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1 Introduction

As a mathematical subject, the theory of elasticity goes back to Cauchy and has again flourished since
the mid-twentieth century (cf. eg. [60]). Thermoviscoelasticity with its strong nonlinear coupling be-
tween heat generation and the deformation of materials offers mathematical challenges at various levels.
Classical one-dimensional existence results include local [43] or local and, under smallness conditions
on initial data, global existence of classical solutions [58, 14, 28, 26] – although, on the other hand, for
large data, C2 solutions may blow up, [15, 32] – or global existence of weak solutions, [46, 11]. Also the
long-time behavior of solutions has been studied, [46, 42, 5]. Only substantially later than [58, 14] were
results for higher-dimensional systems obtained, e.g. [45, 56, 6] or [19] (the latter under assumptions of
radial symmetry). Once again, there are nonlinearities that can cause solutions to lose C2 regularity,
[44]. Existence results concern local-in-time solutions [27, 8] or solvability under smallness conditions
[45, 56].

Global weak solutions in three-dimensional domains were found in [37] for a system with irreversible
mechanical deformations manifesting in an inelastic constitutive relation taking the form of an ODE.
Without this inelastic effect, heat capacity growing with temperature has been leveraged in several
constructions of certain solutions, [50, 6, 40, 20, 21], where this growth was relied on to deal with ana-
lytic difficulties stemming from the effects of temperature dilation. For a simplified system neglecting
viscosity-driven transfer of mechanical energy into heat, a statement on global solvability has recently
been derived in [12]. Further extended models feature fourth-order terms [65, 49, 64, 52, 34] (which
may be beneficial in the derivation of a priori bounds) or additional ’internal variables’ describing e.g.
plasticity [51, 2, 3, 4, 38, 39, 53]; for related settings regarding adhesive contact see [48, 49].

Common to all these precedent studies on higher-dimensional cases seems a concentration on situa-
tions in which crucial system ingredients such as the elastic parameters and viscosities are constants;
recent experimental observations concerned with the behavior of certain piezoceramics, however, have
revealed some partially significant dependencies of these constituents on temperature. The present
manuscript investigates a multi-dimensional model for thermoviscoelasticity capable of taking such
effects into account, and intends to develop a basic theory of global solvability on the basis of a gener-
alized solution concept that seems novel in this context; in particular, the design of this framework will
be motivated by the ambition to cope with an apparent loss of some favorable structural properties
going along with such modifications.

Before introducing the mathematical main results, let us consider the model with its physical back-
ground.

Application and modeling background. The generation of excess heat has a detrimental effect
in many industrial and scientific applications. Not only are involuntary thermal emissions an indicator
for a lack of efficiency, the increased temperature may also damage components. Among the materials
that are particularly susceptible to temperature related damage are piezoelectric ceramics [55]. They
are used as electromechanical transducers to generate and detect mechanical vibrations and acoustic
waves in a variety of applications, ranging from microphones and loudspeakers to ultrasonic welding.
The piezoelectric effect in these ceramics, which also show ferroelectric properties, is only present if the
material is polarised. This intrinsic polarisation vanishes if a certain temperature threshold, the Curie
temperature, is exceeded, rendering the piezoelectric ceramic inert. This is especially problematic in
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high-power applications, such as ultrasonic bonding and welding, where piezoelectric ceramics are used
as actors and are thus a primary source of heat [31, 66]. Additionally, the resonant behavior, which is
crucial for the function of these devices, shows strong dependence on temperature [61]. Therefore, it is
of utmost importance to accurately consider the heat generated by the acoustic waves in and around
the piezoelectric material.

To account for mechanical losses during acoustic wave propagation, a suitable refinement of Hooke’s
law is required. Known as the apparently most basic description for the linear mechanical behavior of
a solid, Hooke’s law postulates the mechanical stress tensor T = (Tij)i,j∈{1,2,3} ∈ R3×3 to be related
to the mechanical strain tensor S = (Skl)k,l∈{1,2,3} ∈ R3×3 through the forth-rank elasticity tensor
C = (Cijkl)i,j,k,l∈{1,2,3} ∈ R3×3×3×3 [36] according to the tensor product

T = C : S, (1.1)

that is, to the relation

Tij =
3∑

k,l=1

CijklSkl, i, j ∈ {1, 2, 3},

(cf. also below for a more compact summary on notation used here); we note that both the stress and
strain tensor are symmetric in the sense of satisfying Tij = Tji and Sij = Sji for i, j ∈ {1, 2, 3}. Now in
further development of this, the Kelvin-Voigt model proposes to describe mechanical losses, and thus
the generation of heat, by means of the modified relation ([22])

T = C : (S + τSt), (1.2)

where τ ∈ R is the retardation time constant quantifying losses and St denotes the time derivative of
the strain [33]; thus containing only one single additional constant compared to the above purely elastic
model, this Kelvin-Voigt law is one of the fundamental viscoelastic material models. The differential
equation for the displacement field u = (ui)i∈{1,2,3} ∈ R3 in a material described by the Kelvin-Voigt
model can be derived from the Cauchy momentum equation [7]

utt =
1

ρ

3∑
j=1

∂jT·j =
1

ρ
div T,

and the definition of the strain via the symmetric gradient

Skl =
1

2
(∂luk + ∂kul) = (∇su)kl, k, l ∈ {1, 2, 3}. (1.3)

With ρ > 0 denoting the density of the material, the resulting viscous wave equation

ρutt = div (C : ∇su) + τdiv (C : ∇sut) (1.4)

does not only model the behavior of a viscoelastic solid described by the Kelvin-Voigt model but also
arises in fluid acoustics from a linearized form of the Navier-Stokes equations [54]. For τ = 0 and scalar
quantities, (1.4) takes the form of a classical wave equation with phase velocity cph =

√
C/ρ. The
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mixed third-order derivative term quantifies absorption for acoustic waves and is directly related to
the viscosity when considering fluids [54]; this term thus describes a conversion of mechanical energy
into thermal energy.

To quantify the energy conversion process, the work P ∈ R done on a solid can be determined by
the scalar product of the mechanical stress T with the time derivative of the mechanical strain St [7]
according to

P =
3∑

i,j=1

TijSij,t = ⟨T, St⟩,

which in conjunction with (1.2) yields the identity

P = ⟨C : S, St⟩+ ⟨τC : St, St⟩.

The first term in this expression describes reversible energy storage due to elastic deformations; for
harmonic processes especially, it is easily shown that the time average of ⟨C : S, St⟩ is zero. The second
term quantifies the conversion of mechanical work into thermal energy. It can be described in terms
of the strain S or, using (1.3), in terms of the displacement u [59, 7],

Q = ⟨τC : St, St⟩ = ⟨τC : ∇sut,∇sut⟩.

The quantity Q ∈ R has the physical unit of an energy source density and can be inserted directly as
a source for heat generation [7] in the parabolic equation

cρΘt = λ∆Θ+ ⟨τC : ∇sut,∇sut⟩, (1.5)

for the temperature distribution Θ, where c > 0 and λ > 0 denote the heat capacity and the thermal
conductivity of the material, respectively; in this sense, (1.5) thus couples thermal and mechanical
effects. Now the main novelty to be considered in the present study stems from the observation that
in some materials relevant to applications, temperature dependencies of the elastic parameters are
not negligible. As an example, a parameter of the elasticity C of a piezoelectric material is shown in
Fig. 1, indicating a near-linear increase over temperature within the considered range [18]. Thus led
to considering situations when

C = C(Θ),

we note that allowing for such types of dependencies further increases the complexity with respect to
modelling the thermoelastic behavior of a component in general, and to thermal losses generated by
acoustic waves in particular. In fact, it is to be expected that the overall thermal stability of a system
may depend on a specific type of temperature dependence.

Specifying a class of initial-boundary value problems. Notation and main results. On
supplementing (1.4) and (1.5) with prototypically simple boundary and initial conditions we arrive at
the problem

utt = div (γ(Θ) : ∇sut) + adiv (γ(Θ) : ∇su), x ∈ Ω, t > 0,

Θt = D∆Θ+ ⟨Γ(Θ) : ∇sut,∇sut⟩, x ∈ Ω, t > 0,

u = 0, Θ = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u0t(x), Θ(x, 0) = Θ0(x), x ∈ Ω,

(1.6)
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Figure 1: Measurement result for the temperature dependence of the elastic parameter C3333 of a
piezoelectric ceramic, showing a near-linear relationship [18].

as the precise mathematical object to be subsequently considered; in comparison with the above, to
prepare convenient notation throughout our analysis we have thus set a = 1

τ , D = λ
cρ , γ(Θ) = τ

ρC(Θ)
and Γ(Θ) = τ

cρC(Θ), although we will not rely on any relation between γ and Γ. We note that (1.6)
assumes temperature dependencies to be limited to the elasticity tensor, hence neglecting possible
variations of the parameter a with respect to Θ. Apart from that, we underline that effects of ther-
moelasticity are not regarded within the scope of this study; in fact, including such mechanisms is
well-known to bring about substantial challenges for the mathematical analysis already in cases when
γ does not depend on Θ ([50], [6]). After all, at least in simple near-linear situations in which me-
chanical processes are purely harmonic, such mechanisms would lead to additional contributions which
with respect to heat generation would involve production rates with vanishing temporal averages. In
this sense, their neglection might be expected to be of minor impact in comparison to possible effects
exerted by temperature dependencies in the key system constituent γ.

In order to formulate our results, and for further reference below, let us comment on the nota-
tion used throughout sequel. For matrices Y = (Yij)i,j∈{1,...,n} ∈ Rn×n ∈ Rn×n and tensors β =
(βijkl)i,j,k,l∈{1,...,n} ∈ Rn×n×n×n, we write ⟨X,Y ⟩ :=

∑n
i,j=1XijYij ∈ R andXt := (Xt)ij with (Xt)ij :=

Xji for i, j ∈ {1, ..., n}, and define the matrix β : X ∈ Rn×n by letting (β : X)ij :=
∑n

k,l=1 βijklXkl for
i, j ∈ {1, ..., n}. Moreover, given vectors w = (w1, ..., wn) ∈ Rn and z = (z1, ..., zn) ∈ Rn we introduce
a matrix w ⊗ z ∈ Rn×n by writing (w ⊗ z)ij := wizj for i, j ∈ {1, ..., n}. Finally, for vector functions
ψ = (ψ1, ..., ψn) ∈W 1,1(Ω;Rn) we let ∇ψ := (∂jψi)i,j=1,...,n and ∇sψ := 1

2(∂jψi+∂iψj)i,j=1,...,n denote
its Jacobian and the associated symmetrized gradient, respectively.

Now in an attempt to undertake a first step toward an understanding of possible influences that temper-
ature dependencies of the above type may have, this manuscript focuses on the issue of global solvability
in (1.6). We again recall here that in the case when both γ and Γ are temperature-independent, then
previous literature asserts global existence of so-called weak-renormalized solutions actually even in

5



slightly more complex variants of (1.6) in which, inter alia, some suitably mild thermoelastic effects can
be admitted ([6]; cf. also [50] for a close relative addressing Neumann bounary conditions for Θ); we
emphasize, however, that precedent studies in essential parts rely on a favorable energy structure which
in the corresponding version of the simple system (1.6) with Θ-independent γ is formally expressed in
the identity

d

dt

{
1

2

∫
Ω
|ut|2 +

a

2

∫
Ω
⟨γ : ∇su,∇su⟩

}
= −

∫
Ω
⟨γ : ∇sut,∇sut⟩. (1.7)

Our main results now make sure that although this structure apparently breaks down when γ = γ(Θ),
within a suitably generalized concept of solvability, to be discussed in more detail in Section 2, some
global solution to (1.6) can be found under assumptions mild enough so as to be satisfied by any
sufficiently smooth and bounded ingredients γ and Γ:

Theorem 1.1 Let n ≥ 1 and Ω ⊂ Rn be a bounded domain with smooth boundary, let a > 0 and
D > 0, and suppose that{

γ = (γijkl)i,j,k,l∈{1,...,n} ∈ L∞([0,∞);Rn×n×n×n) ∩ C2([0,∞);Rn×n×n×n) and
Γ = (Γijkl)i,j,k,l∈{1,...,n} ∈ L∞([0,∞);Rn×n×n×n) ∩ C2([0,∞);Rn×n×n×n)

(1.8)

are such that
γijkl(ξ) = γklij(ξ) for all ξ ≥ 0 and (i, j, k, l) ∈ {1, ..., n}4 (1.9)

and
γijkl(ξ) = γjikl(ξ) for all ξ ≥ 0 and (i, j, k, l) ∈ {1, ..., n}4, (1.10)

that
Γijkl(ξ) = Γklij(ξ) for all ξ ≥ 0 and (i, j, k, l) ∈ {1, ..., n}4, (1.11)

and that
⟨γ(ξ) : X,X⟩ ≥ Kγ |X|2 for all ξ ≥ 0 and X ∈ Rn×n (1.12)

as well as
⟨Γ(ξ) : X,X⟩ ≥ KΓ|X|2 for all ξ ≥ 0 and X ∈ Rn×n (1.13)

with some Kγ > 0 and KΓ > 0. Then whenever
u0 ∈W 1,2

0 (Ω;Rn),
u0t ∈ L2(Ω;Rn) and
Θ0 ∈ L1(Ω;R) is nonnegative,

(1.14)

there exist functions{
u ∈ L∞

loc([0,∞);W 1,2
0 (Ω;Rn)) and

Θ ∈ L∞
loc([0,∞);L1(Ω;R)) ∩

⋂
q∈[1,n+2

n
) L

q
loc(Ω× [0,∞);R) ∩

⋂
r∈[1,n+2

n+1
) L

r
loc([0,∞);W 1,r

0 (Ω;R))
(1.15)

such that
ut ∈ L∞

loc([0,∞);L2(Ω;Rn)) ∩ L2
loc([0,∞);W 1,2

0 (Ω;Rn)), (1.16)

and that (u,Θ) forms a global generalized solution of (1.6) in the sense of Definition 2.1 below.
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We note that here the assumption in (1.10), as already required in previous literature ([50], [34], [6])
encodes the requirement from (1.1) that γ turns symmetric strains to symmetric stresses.

Main ideas. Due to the absence of an energy structure of the form in (1.7), a major challenge for
any analysis of (1.6) seems to be linked to the essentially quadratic type of coupling therein: Already
in the simple particular case when Γ coincides with the identity mapping on Rn×n, heat production
occurs at a rate which is bounded from below by |∇sut|2. In the present setting, a priori knowledge
for this quantity which is available without requirements on information about Θ seems to reduce to
estimates of the form ∫ T

0

∫
Ω
⟨γ(Θ) : ∇s(ut + au),∇s(ut + au)⟩ ≤ C(T )

which reflect the dissipative action in the first equation from (1.6) in the framework of some associated
zero-order energy inequality; even in the favorable setting of bounded and uniformly positive definite
γ addressed in Theorem 1.1, this seems to merely yield L2 bounds for ∇ut – and hence, equivalently,
for ∇sut – in the sense of implying that(∫ T

0

∫
Ω
|∇ut|2 +

) ∫ T

0

∫
Ω
|∇sut|2 ≤ C(T )

for T > 0 (cf. Lemma 3.4). Accordingly, the heat source can apparently be controlled in the non-
reflexive space L1(Ω × (0, T )) for T > 0 only, which seems to go along with a lack of knowledge on
suitable compactness properties in any meaningful approximation scheme, and hence seems to mark a
crucial difference to the situation of Θ-independent γ addressed in [6] and [50], for instance.

To overcome related difficulties, the existence theory to be developed below resorts to a notion of
generalized solvability that substantially deviates from those introduced in some precedent studies
in which certain renormalized solution concepts for the corresponding temperature distributions were
introduced, but in which standard weak solvability is considered with respect to the displacement
variable ([6], [9], [10]). Specifically, with regard to the crucial solution component Θ our concept will
require validity of two inequalities, instead of fulfillment of one identity such as in standard weak
solution concepts. In contrast to some cases of rather far relatives in the recent literature on fully
parabolic problems ([30], [62]), the approach pursued here in this regard will need to appropriately
cope with the wave type structure of the first equation in (1.6), and with thus fairly restricted options to
make use of dissipative features. Specifically, the core of our analysis, to be foreshadowed in Defnition
2.1 and executed in Lemma 7.4, will examine quantities of the form

F :=
1

2
|ut|2 +

κ

2
|∇u|2 + λΘ, κ > 0, λ > 0, (1.17)

which at a pointwise level couple the temperature field to the constituents |ut|2 and |∇u|2 of the
fundamental energy structure in the wave part of (1.6). A key observation will reveal that when here
the free parameters κ and λ are chosen suitably, certain integrated versions of F will indeed satisfy a
one-sided inequality which can be viewed as providing an upper bound for ∂tF that is optimal in the
sense of being satisfied as an identity along smooth trajectories (see (2.5), Proposition 2.2 and (7.31)).

At a technical level, key parts of these considerations will rely on appropriate exploitation of weak
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lower semicontinuity of norms in L2 spaces, to be adapted to settings in which differences between
such expressions and integrals involving terms of the form

⟨β(z) : ∇sw,∇sw⟩ (1.18)

occur, comparable to those in (1.9) and (1.12) (Section 6). Apart from that, due to limited information
on regularity of ∂Θ∂ν on ∂Ω (cf. Lemma 3.3 and Lemma 5.1), spatial localization of the arguments related
to F seems in order (see (2.8)).

2 A concept of generalized solvability. Approximate solutions

The following describes the notion of generalized solvability that will form the target object of our
subsequent considerations. While essentially standard requirements on natural weak solvability with
regard to the first equation in (1.6) are imposed, with respect to the component Θ an associated
one-sided inequality, (2.4), is combined with the localized energy dissipation feature (2.5):

Definition 2.1 Let γ ∈ L∞([0,∞);Rn×n×n×n) and Γ ∈ L∞([0,∞);Rn×n×n×n), let a > 0 and D > 0,
and suppose that u0 ∈ W 1,2

0 (Ω;Rn), u0t ∈ L2(Ω;Rn) and Θ0 ∈ L1(Ω;R). Then a pair (u,Θ) of
functions {

u ∈ L2
loc([0,∞);W 1,2

0 (Ω;Rn)) and

Θ ∈ L1
loc([0,∞);W 1,1

0 (Ω;R))
(2.1)

will be called a global generalized solution of (1.6) if

ut ∈ L2
loc([0,∞);W 1,2

0 (Ω;Rn)) (2.2)

and Θ ≥ 0 a.e. in Ω× (0,∞), if∫ ∞

0

∫
Ω
u · φtt +

∫
Ω
u0 · φt(·, 0)−

∫
Ω
u0t · φ(·, 0)

= −
∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇sut,∇φ⟩ − a

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su,∇φ⟩ (2.3)

for all φ ∈ C∞
0 (Ω× [0,∞);Rn), if

−
∫ ∞

0

∫
Ω
Θφ̂t −

∫
Ω
Θ0φ̂(·, 0) ≥ D

∫ ∞

0

∫
Ω
Θ∆φ̂+

∫ ∞

0

∫
Ω
⟨Γ(Θ) : ∇sut,∇sut⟩φ̂ (2.4)

for each nonnegative φ̂ ∈ C∞
0 (Ω× [0,∞);R), and if there exist κ > 0, λ > 0 and µ > 0 with the property

that for any nonnegative ψ ∈ C∞
0 (Ω;R) and arbitrary nonincreasing ζ ∈ C∞

0 ([0,∞);R), the inequality∫ ∞

0

∫
Ω
D(κ,λ,µ,ζ,ψ) ≤ ζ(0)

∫
Ω
F (κ,λ,ψ)
0 +

∫ ∞

0

∫
Ω
R(λ,µ,ζ,ψ) (2.5)

holds, where

F (κ,λ,ψ)
0 ≡ F (κ,λ,ψ)

0 (x) :=
(1
2
|u0t|2 +

κ

2
|∇u0|2 + λΘ0

)
ψ, x ∈ Ω, (2.6)
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and

D(κ,λ,µ,ζ,ψ) ≡ D(κ,λ,µ,ζ,ψ)(x, t)

:=
{
⟨γ(Θ) : ∇sut,∇sut⟩+ a⟨γ(Θ) : ∇su,∇sut⟩

−κ⟨∇u,∇ut⟩ − λ⟨Γ(Θ) : ∇sut,∇sut⟩
}
ζ(t)e−µtψ

+F (κ,λ,ψ)
(
µζ(t)− ζt(t)

)
e−µt, x ∈ Ω, t > 0, (2.7)

with
F (κ,λ,ψ) ≡ F (κ,λ,ψ)(x, t) :=

(1
2
|ut|2 +

κ

2
|∇u|2 + λΘ

)
ψ, x ∈ Ω, t > 0, (2.8)

and where

R(λ,µ,ζ,ψ) ≡ R(λ,µ,ζ,ψ)(x, t)

:=
{
⟨γ(Θ) : ∇sut, ut ⊗∇ψ⟩+ a⟨γ(Θ) : ∇su, ut ⊗∇ψ⟩+ λDΘ∆ψ

}
ζ(t)e−µt,

x ∈ Ω, t > 0. (2.9)

Consistency of this concept with that of classical solvability is underlined by the following observation.

Proposition 2.2 Let γ and Γ belong to L∞([0,∞);Rn×n×n×n)∩C1([0,∞);Rn×n×n×n), let a > 0 and
D > 0, and let u0 ∈ C0(Ω;Rn), u0t ∈ C0(Ω;Rn),Θ0 ∈ C0(Ω;R) as well as{

u ∈ C0(Ω× [0,∞);Rn) ∩ C2,1(Ω× (0,∞);Rn) and
Θ ∈ C0(Ω× [0,∞);R) ∩ C2,1(Ω× (0,∞);R)

be such that

ut ∈ C0(Ω× [0,∞);Rn) ∩ C2,1(Ω× (0,∞);Rn)

t 7→
∫
Ω
|∇u(·, t)|2 is continuous,

utt ∈ L1
loc(Ω× [0,∞)), Θt,∆Θ ∈ L1

loc(Ω× [0,∞)) (2.10)

and that (u,Θ) forms a global generalized solution of (1.6) in the sense of Definition 2.1. Then (1.6)
is actually satisfied in the classical sense.

Proof. That u = 0 and Θ = 0 on Ω× (0,∞) immediately results from the functions belonging to
L2
loc([0,∞);W 1,2

0 (Ω;Rn)) and L1
loc([0,∞);W 1,1

0 (Ω;Rn), respectively, and their continuity.
If we insert arbitrary φ ∈ C∞

0 (Ω × (0,∞)) in (2.3) and integrate by parts twice with respect to
time and once to space (which is obviously possible, because all of the integrands φutt, φtut, φttu,
⟨γ(Θ) : ∇sut,∇φ⟩+a⟨γ(Θ) : ∇su,∇φ⟩, div (γ(Θ) : ∇s(ut+au))φ are continuous on suppφ), from the
fundamental lemma of the calculus of variations (applicable, since utt and div (γ(Θ) : ∇s(ut+au) belong
to L1

loc(Ω×(0,∞))), we obtain that the first equation of (1.6) is satisfied at every point in Ω×(0,∞). For
ψ ∈ C∞

0 (Ω) and ε > 0 inserting φ(x, t) = ψ(x)( tε−
2t2

ε2
+ t3

ε3
)χ[0,ε](t) or φ(x, t) = ψ(x)(1− 2t2

ε2
+ t4

ε4
)χ[0,ε](t)
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in (2.3) and taking the limit ε ↘ 0 (using continuity of u and ut at t = 0) shows that u fulfils the
initial conditions.
From (2.10) and an analogous treatment of (2.4) we find that Θt ≥ D∆Θ + ⟨Γ(Θ) : ∇sut,∇sut⟩ in
Ω× (0,∞) and Θ(0) ≥ Θ0 in Ω.
From a choice of ζ(t) := (1− t

ε)+ in (2.5) due to continuity of t 7→
∫
ΩF (κ,λ,ψ)(·, t),∫

Ω

(1
2
|ut(·, 0)|2 +

κ

2
|∇u(·, 0)|2 + λΘ(·, 0)

)
ψ ≤

∫
Ω

(1
2
|u0t|2 +

κ

2
|∇u0|2 + λΘ0

)
ψ

for each nonnegative ψ ∈ C∞
0 (Ω) and hence Θ(0) ≤ Θ0 in Ω.

Accordingly, for any ψ ∈ C∞
0 (Ω) and ζ ∈ C∞

0 ([0,∞)),∫ ∞

0

∫
Ω

(
1

2
|ut|2 +

κ

2
|∇u|2 + λΘ

)
ψ(−ζe−µt)t =∫ ∞

0

∫
Ω
(ututt + κ⟨∇u,∇sut⟩+ λΘt)ψζe

−µt + ζ(0)

∫
Ω

(
|u0t|2 +

κ

2
|∇u0|2 + λΘ0

)
ψ

since utt,Θt ∈ L1
loc(Ω× [0,∞)). If we insert the equality for u and integrate by parts with respect to

space, many terms in (2.5) are cancelled and we see that∫ ∞

0

∫
Ω
(−λ⟨Γ(Θ) : ∇sut,∇sut⟩+ λΘt) ζ(t)e

−µtψ ≤
∫ ∞

0

∫
Ω
λDΘ∆ψζ(t)e−µt,

which finally due to ∆Θ ∈ L1
loc(Ω × [0,∞)) shows the remaining inequality Θt ≤ D∆Θ + ⟨Γ(Θ) :

∇sut,∇sut⟩.
□

Throughout the sequel, we shall consider Ω, a,D, γ and Γ as well as u0, u0t and Θ0 to be fixed and
such that the assumptions of Theorem 1.1 are met. We can then pick (u0ε)ε∈(0,1) ⊂ C∞

0 (Ω;Rn),
(u0tε)ε∈(0,1) ⊂ C∞

0 (Ω;Rn) and (Θ0ε)ε∈(0,1) ⊂ C∞
0 (Ω;R) in such a way that Θ0ε ≥ 0 in Ω for all

ε ∈ (0, 1), and that

u0ε → u0 in W 1,2(Ω;Rn), u0tε → u0t in L2(Ω;Rn) and Θ0ε → Θ0 in L1(Ω;R) as ε↘ 0.
(2.11)

In line with standard theory of local solvability in parabolic systems ([1]), this particularly ensures
that for each ε ∈ (0, 1), the regularized variant of (1.6) given by

vεt = −ε∆2vε + div (γ(Θε) : ∇svε) + adiv (γ(Θε) : ∇suε), x ∈ Ω, t > 0,

uεt = ε∆uε + vε, x ∈ Ω, t > 0,

Θεt = D∆Θε + ⟨Γ(Θε) : ∇svε,∇svε⟩, x ∈ Ω, t > 0,

vε = 0, ∆vε = 0, uε = 0, Θε = 0, x ∈ ∂Ω, t > 0,

vε(x, 0) = u0tε(x), uε(x, 0) = u0ε(x), Θε(x, 0) = Θ0ε(x), x ∈ Ω,

(2.12)

admits a local-in-time classical solution in the following sense:
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Lemma 2.3 Let ε ∈ (0, 1). Then there exist Tmax,ε ∈ (0,∞] as well as functions
vε ∈ C0(Ω× [0, Tmax,ε);Rn) ∩ C4,1(Ω× (0, Tmax,ε);Rn),
uε ∈ C0(Ω× [0, Tmax,ε);Rn) ∩ C2,1(Ω× (0, Tmax,ε);Rn) ∩ C0([0, Tmax,ε);W

1,2
0 (Ω;Rn)) and

Θε ∈ C0(Ω× [0, Tmax,ε);R) ∩ C2,1(Ω× (0, Tmax,ε);R)

such that Θε ≥ 0 in Ω × [0, Tmax,ε), that (vε, uε,Θε) solves (2.12) classically in Ω × (0, Tmax,ε), and
that

if Tmax,ε <∞, then for all η > 0,

lim sup
t↗Tmax,ε

{
∥vε(·, t)∥W 2+2η,∞(Ω) + ∥uε(·, t)∥W 1+η,∞(Ω) + ∥Θε(·, t)∥W 1+η,∞(Ω)

}
= ∞ (2.13)

Proof. For any p > n, we let E1 = {(v, u,Θ) ∈W 4,p(Ω)×W 2,p(Ω)×W 2,p(Ω) | v|∂Ω = 0,∆v|∂Ω =
0, u|∂Ω = 0,Θ|∂Ω = 0} and E0 = (Lp(Ω))3 and denote by Eγ = (E0, E1)γ the interpolation space of
order γ ∈ (0, 1), let f ≡ 0 and

A(v, u,Θ) =

ε∆2 − div (γ(Θ) : ∇s·) −adiv (γ(Θ)∇s·)
−ε∆

−⟨Γ(Θ) : ∇sv : ∇s·⟩ −D∆

 ∈ L(E1, E0), (u, v,Θ) ∈ Eβ.

Since for (v1, u1,Θ1), (v2, u2,Θ2) ∈ Eβ and (ṽ, ũ, Θ̃) ∈ E1,

∥div ((γ(Θ1)− γ(Θ2))∇sũ)∥Lp(Ω)

≤∥((γ(Θ1)− γ(Θ2))D
2ũ)∥Lp(Ω) + ∥(γ′(Θ1)− γ′(Θ2))∇Θ1∇sũ)∥Lp(Ω) + ∥γ′(Θ2)(∇Θ1 −∇Θ2)∇sũ∥Lp(Ω)

≤(∥γ(Θ1)− γ(Θ2)∥L∞(Ω) + ∥(γ′(Θ1)− γ′(Θ2))∇Θ1)∥Lp(Ω) + ∥γ′(Θ2)(∇Θ1 −∇Θ2)∥Lp(Ω))∥ũ∥W 2,p

and thus

∥div ((γ(Θ1)− γ(Θ2))∇s·)∥L(E1,E0)

≤ ∥γ(Θ1)− γ(Θ2)∥L∞(Ω) + ∥(γ′(Θ1)− γ′(Θ2))∇Θ1∥Lp(Ω) + ∥γ′(Θ2)(∇Θ1 −∇Θ2)∥Lp(Ω)

and related estimates for the other terms show the required Lipschitz continuity of A : Eβ → L(E1, E0)
for β = 1

2 , we may employ the general existence result of [1, Thm. 12.1], obtaining a solution and
deriving an extensibility criterion in Eδ for δ > 1

2 and thus, in consequence, (2.13), from [1, Thm. 12.5].
□

3 Basic testing procedures. A priori estimates for vε and uε

A first testing procedure applied to (2.12) is designed here in such a way that not only the derivation
of spatially global estimates is prepared (Lemma 3.4), but that later on also our analysis of (2.5) can
be built on this (see Lemma 7.4).
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Lemma 3.1 Let ψ ∈ C2(Ω;R) and ε ∈ (0, 1). Then

1

2

∫
Ω
(|vε|2)tψ +

∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩ψ + ε

∫
Ω
|∆vε|2ψ

= −a
∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩ψ

−
∫
Ω
⟨γ(Θε) : ∇svε, vε ⊗∇ψ⟩−a

∫
Ω
⟨γ(Θε) : ∇suε, vε ⊗∇ψ⟩

−2ε

∫
Ω
(∇vε · ∇ψ) ·∆vε − ε

∫
Ω
(vε ·∆vε)∆ψ for all t ∈ (0, Tmax,ε). (3.1)

Proof. According to the first equation in (2.12),

1

2

∫
Ω
(|vε|2)tψ =

∫
Ω
vε · div

(
γ(Θε) : ∇svε

)
ψ + a

∫
Ω
vε · div

(
γ(Θε) : ∇suε

)
ψ

−ε
∫
Ω
(vε ·∆2vε)ψ for all t ∈ (0, Tmax,ε), (3.2)

where thanks to the boundary conditions vε = 0 and ∆vε = 0 on ∂Ω× (0, Tmax,ε), two integrations by
parts show that for all t ∈ (0, Tmax,ε),

−ε
∫
Ω
(vε ·∆2vε)ψ = −ε

∫
Ω
∆vε ·∆(vε · ψ)

= −ε
∫
Ω
|∆vε|2ψ − 2ε

∫
Ω
(∇vε · ∇ψ) ·∆vε − ε

∫
Ω
(vε ·∆vε)∆ψ. (3.3)

Again since vε ≡ (vε1, ..., vεn) = 0 on ∂Ω× (0, Tmax,ε), by another integration by parts we find that∫
Ω
vε · div

(
γ(Θε) : ∇svε

)
ψ =

n∑
i=1

∫
Ω
ψvεi

(
div

(
γ(Θε) : ∇svε

))
i

=
n∑

i,j=1

∫
Ω
ψvεi∂j

(
γ(Θε) : ∇svε

)
ij

= −
n∑

i,j=1

∫
Ω
∂j(ψvεi)

(
γ(Θε) : ∇svε

)
ij

= −
n∑

i,j=1

∫
Ω
ψ∂jvεi

(
γ(Θε) : ∇svε

)
ij
−

n∑
i,j=1

∫
Ω
∂jψvεi

(
γ(Θε) : ∇svε

)
ij

= −
∫
Ω
⟨γ(Θε) : ∇svε,∇vε⟩ψ −

∫
Ω
⟨γ(Θε) : ∇svε, vε ⊗∇ψ⟩

= −
∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩ψ −

∫
Ω
⟨γ(Θε) : ∇svε, vε ⊗∇ψ⟩ (3.4)

for all t ∈ (0, Tmax,ε), because our assumption (1.10) guarantees that

⟨γ(Θε) : ∇svε, (∇vε)t⟩ =

n∑
i,j,k,l=1

γijkl(Θε)(∂lvεk + ∂kvεl)∂ivεj
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=
n∑

i,j,k,l=1

γjikl(Θε)(∂lvεk + ∂kvεl)∂ivεj

=

n∑
i′,j′,k,l=1

γi′j′kl(Θε)(∂lvεk + ∂kvεl)∂j′vεi′

= ⟨γ(Θε) : ∇svε,∇vε⟩

and hence

⟨γ(Θε) : ∇svε,∇vε⟩ =
1

2
⟨γ(Θε) : ∇svε,∇vε⟩+

1

2
⟨γ(Θε) : ∇svε, (∇vε)t⟩ = ⟨γ(Θε) : ∇svε,∇svε⟩

in Ω× (0, Tmax,ε). As, similarly,

a

∫
Ω
vε · div

(
γ(Θε) : ∇suε

)
ψ = −a

∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩ − a

∫
Ω
⟨γ(Θε) : ∇suε, vε ⊗∇ψ⟩

for all t ∈ (0, Tmax,ε), combining (3.2) with (3.3) and (3.4) leads to (3.1). □

A second basic feature of (2.12) is rather evident.

Lemma 3.2 If ψ ∈ C1(Ω;R) and ε ∈ (0, 1), then

1

2

∫
Ω

(
|∇uε|2

)
t
ψ + ε

∫
Ω
|∆uε|2ψ =

∫
Ω
⟨∇uε,∇vε⟩ψ − ε

∫
Ω
(∇uε · ∇ψ) ·∆uε (3.5)

for all t ∈ (0, Tmax,ε).

Proof. From the second equation in (2.12), we obtain the identity

1

2

∫
Ω

(
|∇uε|2

)
t
ψ =

∫
Ω
⟨∇uε,∇vε⟩ψ + ε

∫
Ω
⟨ψ∇uε,∇∆uε⟩ for all t ∈ (0, Tmax,ε). (3.6)

Since the boundary condition uε = (uε1, ..., uεn) = 0 on ∂Ω×(0, Tmax,ε) implies that also uεt|∂Ω×(0,Tmax,ε) =

0, and since thus ∆uε =
uεt−vε

ε = 0 on ∂Ω × (0, Tmax,ε), we may here integrate by parts without en-
countering nonzero boundary integrals, thereby confirming that

ε

∫
Ω
⟨ψ∇uε,∇∆uε⟩ = ε

n∑
i,j=1

∫
Ω
ψ∂juεi∂j∆uεi

= −ε
n∑

i,j=1

∫
Ω
ψ∂jjuεi∆uεi − ε

n∑
i,j=1

∫
Ω
∂jψ∂juεi∆uεi

= −ε
∫
Ω
|∆uε|2ψ − ε

∫
Ω
(∇uε · ∇ψ) ·∆uε for all t ∈ (0, Tmax,ε).

Therefore, (3.6) is equivalent to (3.5). □

We furthermore record another simple property of solutions to (2.12).
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Lemma 3.3 Whenever ψ ∈ C2(Ω;R) and ε ∈ (0, 1), we have∫
Ω
Θεtψ = D

∫
Ω
Θε∆ψ +D

∫
∂Ω

∂Θε

∂ν
ψ +

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ψ for all t ∈ (0, Tmax,ε). (3.7)

Proof. From (2.12) we obtain that∫
Ω
Θεtψ = D

∫
Ω
∆Θεψ +

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ψ for all t ∈ (0, Tmax,ε),

and since two integrations by parts relying on the identity Θε|∂Ω×(0,Tmax,ε) = 0 show that

D

∫
Ω
∆Θεψ = −D

∫
Ω
∇Θε · ∇ψ +D

∫
∂Ω

∂Θε

∂ν
ψ

= D

∫
Ω
Θε∆ψ +D

∫
∂Ω

∂Θε

∂ν
ψ for all t ∈ (0, Tmax,ε),

this yields (3.7). □

Choosing ψ ≡ 1 in (3.1) and (3.5) lets a linear combination of the resulting identities become an
essentially straightforward energy analysis of the wave subsystem of (2.12), leading to fairly natural
results as follows.

Lemma 3.4 Let T > 0. Then there exists C(T ) > 0 such that∫
Ω
|vε(·, t)|2 ≤ C(T ) for all t ∈ (0, T ) ∩ (0, Tmax,ε) and ε ∈ (0, 1) (3.8)

and ∫
Ω
|∇uε(·, t)|2 ≤ C(T ) for all t ∈ (0, T ) ∩ (0, Tmax,ε) and ε ∈ (0, 1), (3.9)

that ∫ t

0

∫
Ω
|∇vε|2 ≤ C(T ) for all t ∈ (0, T ) ∩ (0, Tmax,ε) and ε ∈ (0, 1) (3.10)

and that

ε

∫ t

0

∫
Ω
|∆vε|2 ≤ C(T ) for all t ∈ (0, T ) ∩ (0, Tmax,ε) and ε ∈ (0, 1) (3.11)

as well as

ε

∫ t

0

∫
Ω
|∆uε|2 ≤ C(T ) for all t ∈ (0, T ) ∩ (0, Tmax,ε) and ε ∈ (0, 1). (3.12)

Proof. On choosing ψ ≡ 1 therein, from Lemma 3.1 and Lemma 3.2 we infer that

yε(t) :=

∫
Ω
|vε(·, t)|2 +

∫
Ω
|∇uε(·, t)|2, t ∈ [0, Tmax,ε), ε ∈ (0, 1), (3.13)

satisfies

y′ε(t) + 2

∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩+ 2ε

∫
Ω
|∆vε|2 + 2ε

∫
Ω
|∆uε|2
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= −2a

∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩+ 2

∫
Ω
⟨∇uε,∇vε⟩ for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1).(3.14)

Here, a combination of (1.12) with Korn’s inequality (see e.g. [35, 29]) shows that with some c1 > 0
we have

2

∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩ ≥ 2Kγ

∫
Ω
|∇svε|2 ≥ c1

∫
Ω
|∇vε|2 for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1),

while the boundedness of γ on [0,∞) ensures the existence of c2 > 0 such that thanks to Young’s
inequality,

−2a

∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩ ≤ c2

∫
Ω
|∇uε| |∇vε|

≤ c1
4

∫
Ω
|∇vε|2 +

c22
c1

∫
Ω
|∇uε|2 for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1).

As moreover, again by Young’s inequality,

2

∫
Ω
⟨∇uε,∇vε⟩ ≤

c1
4

∫
Ω
|∇vε|2 +

4

c1

∫
Ω
|∇uε|2 for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1), (3.15)

from (3.14) and (3.13) we conclude that

y′ε(t) + hε(t) ≤ c3yε(t) for all t ∈ (0, Tmax,ε) and ε ∈ (0, 1),

where c3 :=
c22
c1

+ 4
c1

, and where

hε(t) :=
c1
2

∫
Ω
|∇vε(·, t)|2 + 2ε

∫
Ω
|∆vε(·, t)|2 + 2ε

∫
Ω
|∆uε(·, t)|2, t ∈ (0, Tmax,ε), ε ∈ (0, 1).

By nonnegativity of hε for ε ∈ (0, 1), using Gronwall’s inequality we firstly infer from (3.15) that

yε(t) ≤ c4 :=
{

sup
ε∈(0,1)

yε(0)
}
ec3T for all t ∈ [0, T ) ∩ [0, Tmax,ε) and ε ∈ (0, 1), (3.16)

with c4 being finite due to (2.11). This directly yields (3.8) and (3.9), whereas (3.10), (3.11) and (3.12)
result from an integration in (3.15), which in view of (3.16) shows that∫ t

0
hε(s)ds ≤ yε(0) + c3

∫ t

0
yε(s)ds ≤ c4 + c3c4T for all t ∈ (0, T ) ∩ (0, Tmax,ε) and ε ∈ (0, 1),

namely. □

4 Global existence in the regularized problems

For fixed ε ∈ (0, 1), due to the fourth-order parabolic regularization in the first equation from (2.12)
the moderate information on L2-boundedness of vε in (3.8) is already sufficient to ensure bounds for
this quantity with respect to the norm in any of the spaces W s,p(Ω;Rn) with s < 3 and p <∞; indeed:
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Lemma 4.1 Let p ≥ 2, and let A denote the realization of ∆2 under the boundary conditions (·)|∂Ω = 0
and ∆(·)|∂Ω = 0 in Lp(Ω;Rn), with domain given by D(A) := {ψ ∈W 4,p(Ω;Rn) | ψ = ∆ψ = 0 on ∂Ω}.
Then whenever ε ∈ (0, 1) is such that Tmax,ε < ∞, for each α ∈ (14 ,

3
4) there exists C(α, ε) > 0 such

that the corresponding fractional power satisfies

∥Aαvε(·, t)∥Lp(Ω) ≤ C(α, ε) for all t ∈ (12Tmax,ε, Tmax,ε). (4.1)

Proof. We first note that according to known smoothing properties of the analytic semigroup
(e−tεA)t≥0 ([17]) and a duality argument in the flavor of [25, Lemma 2.1], one can find α′ = α′(α) ∈
(14 ,

3
4), c1 = c1(α, ε) > 0 and c2 = c2(α, ε) > 0 such that

∥Aαe−tεAdivψ∥Lp(Ω) ≤ c1t
−α′− 1

4 ∥ψ∥Lp(Ω) for all t > 0 and each ψ ∈ C1(Ω;Rn) fulfilling ψ|∂Ω = 0,

and that

∥Aαe−tεAψ∥Lp(Ω) ≤ c2∥ψ∥W 4,p(Ω) for all t > 0 and any ψ ∈ D(A).

Then writing t0 := 1
2Tmax,ε and using a Duhamel representation associated with the first equation in

(2.12), we see that for all t ∈ (t0, Tmax,ε),

∥Aαvε(·, t)∥Lp(Ω) =

∥∥∥∥Aαe−(t−t0)εAvε(·, t0) +
∫ t

t0

Aαe−(t−s)εAdiv
{
γ(Θε) : ∇s(vε + auε)

}
(·, s)ds

∥∥∥∥
Lp(Ω)

≤ ∥Aαe−(t−t0)εAvε(·, t0)∥Lp(Ω)

+c1

∫ t

t0

(t− s)−α
′− 1

4

∥∥γ(Θε) : ∇s(vε + auε)
∥∥
Lp(Ω)

(·, s)ds,

so that since vε(·, t0) ∈ D(A) by Lemma 2.3, and since γ is bounded on [0,∞), with some c3 =
c3(α, ε) > 0 we have

∥Aαvε(·, t)∥Lp(Ω) ≤ c3 + c3

∫ t

t0

(t− s)−α
′− 1

4
{
∥vε(·, s)∥W 1,p(Ω) + ∥uε(·, s)∥W 1,p(Ω)

}
ds (4.2)

for all t ∈ (t0, Tmax,ε). Since a standard interpolation property involving fractional powers of A ([17])
provides ϑ1 = ϑ(α) ∈ (0, 1) and c4 = c4(α) > 0 fulfilling

∥vε(·, s)∥W 1,p(Ω) ≤ c4∥Aαvε(·, s)∥ϑ1Lp(Ω)∥vε(·, s)∥
1−ϑ1
Lp(Ω) for all s ∈ (t0, Tmax,ε),

and since the Gagliardo-Nirenberg inequality together with (3.8) shows that with some ϑ2 ∈ (0, 1),
c5 > 0 and c6 > 0 we have

∥vε(·, s)∥Lp(Ω) ≤ c5∥vε(·, s)∥ϑ2W 1,p(Ω)
∥vε(·, s)∥1−ϑ2L2(Ω)

≤ c6∥vε(·, s)∥ϑ2W 1,p(Ω)
for all s ∈ (t0, Tmax,ε),

we readily infer the existence of ϑ3 = ϑ3(α) ∈ (0, 1) and c7 = ct(α, ε) > 0 such that if for T ∈
(t0, Tmax,ε) we let

M(T ) := sup
t∈(t0,T )

∥Aαvε(·, t)∥Lp(Ω),
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then

∥vε(·, s)∥W 1,p(Ω) ≤ c7∥Aαvε(·, s)∥ϑ3Lp(Ω) ≤ c7M
ϑ3(T ) for all s ∈ (t0, T ) and T ∈ (t0, Tmax,ε). (4.3)

As α′ + 1
4 < 1, (4.2) therefore implies the existence of c8 = c8(α, ε) > 0 such that

∥Aαvε(·, t)∥Lp(Ω) ≤ c3 + c3c7M
ϑ3(T )

∫ t

t0

(t− s)−α
′− 1

4ds+ c3

∫ t

t0

(t− s)−α
′− 1

4 ∥uε(·, s)∥W 1,p(Ω)ds

≤ c8(1 +Mϑ3(T )) + c3

∫ t

t0

(t− s)−α
′− 1

4 ∥uε(·, s)∥W 1,p(Ω)ds (4.4)

for all t ∈ (t0, T ) and T ∈ (t0, Tmax,ε), and in order to appropriately estimate the rightmost summand
herein, we similarly employ regularity features of the Dirichlet heat semigroup (e−tεA2)t≥0, where A2

realizes −∆ in Lp(Ω;Rn) in the domain D(A2) := {ψ ∈ W 2,p(Ω;Rn) | ψ = 0 on ∂Ω}, and thereby
obtain c9 = c9(α, ε) > 0 such that

∥uε(·, s)∥W 1,p(Ω) =

∥∥∥∥e−(t−t0)εA2uε(·, t0) +
∫ t

t0

e−(t−s)εA2vε(·, σ)dσ
∥∥∥∥
W 1,p(Ω)

≤ c9∥uε(·, t0)∥W 1,p(Ω) + c9

∫ t

t0

∥vε(·, σ)∥W 1,p(Ω)dσ for all t ∈ (t0, Tmax,ε).

Using that uε(·, t0) ∈ C2(Ω;Rn), we may thus once more draw on (4.3) to find c10 = c10(α, ε) > 0 such
that

∥uε(·, s)∥W 1,p(Ω) ≤ c10 + c10M
ϑ3(T ) for all s ∈ (t0, T ) and T ∈ (t0, Tmax,ε),

whence again relying on the inequality α′ + 1
4 < 1, from (4.4) we obtain c11 = c11(α, ε) > 0 such that

∥Aαvε(·, t)∥Lp(Ω) ≤ c11 + c11M
ϑ3(T ) for all t ∈ (t0, T ) and T ∈ (t0, Tmax,ε).

Thus,

M(T ) ≤ c11 + c11M
ϑ3(T ) for all T ∈ (t0, Tmax,ε),

which thanks to the inequality ϑ3 < 1 ensures that, indeed, supt∈(t0,Tmax,ε)M(T ) <∞. □

This implies that, in fact, for any such ε the second alternative in the extensibility criterion in (2.13)
cannot occur:

Lemma 4.2 For each ε ∈ (0, 1), the solution of (2.12) from Lemma 2.3 is global in time; that is, we
have Tmax,ε = ∞.

Proof. If Tmax,ε was finite for some ε ∈ (0, 1), then fixing η ∈ (0, 12) we could choose an arbitrary
α ∈ (12 ,

3
4) and any p ≥ 2 such that 4α − n

p > 2 + 2η, and that thus the fractional powers in Lemma
4.1 have the property that D(Aα) ↪→W 2+2η,∞(Ω;Rn) ([23, Thm. 1.6.1]).
An application of (4.1) would therefore yield c1 > 0 such that, again with t0 := 1

2Tmax,

∥vε(·, t)∥W 2+2η,∞(Ω) ≤ c1 for all t ∈ (t0, Tmax,ε), (4.5)

17



which by boundedness of Γ on [0,∞) particularly implies that we could find c2 > 0 such that hε :=
⟨Γ(Θε) : ∇svε,∇svε⟩ would satisfy

|hε(x, t)| ≤ c2 for all x ∈ Ω and t ∈ (t0, Tmax,ε). (4.6)

Therefore, if we pick β ∈ (12 , 1) and q > 1 large such that 2β − n
q > 1+ η, then letting B represent the

Dirichlet Laplacian −∆ in Lq(Ω) and noting that D(Bβ) ↪→ W 1+η,∞(Ω) ([23, Thm. 1.6.1]), we could
employ standard heat semigroup estimates to obtain c3 > 0, c4 > 0 and c5 > 0 fulflilling

∥Θε(·, t)∥W 1+η,∞(Ω) ≤ c3∥BβΘε(·, t)∥Lq(Ω)

= c3

∥∥∥∥Bβe−(t−t0)BΘε(·, t0) +
∫ t

t0

Bβe−(t−s)Bhε(·, s)ds
∥∥∥∥
Lq(Ω)

≤ c4∥BβΘε(·, t0)∥Lq(Ω) + c4

∫ t

t0

(t− s)−β∥hε(·, s)∥L∞(Ω)ds

≤ c4∥BβΘε(·, t0)∥Lq(Ω) + c2c4

∫ t

t0

(t− s)−βds

≤ c5 for all t ∈ (t0, Tmax,ε). (4.7)

As a combination of (4.5) with the second equation in (2.12) would similarly provide c6 > 0 satisfying

∥uε(·, t)∥W 1+η,∞(Ω) ≤ c6 for all t ∈ (t0, Tmax,ε),

the boundedness properties in (4.5) and (4.7) would contradict (2.13), however. □

5 Regularity properties of Θε

Returning to the problem of identifying ε-independent properties of solutions to (2.12), in this section
we focus on the key quantity Θε for which Lemma 3.3, also applied to ψ ≡ 1 here, entails the following
immediate consequence.

Lemma 5.1 For each T > 0 there exists C(T ) > 0 such that∫
Ω
Θε(·, t) ≤ C(T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (5.1)

and ∫ T

0

∫
∂Ω

∣∣∣∂Θε

∂ν

∣∣∣ ≤ C(T ) for all ε ∈ (0, 1). (5.2)

Proof. Upon applying Lemma 3.3 to ψ ≡ 1, we see that

d

dt

∫
Ω
Θε −D

∫
∂Ω

∂Θε

∂ν
=

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ for all t > 0 and ε ∈ (0, 1), (5.3)

where thanks to the boundedness of Γ on [0,∞), with some c1 > 0 we have∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ ≤ c1

∫
Ω
|∇vε|2 for all t > 0 and ε ∈ (0, 1).
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Moreover, combining the nonnegativity of Θε with the identity Θε|∂Ω×(0,∞) = 0 for ε ∈ (0, 1), we
particularly find that ∂Θε

∂ν ≤ 0 on ∂Ω× (0,∞) for all ε ∈ (0, 1), so that integrating (5.3) shows that∫
Ω
Θε(·, t) +D

∫ t

0

∫
∂Ω

∣∣∣∂Θε

∂ν

∣∣∣ ≤ ∫
Ω
Θ0ε + c1

∫ t

0

∫
Ω
|∇vε|2 for all t > 0 and ε ∈ (0, 1).

In view of (2.11) and (3.10), this implies both (5.1) and (5.2). □

Based on (5.2), we can appropriately control boundary integrals appearing in another testing procedure
which is independent from that in Lemma 3.3 and, unlike the latter, capable of providing some spatially
global information about temperature gradients.

Lemma 5.2 Let p ∈ (0, 1). Then for all T > 0 there exists C(p, T ) > 0 such that∫ T

0

∫
Ω
(Θε + 1)p−2|∇Θε|2 ≤ C(p, T ) for all ε ∈ (0, 1). (5.4)

Proof. Once more explicitly using the third equation in (2.12), we obtain that

1

p

d

dt

∫
Ω
(Θε + 1)p =

∫
Ω
(Θε + 1)p−1

{
D∆Θε + ⟨Γ(Θε) : ∇svε,∇svε⟩

}
≥ D

∫
Ω
(Θε + 1)p−1∆Θε for all t > 0 and ε ∈ (0, 1),

because ⟨Γ(Θε) : ∇svε,∇svε⟩ ≥ 0 in Ω× (0,∞) for all ε ∈ (0, 1) due to (1.13). Since an integration by
parts shows that for all t > 0 and ε ∈ (0, 1), thanks to the identity (Θε + 1)p−1|∂Ω = 1 we have

D

∫
Ω
(Θε + 1)p−1∆Θε = (1− p)D

∫
Ω
(Θε + 1)p−2|∇Θε|2 +D

∫
∂Ω

(Θε + 1)p−1∂Θε

∂ν

≥ (1− p)D

∫
Ω
(Θε + 1)p−2|∇Θε|2 −D

∫
∂Ω

∣∣∣∂Θε

∂ν

∣∣∣,
this entails that

(1− p)D

∫ T

0

∫
Ω
(Θε + 1)p−2|∇Θε|2 ≤ 1

p

∫
Ω

(
Θε(·, T ) + 1

)p
− 1

p

∫
Ω
(Θ0ε + 1)p +D

∫ T

0

∫
∂Ω

∣∣∣∂Θε

∂ν

∣∣∣
≤ 1

p

∫
Ω

(
Θε(·, T ) + 1

)p
+D

∫ T

0

∫
∂Ω

∣∣∣∂Θε

∂ν

∣∣∣ (5.5)

for all T > 0 and ε ∈ (0, 1). Using Young’s inequality in estimating

1

p

∫
Ω

(
Θε(·, T ) + 1

)p
≤ 1

p

∫
Ω

(
Θε(·, T ) + 1

)
+

|Ω|
p

for all T > 0 and ε ∈ (0, 1),

in light of (5.1) and (5.2) we infer (5.4) from (5.5). □

Through straightforward Gagliardo-Nirenberg interpolation, this implies bounds for Θε in some reflex-
ive Lebesgue spaces.

19



Lemma 5.3 Let q ∈ (1, n+2
n ). Then for each T > 0 there exists C(q, T ) > 0 such that∫ T

0

∫
Ω
(Θε + 1)q ≤ C(q, T ) for all ε ∈ (0, 1). (5.6)

Proof. By boundedness of Ω, we may assume without loss of generality that q > 2
n , and that thus

our assumption implies that p ≡ p(q) := q − 2
n satisfies p ∈ (0, 1). An application of the Gagliardo-

Nirenberg inequality then yields c1 = c1(q) > 0 such that∫
Ω
|ψ|

2q
p ≤ c1∥∇ψ∥

2q
p
ϑ

L2(Ω)
∥ψ∥

2q
p
(1−ϑ)

L
2
p (Ω)

+ c1∥ψ∥
2q
p

L
2
p (Ω)

for all ψ ∈W 1,2(Ω;R), (5.7)

where by definition of p, the number ϑ ≡ ϑ(q) := (np2 − np
2q )/(1−

n
2 + np

2 ) satisfies

2q

p
ϑ =

nq − n

1− n
2 + np

2

=
nq − n

1− n
2 + n

2 (q −
2
n)

=
nq − n

−n
2 + nq

2

= 2.

Therefore, (5.7) implies that∫
Ω
(Θε + 1)q =

∫
Ω

{
(Θε + 1)

p
2

} 2q
p

≤ c1

{∫
Ω

∣∣∇(Θε + 1)
p
2

∣∣2}{∫
Ω
(Θε + 1)

} 2
n

+ c1

{∫
Ω
(Θε + 1)

}q
≤ c1c

2
n
2

∫
Ω

∣∣∇(Θε + 1)
p
2

∣∣2 + c1c
q
2 for all t ∈ (0, T ) and ε ∈ (0, 1), (5.8)

where c2 ≡ c2(T ) := supε∈(0,1) supt∈(0,T )
∫
Ω(Θε(·, t) + 1) is finite due to Lemma 5.1. Since |∇(Θε +

1)
p
2 |2 = p2

4 (Θε + 1)p−2|∇Θε|2 for all ε ∈ (0, 1), integrating (5.8) over t ∈ (0, T ) and using Lemma 5.2
we arrive at (5.6). □

One further standard interpolation step yields bounds for ∇Θε which in contrast to those in Lemma
5.2 do no longer contain weight functions.

Lemma 5.4 If r ∈ (1, n+2
n+1), then given any T > 0 one can find C(r, T ) > 0 such that∫ T

0

∫
Ω
|∇Θε|r ≤ C(r, T ) for all ε ∈ (0, 1). (5.9)

Proof. Since r < n+2
n+1 and hence (3n + 2)r − 2(n + 2) < nr, we can fix p = p(r) ∈ (0, 1) suitably

close to 1 such that

p >
(3n+ 2)r − 2(n+ 2)

nr
.

As thus 2− p < n+2
n · 2−r

r , letting q ≡ q(r) := (2−p)r
2−r defines a number q ∈ (1, n+2

n ), and since Young’s
inequality says that according to this definition of q we have∫ T

0

∫
Ω
|∇Θε|r =

∫ T

0

∫
Ω

{
(Θε + 1)p−2|∇Θε|2

} r
2
(Θε + 1)

(2−p)r
2
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≤
∫ T

0

∫
Ω
(Θε + 1)p−2|∇Θε|2 +

∫ T

0

∫
Ω
(Θε + 1)q for all T > 0 and ε ∈ (0, 1),

the claim is a consequence of Lemma 5.2 and Lemma 5.3. □

In a natural manner, Lemma 5.3 and Lemma 3.4 imply some information on regularity of Θεt that will
be used to extract pointwise a.e. convergent subsequences by means of an Aubin-Lions lemma (Lemma
7.3).

Lemma 5.5 Let s > n+2
2 . Then for all T > 0 there exists C(s, T ) > 0 such that∫ T

0

∥∥Θεt(·, t)
∥∥
(W 2,s

0 (Ω;R))⋆dt ≤ C(s, T ) for all ε ∈ (0, 1). (5.10)

Proof. For fixed ψ ∈ C∞
0 (Ω;R), again due to the boundedness of Γ on [0,∞) the identity in (3.7)

shows that with some c1 > 0,∣∣∣∣ ∫
Ω
Θεtψ

∣∣∣∣ =

∣∣∣∣D ∫
Ω
Θε∆ψ +

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ψ

∣∣∣∣
≤ D

∫
Ω
Θε|∆ψ|+ c1

∫
Ω
|∇vε|2|ψ|

≤ D∥Θε∥
L

s
s−1 (Ω)

∥∆ψ∥Ls(Ω) + c1∥∇vε∥2L2(Ω)∥ψ∥L∞(Ω) for all t > 0 and ε ∈ (0, 1).

Since the inequality s > n+2
2 > n

2 particularly ensures that W 2,s(Ω;R) is continuously embedded into
L∞(Ω;R), by definition of the norm in (W 2,s

0 (Ω;R))⋆ this entails the existence of c2 = c2(s) > 0
fulfilling

∥Θεt∥(W 2,s
0 (Ω;R))⋆ ≤ D∥Θε∥

L
s

s−1 (Ω)
+ c1c2∥∇vε∥2L2(Ω) for all t > 0 and ε ∈ (0, 1).

Young’s inequality thus implies that for all T > 0 and ε ∈ (0, 1),∫ T

0

∥∥Θεt(·, t)
∥∥
(W 2,s

0 (Ω;R))⋆dt ≤ D

∫ T

0
∥Θε(·, t)∥

L
s

s−1 (Ω)
dt+ c1c2

∫ T

0
∥∇vε(·, t)∥2L2(Ω)dt

≤ D

∫ T

0

∫
Ω
Θ

s
s−1
ε +DT + c1c2

∫ T

0

∫
Ω
|∇vε|2,

so that the claim results upon employing (3.8) and Lemma 5.3, and observing that s
s−1 = (1− 1

s )
−1 <

(1− 2
n+2)

−1 = n+2
n thanks to our hypothesis. □

6 Exploiting weak lower semicontinuity of L2 norms

This section collects some consequences of lower semicontinuity of norms in L2 spaces with respect to
weak convergence, arranged here in such a way that expressions of the form in (1.18) can adequately
be coped with in several different particular situations arising below.

Let us first record an essentially well-known consequence of Lebesgue’s theorem for products of a.e. con-
vergent and L2-weakly convergent sequences. This will be used not only in the subsequent Lemma 6.3,
but later on also in our extraction of convergent subsequences of ((vε, uε,Θε))ε∈(0,1) (Lemma 7.3) and
in the derivation of (2.5) (Lemma 7.4).
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Lemma 6.1 Let N ≥ 1 and G ⊂ RN be measurable with |G| <∞, and suppose that (fj)j∈N ⊂ L∞(G),
(gj)j∈N ⊂ L2(G), f ∈ L∞(G) and g ∈ L2(G) are such that

sup
j∈N

∥fj∥L∞(G) <∞, (6.1)

and that as j → ∞ we have
fj → f a.e. in G (6.2)

and
gj ⇀ g in L2(G). (6.3)

Then
fjgj ⇀ fg in L2(G) as j → ∞. (6.4)

Proof. If the claim was false, then since (6.1) and (6.3) particularly assert that (fjgj)j∈N is bounded
in L2(G), we could find a subsequence (jk)k∈N along which fjkgjk ⇀ h would hold in L2(G) as k → ∞
with some h ∈ L2(G) satisfying |{h ̸= fg}| > 0. As |G| is finite, this would especially imply that
fjkgjk ⇀ h in L1(G) as k → ∞. But uniform boundedness of (fj)j∈N according to (6.1) together
with (6.2) shows that fj → f in L2(G) by Lebesgue’s dominated convergence theorem. Accordingly,
fjgj ⇀ g in L1(G) due to (6.3), and hence we could infer that h = fg, which is absurd. □

Lemma 6.2 Let B = (Bijkl)i,j,k,l∈{1,...,n} ∈ C0([0,∞);Rn×n×n×n) ∩ L∞([0,∞);Rn×n×n×n) be such
that

Bijkl(ξ) = Bklij(ξ) for all ξ ≥ 0 and (i, j, k, l) ∈ {1, ..., n}4, (6.5)

and that there exists KB > 0 such that

⟨B(ξ) : X,X⟩ ≥ KB|X|2 for all ξ ≥ 0 and X ∈ Rn×n. (6.6)

Then there exists
√
B ∈ C0([0,∞);Rn×n×n×n) ∩ L∞([0,∞);Rn×n×n×n) such that

⟨B(ξ) :W,W ⟩ = ⟨
√
B(ξ) :W,

√
B(ξ) :W ⟩ for all ξ ≥ 0 and W ∈ Rn×n. (6.7)

Proof. For every ξ ∈ [0,∞) interpreting B(ξ) as (by (6.5)) symmetric and (by (6.6)) positive
definite n2 × n2 matrix, we take

√
B(ξ) to be its unique positive definite square root [24, Cor. 1.30],

which in particular satisfies (6.7). Then ξ 7→
√
B(ξ) is continuous by continuity of B and [24, Thm.

6.12]. Boundedness of
√
B follows from B ∈ L∞([0,∞);R(n×n)×(n×n)) and is most easily seen in the

spectral norm, as ∥
√
B(ξ)∥σ =

√
∥B(ξ)∥σ. □

For bounded and uniformly positive definite symmetric tensor-valued functions, we can use Lemma
6.1 together with the lower semicontinuity property under consideration to obtain the following basic
property.

Lemma 6.3 Let B = (Bijkl)i,j,k,l∈{1,...,n} ∈ C0([0,∞);Rn×n×n×n) ∩ L∞([0,∞);Rn×n×n×n) satisfy
(6.5) and let there be KB > 0 such that (6.6) holds. Then whenever T > 0 as well as φ ∈ L∞(Ω ×
(0, T );R), (Wj)j∈N ⊂ L2(Ω × (0, T );Rn×n) and the measurable functions zj : Ω × (0, T ) → R, j ∈ N,
are such that

φ ≥ 0 a.e. in Ω× (0, T ) (6.8)
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and
zj ≥ 0 a.e. in Ω× (0, T ) for all j ∈ N, (6.9)

and that as j → ∞ we have

Wj ⇀W in L2(Ω× (0, T );Rn×n) (6.10)

and
zj → z a.e. in Ω× (0, T ) (6.11)

with some W ∈ L2(Ω× (0, T );Rn×n) and some measurable z : Ω× (0, T ) → R, it follows that∫ T

0

∫
Ω
⟨B(z) :W,W ⟩φ ≤ lim inf

j→∞

∫ T

0

∫
Ω
⟨B(zj) :Wj ,Wj⟩φ. (6.12)

Proof. According to (6.5), (6.6) and Lemma 6.2, there exists
√
B ∈ C0([0,∞);Rn×n×n×n) ∩

L∞([0,∞);Rn×n×n×n) such that (6.7) holds.
Thus, if for j ∈ N we let

ρj :=
√
φ
√
B(zj) :Wj , (6.13)

then we obtain a sequence (ρj)j∈N ⊂ L2(Ω× (0, T );Rn×n) which due to Lemma 6.1 and (6.10) satisfies

ρj ⇀ ρ :=
√
φ
√
B(z) :W in L2(Ω× (0, T );Rn×n) as j → ∞, (6.14)

because supj∈N ∥
√
B(zj)∥L∞(Ω×(0,T )) < ∞ and

√
B(zj) →

√
B(z) a.e. in Ω × (0, T ) by boundedness

and continuity of
√
B, and by (6.11). Thanks to the lower semicontinuity of the norm in L2(Ω ×

(0, T );Rn×n) with respect to weak convergence, from (6.14) we infer that, in line with (6.7),∫ T

0

∫
Ω
⟨B(z) :W,W ⟩φ =

∫ T

0

∫
Ω
|ρ|2 ≤ lim inf

j→∞

∫ T

0

∫
Ω
|ρj |2 = lim inf

j→∞

∫ T

0

∫
Ω
⟨B(zj) :Wj ,Wj⟩φ,

as intended. □

Of crucial importance for our reasoning is now the following consequence of Lemma 6.3.

Lemma 6.4 Let β = (βijkl)i,j,k,l∈{1,...,n} ∈ C0([0,∞);Rn×n×n×n)∩L∞([0,∞);Rn×n×n×n) be such that

βijkl(ξ) = βklij(ξ) for all ξ ≥ 0 and (i, j, k, l) ∈ {1, ..., n}4, (6.15)

Then there exists η1 = η1(β) > 0 with the property that if η ∈ (0, η1) and T > 0, if φ ∈ L∞(Ω ×
(0, T );R) is nonnegative, and if (wj)j∈N ⊂ L2((0, T );W 1,2

0 (Ω;Rn)), (zj)j∈N ⊂ L1(Ω × (0, T );R), w ∈
L2((0, T );W 1,2

0 (Ω;Rn)), and z ∈ L1(Ω× (0, T );R) are such that

zj ≥ 0 a.e. in Ω× (0, T ) for all j ∈ N and zj → z a.e. in Ω× (0, T ) as j → ∞, (6.16)

and that
wj ⇀ w in L2((0, T );W 1,2

0 (Ω;Rn)) as j → ∞, (6.17)

then ∫ T

0

∫
Ω
|∇w|2φ− η

∫ T

0

∫
Ω
⟨β(z) : ∇sw,∇sw⟩φ

≤ lim inf
j→∞

{∫ T

0

∫
Ω
|∇wj |2φ− η

∫ T

0

∫
Ω
⟨β(zj) : ∇swj ,∇swj⟩φ

}
. (6.18)
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Proof. We let (δij)i,j∈{1,...,n} denote the Kronecker delta on {1, ..., n}2, and define

β̂ijkl :=
1

2
(δikδjl + δilδjk), (i, j, k, l) ∈ {1, ..., n}4, (6.19)

observing that then

(
β̂ : X

)
ij
=

1

2

n∑
k,l=1

δikδjlXkl +
1

2

n∑
k,l=1

δilδjkXkl =
1

2
Xij +

1

2
Xji for all (i, j) ∈ {1, ..., n}2

and hence

β̂ : X =
1

2

(
X +Xt

)
for each X = (Xij)i,j∈{1,...,n} ∈ Rn×n. As clearly

β̂ijkl = β̂klij for all (i, j, k, l) ∈ {1, ..., n}4, (6.20)

by straightforward linear algebra we thus obtain that

⟨β(ξ) :
{1

2

(
X +Xt

)}
,
1

2

(
X +Xt

)
⟩ = ⟨β(ξ) :

(
β̂ : X

)
, β̂ : X⟩

= ⟨β̂ :
{
β(ξ) :

(
β̂ : X

)}
, X⟩

= ⟨B̂(ξ) : X,X⟩ for all ξ ≥ 0 and X ∈ Rn×n (6.21)

with
B̂(ξ) := β̂ ⊙

(
β(ξ)⊙ β̂

)
, ξ ≥ 0, (6.22)

where for β(ι) = (β
(ι)
ijkl)i,j,k,l∈{1,...,n} ∈ Rn×n×n×n, ι ∈ {1, 2}, we have set

(
β(1) ⊙ β(2)

)
ijkl

:=
n∑

m,m′=1

β
(1)
ijmm′β

(2)
mm′kl, (i, j, k, l) ∈ {1, ..., n}4.

Now due to the assumed boundeness of β and (6.19), from (6.22) we infer that with some c1 = c1(β) > 0
we have

⟨B̂(ξ) : X,X⟩ ≤ c1|X|2 for all ξ ≥ 0 and X ∈ Rn×n, (6.23)

and fixing any η1 = η1(β) ∈ (0, 1
c1
) and assuming that η ∈ (0, η1), we thereupon let

B(ξ) := I − ηB̂(ξ), ξ ≥ 0, (6.24)

where I := (δikδjl)i,j,k,l∈{1,...,n} represents the identity mapping on Rn×n. Again thanks to (6.20), the
hypothesis in (6.15) ensures that B has the symmetry property in (6.5), while (6.24) along with (6.23)
guarantees that

⟨B(ξ) : X,X⟩ = |X|2 − η⟨B̂(ξ) : X,X⟩ ≥ c2|X|2 for all ξ ≥ 0 and X ∈ Rn×n,
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with c2 ≡ c2(β) := 1 − η1c1 being positive due to our selection of η1. The lemma thereby becomes a
consequence of (6.17) and Lemma 6.3, according to which, namely, in line with (6.24) and (6.22) it
follows that∫ T

0

∫
Ω
|∇w|2φ− η

∫ T

0

∫
Ω
⟨β(z) : ∇sw,∇sw⟩φ

=

∫ T

0

∫
Ω
⟨B(z) : ∇w,∇w⟩φ

≤ lim inf
j→∞

∫ T

0

∫
Ω
⟨B(zj) : ∇wj ,∇wj⟩φ

= lim inf
j→∞

{∫ T

0

∫
Ω
|∇wj |2φ− η

∫ T

0

∫
Ω
⟨β(zj) : ∇swj ,∇swj⟩φ

}
,

as claimed. □

In preparation for a relative of Lemma 6.4 involving differences with ordering opposite to those in
(6.18), let us state the following observation which essentially relies on vanishing boundary values.

Lemma 6.5 Let w ∈W 1,2
0 (Ω;Rn) and ψ ∈ C1(Ω;R). Then∫

Ω
|∇sw|2ψ =

1

2

∫
Ω
|∇w|2ψ +

1

2

∫
Ω
|divw|2ψ +

1

2

∫
Ω
(divw)(w · ∇ψ)− 1

2

∫
Ω
w · (∇w · ∇ψ). (6.25)

Proof. For w = (w1, ..., wn) ∈ C∞
0 (Ω;Rn) and ψ ∈ C1(Ω;R), in the identity∫

Ω
|∇sw|2ψ =

1

4

n∑
i,j=1

∫
Ω
(∂jwi + ∂iwj)

2ψ

=
1

4

{ n∑
i,j=1

∫
Ω
(∂jwi)

2ψ +
n∑

i,j=1

∫
Ω
(∂iwj)

2ψ + 2
n∑

i,j=1

∫
Ω
∂jwi∂iwjψ

}

=
1

2

n∑
i,j=1

∫
Ω
(∂jwi)

2ψ +
1

2

n∑
i,j=1

∫
Ω
∂iwj∂jwiψ

=
1

2

∫
Ω
|∇w|2ψ +

1

2

n∑
i,j=1

∫
Ω
∂iwj∂jwiψ

we may twice integrate by parts to see that

1

2

n∑
i,j=1

∫
Ω
∂iwj∂jwiψ = −1

2

n∑
i,j=1

∫
Ω
wj∂ijwiψ − 1

2

n∑
i,j=1

∫
Ω
wj∂jwi∂iψ

=
1

2

n∑
i,j=1

∫
Ω
∂jwj∂iwiψ +

1

2

n∑
i,j=1

∫
Ω
wj∂iwi∂jψ − 1

2

n∑
i,j=1

∫
Ω
wj∂jwi∂iψ

=
1

2

∫
Ω
|divw|2ψ +

1

2

∫
Ω
(divw)(w · ∇ψ)− 1

2

∫
Ω
w · (∇w · ∇ψ),
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so that (6.25) immediately follows by means of a completion argument. □

In fact, making appopriate use of this we can complement Lemma 6.4 by means of a different argument
as follows.

Lemma 6.6 Suppose that β = (βijkl)i,j,k,l∈{1,...,n} ∈ C0([0,∞);Rn×n×n×n) ∩ L∞([0,∞);Rn×n×n×n)
satisfies (6.15) and

⟨β(ξ) : X,X⟩ ≥ Kβ|X|2 for all ξ ≥ 0 and X ∈ Rn×n (6.26)

with some Kβ > 0. Then there exists η2 = η2(β) > 0 such that assuming that T > 0, that 0 ≤
φ ∈ L∞(Ω × (0, T );R), that (wj)j∈N ⊂ L2((0, T );W 1,2

0 (Ω;Rn)), (zj)j∈N ⊂ L1(Ω × (0, T );R), w ∈
L2((0, T );W 1,2

0 (Ω;Rn)), and z ∈ L1(Ω× (0, T );R) satisfy (6.16), (6.17) as well as

wj → w in L2(Ω× (0, T );Rn) as j → ∞, (6.27)

one can conclude that∫ T

0

∫
Ω
⟨β(z) : ∇sw,∇sw⟩φ− η

∫ T

0

∫
Ω
|∇w|2φ

≤ lim inf
j→∞

{∫ T

0

∫
Ω
⟨β(zj) : ∇swj ,∇swj⟩φ− η

∫ T

0

∫
Ω
|∇wj |2φ

}
(6.28)

for all η ∈ (0, η2).

Proof. We fix any η2 = η2(β) ∈ (0, 12Kβ), and for η ∈ (0, η2) we let

B(ξ) := β(ξ)− 2ηI, ξ ≥ 0,

where again I := (δikδjl)i,j,k,l∈{1,...,n} ∈ Rn×n×n×n. Then B satisfies (6.5) due to (6.15), whereas the
requirement in (6.26) guarantees that writing c1 ≡ c1(β) := Kβ − 2η2 > 0 we have

⟨B(ξ) : X,X⟩ = ⟨β(ξ) : X,X⟩ − 2η|X|2 ≥ c1|X|2 for all ξ ≥ 0 and X ∈ Rn×n.

Since ∇swj ⇀ ∇sw in L2(Ω × (0, T );Rn×n) as j → ∞, we may therefore employ Lemma 6.3 to infer
that ∫ T

0

∫
Ω
⟨β(z) : ∇sw,∇sw⟩φ− 2η

∫ T

0

∫
Ω
|∇sw|2φ

=

∫ T

0

∫
Ω
⟨B(z) : ∇sw,∇sw⟩φ

≤ lim inf
j→∞

∫ T

0

∫
Ω
⟨B(zj) : ∇swj ,∇swj⟩φ

= lim inf
j→∞

{∫ T

0

∫
Ω
⟨β(zj) : ∇swj ,∇swj⟩φ− 2η

∫ T

0

∫
Ω
|∇swj |2φ

}
. (6.29)

To appropriately complement this, we now utilize Lemma 6.5 to confirm that for all j ∈ N,

2η

∫ T

0

∫
Ω
|∇swj |2φ− η

∫ T

0

∫
Ω
|∇wj |2φ
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= η

∫ T

0

∫
Ω
|divwj |2φ+ η

∫ T

0

∫
Ω
(divwj)(wj · ∇φ)− η

∫ T

0

∫
Ω
wj · (∇wj · ∇φ), (6.30)

where as a consequence of (6.17) and the strong convergence feature in (6.27),

η

∫ T

0

∫
Ω
(divwj)(wj · ∇φ) → η

∫ T

0

∫
Ω
(divw)(w · ∇φ) (6.31)

and

−η
∫ T

0

∫
Ω
wj · (∇wj · φ) → −η

∫ T

0

∫
Ω
w · (∇w · ∇φ) (6.32)

as j → ∞. Since by lower semicontinuity of the norm in L2(Ω × (0, T );R) we furthermore readily
obtain from (6.17) that

η

∫ T

0

∫
Ω
|divw|2φ ≤ lim inf

j→∞

{
η

∫ T

0

∫
Ω
|divwj |2φ

}
,

once more relying on Lemma 6.5 we may combine (6.30) with (6.31) and (6.32) to see that

2η

∫ T

0

∫
Ω
|∇sw|2φ− η

∫ T

0

∫
Ω
|∇w|2φ

= η

∫ T

0

∫
Ω
|divw|2φ+ η

∫ T

0

∫
Ω
(divw)(w · ∇φ)− η

∫ T

0

∫
Ω
w · (∇w · ∇φ)

≤ lim inf
j→∞

{
η

∫ T

0

∫
Ω
|divwj |2φ+ η

∫ T

0

∫
Ω
(divwj)(wj · ∇φ)− η

∫ T

0

∫
Ω
wj · (∇wj · ∇φ)

}
= lim inf

j→∞

{
2η

∫ T

0

∫
Ω
|∇swj |2φ− η

∫ T

0

∫
Ω
|∇wj |2φ

}
.

In conjunction with (6.29), this establishes (6.28) due to the basic fact that lim infj→∞(ωj + ω̂j) ≥
lim infj→∞ ωj + lim infj→∞ ω̂j for bounded sequences (ωj)j∈N ⊂ R and (ω̂j)j∈N ⊂ R. □

7 Passing to the limit. Proof of Theorem 1.1

Final preliminaries for our limit passage in (2.12) derive the following information on regularity of
temporal derivatives from Lemma 3.4.

Lemma 7.1 Let T > 0. Then there exists C(T ) > 0 such that∫ T

0

∥∥vεt(·, t)∥∥2(W 2,2
0 (Ω;Rn))⋆

dt ≤ C(T ) for all ε ∈ (0, 1). (7.1)

Proof. Given ψ ∈ C∞
0 (Ω;Rn) such that ∥φ∥

W 2,2
0 (Ω)

≤ 1, we integrate by parts in the first equation
from (2.12) to see that due to the Cauchy-Schwarz inequality,∣∣∣∣ ∫

Ω
vεt · ψ

∣∣∣∣ =

∣∣∣∣− ε

∫
Ω
∆2vε · ψ +

∫
Ω
div

(
γ(Θε) : ∇s(vε + auε)

)
· ψ

∣∣∣∣
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=

∣∣∣∣− ε

∫
Ω
∆vε ·∆ψ −

∫
Ω
⟨γ(Θε) : ∇s(vε + auε),∇ψ⟩

∣∣∣∣
≤ ε

1
2

{
ε

∫
Ω
|∆vε|2

} 1
2

∥∆ψ∥L2(Ω) +

{∫
Ω

∣∣γ(Θε) : ∇s(vε + auε)
∣∣2} 1

2

∥∇ψ∥L2(Ω)

for all t > 0 and ε ∈ (0, 1). According to the boundedness of γ and the definition of the norm in
(W 2,2

0 (Ω;Rn))⋆, this implies the existence of c1 > 0 such that∥∥vεt(·, t)∥∥2(W 2,2
0 (Ω;Rn))⋆

≤ c1ε

∫
Ω
|∆vε|2 + c1

∫
Ω
|∇vε|2 + c1

∫
Ω
|∇uε|2 for all t > 0 and ε ∈ (0, 1),

which in view of (3.11), (3.10) and (3.9) entails (7.1) upon an integration in time. □

A similar statement holds for the derivative uεt.

Lemma 7.2 Let T > 0. Then there exists C(T ) > 0 such that

∥uεt∥L∞((0,T );(W 2,2
0 (Ω;Rn))⋆)

≤ C(T ) for all ε ∈ (0, 1).

Proof. Given ψ ∈ C∞
0 (Ω;Rn) such that ∥ψ∥

W 2,2
0 (Ω)

≤ 1, we conclude from the second equation of
(2.12), integration by parts and Hölder’s inequality that∣∣∣∣∫

Ω
uεt(·, t)ψ

∣∣∣∣ ≤ ε

∫
Ω
|uε(·, t)||∆ψ|+

∫
Ω
vε|ψ| ≤ ε∥uε(·, t)∥L2(Ω) + ∥vε(·, t)∥L2(Ω),

which is bounded according to (3.9) combined with Poincaré’s inequality and (3.8). □

With these preparations at hand, by means of a straightforward subsequence extraction, followed by
applications of the Vitali convergence theorem, Fatou’s lemma, Lemma 6.1 and especially Lemma 6.3,
we can now proceed to the construction of a limit pair (u,Θ) which satisfies (2.3) and (2.4).

Lemma 7.3 There exists (εj)j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞, and that with some
v ∈ L∞

loc([0,∞);L2(Ω;Rn)) ∩ L2
loc([0,∞);W 1,2

0 (Ω;Rn)),
u ∈ L∞

loc([0,∞);W 1,2
0 (Ω;Rn)) and

Θ ∈ L∞
loc([0,∞);L1(Ω;R)) ∩

⋂
q∈[1,n+2

n
) L

q
loc(Ω× [0,∞);R) ∩

⋂
r∈[1,n+2

n+1
) L

r
loc([0,∞);W 1,r

0 (Ω;R))
(7.2)

fulfilling Θ ≥ 0 a.e. in Ω× (0,∞), we have

vε → v in L2
loc(Ω× [0,∞);Rn)and a.e. in Ω× (0,∞), (7.3)

vε ⇀ v in L2
loc([0,∞);W 1,2

0 (Ω;Rn)), (7.4)
uε → u in L2

loc(Ω× [0,∞);Rn), (7.5)
uε ⇀ u in L2

loc([0,∞);W 1,2
0 (Ω;Rn)) and (7.6)

Θε → Θ in L1
loc(Ω× [0,∞);R)and a.e. in Ω× (0,∞), (7.7)

as ε = εj ↘ 0. These limit functions have the properties that

ut = v a.e. in Ω× (0,∞), (7.8)

that (2.3) holds for each φ ∈ C∞
0 (Ω × [0,∞);Rn), and that (2.4) is satisfied for any nonnegative

φ̂ ∈ C∞
0 (Ω× [0,∞);R).

28



Proof. From Lemma 3.4 and Lemma 7.1, we know that for each T > 0,

(vε)ε∈(0,1) is bounded in L∞((0, T );L2(Ω;Rn)) and in L2((0, T );W 1,2
0 (Ω;Rn)),

that

(vεt)ε∈(0,1) is bounded in L2
(
(0, T ); (W 2,2

0 (Ω;Rn))⋆
)
,

that

(uε)ε∈(0,1) is bounded in L∞((0, T );W 1,2
0 (Ω;Rn)),

and that

(uεt)ε∈(0,1) is bounded in L∞(
(0, T ); (W 2,2

0 (Ω;Rn))⋆
)
,

while Lemma 5.1 in conjunction with Lemma 5.3, Lemma 5.4 and Lemma 5.5 says that whenever
T > 0, q ∈ [1, n+2

n ) and r ∈ [1, n+2
n+1),

(Θε)ε∈(0,1) is bounded in L∞((0, T );L1(Ω;R)), in Lq(Ω× (0, T );R) and in Lr((0, T );W 1,r
0 (Ω;R)),

and that for each s > n+2
2 ,

(Θεt)ε∈(0,1) is bounded in L1
(
(0, T ); (W 2,s

0 (Ω;R))⋆
)
.

A straightforward extraction procedure involving three applications of an Aubin-Lions lemma ([57])
combined with Vitali’s convergence theorem and Fatou’s lemma therefore yields (εj)j∈N ⊂ (0, 1) such
that εj ↘ 0 as j → ∞, and that with some functions v, u and Θ fulfilling (7.2) as well as Θ ≥ 0 a.e. in
Ω× (0,∞), the convergence properties in (7.3)-(7.7) hold.

Now according to the second equation in (2.12), for each ϕ ∈ C∞
0 (Ω × [0,∞);Rn) and any ε ∈ (0, 1)

we have
−
∫ ∞

0

∫
Ω
uε · ϕt −

∫
Ω
uε(·, 0) · ϕ(·, 0) = ε

∫ ∞

0

∫
Ω
∆uε · ϕ+

∫ ∞

0

∫
Ω
vε · ϕ, (7.9)

so that since ε∆uε → 0 in L2
loc(Ω × [0,∞);Rn) as ε ↘ 0 by (3.12), from (7.3), (2.11) and (7.6) we

obtain on letting ε = εj ↘ 0 in (7.9) that

−
∫ ∞

0

∫
Ω
u · ϕt −

∫
Ω
u0 · ϕ(·, 0) =

∫ ∞

0

∫
Ω
v · ϕ, (7.10)

and that thus, in particular, (7.8) holds.

Next, for a verification of (2.3) we fix φ ∈ C∞
0 (Ω × [0,∞);Rn) and integrate by parts in the first

equation in (2.12) to see that

−
∫ ∞

0

∫
Ω
vε · φt −

∫
Ω
v0ε · φ(·, 0) = −ε

∫ ∞

0

∫
Ω
∆vε ·∆φ

−
∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇svε,∇φ⟩ − a

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε,∇φ⟩, for all ε ∈ (0, 1), (7.11)
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where by (7.3) and (2.11),

−
∫ ∞

0

∫
Ω
vε · φt −

∫
Ω
v0ε · φ(·, 0) → −

∫ ∞

0

∫
Ω
v · φt −

∫
Ω
u0t · φ(·, 0) as ε = εj ↘ 0, (7.12)

and where
−ε

∫ ∞

0

∫
Ω
∆vε ·∆φ→ 0 as ε↘ 0, (7.13)

because (3.11) ensures that also ε∆vε → 0 in L2
loc(Ω × [0,∞);Rn) as ε ↘ 0. Moreover, using that

(γ(Θε))ε∈(0,1) is bounded in L∞(Ω × (0,∞);Rn×n×n×n) with γ(Θε) → γ(Θ) a.e. in Ω × (0,∞) as
ε = εj ↘ 0 by (7.7) and the continuity of γ, from the L2 convergence properties of (∇svεj)j∈N and
(∇suεj )j∈N entailed by (7.4) and (7.6) we infer through Lemma 6.1 that γ(Θε) : ∇svε ⇀ γ(Θ) : ∇sv

and γ(Θε) : ∇suε ⇀ γ(Θ) : ∇su in L2
loc(Ω × [0,∞);Rn×n) as ε = εj ↘ 0. Therefore, (7.11)-(7.13)

imply that

−
∫ ∞

0

∫
Ω
v · φt −

∫
Ω
u0t · φ(·, 0) = −

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇sv,∇φ⟩ − a

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su,∇φ⟩,

whence (2.3) follows upon observing that ∇sv = ∇sut by (7.8), and that according to (7.10) when
applied to ϕ := φt,

−
∫ ∞

0

∫
Ω
v · φt =

∫ ∞

0

∫
Ω
u · φtt +

∫
Ω
u0 · φt(·, 0).

Finally, for arbitrary nonnegative φ̂ ∈ C∞
0 (Ω× [0,∞);R) and ε ∈ (0, 1) we may use the third equation

in (2.12) to see that∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩φ̂ = −

∫ ∞

0

∫
Ω
Θεφ̂t −

∫
Ω
Θ0εφ̂(·, 0)−D

∫ ∞

0

∫
Ω
Θε∆φ̂, (7.14)

and note that here, due to (7.7) and (2.11),

−
∫ ∞

0

∫
Ω
Θεφ̂t −

∫
Ω
Θ0εφ̂(·, 0)−D

∫ ∞

0

∫
Ω
Θε∆φ̂

→ −
∫ ∞

0

∫
Ω
Θφ̂t −

∫
Ω
Θ0φ̂(·, 0)−D

∫ ∞

0

∫
Ω
Θ∆φ̂ (7.15)

as ε = εj ↘ 0. Since in view of (1.11), (1.13), (7.7) and (7.4) we may employ Lemma 6.3 to infer
thanks to the boundedness of supp φ̂ that∫ ∞

0

∫
Ω
⟨Γ(Θ) : ∇sv,∇sv⟩φ̂ ≤ lim inf

ε=εj↘0

∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩φ̂,

from (7.14) and (7.15) we obtain that indeed the inequality in (2.4) holds, whereby the proof is
completed. □

The most crucial step in our analysis, however, can be found in the following argument which now
makes full use of the results from Section 6 to derive (2.5) after an appropriate rearrangement of the
key contributions to the corresponding dissipation rate (see (2.7)) as essentially quadratic expressions
(cf. (7.30)).
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Lemma 7.4 Let u and Θ be as in Lemma 7.3. Then there exist κ > 0, λ > 0 and µ > 0 such that
(2.5) is valid for each nonnegative ψ ∈ C∞

0 (Ω;R) and any nonincreasing ζ ∈ C∞
0 ([0,∞);R).

Proof. We let Kγ > 0 be as in (1.12), and taking η1(·) and η2(·) from Lemma 6.4 and Lemma 6.6,
we fix κ > 0 in such a way that

κ

a
< η2(γ). (7.16)

We thereupon choose λ > 0 small enough fulfilling

κ

a
η1(Γ) > λ (7.17)

and pick some µ > 0 suitably large such that

κ(a+ 2µ)

4
η1(γ) >

a2

4
. (7.18)

To verify that then (2.5) holds for any nonnegative ψ ∈ C∞
0 (Ω;R) and any ζ ∈ C∞

0 ([0,∞);R) with
ζt ≤ 0, letting

Fε ≡ Fε(κ,λ,ψ)(x, t) :=
(1
2
|vε|2 +

κ

2
|∇uε|2 + λΘε

)
ψ (7.19)

we go back to Lemma 3.1, Lemma 3.2 and Lemma 3.3 and thereby see that since supp ζ is bounded
and ψ|∂Ω = 0,

− ζ(0)

∫
Ω
Fε(·, 0) =

∫ ∞

0

∫
Ω
∂t
{
Fεζ(t)e−µt

}
=

∫ ∞

0

∫
Ω

{1

2
(|vε|2)tψ +

κ

2
(|∇uε|2)tψ + λΘεtψ

}
ζ(t)e−µt

+

∫ ∞

0

∫
Ω

{1

2
|vε|2ψ +

κ

2
|∇uε|2ψ + λΘεψ

}{
ζt(t)− µζ(t)

}
e−µt

=

∫ ∞

0

∫
Ω

{
− ⟨γ(Θε) : ∇svε,∇svε⟩ψ − ε|∆vε|2ψ

−a⟨γ(Θε) : ∇suε,∇svε⟩ψ + ⟨γ(Θε) : ∇svε, vε ⊗∇ψ⟩
+a⟨γ(Θε) : ∇suε, vε ⊗∇ψ⟩

−2ε(∇vε · ∇ψ)∆vε − ε(vε ·∆vε)∆ψ
}
ζ(t)e−µt

+κ

∫ ∞

0

∫
Ω

{
− ε|∆uε|2ψ + ⟨∇uε,∇vε⟩ψ − ε(∇uε · ∇ψ) ·∆uε

}
ζ(t)e−µt

+λ

∫ ∞

0

∫
Ω

{
DΘε∆ψ + ⟨Γ(Θε) : ∇svε,∇svε⟩ψ

}
ζ(t)e−µt

+

∫ ∞

0

∫
Ω

{1

2
|vε|2ψ +

κ

2
|∇uε|2ψ + λΘεψ

}{
ζt(t)− µζ(t)

}
e−µt

= −
∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ − a

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩ζ(t)e−µtψ

−κµ
2

∫ ∞

0

∫
Ω
|∇uε|2ζ(t)e−µtψ + κ

∫ ∞

0

∫
Ω
⟨∇uε,∇vε⟩ζ(t)e−µtψ
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+λ

∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ

−J (1)(ε) + J (2)(ε) for all ε ∈ (0, 1), (7.20)

where

J (1)(ε) :=

∫ ∞

0

∫
Ω

(1
2
|vε|2 + λΘε

)
(µζ(t)− ζt(t))e

−µtψ − κ

2

∫ ∞

0

∫
Ω
|∇uε|2ζt(t)e−µtψ

+ε

∫ ∞

0

∫
Ω
|∆vε|2ζ(t)e−µtψ + κε

∫ ∞

0

∫
Ω
|∆uε|2ζ(t)e−µtψ, ε ∈ (0, 1), (7.21)

and

J (2)(ε) :=

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇svε, vε ⊗∇ψ⟩ζ(t)e−µt + a

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε, vε ⊗∇ψ⟩ζ(t)e−µt

+λD

∫ ∞

0

∫
Ω
Θεζ(t)e

−µt∆ψ

−2ε

∫ ∞

0

∫
Ω

{
(∇vε · ∇ψ) ·∆vε

}
ζ(t)e−µt − ε

∫ ∞

0

∫
Ω
(vε ·∆vε)ζ(t)e−µt∆ψ

−κε
∫ ∞

0

∫
Ω

{
(∇uε · ∇ψ) ·∆uε

}
ζ(t)e−µt, ε ∈ (0, 1). (7.22)

Here since Lemma 6.1 along with (7.4), (7.7) and the boundedness of γ again ensures that with (εj)j∈N
taken from Lemma 7.3 we have γ(Θε) : ∇svε ⇀ γ(Θ) : ∇sv in L2

loc(Ω × [0,∞);Rn×n) as ε = εj ↘ 0,
the strong convergence property in (7.3) implies that∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇svε, vε ⊗∇ψ⟩ζ(t)e−µt →

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇sv, v ⊗∇ψ⟩ζ(t)e−µt as ε = εj ↘ 0,

(7.23)
because T := sup{t > 0 | ζ(t) ̸= 0} is finite. Similarly, (7.6), (7.7) and (7.3) guarantee that

a

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε, vε ⊗∇ψ⟩ζ(t)e−µt → a

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su, v ⊗∇ψ⟩ζ(t)e−µt as ε = εj ↘ 0,

(7.24)
while (7.7) and the compactness of supp∆ψ ⊂ Ω entail that

λD

∫ ∞

0

∫
Ω
Θεζ(t)e

−µt∆ψ → λD

∫ ∞

0

∫
Ω
Θζ(t)e−µt∆ψ as ε = εj ↘ 0. (7.25)

To see that the last three summands vanish in the limit ε ↘ 0, we abbreviate c1 := ∥ζ∥L∞([0,∞)),
c2 := ∥∇ψ∥L∞(Ω) and c3 := ∥∆ψ∥L∞(Ω), and use the Cauchy-Schwarz inequality in estimating∣∣∣∣− 2ε

∫ ∞

0

∫
Ω

{
(∇vε · ∇ψ) ·∆vε

}
ζ(t)e−µt

∣∣∣∣ ≤ 2c1c2ε

∫ T

0

∫
Ω
|∇vε| |∆vε|

≤ 2c1c2ε
1
2

{
ε

∫ T

0

∫
Ω
|∆vε|2

} 1
2
{∫ T

0

∫
Ω
|∇vε|2

} 1
2
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and ∣∣∣∣− ε

∫ ∞

0

∫
Ω
(vε ·∆vε)ζ(t)e−µt∆ψ

∣∣∣∣ ≤ c1c3ε

∫ T

0

∫
Ω
|vε| |∆vε|

≤ c1c3ε
1

{
ε

∫ T

0

∫
Ω
|∆vε|2

} 1
2
{∫ T

0

∫
Ω
|vε|2

} 1
2

as well as∣∣∣∣− κε

∫ ∞

0

∫
Ω

{
(∇uε · ∇ψ) ·∆uε

}
ζ(t)e−µt

∣∣∣∣ ≤ c1c2κε

∫ T

0

∫
Ω
|∇uε| |∆uε|

≤ c1c2κε
1
2

{
ε

∫ T

0

∫
Ω
|∆uε|2

} 1
2
{∫ T

0

∫
Ω
|∇uε|2

} 1
2

for all ε ∈ (0, 1). In consequence, from (3.11), (3.10), (3.8), (3.12) and (3.9) we thus infer that, indeed,

−2ε

∫ ∞

0

∫
Ω

{
(∇vε · ∇ψ) ·∆vε

}
ζ(t)e−µt − ε

∫ ∞

0

∫
Ω
(vε ·∆vε)ζ(t)e−µt∆ψ

−κε
∫ ∞

0

∫
Ω

{
(∇uε · ∇ψ) ·∆uε

}
ζ(t)e−µt → 0 as ε↘ 0,

whence (7.22)-(7.25) imply that

J (2)(ε) →
∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇sv, v ⊗∇ψ⟩ζ(t)e−µt + a

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su, v ⊗∇ψ⟩ζ(t)e−µt

+λD

∫ ∞

0

∫
Ω
Θζ(t)e−µt∆ψ as ε = εj ↘ 0. (7.26)

Next addressing (7.21), we may rely on the fact that both ζ and ψ are nonnegative to simply estimate

ε

∫ ∞

0

∫
Ω
|∆vε|2ζ(t)e−µtψ + κε

∫ ∞

0

∫
Ω
|∆uε|2ζ(t)e−µtψ ≥ 0 for all ε ∈ (0, 1), (7.27)

and use the pointwise approximation features contained in (7.3) and (7.7) to see that since also −ζt is
nonnegative, Fatou’s lemma implies that∫ ∞

0

∫
Ω

(1
2
|v|2+λΘ

)(
µζ(t)−ζt(t)

)
e−µtψ ≤ lim inf

ε=εj↘0

∫ ∞

0

∫
Ω

(1
2
|vε|2+λΘε

)(
µζ(t)−ζt(t)

)
e−µtψ. (7.28)

Since in view of (7.6) the lower semicontinuity of the norm in L2(Ω× (0, T );Rn×n) ensures that

−κ
2

∫ ∞

0

∫
Ω
|∇u|2ζt(t)e−µtψ =

κ

2

∫ T

0

∫
Ω

∣∣∣√|ζt(t)|e−µtψ∇u
∣∣∣2

≤ κ

2
lim inf
ε=εj↘0

∫ T

0

∫
Ω

∣∣∣√|ζt(t)|e−µtψ∇uε
∣∣∣2

= lim inf
ε=εj↘0

{
− κ

2

∫ ∞

0

∫
Ω
|∇uε|2ζt(t)e−µtψ

}
,
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a combination of (7.27) with (7.28) shows that∫ ∞

0

∫
Ω

(1
2
|v|2 + λΘ

)(
µζ(t)− ζt(t)

)
e−µtψ − κ

2

∫ ∞

0

∫
Ω
|∇u|2ζt(t)e−µtψ

≤ lim inf
ε=εj↘0

J (1)(ε). (7.29)

Henceforth directing our attention toward the crucial first five summands on the right of (7.20), we
create quadratic expression therein by observing that thanks to the symmetriy property (1.9),

⟨γ(Θε) : ∇s(vε +
a
2uε),∇

s(vε +
a
2uε)⟩ = ⟨γ(Θε) : ∇svε,∇svε⟩+

a

2
⟨γ(Θε) : ∇suε,∇svε⟩

+
a

2
⟨γ(Θε) : ∇svε,∇suε⟩+

a2

4
⟨γ(Θε) : ∇suε,∇suε⟩

= ⟨γ(Θε) : ∇svε,∇svε⟩+ a⟨γ(Θε) : ∇suε,∇svε⟩

+
a2

4
⟨γ(Θε) : ∇suε,∇suε⟩

and hence

⟨γ(Θε) : ∇svε,∇svε⟩+ a⟨γ(Θε) : ∇suε,∇svε⟩

= ⟨γ(Θε) : ∇s(vε +
a
2uε),∇

s(vε +
a
2uε)⟩ −

a2

4
⟨γ(Θε) : ∇suε,∇suε⟩

in Ω× (0,∞) for all ε ∈ (0, 1), and that similarly,

−κ⟨∇uε,∇vε⟩ = −κ
a

∣∣∇(
vε +

a
2uε

)∣∣2 + κ

a
|∇vε|2 +

κa

4
|∇uε|2

in Ω× (0,∞) for all ε ∈ (0, 1). Therefore, indeed,∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ + a

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩ζ(t)e−µtψ

+
κµ

2

∫ ∞

0

∫
Ω
|∇uε|2ζ(t)e−µtψ − κ

∫ ∞

0

∫
Ω
⟨∇uε,∇vε⟩ζ(t)e−µtψ

−λ
∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ

=

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇s(vε +

a
2uε),∇

s(vε +
a
2uε)⟩ζ(t)e

−µtψ − κ

a

∫ ∞

0

∫
Ω

∣∣∇(
vε +

a
2uε

)∣∣2ζ(t)e−µtψ
+
κ

a

∫ ∞

0

∫
Ω
|∇vε|2ζ(t)e−µtψ − λ

∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ

+
κ(a+ 2µ)

4

∫ ∞

0

∫
Ω
|∇uε|2ζ(t)e−µtψ − a2

4

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε,∇suε⟩ζ(t)e−µtψ (7.30)

for all ε ∈ (0, 1). Now (7.16) together with (1.12) and (7.3)-(7.7) enables us to see upon an application
of Lemma 6.6 to β := γ, to wj := vε +

a
2uε and zj := Θε for ε = εj , and to φ(x, t) := ζ(t)e−µtψ(x) for

(x, t) ∈ Ω× [0, T ] that∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇s(v + a

2u)∇
s(v + a

2u)⟩ζ(t)e
−µtψ − κ

a

∫ ∞

0

∫
Ω

∣∣∇(
v + a

2u
)∣∣2ζ(t)e−µtψ
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≤ lim inf
ε=εj↘0

{∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇s(vε +

a
2uε),∇

s(vε +
a
2uε)⟩ζ(t)e

−µtψ

−κ
a

∫ ∞

0

∫
Ω

∣∣∇(
vε +

a
2uε

)∣∣2ζ(t)e−µtψ},
while similarly from (7.17) and Lemma 6.4 we obtain that

κ

a

∫ ∞

0

∫
Ω
|∇v|2ζ(t)e−µtψ − λ

∫ ∞

0

∫
Ω
⟨Γ(Θ) : ∇sv,∇sv⟩ζ(t)e−µtψ

≤ lim inf
ε=εj↘0

{
κ

a

∫ ∞

0

∫
Ω
|∇vε|2ζ(t)e−µtψ − λ

∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ

}
,

and while (7.18) in view of Lemma 6.4 ensures that

κ(a+ 2µ)

4

∫ ∞

0

∫
Ω
|∇u|2ζ(t)e−µtψ − a2

4

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su,∇su⟩ζ(t)e−µtψ

≤ lim inf
ε=εj↘0

{
κ(a+ 2µ)

4

∫ ∞

0

∫
Ω
|∇uε|2ζ(t)e−µtψ − a2

4

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε,∇suε⟩ζ(t)e−µtψ

}
.

Since clearly

ζ(0)

∫
Ω
Fε(·, 0) = ζ(0)

∫
Ω

(1
2
|v0ε|2 +

κ

2
|∇u0ε|2 + λΘ0ε

)
ψ

→ ζ(0)

∫
Ω

(1
2
|u0t|2 +

κ

2
|∇u0|2 + λΘ0

)
ψ as ε↘ 0

by (2.11), in conjunction with (7.26) and (7.29) this shows that (7.20) and (7.30) imply the inequality∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇s(v + a

2u)∇
s(v + a

2u)⟩ζ(t)e
−µtψ − κ

a

∫ ∞

0

∫
Ω

∣∣∇(
v + a

2u
)∣∣2ζ(t)e−µtψ

+
κ

a

∫ ∞

0

∫
Ω
|∇v|2ζ(t)e−µtψ − λ

∫ ∞

0

∫
Ω
⟨Γ(Θ) : ∇sv,∇sv⟩ζ(t)e−µtψ

κ(a+ 2µ)

4

∫ ∞

0

∫
Ω
|∇u|2ζ(t)e−µtψ − a2

4

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su,∇su⟩ζ(t)e−µtψ

+

∫ ∞

0

∫
Ω

(1
2
|v|2 + λΘ

)(
µζ(t)− ζt(t)

)
e−µtψ − κ

2

∫ ∞

0

∫
Ω
|∇u|2ζt(t)e−µtψ

≤ lim inf
ε=εj↘0

{∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ + a

∫ ∞

0

∫
Ω
⟨γ(Θε) : ∇suε,∇svε⟩ζ(t)e−µtψ

+
κµ

2
|∇uε|2ζ(t)e−µtψ − κ

∫ ∞

0

∫
Ω
⟨∇uε,∇vε⟩ζ(t)e−µtψ

−λ
∫ ∞

0

∫
Ω
⟨Γ(Θε) : ∇svε,∇svε⟩ζ(t)e−µtψ

+J (1)(ε)

}
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= lim inf
ε=εj↘0

{
ζ(0)

∫
Ω
Fε(·, 0) + J (2)(ε)

}
= ζ(0)

∫
Ω

(1
2
|u0t|2 +

κ

2
|∇u0|2 + λΘ0

)
ψ

+

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇sv, v ⊗∇ψ⟩ζ(t)e−µt + a

∫ ∞

0

∫
Ω
⟨γ(Θ) : ∇su, v ⊗∇ψ⟩ζ(t)e−µt

+λD

∫ ∞

0

∫
Ω
Θζ(t)e−µt∆ψ. (7.31)

In line with (2.6), (2.7), (2.8) and (2.9), rewriting the left-hand side herein in the style of (7.30) leads
to (2.5), because ut = v a.e. in Ω× (0,∞) by (7.8). □

The proof of our main result has thereby actually been completed:

Proof of Theorem 1.1. Taking (u,Θ) from Lemma 7.3, we only need to combine the latter with
Lemma 7.4. □

8 Numerical experiments

This section intends to conduct some numerical experiments to illustrate some possible influences
of temperature-dependent material parameters on the results of acoustic processes. Specifically, the
coupled thermal and mechanical behavior of a one-dimensional acoustic resonator is considered using a
finite-difference time-domain (FDTD) method [63, 13], and to facilitate a connection to corresponding
literature we shall here return to the original variables by considering the evolution system

ρutt = τC(Θ)uxxt + C(Θ)uxx,

cρΘt = λΘxx + τC(Θ)u2xt, (8.32)

in which all considered quantities are scalar.

The setup roughly approximates an actively cooled (Θ = 0 at the boundaries), mechanically clamped
(u = ut = 0 at the boundaries) layer that is driven to oscillate at its resonance frequency. The viscous
wave equation and the heat equation in (8.32) are solved with parameter values listed in Table 1.
The elasticity C of the material is assumed to be temperature dependent, using two different models.
To explore temperature dependent behavior that is akin to the observations recorded in Figure 1, a
power-law in temperature is used,

C = C0 · (1 + kΘp), (8.33)

neglecting here the boundedness requirements made in Theorem 1.1. For the analysis of convergent
behavior, an exponential law is presupposed,

C = C0 · (α+ (1− α)e−bΘ), (8.34)

which yields C = C0 for Θ = 0 and converges to C = α · C0 in the limit of large positive values of Θ.

The thickness of the resonator is 1 mm, resulting in a resonance frequency (at Θ = 0) of 2 MHz. A
continuous sinusoidal signal at this frequency, implemented as a time-depended Dirichlet boundary
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Table 1: Material parameters for the numerical study. Values approximate the mechanical and thermal
properties of a piezoelectric ceramic [16, 41].

Parameter Value Unit
C0 124.8 GPa
ρ 7800 kg m−3

τ 1 ns
c 350 JK−1 kg−1

λ 1.1 Wm−1 K−1

condition for the velocity ut at the centre of the resonator, is applied to excite the system. Due to
the high mechanical frequency and comparatively slow thermal processes, the simulation requires large
number of steps (5·105) in time-domain to show significant effects. The spatial and temporal resolution
are chosen to over-satisfy the conditions of stability for the solution of wave equations [47] by a factor
of 2.5 (∆x/∆t = 2.5 · cph).
To analyse the mechanical and thermal behavior of the resonator, the temperature and the velocity ut
are observed. For a clearer depiction, the normalized mean temperature and the envelope of the veloc-
ity signal are shown. The results presented in Figure 2 constitute an archetypical behavior observed for
many parameter value tuples (k, p) and (α, b): Initially, the velocity of the oscillation increases rapidly
because of resonance. The mean temperature of the material initially shows superlinear increase due
to the mechanical losses, causing the elasticity to change and thus a shift in the resonance frequency of
the oscillator. Because the excitation remains at 2 MHz, the system is no longer excited in resonance,
leading to a reduced oscillation velocity after a short period of beating. The trend of the mean tem-
perature increase thus changes to a sublinear behavior. The overall behavior of the mean temperature
and the velocity envelope is similar for large ranges of k and p of the power law as well as α and b for
the exponential expression, with only quantitative variations, e.g. when the velocity envelope begins
to decrease. However, there are a number of configurations, especially for large values of k, where the
simulation destabilises and the temperature field values overflow. Similar behavior can be observed
when using the convergent, exponential expression to model the temperature dependence, however,
overflow can only be brought about if the increase in elasticity occurs sudden and steep at the start of
the simulation, e.g. both parameters α and b need to have high values. It is still to be shown if this
behavior results from numerical problems with the finite-difference scheme or is inherent to the system
of equations.
For further analysis, the spatial temperature distributions for different values of k and p for the power
law and α and b convergent material behavior are examined. The simulation results for the time-
dependent temperature distribution for four different configurations are visualized in Figure 3. It is
immediately visible that qualitatively different results may arise, depending on the chosen parameter
values. Due to the mechanical boundary conditions, the temperature increase is expected to be maximal
at the boundary of the system (x = 0mm and x = 1mm). However, the thermal boundary conditions
force the temperature to be zero at the same boundaries, resulting in the distributions shown in
Figures 3a, 3d or 3f, with local maxima close to but not at the spatial boundaries. Aside from these
results, qualitatively different temperature distributions (Figures 3b and 3e) are also observed. In these
cases, the temperature field forms a number of distinct, small hot spots along the spatial axis. The
number and periodicity of these hot spots depends on the choice of the parameters. There are also
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Figure 2: Typical result for the mean temperature and for the envelope of the mechanical oscillation
from a coupled thermo-acoustic simulations of a one-dimensional resonator. Parameters for the tem-
perature dependence power-law of the elasticity are k = 107 and p = 1.
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Figure 3: Results for the thermal field for coupled thermo-acoustic simulations of a one-dimensional
resonator with different values and different models for the dependence of the elasticity on temperature
(a to d: power law, (8.33); e and f: convergent exponential expression, (8.34)).
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observations, which show a superposition of the expected behavior and hot spots (Figure 3c).
Hot spots are observed primarily for larger values of k when applying the power law, which is obvious
when comparing Figures 3a and 3b. Increasing k further (e.g. to 105) causes the simulation to desta-
bilise. Additionally, observations show that the temperature distribution will not show hot sports for
values of p ≤ 2 for the power law. For the convergent behavior, hot spots occur primarily for large
values of b, e.g. when the initial increase in elasticity C is large. If the observed, qualitative differences
in the spatial temperature distribution arise from effects of imminent numerical instability or if they
also exist in physical systems is a subject to be explored in future research.
If it is found that the observed effects (formation of hot spots and unexpected rapid temperature
increases) can occur in physical systems, even ideal cooling systems for acoustic resonators, such as
high power piezoelectric actuators, may not be sufficient to keep such a system under stable operating
conditions. Because the cause for this behavior is an unfavourable temperature-dependence of the
material, it may rule out certain material classes for an application in these systems. Even if the
observed artefacts are caused by numerical effect, further study of the coupled thermal and mechanical
equation system is necessary to develop predictably stable simulation environments in the future.
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