temperature-density power law, with total and
absorption opacities of the form kt (T, ρ) = 1

G T −αρ1+λ

and ka (T, ρ) = 1
G′ T −α′

ρ1+λ′ , and a material energy den-
sity u (T, ρ) = FT βρ1−µ . The resulting solutions allow
self-similarity for β ̸= 4 if and only if ω ̸= 0, and are
therefore, a direct generalization of the solutions of Ref.
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Figure 1. A description of the generalized non-equilibrium
Marshak wave problem. A radiation temperature drive which
obeys a temporal power law is applied at the surface (x = 0)
of a planar medium which is initially cold with zero radiation
field and has an inhomogeneous material density which obeys
a spatial power law. A nonlinear Marshak wave propagates
into the medium and is conducted supersonically (with no
material motion).

[27], which assumes β = 4 and ω = 0. It is shown that
this new family of nonlinear self-similar solutions exists
for specific values of the temporal exponent τ and the
spatial exponent ω, which are related to the the material
model exponents α, λ, α′, λ′, β, µ. The properties and be-
havior of the solutions with respect to various parameters
are analyzed in detail. Finally, the generalized solutions
are used to define a set of non-trivial benchmarks for
supersonic non-equilibrium radiative heat transfer. The
solutions are compared to detailed numerical stochastic
and deterministic radiation transport simulations as well
as gray diffusion simulations.

II. STATEMENT OF THE PROBLEM

Supersonic heat conduction by radiation is a common
scenario in high energy density flows, in which radiative
heat conduction dominates and hydrodynamic motion is
negligible, and the material density remains constant in
time. The non-equilibrium 1-group (gray) supersonic ra-
diative transfer problem in planar slab symmetry for the
radiation energy density E (x, t) and the material energy
density u (x, t), is formulated by the following coupled
equations (two-temperature approximation) [27, 51, 64–
68]:

∂E

∂t
+ ∂F

∂x
= cka (U − E) , (1)

∂u

∂t
= cka (E − U) , (2)

where c is the speed of light, ka the radiation absorption
macroscopic cross section (which is also referred to as the
absorption coefficient or absorption opacity), and U =
aT 4 with T the material temperature and a = 8π5k4

B

15h3c3 the

radiation constant. The effective radiation temperature
Tr is related to the radiation energy density by E = aT 4

r .
For optically thick media, the diffusion approximation of
radiative transfer is applicable, and the radiation energy
flux obeys Fick’s law:

F = −D
∂E

∂x
, (3)

where the radiation diffusion coefficient is given by:

D = c

3kt
, (4)

where kt = ρκR is the total (absorption+scattering)
macroscopic transport cross section, which we also refer
to as the total opacity coefficient, where κR the Rosseland
mean opacity and ρ is the (time independent) material
mass density.

We now define a setup for a Marshak wave problem,
which is also described schematically in Fig. 1. We as-
sume a semi-infinite planar medium which is initially cold
with no radiation field,

E (x, t = 0) = U (x, t = 0) = 0, (5)

with a (time independent) material mass density profile
which is given by a spatial power law

ρ (x) = ρ0x−ω. (6)

We note that for a planar system to have a finite mass
over a finite distance from the origin, we must require
ω < 1. A Marshak wave is driven by imposing a surface
radiation temperature at x = 0, which obeys a temporal
power law of the form:

Tr (x = 0, t) ≡ Ts (t) = T0tτ , (7)

so that the radiation energy density at the system left
boundary is:

E (x = 0, t) = E0t4τ , E0 = aT 4
0 . (8)

As was discussed in Ref. [27] (and in Refs. [5, 10, 11,
28, 69] for Marshak wave in thermodynamic equilibrium),
this boundary condition of an imposed surface temper-
ature is different than the common Marshak (or Milne)
boundary condition, which represents the incoming flux
from a heat bath. We will derive below in section III D a
relation between the surface radiation temperature and
the heat bath temperature, which will allow to define the
same problem by a Marshak boundary condition with a
prescribed bath temperature as a function of time.

We assume a power law temperature and density de-
pendence of the total opacity

kt (T, ρ) = 1
G

T −αρ1+λ, (9)
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the absorption opacity

ka (T, ρ) = 1
G′ T −α′

ρ1+λ′
, (10)

and the material energy density (energy per unit volume)

u (T, ρ) = FT βρ1−µ. (11)

This power law material model, which is characterized by
the positive dimensional constants G, G′, F and the non-
negative exponents α, λ, α′, λ′, β, and µ ≤ 1, serves as a
good approximation for the properties of many materials
and is commonly employed in the analysis of high energy
density phenomena [12, 23, 27, 28, 35, 38, 39, 42, 44, 46].
Values of the exponents for several materials that were
used in experiments of supersonic and subsonic Marshak
waves are given in table I, adopted from Refs. [5, 11, 70]
(and references therein), for which photon scattering is
negligible (kt = ka, so that α = α′, λ = λ′).

The problem defined by Eqs. (1)-(11) is a generaliza-
tion of the problem defined in Ref. [27], where it was
assumed that ω = 0 and β = 4, to the more general case
of an inhomogeneous density profile, ω ̸= 0, and realistic
materials for which usually β ̸= 4 (as evident from table
I).

Using the density profile (6) and the material model
defined in Eqs. (9)-(11), Eqs. (1)-(2) are written in
closed form as a set of nonlinear coupled partial differen-
tial equations for E and U :

∂E

∂t
= K

∂

∂x

(
xω(1+λ)U

α
4

∂E

∂x

)
(12)

+ Mx−ω(1+λ′)U− α′
4 (U − E) ,

∂U

∂t
= Px−ω(λ′+µ)U− α′

4 (E − U) , (13)

where we have defined the dimensional constants:

K = cG
3 ρ−1−λ

0 a− α
4 , (14)

M = c

G′ ρ1+λ′

0 a
α′
4 , (15)

P = 4ca
α′+β

4 ρλ′+µ
0

βG′F
. (16)

III. A SELF-SIMILAR SOLUTION

In Appendix A it is shown in detail, using the method
of dimensional analysis [23, 32, 42, 71, 72], that the solu-
tion of the problem defined by the nonlinear gray diffu-
sion model in Eqs. (12)-(13) with the initial and bound-
ary conditions (5),(8), is self-similar, if and only if the

surface temperature exponent and the spatial density ex-
ponent obey the following relations in terms of the vari-
ous material exponents:

τ = 1 − µ

(β − 4) (1 + λ′) + α′ (1 − µ) , (17)

ω = 2 (β − 4)
(β − 4) (2 + λ + λ′) + (α + α′) (1 − µ) . (18)

It is evident that ω = 0 if and only if β = 4, in which
case τ = 1

α′ , in agreement with Ref. [27]. Conversely,
β ̸= 4 results in ω ̸= 0, and the problem has a self-similar
solution only for an inhomogeneous density profile. As
shown in Appendix A, when Eqs. (17)-(18) hold, the
problem defines two dimensionless constants:

A = E
− α+α′

4(ατ+1)
0 K

α′τ−1
ατ+1 M, (19)

B = E
4−β−α−α′

4(ατ+1)
0 K

(α′+β−4)τ−1
ατ+1 P, (20)

and the Marshak wave problem has a self-similar solu-
tion which is expressed in terms dimensionless similarity
profiles f (ξ), g (ξ) as:

E (x, t) = E0t4τ f (ξ) , (21)

U (x, t) = E0t4τ g (ξ) , (22)

where the dimensionless similarity coordinate is given by:

ξ = x

tδ
(

KE
α
4

0

) 1
2−ω(1+λ)

, (23)

and the similarity exponent is:

δ = 1 + ατ

2 − ω (λ + 1) = 1
2

(
1 + α (1 − µ) + (β − 4) (1 + λ)

α′ (1 − µ) + (β − 4) (1 + λ′)

)
.

(24)
The radiation and material temperature profiles are
therefore given by

Tr (x, t) = T0tτ f1/4 (ξ) , (25)

T (x, t) = T0tτ g1/4 (ξ) . (26)

We see that when the absorption and total opacity have
the same temperature and density dependence (α = α′

and λ = λ′ or α = α′ and β = 4), we acquire δ = 1, in
agreement with Ref. [27]. As shown in Appendix A, by
plugging the self-similar representation (21)-(22) into the
gray diffusion system (12)-(13), all dimensional quanti-
ties are factored out, and the following (dimensionless)
second order ordinary differential equations (ODE) sys-
tem for the similarity profiles is obtained:

4τf (ξ) − δξf ′ (ξ) = ξω(1+λ)

(
1
ξ

ω (λ + 1) g
α
4 (ξ) f ′ (ξ)

+ g
α
4 −1 (ξ)

[
α

4 f ′ (ξ) g′ (ξ) + g (ξ) f ′′ (ξ)
])

− Aξ−ω(1+λ′)g− α′
4 (ξ) (f (ξ) − g (ξ)) , (27)
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Figure 2. The radiation f1/4 (ξ) (solid lines) and material g1/4 (ξ) (dashed lines) temperature similarity profiles, for varying
values of β, as listed in the legend (along with the resulting values of ω). The parameters A, B, the material exponents and the
resulting βc, β′

c [Eqs. (34)-(35)], are listed in the title. The profiles are shown as a function of ξ (left figure) and of ξ/ξ0 (right
figure), in order to display the variation of the profiles independently of the front coordinate ξ0. Three types of solutions, as
discussed in Sec. III B, are evident: (i) for βc < β < 4, the density vanishes at the origin (ω < 0) and therefore, so does the
material temperature, (ii) for β = 4, the density is constant (ω = 0) and finite, which results in a material temperature that is
finite at origin and lower than the radiation temperature and (iii) for β > 4, the density diverges at the origin (ω > 0), so that
the material and radiation temperatures are equal at the origin.
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Figure 3. Same as Fig. 2, but for a material model with a fixed β = 4 (as listed in the title), for A = 1 and varying values of
B which are listed in the legend. The choice β = 4 results in ω = 0 (a homogeneous density profile), which according to the
analysis in Sec. III B, results in a finite value of the material temperature at the origin. It is evident that the material and
radiation temperature profiles become closer when B is increased, and that thermodynamic equilibrium limit f1/4 (ξ) ≈ g1/4 (ξ)
is reached when B ≫ 1. As discussed in the text, it is also evident that ξ0 increases with B.

4τg (ξ) − δξg′ (ξ) = Bξ−ω(λ′+µ)g1− α′+β
4 (ξ) (f (ξ) − g (ξ)) .

(28)
The surface radiation temperature boundary condition
[Eq. (8)], is written in terms of the radiation energy
similarity profile as:

f (0) = 1. (29)

It is evident that the dimensionless problem defined by
Eqs. (27)-(29) depends only on the material exponents
α, α′, λ, λ′, β, µ and the dimensionless constants A, B. We
also see that if β = 4 we get B = ϵA where ϵ = a

F , and
the dimensionless problem is reduced to the homogeneous
solution given in Ref. [27].

Nonlinear conduction is characterized by a steep heat
front, that is, there exists a finite heat front coordinate,
ξ0, such that f (ξ) = g (ξ) = 0 for ξ ≥ ξ0. According to
Eq. (23), the heat front propagates in time according to
a temporal power law:

xF (t) = ξ0tδ
(

KE
α
4

0

) 1
2−ω(1+λ)

. (30)

As shown in many works on nonlinear Marshak waves in
thermodynamic equilibrium, for which Tr ≡ T [27, 28,
30, 31, 39, 41, 42, 66, 73, 74] and more recently in non-
equilibrium as well [27], it is customary to calculate the
value of ξ0 via iterations of a “shooting method”. This
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Figure 4. Same as Fig. 3, but for a choice of parameters for which ω < 0 (an increasing density profile). According to the
analysis in Sec. III B, this case results in g (ξ → 0) = 0, for any value of B. It is evident as B → ∞, the material and radiation
temperatures approach each other, while maintaining a zero material temperature at the origin, which results in increasingly
larger slopes near the origin.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
ξ

0.0

0.2

0.4

0.6

0.8

1.0

f
1/

4
(ξ

),
g

1/
4
(ξ

)

0.0 0.2 0.4 0.6 0.8 1.0
ξ/ξ0

0.0

0.2

0.4

0.6

0.8

1.0
f 1/4(ξ)

f 1/4(ξ)

f 1/4(ξ)

f 1/4(ξ)

f 1/4(ξ)

f 1/4(ξ)

g1/4(ξ) | B= 10−2

g1/4(ξ) | B= 10−1

g1/4(ξ) | B= 0.25

g1/4(ξ) | B= 0.5

g1/4(ξ) | B= 1

g1/4(ξ) | B= 10

         α= 3, α ′ = 2, β= 6, µ= 0.4, λ= 0.2, λ ′ = 0.1, τ= 0.176471, ω= 0.526316, A= 1

Figure 5. Same as Fig. 4, but for a choice of parameters for which ω > 0 (a decreasing density profile), that results in
g (ξ → 0) = 1, which must hold for any value of B. It is evident as B → 0, the material temperature becomes increasingly
lower than the radiation temperature, while maintaining equilibrium at the origin, g (ξ → 0) = f (ξ → 0) = 1. This results in
increasingly steep negative slopes near the origin.

is done by integrating Eqs. (27)-(28) starting from a
trial value of ξ0 towards the origin, ξ = 0, resulting in a
numerical value for f (0). The trial ξ0 is adjusted until
the surface radiation temperature boundary condition,
f (0) = 1, is satisfied. To the best of our knowledge, ana-
lytical solutions to Eqs. (27)-(28) exist only when β = 4
(ω = 0) and α = α′, as was found in Ref. [27], oth-
erwise, the similarity profiles and ξ0 must be obtained
numerically. Numerical results for the similarity profiles
are shown in Figs. 2-7, which display the different char-
acteristics of the solutions for cases with ω = 0, ω > 0
and ω < 0, as well as the behavior of the solutions for
varying values of A and B. These characteristics of the
solutions are discussed in detail below in Sec. III B.

A. Range of validity

The similarity solution is invalid when ω ≥ 1 (in which
case there is an infinite mass over any finite distance from
the origin), or when δ ≤ 0 (the wave does not propa-
gate outwards). In order to further analyze the solution’s
properties and range of validity, we first consider the case
with µ < 1, for which it is customary to write τ , ω and
δ [Eqs. (17)-(18), (24)], as functions of β:

τ (β) =
(

1 − µ

1 + λ′

)
1

β − βc
, (31)

ω (β) =
(

1
1 + λ

)
β − 4
β − β′

c

, (32)

δ (β) =
(

1 + λ

1 + λ′

)
β − β′

c

β − βc
, (33)
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Figure 6. Same as Fig. 5, but for a choice of parameters with a smaller ω > 0, which results in an extremely sharp drop of the
material temperature near the origin.
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Figure 7. Same as Fig. 3, but for varying values of A (as listed in the legend) and a constant value B = 1. The choice of
parameters is the same as in Fig. 4. It is evident that when A ≲ 1 it has a small effect on ξ0 and the profile shapes. For larger
values of A, the value of ξ0 and g (ξ) decrease with respect to A.

where we have defined two critical values of β:

βc = 4 − α′ (1 − µ)
1 + λ′ , (34)

β′
c = 4 − α (1 − µ)

1 + λ
. (35)

and the average opacity temperature and density expo-
nents:

α = 1
2 (α + α′) , λ = 1

2 (λ + λ′) . (36)

We see that τ diverges at β = βc < 4 while ω diverges at
β = β′

c < 4. We also see that τ < 0 for β < βc, τ > 0
for β > βc and there is no solution with τ = 0. These
cases correspond, respectively, to a decreasing, increasing
and constant temperature drive [see Eq. (7)]. Similarly,
ω < 0 for β′

c < β < 4, while ω = 0 for β = 4 and
ω > 0 otherwise; cases which correspond, respectively,
to an increasing, constant and decreasing spatial density

profiles [see Eq. (6)]. In addition, ω < 1
1+λ

< 1 for
β > β′

c. We also see that δ < 0 for min (βc, β′
c) < β <

max (βc, β′
c). As a result, solutions with τ < 0 exist

only for ω > 0, while on the other hand, solutions with
τ > 0 exist for negative, positive and zero ω. In addition,
for 0 ≤ β < min (βc, β′

c), for which ω > 0 and τ < 0,
the solution is valid provided that ω < 1 as well. In
summary, the solution is always invalid for min (βc, β′

c) ≤
β ≤ max (βc, β′

c) and also for values of β in the range
0 ≤ β < min (βc, β′

c) for which ω (β) > 1.
To illustrate these properties, we first analyze the more

simple case in which the total and absorption opacities
have the same temperature and density dependence, that
is, when α = α′ and λ = λ′. In that case τ and ω diverge
at the same value of β = βc = β′

c, while δ ≡ 1 and
is independent of β. In Fig. 9 the resulting τ (β) and
ω (β) are plotted as a function of β, for several material
models (assuming α = α′, λ = λ′). In all of those cases
it turns out that ω > 1 for β < βc, so that the similarity
solution is invalid for β ≤ βc. Conversely, since lim

β→∞
ω →
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Figure 8. Color maps of the heat front coordinate ξ0 (upper
figure) and the maximal value of the material temperature
profile g

1/4
max = max

0≤ξ≤ξ0

[
g1/4 (ξ)

]
, as a function of A and B.

The material exponents are the same as in Figs. 4,7 (namely,
α = 3.9, α′ = 1.9, β = 3, µ = 0.15, λ = 0.1 and λ′ = 0.4, for
which ω < 0). It is evident that ξ0 and g

1/4
max are increasing

functions of B (in agreement with Fig. 4), and that thermody-
namic equilibrium is reached for B ≫ 1 (as g

1/4
max approaches

unity). It is also evident that A has an effect on ξ0 and g
1/4
max,

only for large values A ? 10, for which ξ0 and g
1/4
max are de-

creasing functions of A (in agreement with Fig. 7).

1
1+λ < 1, the solution is valid for any β > βc. It also
happens that for each of the chosen materials (given in
Table I), βc is larger than the value of the material’s β,
and therefore, there are no self-similar solutions for these
given materials. In addition, since τ > 0 if and only if
β > βc, the similarity solutions exist in those cases only
for a strictly increasing radiation temperature drive (τ >
0). In Fig. 10 we show similar plots for τ (β), ω (β) and
δ (β) for more general cases of α, α′, λ, λ′, µ, with α ̸= α′

or λ ̸= λ′. Various different characteristics are evident.
Some cases have valid solutions only for β > βc or β > β′

c

Material α β λ µ
Au 1.5 1.6 0.2 0.14
Al 3.1 1.2 0.368 0

SiO2 2 1.23 0.61 0.1
Ta2O5 1.78 1.37 0.24 0.12

C15H20O6 5.29 0.94 0.95 0.038
Ideal Gas 3.5 1 1 0

Table I. Values of material temperature and density exponents
α, β, λ, µ for various materials (adopted from Refs. [5, 11, 70]
and references therein). In the last row, the values are listed
for a material with an ideal gas equation of state a pure free-
free absorption opacity.

for which τ (β) > 0. Other cases have valid solutions in
a range 0 ≤ β < β∗ < min(βc, β′

c) for which τ (β) < 0.
Interestingly, some cases have βc, β′

c < 0, so that the
solutions are valid for any β, and have τ (β) > 0. It is
also evident that there exists solutions with 0 < δ < 1
(decelerating heat front) as well as δ > 1 (accelerating
heat front).

Finally, for µ = 1 (a density independent material en-
ergy density) and β ̸= 4, Eqs. (17)-(18), (24) give the
following β independent exponents:

τ = 0, (37)

ω = 1
1 + λ

, (38)

δ = 1 + λ

1 + λ′ . (39)

In summary, it was shown that depending on the mate-
rial exponents, α, α′, λ, λ′, β, µ, the generalized solutions,
when they are valid, can have a temporally increasing
(τ > 0), decreasing (τ < 0) and constant (τ = 0) surface
temperature drive.

B. The solution near the origin

The behavior of the solution near the system’s bound-
ary, can be analyzed without having to solve the full cou-
pled ODE system (27)-(28). We expand the solution to
first order near ξ → 0:

f (ξ) ≈ 1 + f ′ (0) ξ + O
(
ξ2) , (40)

g (ξ) ≈ g0 + g′ (0) ξ + O
(
ξ2) . (41)

where g0 = g (ξ = 0). By substituting the expansion
(40)-(41) into the matter equation (28) and keeping the
zero order terms, we find:
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Figure 9. The temperature drive exponent τ (blue) and spatial density exponent ω (magenta), for which the solution of the
Marshak wave problem is self-similar [Eqs. (17)-(18) or (31)-(32)], as a function of the material energy density power β. The
results are shown for α = α′, λ = λ′ using the parameters α, λ, µ of various materials (given in Table I). Vertical lines are shown
for the critical value β = βc = β′

c [Eqs. (34)-(35)], and β = βm, the actual temperature exponent of each material (see Table
I). It is evident that ω > 1 for β < βc, which means that similarity solutions do not exist for β < βc (marked area). Since for
all materials shown, βc > βm, the solution is not self-similar for β = βm. It is also evident that τ > 0 for β > βc and τ < 0
for β < βc, which means that similarity solutions must have an increasing temperature drive (τ > 0). Finally, for the shown
materials βc < 4, and since ω changes sign at β = 4, self-similar solutions exist for both increasing (ω < 0) and decreasing
(ω > 0) spatial density profiles.


g0 = 1 ω > 0

g0

(
1 + 4τ

B g
α′+β−4

4
0

)
= 1 ω = 0

g0 = 0 ω < 0

(42)

These three qualitatively different forms of the solution
near the origin are displayed in Figs. 2-7. For ω = 0
(so that β = 4 and τ = 1/α′), g0 obeys a nonlinear
equation, as was found in Ref. [27], whose solution may
attain, as a function of B and α′, any value in the range
0 < g0 < 1, that is, the dimensionless material temper-
ature at the origin is finite and can vary continuously
between 0 (highly non-LTE) and 1 (the LTE limit), as
shown in Fig. 3. On the other hand, we see that for
ω > 0 (that is, β > 4), g0 = f (0) = 1, that is, the
material and radiation are always in equilibrium at the
origin. This is a result of the density ρ ∝ x−ω diverging
at the origin, leading to a divergent absorption coeffi-
cient ka ∝ ρλ′+1 ∝ x−ω(λ′+1), which results in an in-
finitely strong coupling and an immediate equilibration
at ξ → 0, as shown in Figs. 2, 5 and 6. Conversely, when
ω < 0 (that is, β < 4), the density and consequently the
absorption coefficient vanish at the origin, which leads to
no coupling between the radiation and material, which

results in a cold material at ξ → 0, so that g0 = 0.
This results in a material temperature profile which is
not monotonic, as shown in Figs. 4 and 7. These three
types of solutions are shown in Fig. 3, where the tem-
perature profiles are displayed for a varying value of β.

C. The thermodynamic equilibrium limit

Using Eqs. (13) and (20), it can be inferred that the di-
mensionless constant parameter B quantifies the material
coupling to the radiation field by the emission absorption
process, since:

∂U

∂t
∝ Bx−ω(λ′+µ)U− α′

4 (E − U) , (43)

which shows that the B determines the equilibration rate.
Equivalently, Eq. (28) shows that when B ≫ 1 we have
g (ξ) ≈ f (ξ), that is, the material and radiation temper-
ature profiles approach a common form, that is, a state of
thermodynamic equilibrium is reached locally. This fact
is demonstrated in Figs. 3-6, where it is evident that as B
increases, g1/4 (ξ) and f1/4 (ξ) converge to the same pro-
file. As discussed in the previous section, when ω < 0,
the material temperature must vanish at the origin for
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Figure 10. Similar plot to Fig. 9, but for cases for which α ̸= α′ or λ ̸= λ′. The similarity exponent δ (β) [Eq. (24) or (33)]
is also plotted. Vertical lines are shown for the critical values β = βc [Eq. 34] and β = β′

c [Eq. 35], with the values listed in
the legend. The range of β for which the self-similar solution is invalid (marked in gray), is where δ (β) ≤ 0 or ω (β) ≥ 1, as
discussed in the text. Six different cases are shown, with different characteristics and ranges of validity.

any value of A and B. However, since f (0) = 1, when
B → ∞ the thermodynamic equilibrium limit must be
reached, which results in a very sharp increase of g (ξ)
near the origin from 0 to 1, as shown in Fig. 4. Con-
versely, when ω > 0, we must have g0 = 1, as equilibrium
is always reached at the origin, independently of the val-
ues of A and B. However, for B ≲ 1 a significant state
of non-equilibrium occurs for ξ > 0, which results in a
sharp decrease of g (ξ) near the origin from a value of 1
to a lower finite value, as shown in Figs. 5-6.

In Fig. 8 the heat front coordinate ξ0 and the maximal
value of the dimensionless material temperature, g

1/4
max =

max
0≤ξ≤ξ0

[
g1/4 (ξ)

]
, are shown as functions of A and B, for

a case with ω < 0. From the discussion above, when
the equilibrium limit is reached, the value of g

1/4
max should

reach unity, for any value of ω. It is evident from Fig.
8 that g

1/4
max depends weakly on A, and approaches unity

as the value of B increases.
Finally, it is evident from Figs. 3-6, as well as from Fig.

8, that the front coordinate ξ0 is an increasing function
of B. This can be expected, since larger values of B
give rise to a larger coupling between the radiation and
material, leading to a higher material temperature, which
results in a smaller total opacity [see Eq. 9], that leads
to a faster heat propagation. Figs. 7 and 8 show that for
moderate values A ≲ 1, ξ0 and the profile shapes depends

very weakly on A. For larger values of A, the material
temperature profiles g1/4 (ξ) decrease with respect to A,
resulting in a smaller values of ξ0.

D. Marshak boundary condition

10 5 10 4 10 3 10 2 10 1 100

ξ/ξ0

0.0

0.5

1.0
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2.0
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3.0

3.5

−
ξ
ω
(λ

+
1
) g
α
/
4
(ξ

)f
′ (
ξ)

α= 3.5, α ′ = 1.9, µ= 0.15, λ= 0.1, λ ′ = 0.4,
βc = 2.8464, β ′c = 2.1640, A= 1, B= 1

β= 3.0, ω= − 0.957

β= 3.5, ω= − 0.299

β= 4.0, ω= 0

β= 4.5, ω= 0.171

β= 5.0, ω= 0.282

Figure 11. The flux similarity profile [see Eq. 47], for various
values of ω (as listen in the legend), and for a choice of pa-
rameters which is listed in the title (same as in Fig. 2).
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Non-equilibrium Marshak waves [27, 47, 48], as well as
many other non-equilibrium heat wave benchmarks [75–
88], are specified in terms of a given incoming radiative
flux, rather than a temperature boundary condition (as
in Eq. (8)). The latter boundary condition applies more
naturally in the diffusion approximation, while the for-
mer is more natural to use in the solution of the radiation
transport equation, which has the angular surface flux as
a boundary condition (as will be discussed below in sec-
tion IV A). Nevertheless, these two different boundary
conditions can be related [5, 10, 11, 27, 28, 69].

The incoming flux boundary condition, which is known
as the Marshak boundary condition [27, 47, 48, 69] is
given by:

4
c

Finc (t) = E (x = 0, t) + 2
c

F (x = 0, t) , (44)

where Finc (t) is the incoming flux at x = 0. The incom-
ing flux to a medium which is coupled to a heat bath at
temperature Tbath (t), is given by Finc (t) = ac

4 T 4
bath (t).

The Marshak boundary condition (44) results from the
diffusion limit of the exact Milne boundary condition of
radiation transport (see section IV A below). Using the
surface radiation temperature, E (x = 0, t) = aT 4

s (t), in
the Marshak boundary condition (44) gives:

Tbath (t) =
(

T 4
s (t) + 2

ac
F (x = 0, t)

) 1
4

, (45)

which is a relation between the bath temperature, the
surface radiation temperature and the net surface flux.
By using Eqs. (3)-(4), the radiation flux can be written
in a self-similar form:

F (x, t) = K
1

2−ω(1+λ) E
1+ α

4(2−ω(1+λ))
0 t4τ+δ−1S (ξ) , (46)

where the (dimensionless) similarity flux profile is given
by:

S (ξ) = −ξω(1+λ)g
α
4 (ξ) f ′ (ξ) . (47)

The radiation surface temperature is given by Eq. (7),
so that the bath temperature, according to Eq. (45), can
be written explicitly as a function of time:

Tbath (t) =
(
1 + Btδ−1) 1

4 T0tτ , (48)

where we have defined the bath coefficient:

B = 2
c

(
cG
3 ρ−1−λ

0 T α
0

) 1
2−ω(1+λ)

S (0) , (49)

where the dimensionless radiation flux at the origin is:

S (0) = − lim
ξ→0

ξω(1+λ)g
α
4 (ξ) f ′ (ξ) . (50)

We note that S (0) does not diverge for both cases of
diverging and vanishing density at the origin. This is
demonstrated in Fig. 11, where S (ξ) is displayed for var-
ious values of ω. We also note that Eq. (48) shows that
only for δ = 1 the bath temperature is given by a tem-
poral power law, which has the same temporal power τ
of the surface temperature (in agreement with Ref. [27]).
Finally, we note that since B ∝ G

1
2−ω(λ+1) , when the total

opacity increases, the bath temperature Tbath (t) becomes
closer to the surface temperature Ts (t).

IV. COMPARISON WITH SIMULATIONS

A. Transport setup

We now construct a setup for gray transport calcula-
tions of the gray diffusion problem defined in Sec. II. The
one dimensional, one group (gray) transport equation for
the radiation intensity field I (x, µ, t) in slab symmetry
is [27, 65, 66, 73, 77, 81, 89]

(
1
c

∂

∂t
+ µ

∂

∂x

)
I (x, µ, t) + (ka + ks) I (x, µ, t)

= ac

4π
kaT 4 (x, t) + 1

2ks

∫ 1

−1
dµ′I (x, µ′, t) , (51)

where µ is the directional angle cosine, ka = ka (T, ρ)
and ks = ks (T, ρ), are, respectively, the absorption and
elastic scattering macroscopic cross sections, which are
functions of the local material temperature and density.
The radiation field is coupled to the material via the ma-
terial energy equation:

∂u (T, ρ)
∂t

= ka

[
2π

∫ 1

−1
dµ′I (x, µ′, t) − acT 4 (x, t)

]
.

(52)

where u (T, ρ) is the material energy density. The radia-
tion energy density is given by:

E (x, t) = 2π

c

∫ 1

−1
dµ′I (x, µ′, t) , (53)

and the radiation temperature is Tr (x, t) =
(E (x, t) /a)1/4. The diffusion limit holds for opti-
cally thick problems. In that case, the transport
problem (51)-(52) can be approximated by the gray
diffusion problem defined by equations (1)-(3), with the
total opacity kt = ks + ka. Therefore, a transport setup
of the diffusion problem defined in Sec. II should have
the following effective elastic scattering opacity:

ks (T, ρ) = kt (T, ρ) − ka (T, ρ)

= 1
G

T −αρ1+λ − 1
G′ T −α′

ρ1+λ′
. (54)
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We note that unless α = α′ and λ = λ′, this form the
scattering opacity is not a good model for real materials,
but is used here to construct a gray transport problem
which is mathematically equivalent, in the optically thick
limit, to a gray diffusion problem whose total and absorp-
tion opacities are power laws with respect to temperature
and density. Moreover, since the scattering opacity must
be positive, the gray transport problem is well defined
only if kt (T, ρ) ≥ ka (T, ρ), which must hold for the rel-
evant temperatures and densities in the problem. This
constraint does not have to hold for the gray diffusion
problem, which is well defined for any functions kt, ka.
We note that due to the complex nature of opacity spec-
tra of mid or high-Z hot dense plasmas, the total (Rosse-
land) opacity can be lower than the absorption (Planck)
opacity [65, 66, 73, 90, 91], in which case an equivalent
gray transport problem cannot be defined.

The boundary condition for the transport problem is
defined via the incident radiation field at x = 0 for in-
coming directions µ > 0, of a a black body radiation
bath

I (x = 0, µ, t) = ac

4π
T 4

bath (t) , (55)

where the time dependent bath temperature drive is
taken from the Marshak (Milne) boundary condition us-
ing the radiation temperature and flux which are taken
from the gray diffusion solution [Eq. (48)], as detailed in
Sec. III D. The Marshak boundary condition [Eq. (44)] is
derived by the diffusion limit approximation of the exact
transport boundary condition given by Eq. (55).

Since the diffusion limit is applicable for optically thick
problems, we expect gray transport results to have a good
agreement with diffusion simulations and the self-similar
solutions in this limit. Nevertheless, for optically thick
problems with low absorption but high photon scatter-
ing (ka ≪ kt), such that B ≲ 1, we expect transport
results to agree well with diffusion, while the radiation
and material are significantly out of equilibrium. Several
examples of this scenario will be shown below.

B. Test cases

Based on the self-similar solutions, we define six bench-
marks for which we specify in detail the setups for
gray diffusion and transport computer simulations. We
conducted gray diffusion simulations and stochastic im-
plicit Monte-Carlo (IMC) [75, 92–97] and deterministic
discrete-ordinates (SN ) transport simulations. The diffu-
sion simulations were performed without the application
of flux limiters. The SN simulations were performed us-
ing a numerical method that is detailed in Ref. [98],
while the IMC simulations employed the novel numerical
scheme that is described in Refs. [81, 82, 99].

All cases are run until the final time t = 1ns, and the
radiation surface temperature drive is increased to a final

temperature of 1keV:

Ts (t) =
(

t

ns

)τ

keV, (56)

so that T0 = keV/nsτ for all cases. In addition, we take
in all cases a spatial density profile:

ρ (x) =
( x

cm

)−ω

g/cm3. (57)

so that ρ0 = 1g · cmω−3. The temperature profiles are
plotted at the final time and also at the times when the
heat front reaches 20% and 60% of the final front posi-
tion.

In tests 1 and 2 we define a material model with β < 4,
so that ω < 0 and that the material temperature is zero
at the origin, increases until reaching a maximum and
then decreases again towards the front. In cases 3-5 the
material models have β > 4 so that ω > 0, and the radi-
ation and material temperatures are equal at the origin.
Tests 1-4 have B ≲ 1 so that a significant deviation from
equilibrium occurs. Test 5 has B ≫ 1 which results in the
thermodynamic equilibrium limit, for which the radiation
and material temperatures are very close throughout the
heat wave. Finally, Test 6, which also has B ≫ 1, but
since the density is extremely small in a wide range near
the origin, a state of equilibrium is not reached in that
region.

All cases were defined such that the total optical depth
is large, so that the diffusion limit is applicable, and
transport simulations results should agree with the gray
diffusion self-similar solutions and simulations.

Since exact closed form analytical solutions of Eqs.
(27)-(28) for the temperature profiles do no exist, tab-
ulated exact numerical solution profiles for all cases are
given in table II. In addition, we give simple and closed
form but approximate fitted analytic profiles in table III,
which are accurate to about 0.5%.

TEST 1

We take α = α′ = 1.5, λ = λ′ = 0.2, G =

0.025 cm(g/cm3)1.2

keV1.5 , G′ = 10
cm
(

g/cm3
)1.2

keV1.5 , so that the to-
tal and absorption opacities are:

kt (T, ρ) = 40
(

T

keV

)−1.5(
ρ

g/cm3

)1.2
cm−1,

ka (T, ρ) = 0.1
(

T

keV

)−1.5(
ρ

g/cm3

)1.2
cm−1.

For transport simulations, the scattering opacity [Eq.
(54)] is given by:

ks (T, ρ) = 39.9
(

T

keV

)−1.5(
ρ

g/cm3

)1.2
cm−1,
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Test 1 Test 2 Test 3 Test 4 Test 5 Test 6
ξ0 1.274605 0.615503 0.314115 0.484638 0.530730 1.198678

ξ/ξ0 f1/4 (ξ) g1/4 (ξ) f1/4 (ξ) g1/4 (ξ) f1/4 (ξ) g1/4 (ξ) f1/4 (ξ) g1/4 (ξ) f1/4 (ξ) g1/4 (ξ) f1/4 (ξ) g1/4 (ξ)
0 1 0 1 0 1 1 1 1 1 1 1 0

10−6 1 0.3463 1 0.010182 0.99987 0.97389 0.99795 0.98549 0.99968 0.99951 1 0.0025247
10−5 1 0.40853 1 0.019658 0.99959 0.95101 0.9955 0.97292 0.99899 0.99872 1 0.0079838

0.0001 1 0.48063 1 0.037954 0.99868 0.91732 0.99012 0.95124 0.9968 0.99637 1 0.025247
0.0005 1 0.53693 1 0.060113 0.99692 0.88791 0.98262 0.92829 0.9928 0.99221 1 0.056454
0.001 1 0.56257 1 0.073278 0.99553 0.87386 0.97769 0.91585 0.98977 0.98909 1 0.079837
0.005 0.99999 0.62477 1 0.11605 0.98909 0.83765 0.9593 0.87914 0.97658 0.97567 1 0.17848
0.01 0.99995 0.65239 1 0.14146 0.98378 0.82 0.94659 0.85883 0.9663 0.96526 1 0.25225
0.05 0.99837 0.71601 0.99998 0.22394 0.95741 0.76988 0.89478 0.79375 0.91888 0.91757 1 0.55298
0.1 0.99298 0.73924 0.99983 0.27272 0.93334 0.74045 0.85459 0.75214 0.87876 0.87737 1 0.74168
0.15 0.98375 0.74747 0.99931 0.30574 0.91201 0.71883 0.8218 0.72084 0.84492 0.84351 1 0.84704
0.2 0.97077 0.74769 0.99815 0.33111 0.89177 0.70038 0.79232 0.69399 0.81402 0.81262 0.99998 0.90706
0.25 0.95413 0.74215 0.9961 0.35158 0.87192 0.68356 0.76462 0.66952 0.78473 0.78336 0.99992 0.94156
0.3 0.93389 0.73185 0.99286 0.36838 0.85207 0.66761 0.73788 0.64642 0.75633 0.755 0.99977 0.96171
0.35 0.91009 0.71732 0.98818 0.38214 0.83193 0.65208 0.71159 0.62408 0.72837 0.72709 0.9994 0.97363
0.4 0.88273 0.69885 0.98178 0.39317 0.81128 0.63665 0.68537 0.60208 0.70049 0.69926 0.99862 0.98055
0.45 0.85176 0.67658 0.97339 0.4016 0.78988 0.62109 0.65893 0.5801 0.6724 0.67123 0.99713 0.98406
0.5 0.81706 0.65054 0.96271 0.40745 0.76751 0.60515 0.63196 0.55784 0.64383 0.64274 0.99452 0.9848
0.55 0.77847 0.62067 0.94943 0.41063 0.7439 0.58862 0.60419 0.53503 0.61451 0.61348 0.9902 0.9828
0.6 0.73573 0.58681 0.93315 0.41097 0.71871 0.57122 0.57528 0.51135 0.5841 0.58315 0.9834 0.97764
0.65 0.68847 0.54869 0.9134 0.40817 0.69153 0.55264 0.54484 0.48644 0.55223 0.55136 0.9731 0.96855
0.7 0.63614 0.50588 0.88956 0.40178 0.66178 0.53243 0.51236 0.45982 0.51839 0.5176 0.95799 0.95434
0.75 0.57793 0.45773 0.86074 0.39109 0.62862 0.50997 0.4771 0.43082 0.48185 0.48116 0.93621 0.93324
0.8 0.51255 0.4032 0.82555 0.37496 0.59073 0.48427 0.43795 0.39843 0.44152 0.44092 0.90506 0.90262
0.85 0.43783 0.34055 0.78155 0.3514 0.54581 0.45357 0.39301 0.36086 0.39551 0.39501 0.86008 0.85806
0.9 0.34949 0.2665 0.72362 0.31631 0.4891 0.4142 0.33844 0.31453 0.33999 0.33961 0.79256 0.79086
0.95 0.23673 0.17304 0.6366 0.2585 0.40721 0.35543 0.26372 0.24948 0.26449 0.26424 0.6789 0.67742
0.973 0.16711 0.11688 0.57037 0.21332 0.34744 0.31057 0.21224 0.20336 0.21273 0.21256 0.58759 0.58611
0.99 0.095194 0.06148 0.48037 0.15471 0.27093 0.25003 0.15048 0.14639 0.15078 0.15068 0.46451 0.46284
0.996 0.056619 0.033764 0.41126 0.11438 0.21683 0.20467 0.11006 0.10809 0.11027 0.11022 0.3751 0.37309
0.998 0.038217 0.0214 0.366 0.090878 0.18385 0.17586 0.087024 0.085901 0.087202 0.087161 0.32016 0.31776
0.999 0.025796 0.013543 0.32583 0.072157 0.15626 0.15105 0.068887 0.068248 0.069032 0.069003 0.27415 0.27125
0.9999 0.006992 0.0029419 0.22149 0.033435 0.092131 0.090927 0.031834 0.031738 0.031904 0.031895 0.16769 0.16188
0.99999 0.0018935 0.00063494 0.14959 0.015319 0.054835 0.054569 0.014756 0.014741 0.01479 0.014788 0.10621 0.094976
0.999999 0.00050668 0.00013483 0.095918 0.006454 0.032663 0.032606 0.0068493 0.0068472 0.0068734 0.0068726 0.06881 0.052622

Table II. Radiation and material temperature profiles, as a function of ξ/ξ0 = x/xF (t), obtained from numerical solutions of
the ODE system (27)-(28), for the test cases defined in Sec. IV B. The numerical values of ξ0 for each case are also listed. In
tests 1 and 2 we have ω < 0, so that g (ξ = 0) = 0, and g (ξ) is increasing until reaching a maximum and then decreasing again
towards the front. In cases 3-5 we have ω > 0, so that g (ξ = 0) = 1, and g (ξ) is strictly decreasing. Test 5 has B ≫ 1 which
results in the thermodynamic equilibrium limit, as g (ξ) ≈ f (ξ). Test 6 also has B ≫ 1, but since the density is extremely
small in the inner region ξ/ξ0 ≤ 0.3, equilibrium is not reached in that region.

which has the form of a power-law since the absorp-
tion and total opacities have the same temperature and
density exponents. For the material energy density we
take µ = 0.14, so that the critical exponent is βc =
β′

c = 2.925 [see Eqs. (34)-(35)]. We set β = 3.4 and
F = 1014 keV−3.4

(g/cm3)0.86
erg
cm3 , so that the material energy den-

sity is given by:

u (T, ρ) = 1014
(

T

keV

)3.4(
ρ

g/cm3

)0.86 erg
cm3 .

For the exponents of this material model, using Eqs.
(17)-(18), a self similar solution exists for a surface tem-
perature temporal exponent τ = 86

57 ≈ 1.50877 and a

spatial density exponent ω = − 20
19 ≈ −1.05263. There-

fore, the surface temperature and the material density
profile are:

Ts (t) =
(

t

ns

) 86
57

keV,

ρ (x) =
( x

cm

) 20
19 g/cm3.

Using Eqs. (19)-(20), we find the dimensionless constants
of the problem: A = 1.75246 and B = 4.15619. The
similarity exponent is δ = 1, since the absorption and
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Figure 12. A comparison between the surface and bath drive
temperatures for test 1.
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Figure 13. Radiation and material temperature profiles for
Test 1. Results are shown at times t = 0.2, 0.6 and 1ns, as ob-
tained from the gray diffusion self-similar solution, a gray dif-
fusion simulation and from Implicit-Monte-Carlo (IMC) and
discrete ordinates (SN ) transport simulations.

total opacities have the same exponents [see Eq. (24)]
and the wave travels at constant speed. The numerical
solution of the similarity equations (27)-(28) gives the
heat front coordinate ξ0 = 1.2746051, so that the heat
front position, according to Eq. (30) is:

xF (t) = 0.8332614
(

t

ns

)
cm.

The resulting dimensionless flux at the origin is S (0) =
4.62922, so that the bath temperature is [Eq. (48)]:

Tbath (t) = 1.0470478
(

t

ns

) 86
57

keV,

which is used in transport simulations via the incoming
bath radiation flux [Eq. (55)] or in diffusion simulations
via the Marshak boundary condition [Eq. (44)]. We note
that the bath temperature has a power law form since
δ = 1. Diffusion simulations can be run, alternatively,
using the surface temperature boundary condition [Eq.
(7)]. A comparison of the surface and bath temperatures
as a function of time is displayed in Fig. 12.

The radiation and material temperature profiles are
given by the self-similar solution [Eqs. (25)-(26)]:

Tr (x, t) =
(

t

ns

) 86
57

f1/4 (ξ0x/xF (t)) keV,

T (x, t) =
(

t

ns

) 86
57

g1/4 (ξ0x/xF (t)) keV.

As discussed in Sec. III, there is no analytical solution for
the temperature profiles. The resulting numerical solu-
tion is tabulated in table II. Simple closed form approxi-
mate expressions for the temperature profiles are given in
table (III), with an accuracy which is better than 0.5%.
The profiles in tables II and III are given as functions
of ξ/ξ0 = x/xF (t). As discussed in Sec. III B, since we
have β < 4, the spatial density increases in space, and
the material temperature is reduced to zero towards the
origin.

Since B is not much larger than unity, we expect a sig-
nificant deviation from equilibrium. This is seen in Fig.
13, where radiation and material temperature profiles of
the self-similar gray diffusion solution are compared to
the results of numerical gray diffusion and transport sim-
ulations.

TEST 2

We define, as in test 1, another case with ω < 0, but
with a sharper heat front. We take α = 3, α′ = 2, λ =

0.2, λ′ = 0.1, G = 10−3 cm(g/cm3)1.2

keV3 , G′ = 10
cm
(

g/cm3
)1.1

keV2 ,
so that the total and absorption opacities are:

kt (T, ρ) = 103
(

T

keV

)−3(
ρ

g/cm3

)1.2
cm−1,

ka (T, ρ) = 0.1
(

T

keV

)−2(
ρ

g/cm3

)1.1
cm−1.

For transport simulations, the scattering opacity [Eq.
(54)] is given by:

ks (T, ρ) = 103
(

T

keV

)−3(
ρ

g/cm3

)1.2

− 0.1
(

T

keV

)−2(
ρ

g/cm3

)1.1
cm−1,
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Figure 14. A comparison between the surface and bath drive
temperatures for test 2.
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Figure 15. Radiation and material temperature profiles for
Test 2. Results are shown at times t = 0.631385, 0.864201
and 1ns, as obtained from a gray diffusion simulation and
from Implicit-Monte-Carlo (IMC) and discrete ordinates (SN )
transport simulations.

which is not a power-law form as in test 1, since the
absorption and total opacities have different temperature
and density exponents. We also take µ = 0.4, so that
βc = 2.909 and β′

c = 2.69565. We set β = 3 and F =
1014 keV−3

(g/cm3)0.6
erg
cm3 , so that the material energy density is

given by:

u (T, ρ) = 1014
(

T

keV

)3(
ρ

g/cm3

)0.6 erg
cm3 .

For the exponents of this material model we get τ = 6
and ω = − 20

7 ≈ −2.8571, so that the surface temperature

and density profile are:

Ts (t) =
(

t

ns

)6
keV,

ρ (x) =
( x

cm

) 20
7 g/cm3.

The dimensionless constants of the problem are A =
0.20833 and B = 1.63201. As in the previous case, B is
not large and we expect a significant deviation from equi-
librium. From Eq. (24) we find the similarity exponent
δ = 7

2 , so that the the wave front accelerates over time.
The resulting numerical heat front similarity coordinate
is ξ0 = 0.615503394, so that the heat front position is:

xF (t) = 0.26348387
(

t

ns

) 7
2

cm.

The resulting numerical dimensionless flux at the origin
is S (0) = 12.5696, so that the bath temperature is [Eq.
(48)]:

Tbath (t) =
(

1 + 0.358968
(

t

ns

) 5
2
) 1

4 (
t

ns

)6
keV,

which is not in a power law form, since δ ̸= 1. A compar-
ison of the surface and bath temperatures as a function
of time is displayed in Fig. 14.

The radiation and material temperature profiles are
given by the self-similar solution [Eqs. (25)-(26)]:

Tr (x, t) =
(

t

ns

)6
f1/4 (ξ0x/xF (t)) keV,

T (x, t) =
(

t

ns

)6
g1/4 (ξ0x/xF (t)) keV.

The resulting numerical profiles are tabulated in table
II and approximate closed form expressions are given in
table (III) as a function of ξ/ξ0 = x/xF (t). As in the
previous case, since we have β < 4, the material temper-
ature is decreased to zero towards the origin.

The temperature profiles are displayed in Fig. 15,
showing again a great agreement between the various
simulations and analytic gray diffusion solution.

TEST 3

We now define a case with ω > 0. We take α =
α′ = 4.5, λ = λ′ = 0.9, G = 0.5 cm(g/cm3)1.9

keV4.5 , G′ =

103 cm
(

g/cm3
)1.9

keV4.5 , so that the total and absorption opaci-
ties are:

kt (T, ρ) = 2
(

T

keV

)−4.5(
ρ

g/cm3

)1.9
cm−1,

ka (T, ρ) = 10−3
(

T

keV

)−4.5(
ρ

g/cm3

)1.9
cm−1.
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Figure 16. A comparison between the surface and bath drive
temperatures for test 3.
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Figure 17. Radiation and material temperature profiles for
Test 3. Results are shown at times t = 0.2, 0.6 and 1ns, as ob-
tained from the gray diffusion self-similar solution, a gray dif-
fusion simulation and from Implicit-Monte-Carlo (IMC) and
discrete ordinates (SN ) transport simulations.

For transport simulations, the scattering opacity is given
by a power law form as well:

ks (T, ρ) = 1.999
(

T

keV

)−4.5(
ρ

g/cm3

)1.9
cm−1.

We also take µ = 0.3, so that βc = β′
c = 2.3421. We set

β = 6 and F = 1014 keV−6

(g/cm3)0.7
erg
cm3 , so that the material

energy density is given by:

u (T, ρ) = 1014
(

T

keV

)6(
ρ

g/cm3

)0.7 erg
cm3 .

For the exponents of this material model, we find τ =
14

139 ≈ 0.10072 and ω = 40
139 ≈ 0.28777, so that the surface

temperature and density profile are:

Ts (t) =
(

t

ns

) 14
139

keV,

ρ (x) =
( x

cm

)− 40
139 g/cm3.

The dimensionless constants of the problem are A =
0.0163665 and B = 0.0187098, so we expect a significant
deviation from equilibrium. As in test 1, the similarity
exponent is δ = 1, since the absorption and total opac-
ities have the same exponents. The resulting numerical
heat front similarity coordinate is ξ0 = 0.31411518, so
that the heat front position is

xF (t) = 0.95029077
(

t

ns

)
cm.

The resulting numerical dimensionless flux at the origin
is S (0) = 0.20284, so that the bath temperature is [Eq.
(48)]:

Tbath (t) = 1.01008116
(

t

ns

) 14
139

keV.

A comparison of the surface and bath temperatures as a
function of time is displayed in Fig. 16.

The radiation and material temperature profiles are
given by the self-similar solution [Eqs. (25)-(26)]:

Tr (x, t) =
(

t

ns

) 14
139

f1/4 (ξ0x/xF (t)) keV,

T (x, t) =
(

t

ns

) 14
139

g1/4 (ξ0x/xF (t)) keV.

The resulting numerical profiles are tabulated in table
II and approximate closed form expressions are given in
table (III) as a function of ξ/ξ0 = x/xF (t). In this case,
since we have β > 4, the material temperature is equal
to the radiation temperature at the origin.

The temperature profiles are displayed in Fig. 17,
showing again a great agreement between the various
simulations and analytic gray diffusion solution.

TEST 4

We define, as in test 3, a test with ω > 0 but with a
less steep heat front. We take, as in test 2 the exponents
α = 3, α′ = 2, λ = 0.2, λ′ = 0.1 and G = 0.5 cm(g/cm3)1.2

keV3 ,

G′ = 102 cm
(

g/cm3
)1.1

keV2 , so that the total and absorption
opacities are:

kt (T, ρ) = 2
(

T

keV

)−3(
ρ

g/cm3

)1.2
cm−1,

ka (T, ρ) = 10−2
(

T

keV

)−2(
ρ

g/cm3

)1.1
cm−1.
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Figure 18. A comparison between the surface and bath drive
temperatures for test 4.
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Figure 19. Radiation and material temperature profiles for
Test 4. Results are shown at times t = 0.233846, 0.630525
and 1ns, as obtained from the gray diffusion self-similar so-
lution, a gray diffusion simulation and from Implicit-Monte-
Carlo (IMC) and discrete ordinates (SN ) transport simula-
tions.

For transport simulations, the scattering opacity [Eq.
(54)] is given by:

ks (T, ρ) = 2
(

T

keV

)−3(
ρ

g/cm3

)1.2

− 10−2
(

T

keV

)−2(
ρ

g/cm3

)1.1
cm−1.

We also take µ = 0.4, so that βc = 2.909 and β′
c =

2.69565. We set β = 6.5 and F = 1014 keV−6.5

(g/cm3)0.6
erg
cm3 , so

that the material energy density is given by:

u (T, ρ) = 1014
(

T

keV

)6.5(
ρ

g/cm3

)0.6 erg
cm3 .

For the exponents of this material model we get τ =
12
79 ≈ 0.151899 and ω = 4

7 ≈ 0.571429, so that the surface
temperature and density profile are:

Ts (t) =
(

t

ns

) 12
79

keV,

ρ (x) =
( x

cm

)− 4
7 g/cm3.

The dimensionless constants of the problem are A =
0.138891 and B = 0.178419. As in the previous case,
B is not large and we expect a significant deviation from
equilibrium. From Eq. (24) we find the similarity ex-
ponent δ = 175

158 ≈ 1.10759, so that the the wave front
accelerates over time. The resulting numerical heat front
similarity coordinate is ξ0 = 0.48463864 and the heat
front position is:

xF (t) = 1.648216882
(

t

ns

) 175
158

cm.

The resulting numerical dimensionless flux at the origin
is S (0) = 0.260125, so that the bath temperature is [Eq.
(48)]:

Tbath (t) =
(

1 + 0.0590184
(

t

ns

) 17
158
) 1

4 (
t

ns

) 12
79

keV.

A comparison of the surface and bath temperatures as a
function of time is displayed in Fig. 18.

The radiation and material temperature profiles are
given by the self-similar solution [Eqs. (25)-(26)]:

Tr (x, t) =
(

t

ns

) 12
79

f1/4 (ξ0x/xF (t)) keV,

T (x, t) =
(

t

ns

) 12
79

g1/4 (ξ0x/xF (t)) keV.

The resulting numerical profiles are tabulated in table
II and approximate closed form expressions are given in
table (III) as a function of ξ/ξ0 = x/xF (t). As in the
previous case, since we have β > 4, the material temper-
ature is equal to the radiation temperature at the origin.

The temperature profiles are displayed in Fig. 19,
showing again a great agreement between the various
simulations and analytic gray diffusion solution.
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Figure 20. A comparison between the surface and bath drive
temperatures for test 5.
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Figure 21. Radiation and material temperature profiles for
Test 5. Results are shown at times t = 0.2346891, 0.63124555
and 1ns, as obtained from the gray diffusion self-similar so-
lution, a gray diffusion simulation and from Implicit-Monte-
Carlo (IMC) and discrete ordinates (SN ) transport simula-
tions.

TEST 5

We define another case with ω > 0, and such that
B ≫ 1, so that the thermodynamic equilibrium limit
is reached, unlike the previous cases which were signifi-
cantly out of equilibrium. We take α = 3, α′ = 2, λ =

λ′ = 0.35, G = 0.2 cm(g/cm3)1.35

keV3 , G′ = 0.2
cm
(

g/cm3
)1.35

keV2 , so
that the total and absorption opacities are:

kt (T, ρ) = 5
(

T

keV

)−3(
ρ

g/cm3

)1.35
cm−1,

ka (T, ρ) = 5
(

T

keV

)−2(
ρ

g/cm3

)1.35
cm−1.
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Figure 22. A close view near the origin of the temperature
profiles at time t = 1ns (from the gray diffusion simulation
and analytic solution), for Test 5 (see Fig. 21).

For transport simulations, the scattering opacity [Eq.
(54)] is given by:

ks (T, ρ) = 5
(

ρ

g/cm3

)1.35
[(

T

keV

)−3
−
(

T

keV

)−2
]

cm−1.

We also take µ = 0.2, so that βc = 2.8148 and β′
c =

2.5185. We set β = 5.5 and F = 2 × 1014 keV−5.5

(g/cm3)0.8
erg
cm3 ,

so that the material energy density is given by:

u (T, ρ) = 2 × 1014
(

T

keV

)5.5(
ρ

g/cm3

)0.8 erg
cm3 .

For the exponents of this material model we get τ =
32

145 ≈ 0.22069 and ω = 60
161 ≈ 0.372671, so that the

surface temperature and density profile are:LTE

Ts (t) =
(

t

ns

) 32
145

keV,

ρ (x) =
( x

cm

)− 60
161 g/cm3.

The dimensionless constants of the problem are A =
118.772 and B = 68.0203. Since B significantly larger
than unity, we expect the material and radiation tem-
peratures to be very close (and, as in tests 3-4, equal at
the origin, since ω > 0). From Eq. (24) we find the sim-
ilarity exponent δ = 161

145 ≈ 1.11034, so that the the wave
front accelerates over time. The resulting numerical heat
front similarity coordinate is ξ0 = 0.53073002 and the
heat front position is:

xF (t) = 0.8428997
(

t

ns

) 161
145

cm.
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Figure 23. A comparison between the surface and bath drive
temperatures for test 6.

The resulting numerical dimensionless flux at the origin
is S (0) = 0.840029, so that the bath temperature is [Eq.
(48)]:

Tbath (t) =
(

1 + 0.0890032
(

t

ns

) 16
145
) 1

4 (
t

ns

) 32
145

keV.

A comparison of the surface and bath temperatures as a
function of time is displayed in Fig. 20.

The radiation and material temperature profiles are
given by the self-similar solution [Eqs. (25)-(26)]:

Tr (x, t) =
(

t

ns

) 32
145

f1/4 (ξ0x/xF (t)) keV,

T (x, t) =
(

t

ns

) 32
145

g1/4 (ξ0x/xF (t)) keV.

The resulting numerical profiles are tabulated in table
II and approximate closed form expressions are given in
table (III) as a function of ξ/ξ0 = x/xF (t).

The temperature profiles are displayed in Fig. 21,
showing again a great agreement between the various
simulations and analytic gray diffusion solution. It is
evident that resulting temperature profiles are very close
to a state of equilibrium, as the radiation and material
temperatures differ by about 0.1%. This difference, is
evident in Fig. 22, where we show a close up view near
the origin. It is interesting to see the great agreement of
the gray diffusion simulations with the analytic solution
even on that scale.

TEST 6

We define the last case to have ω = −3, and B ≫ 1,
so that the thermodynamic equilibrium limit should be
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Figure 24. Radiation and material temperature profiles for
Test 6. Results are shown at times t = 0.2, 0.6 and 1ns, as ob-
tained from the gray diffusion self-similar solution, a gray dif-
fusion simulation and from Implicit-Monte-Carlo (IMC) and
discrete ordinates (SN ) transport simulations.

reached. We set a material with free-free like absorp-
tion, which depends on ρ2. Since ρ (x) ∝ x3, the density,
and as a result, the coupling between the material and
radiation, is expected to be very low in a wide region
near the origin. This results in a significant state of non-
equilibrium ranging from the origin and halfway towards
the front (where the coupling is large due to the lower ma-
terial temperature). We take α = α′ = 3.5, λ = λ′ = 1,

G = 0.0005 cm(g/cm3)2

keV3.5 , G′ = 0.01
cm
(

g/cm3
)2

keV3.5 , so that the
total and absorption opacities are:

kt (T, ρ) = 2000
(

T

keV

)−3.5(
ρ

g/cm3

)2
cm−1,

ka (T, ρ) = 100
(

T

keV

)−3.5(
ρ

g/cm3

)2
cm−1.

For transport simulations, the scattering opacity [Eq.
(54)] is given by:

ks (T, ρ) = 1900
(

T

keV

)−3.5(
ρ

g/cm3

)2
cm−1.

We take and ideal like energy density, µ = 0, so that
βc = β′

c = 2.25. We set β = 2.5 and F = 1014 keV−2.5

g/cm3
erg
cm3 ,

so that the material energy density is given by:

u (T, ρ) = 1014
(

T

keV

)2.5(
ρ

g/cm3

)
erg
cm3 .

For the exponents of this material model we get τ = 2 and
a ω = −3, so that the surface temperature and density
profile are:

Ts (t) =
(

t

ns

)2
keV,
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ρ (x) =
( x

cm

)3
g/cm3.

The dimensionless constants of the problem are A =
56.3408 and B = 902.197. The resulting similarity ex-
ponent is δ = 1, and the numerical heat front coordinate
is ξ0 = 1.19867771, so that the heat front position is:

xF (t) = 0.61806779
(

t

ns

)
cm.

The resulting numerical dimensionless flux at the origin
is S (0) = 9.31253, so that the bath temperature is [Eq.
(48)]:

Tbath (t) = 1.0719423
(

t

ns

)2
keV.

A comparison of the surface and bath temperatures as a
function of time is displayed in Fig. 23.

The radiation and material temperature profiles are
given by the self-similar solution [Eqs. (25)-(26)]:

Tr (x, t) =
(

t

ns

)2
f1/4 (ξ0x/xF (t)) keV,

T (x, t) =
(

t

ns

)2
g1/4 (ξ0x/xF (t)) keV.

The resulting numerical profiles are tabulated in table
II and approximate closed form expressions are given in
table (III) as a function of ξ/ξ0 = x/xF (t). The tem-
perature profiles are displayed in Fig. 24, showing again
a great agreement between the various simulations and
analytic gray diffusion solution. We note the significant
lack of equilibrium in a wide range near the origin.

V. CONCLUSION

In this work we have developed new self-similar solu-
tions to a nonlinear non-equilibrium supersonic Marshak
wave problem in non-homogeneous media in the diffusion
limit of radiative transfer. The solutions exist under the
assumptions of a temporal power-law surface radiation

temperature drive of the form Ts (t) = T0tτ , a spatial
power law density profile ρ (x) = ρ0x−ω, and material
model with power law temperature and density depen-
dent total and absorption opacities kt (T, ρ) = 1

g T −αρλ+1

and ka (T, ρ) = 1
g′ T −α′

ρλ′+1, and a material energy den-
sity u (T, ρ) = FT βρ1−µ. The solutions are a generaliza-
tion of the recent work [27], were such non-linear non-
equilibrium solutions were developed for a homogeneous
media (ω = 0), which required a material energy den-
sity that is proportional to the radiation energy density
(β = 4). It is shown that the generalized solutions exist
for specific values of the temporal drive exponent τ and
the spatial density exponent ω, which are functions of
the temperature and density material model exponents
α, λ, α′, λ′, β, µ (given by Eqs. (17)-(18)). The proper-
ties of the solutions were analyzed in detail, including
the range of validity and the thermodynamic equilibrium
limit for which the radiation and material temperature
become very close. The behavior of the solutions near
the origin was analyzed, and it was shown that the ma-
terial temperature at the origin is always zero for ω < 0;
can have any value between 0 and the radiation temper-
ature for ω = 0; and is always equal to the radiation
temperature when ω > 0.

We constructed a set of non-equilibrium and non-
homogeneous Marshak wave benchmarks for supersonic
radiative heat transfer. The numerical solutions of the
similarity profiles for these benchmarks were tabulated,
and approximate closed form analytic functions were also
given for convenience. The benchmarks were run us-
ing implicit Monte-Carlo and discrete-ordinate radiation
transport simulations as well gray diffusion simulations.
All benchmarks, which were defined to be optically thick,
resulted in a very good agreement with the similarity
solutions of the gray diffusion equation. We conclude
that the solutions developed in this work can be used
as non-trivial but easy to implement code verification
test problems for non-equilibrium radiation heat transfer
computer simulations.
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Appendix A: Dimensional analysis

In this appendix, we use the method of dimensional
analysis to construct a self-similar solution of the prob-
lem defined by the nonlinear gray diffusion model in
Eqs. (12)-(13), with the initial and boundary condi-
tions (5)-(8). As detailed in table IV, the problem is
formulated in terms 8 dimensional quantities, which are
composed of 3 different units - time, length and energy
density. According the the Pi (Buckingham) theorem
of dimensional analysis [32, 71, 72], the problem can
be expressed in terms of 8 − 3 = 5 dimensionless vari-
ables Π1, Π2, Π3, Π4, Π5 which are defined as products of
power laws in terms of the dimensional quantities. In or-
der to express the solution with a single similarity inde-
pendent variable Π1 = ξ and two self-similar dependent
variables for the radiation Π2 = f (ξ) ∝ E and matter
Π3 = g (ξ) ∝ U , we require that the remaining dimen-
sionless quantities, which we denote as A = Π4, B = Π5,
would not depend on E, U, x, t, that is, they should be
dimensionless quantities that depend on the dimensional
constants characterizing the problem, which we write as:

Π4 = A = En
0 KkMm, (A1)

Π5 = B = En′

0 Kk′
P p. (A2)

The requirement that A is dimensionless results in the
following homogeneous system of linear equations:

n − α

4 k + α′

4 m = 0,

k (2 − ω (1 + λ)) + mω (1 + λ′) = 0,

4τn + k + m = 0,

which has the solution:

k

(
2 − ω (1 + λ) − ω

1 + ατ

1 − α′τ
(1 + λ′)

)
= 0,

n = − 1
4τ

(k + m) ,

m = − 1 + ατ

1 − α′τ
k.

A set of infinite non-trivial solutions exists only if:
ω (1 + λ′)

2 − ω (1 + λ) = 1 − α′τ

1 + ατ
. (A3)

By setting (without loss of generality) m = 1, we have
n = − 1

1+ατ
α+α′

4 , k = − 1−α′τ
1+ατ so that:

A = E
− α+α′

4(ατ+1)
0 K

α′τ−1
ατ+1 M. (A4)

Similarly, by the requirement that B is dimensionless, we
get the linear homogeneous system:

n′ − α

4 k′ +
(

α′ + β

4 − 1
)

p = 0,

k′ (2 − ω (1 + λ)) + ωp (λ′ + µ) = 0,

4τn′ + k′ + p = 0,

which has the solution:[
(2 − ω (1 + λ)) − 1 + ατ

1 − (α′ + β − 4) τ
ω (λ′ + µ)

]
k′ = 0,

p = − 1 + ατ

1 − (α′ + β − 4) τ
k′,

n′ = − 1
4τ

(k′ + p) .

As before, an infinite set of nontrivial solutions exists
only if:

(1 − (α′ + β − 4) τ) (2 − ω (1 + λ))
−ω (1 + ατ) (λ′ + µ) = 0 (A5)

By solving Eqs. (A3), (A5) for τ and ω, we obtain Eqs.
(17)-(18). Therefore, given a material model which is
defined by the exponents α,λ,α′,λ′,β,µ, a self-similar so-
lution exists only for a temporal exponent τ and spatial
exponent ω which obey the relations Eqs. (17)-(18), re-
spectively. By setting (without loss of generality) p = 1,
we get:

B = E
4−β−α−α′

4(ατ+1)
0 K

(α′+β−4)τ−1
ατ+1 P. (A6)

We now write the dimensionless independent similarity
coordinate as:

Π1 = ξ = xt−δEn
0 Kk. (A7)

The requirement that ξ is dimensionless results in the
following (non-homogeneous) system of linear equations:

k (2 − ω (1 + λ)) = −1,

n − α

4 k = 0,

4τn + k + δ = 0.

which has the solution:

δ = 1 + ατ

2 − ω (1 + λ) ,

n = − α

4 (2 − ω (1 + λ)) ,

k = − 1
2 − ω (1 + λ) ,

which proves Eq. (23). Finally, we can write the dimen-
sionless similarity profiles directly, since the radiation en-
ergy density at the system boundary, E0t4τ , has units of
energy density:

Π2 = E

E0t4τ
= f (ξ) , (A8)

Π3 = U

E0t4τ
= g (ξ) . (A9)
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We will now show explicitly, that by substituting the
self-similar ansatz Eqs. (A7),(A8)-(A9) in the gray diffu-
sion equations (12)-(13), under the constrains Eqs. (17)-
(18), results in a dimensionless ODE system for the sim-
ilarity profiles f, g. By using the relation ∂

∂x = ξ
x

∂
∂ξ , the

flux term in Eq. (12) reads:

∂

∂x

(
xω(1+λ)U

α
4

∂

∂x
E

)
= xω(1+λ)−2ξt(α+4)τ E

α
4 +1

0 ×(
ω (1 + λ) g

α
4 f ′ + ξg

α
4 −1

[α

4 f ′g′ + gf ′′
])

. (A10)

Similarly, by using the relation ∂
∂t = −δ ξ

t
∂
∂ξ the left hand

side of Eq. (12) reads:

∂E

∂t
= E0t4τ−1 (4τf − δξf ′) . (A11)

By substituting Eqs. (A10)-(A11) in Eq. (12), we find:

E0t4τ−1 (4τf − δξf ′) = E0t4τ−1ξω(1+λ)×(
1
ξ

ω (1 + λ) g
α
4 f ′ + g

α
4 −1

[α

4 f ′g′ + gf ′′
])

+ ME
− α′

4
0 ξ−ω(1+λ′)

(
1

t1+ατ E
α
4

0 K

) ω(1+λ′)
2−ω(1+λ)

×

E0g− α′
4 t(4−α′)τ (g − f) .

By using Eq. (A4), the dimensional quantity M can be
written in terms of the dimensionless A, and by using

Eq. (A3), we find:

E0t4τ−1 (4τf − δξf ′) = E0t4τ−1ξω(1+λ)×(
1
ξ

ω (1 + λ) g
α
4 f ′ + g

α
4 −1

[α

4 f ′g′ + gf ′′
])

+E0t4τ−1Aξ−ω(1+λ′)g− α′
4 (g − f) ,

which upon factoring out the common dimensional
E0t4τ−1 term, results in the dimensionless similarity
ODE (27). Similarly, the material equation (13) can be
written as:

E0t4τ−1 (4τf − δξf ′) = Pξ−ω(µ+λ′)
(

1
t1+ατ E

α
4

0 K

)− ω(µ+λ′)
2−ω(1+λ)

×

(
E0t4τ g

)1− α′+β
4 E0t4τ (f − g) .

By using Eq. (A6), the dimensional quantity P can be
written in terms of the dimensionless B, and by using Eq.
(A5), which gives

ω (µ + λ′)
2 − ω (1 + λ) = 1 − (α′ + β − 4) τ

1 + ατ
,

we obtain:

E0t4τ−1 (4τg − δξg′) = E0t4τ−1Bξ−ω(µ+λ′)g1− α′+β
4 (f − g) ,

which upon factoring out the common dimensional
E0t4τ−1 term, results in the dimensionless similarity
ODE (28).
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Fitted temperatures profiles Average Error Maximal Error

Test 1
f1/4 (ξ) =

{
1 − 0.75567

(
ξ

ξ0

)2.0416
ξ < 0.75ξ0

1.2527
(
1 − ξ

ξ0

)0.55623
ξ ≥ 0.75ξ0

0.15% 0.44%

g1/4 (ξ) =

{
−0.15937

(
ξ

ξ0

)0.2194 +
(

ξ
ξ0

)0.074842
ξ < 0.05ξ0(

0.63674 + 0.55611
(

ξ
ξ0

)0.56101
)(

1 − ξ
ξ0

)0.63964
ξ ≥ 0.05ξ0

0.067% 0.45%

Test 2
f1/4 (ξ) =

{
1 − 0.35369

(
ξ

ξ0

)3.2539
ξ < 0.75ξ0

1.1098
(
1 − ξ

ξ0

)0.1834
ξ ≥ 0.75ξ0

0.077% 0.66%

g1/4 (ξ) =

{
0.52694

(
ξ

ξ0

)0.28559 −
(

ξ
ξ0

)3.5311
ξ < 0.1ξ0(

0.15073 + 0.55903
(

ξ
ξ0

)0.62589
)(

1 − ξ
ξ0

)0.32965
ξ ≥ 0.1ξ0

0.15% 0.45%

Test 3

f1/4 (ξ) =

{
1 − 0.31578

(
ξ

ξ0

)0.66822
ξ < 0.2ξ0(

0.95143 − 0.11368
(

ξ
ξ0

)1.4227
)(

1 − ξ
ξ0

)0.24206
ξ ≥ 0.2ξ0

0.18% 0.57%

g1/4 (ξ) =

{
1 + 0.75349

(
ξ

ξ0

)0.37109 −
(

ξ
ξ0

)0.24703
ξ < 0.05ξ0(

1.2663 − 0.58658
(

ξ
ξ0

)0.061645
)(

1 − ξ
ξ0

)0.21797
ξ ≥ 0.05ξ0

0.058% 0.57%

Test 4

f1/4 (ξ) =

{
1 − 0.44613

(
ξ

ξ0

)0.47963
ξ < 0.2ξ0(

0.93272 − 0.19194
(

ξ
ξ0

)0.56565
)(

1 − ξ
ξ0

)0.34578
ξ ≥ 0.2ξ0

0.11% 0.63%

g1/4 (ξ) =

{
1 + 0.60577

(
ξ

ξ0

)0.3164 −
(

ξ
ξ0

)0.27358
ξ < 0.05ξ0(

1.149 − 0.48665
(

ξ
ξ0

)0.11809
)(

1 − ξ
ξ0

)0.32793
ξ ≥ 0.05ξ0

0.052% 0.22%

Test 5

f1/4 (ξ) = g1/4 (ξ) =

{
1 − 0.43238

(
ξ

ξ0

)0.55116
ξ < 0.1ξ0(

0.97888 − 0.23325
(

ξ
ξ0

)0.53204
)(

1 −
(

ξ
ξ0

))0.34725
ξ ≥ 0.1ξ0

0.12% 0.54%

Test 6

f1/4 (ξ) =

{
1 − 0.38037

(
ξ

ξ0

)6.1993
ξ < 0.85ξ0(

1.2945 − 0.089492
(

ξ
ξ0

)53.199
)(

1 − ξ
ξ0

)0.21389
ξ ≥ 0.85ξ0

0.033% 0.30%

g1/4 (ξ) =


0.3831 ξ

ξ0
− 9.5148

(
ξ

ξ0

)2
+ 12.852

(
ξ

ξ0

)3
+ 2.4707

(
ξ

ξ0

)0.49788
ξ < 0.3ξ0

0.66687 + 2.0778 ξ
ξ0

− 5.2893
(

ξ
ξ0

)2
+ 6.4522

(
ξ

ξ0

)3
− 3.2832

(
ξ

ξ0

)4
, 0.3ξ0 ≤ ξ < 0.8ξ0(

−586.76 + 588.16
(

ξ
ξ0

)0.00058395
)(

1 − ξ
ξ0

)0.23844
ξ ≥ 0.8ξ0

0.07% 0.77%

Table III. Approximate analytic radiation and material temperature similarity profiles, as functions of ξ/ξ0 = x/xF (t), for the
test cases defined in Sec. IV B (the exact numerical profiles are tabulated in table II). The maximal and average relative errors
(in the range 10−6 ≤ ξ/ξ0 ≤ 0.95), relative to the exact profiles, are also listed. Test 5 is near thermodynamic equilibrium,
with a difference of 0.1% between the exact material and radiation temperatures.
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E U E0 K M P x t

[E] [E] [E]
[time]4τ

[length]2−ω(1+λ)

[E]
α
4 [time]

[E]
α′
4 [length]ω(1+λ′)

[time]
[E]

α′+β
4 −1[length]ω(λ′+µ)

[time] [length] [time]

Table IV. The dimensional quantities in the problem (upper line) and their dimensions (lower line). [E] denotes the dimensions
of energy per unit volume.
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