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Abstract— Learning diverse policies for non-prehensile ma-
nipulation is essential for improving skill transfer and gen-
eralization to out-of-distribution scenarios. In this work, we
enhance exploration through a two-fold approach within a
hybrid framework that tackles both discrete and continuous
action spaces. First, we model the continuous motion parameter
policy as a diffusion model, and second, we incorporate this
into a maximum entropy reinforcement learning framework
that unifies both the discrete and continuous components.
The discrete action space, such as contact point selection,
is optimized through Q-value function maximization, while
the continuous part is guided by a diffusion-based policy.
This hybrid approach leads to a principled objective, where
the maximum entropy term is derived as a lower bound
using structured variational inference. We propose the Hybrid
Diffusion Policy algorithm (HyDo) and evaluate its performance
on both simulation and zero-shot sim2real tasks. Our results
show that HyDo encourages more diverse behavior policies,
leading to significantly improved success rates across tasks - for
example, increasing from 53% to 72% on a real-world 6D pose
alignment task. Project page: https://leh2rng.github.io/hydo

I. INTRODUCTION

The ability to manipulate objects in ways beyond simple
grasping is a vital aspect of human dexterity, underscoring
the significance of learning advanced non-prehensile manip-
ulation skills. These complex skills are essential for a wide
range of tasks, from daily activities to advanced industrial
applications. Teaching robots to achieve a level of dexterity
similar to the one of humans remains a significant challenge
for the field of robotics [1], [2]. Previous research has made
significant advances in this area, but often suffers from
limitations in object generalization and motion complexity
[3], [4], [5]. To address these challenges, motion primitives
(MPs) are frequently employed to simplify the representa-
tion of long-horizon actions and thus the overall problem
complexity. In addition, object-centric action representations
are utilized to decrease the sample complexity and to enable
a more efficient learning process. Reinforcement Learning
(RL) can be used to learn such representations, especially
within hybrid action spaces that combine discrete contact
points with continuous parameters for MPs [6], [7].

Developing policies that can learn diverse behaviors in a
RL context is motivated by two key factors: First, these poli-
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cies are potentially able to improve generalization to out of
distribution states and observations. Policies that only overfit
to a narrow range of experiences, on the other hand, usually
do not perform sufficiently well in unseen environments.
Continually learning from a more diverse set of experiences
forces the policy to capture the underlying principles of the
task rather than merely optimizing for specific scenarios
encountered during training [8], [9]. Secondly, developing
such policies enhances skill transfer learning: Continuous
exposure to diverse experiences in online RL facilitates the
transfer of skills across different but related tasks. An agent
that learns from a broad spectrum of interactions is more
likely to develop a robust set of skills that can be applied
to a varity of tasks. This increases its versatility and overall
learning capability [8], [9], [10].

In this work, we introduce a novel approach to enhancing
exploration in non-prehensile manipulation tasks under a
hybrid off-policy reinforcement learning framework [7]. Our
method handles both discrete and continuous action spaces
by incorporating maximum entropy principles to encourage
diverse behaviors. Specifically, we represent the continuous
motion parameter policy using a diffusion model [11], [12],
[13], [14], while the discrete action space, such as contact
points, is optimized through Q-value function maximization.
This formulation leads to the development of a Hybrid
Diffusion Policy algorithm, called HyDo, which integrates
two main components: diffusion-based policies and maxi-
mum entropy optimization over both discrete and contin-
uous actions. The entropy maximization term, embedded
in the soft actor-critic (SAC) [15] algorithm, is derived as
a lower bound using structured variational inference. The
overall framework is illustrated in Fig. 1. We evaluate the
impact of combining maximum entropy regularization with
diffusion in both simulation and zero-shot sim2real tasks.
The results show that this combination helps to learn more
diverse behavior policies. In the zero-shot sim2real transfer,
this improved exploration leads to a significant increase in
success rates, from 53% to 72% on a 6D pose alignment task
with a physical Franka Panda robot.

In summary, our contributions are: i) a hybrid RL frame-
work that enhances exploration by incorporating diffusion-
based policies; ii) the integration of maximum entropy regu-
larization to encourage diverse behaviors across both action
spaces; and iii) a theoretical justification, showing that the
new objective is a lower bound derived via structured varia-
tional inference. We validate our methods on both simulated
and zero-shot sim2real non-prehensile manipulation tasks.
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Fig. 1: Overview of HyDO: The network takes point clouds, goal flow, and segmentation (indicating object and background
points) as input. These are passed through the actor and critic networks. The actor is enhanced exploration on the continuous
motion parameter with the entropy regularizer applied during the diffusion process and outputs the motion parameter. The
state-action pair is then evaluated by the critic, which also integrates entropy regularization for exploration on the discrete
contact location. The action with the highest Q-value is selected and executed by the robot.

II. RELATED WORK

A. Diffusion-based offline and online RL

There have been different efforts, such as diffusion-based
generative models DDPMs [12], to use diffusion models as
representations for RL policies because they are (among oth-
ers) capable of learning multi-modal and diverse behaviors.
Most works focus on offline RL in which all data is available
at training time. Diffusion-Q learning [16] proposes an ex-
plicit regularization of the cloned behavior policy. A follow-
up work [13] proposes to use consistency models as policies
since they improve inference speeds such that they can be
applied to online RL. Other variants of diffusion policies
introduce actor-critic methods via implicit Q-learning [17],
Q-guided policy optimization with a new formulation for
intermediate guidance in diffusion sampling process [18],
diffusion-constrained Q-learning on latent spaces [19] or
implicit Q-learning as an actor-critic method [17], [20].

Analogically, diffusion policies are applied in imitation
learning [14], goal-conditioned imitation learning [21], hu-
man behavior imitation learning [22], offline direct policy
search [23], [24] based on advantage-weighted regression
(AWR) or reward-weighted regression (RWR) [25]. There are
also few works which apply online RL to fine-tune pretrained
diffusion models, such as RWR-based methods [26], [27]
or advanced bandit setting-based methods [28], [29]. While
these RWR-and AWR-based methods are considered to im-
plicitly enforce entropy-max regularization, they are only 1-
step MDPs and ignore the exploration problem for training
from scratch. Closest to our work is Q-score matching for
actor-critic (QSM) [30] which applies soft policy iteration,
but without direct use of the soft Q-value function. Our work
however optimizes the entropy-max objective using soft Q-
value functions for the policy improvement step as well as
the soft Bellman updates of the policy evaluations step.

B. Manipulation skill learning with motion primitives

Non-prehensile manipulation involves manipulating ob-
jects without grasping them. Recent learning-based methods
in this field are limited either by skill complexity or skill
diversity [5], [2], [31]. Our work tries to address these
challenges by focusing on learning diverse behaviors for 6D
object manipulation with MPs and by optimizing a class of
multi-modal policies. Traditional RL algorithms focus either
on discrete or on continuous action spaces, despite the fact
that some applications require hybrid action spaces where
the agent selects a discrete action along with some con-
tinuous parameter. Recent approaches [6], [7], [32] address
these shortcomings by using a spatial action representation
with discrete actions defined over a visual input map but
fail to incorporated profound exploration strategies because
they either ignore exploration over spatial maps [6] or use
a simple ε-greedy strategy to explore over a continuous
action parameter space [7]. Another recent work proposes
a diffusion-based MP policy [33] that is similar to us that
the policy generates only MP parameters which are then used
to generate a full motion profile via ProDMP [34].

III. BACKGROUND

A. MDP and Off-Policy Actor-Critic Methods

The underlying problem of RL can be formulated as a
Markov decision process (MDP) [35] which is defined by
a tuple {S,A,R,P,γ,P0} with state space S, action space A,
rewards R, transition probabilities P, discount factor γ , and
initial state distribution P0. The objective is to maximize
the discounted cumulative reward R = ∑

∞
i=0 γ ir(st+i,at+i)

with states st and actions at . Off-policy actor-critic methods
decouple the policy used to generate data from the pol-
icy being optimized. The actor is represented by a policy
πθ (a|s) with parameters θ , whereas the critic estimates the



value function Qφ (s,a) =E [∑t γ tr(st ,at)|s0 = s,a0 = a] with
parameters φ . TD3 [36] and SAC [15] are two prominent off-
policy approaches. The objectives of SAC’s actor and critic
are defined as follows:

L(θ) = Es,a∼D
[
−Qφ (s,a)+α logπθ (a|s)

]
,

L(φ) =
1
2
Est ,at ,st+1∼D

[
∥Qφ (st ,at)− yt∥2] , (1)

where yt is the target

yt = rt +γEat+1∼πθ (st+1)

[
Qφ ′(st+1,at+1)−α logπ(at+1|st+1)

]
.

In contrast to TD3 that optimizes deterministic policies
and exploration is handled by an ε-greedy strategy, SAC
uses a stochastic πθ and adds an entropy maximization term
to the objective to encourage exploration. This promotes a
more diverse set of behaviors and provides an improvement
in exploration and training stability.

B. Diffusion and Consistency Models

Diffusion-based generative models DDPMs [12], [11] as-
sume pθ (x0) :=

∫
pθ (x0:T )dx1:T , where x1, . . . ,xT are latent

variables with the same dimensionality as the data x0 ∼
p(x0). In a forward diffusion chain q, given by q(x1:T |x0) :=
∏

T
t=1 q(xt |xt−1), q(xt |xt−1) :=N (xt ;

√
1−βtxt−1,βt I), noise

with a predefined variance schedule βi is gradually added
to the data over a fixed amount of time steps T . Subse-
quently, a reverse diffusion chain p, defined as pθ (x0:T ) :=
N (xT ;0, I)∏

T
t=1 pθ (xt−1|xt), is optimized by maximizing

the evidence lower bound. Inference then requires sampling
the reverse diffusion chain from t = T to t = 0.

Consistency models [37] extend diffusion models by
adopting the form of a probability flow ordinary differential
equation (ODE). The reverse process along the ODE path
{x̂τ}τ∈[ε,T ] generates data starting from x̂T ∼ N (0,T 2I),
where ε is a small value close to zero. The consistency model
retains the effectiveness of a diffusion model but accelerates
sampling by reducing the number of time steps.

C. Diffusion and Consistency Models as RL Policy

Diffusion models have been used as a new class of policies
in offline RL [16], [38] for actor-critic architectures. These
works share a similar parametric policy representation as the
reserve process of the conditional diffusion model which is
defined as

πθ (aaa|sss) := πθ (aaa0:K |sss) = N(aaaK ;000, III)
K

∏
k=1

pθ (aaak−1|aaak,sss) (2)

where aaa0 is the action executed by the agent and sampled
at step 0. The probability distribution pθ can be based on
DDPM [16], [38] in which pθ (aaak−1|aaak,sss) is a Gaussian
with a trainable mean µ(aaak;k,sss) and a fixed time-dependent
covariance Σ(aaak;k,sss) = β kIII.

With the above policy representation, Wang et. al. [16]
propose Diffusion Q-learning to optimize θ using a similar
update scheme as TD3+BC [39]. Given an offline dataset

D = {ssst ,aaa0
t ,rt ,ssst+1}t=0:T , the objective of the policy evalua-

tion step is

L(φ) = Essst ,aaa0
t ,rt∼D

[
2

∑
i=1

∥yt −Qφi(ssst ,aaa0
t )∥2

]
,

where yt = r(ssst ,aaa0
t ) + γ mini=1,2 Qφ ′

i
(ssst+1,aaa0

t+1), aaa0
t+1 ∼

πθ (aaa|sss), and {Qφi}i=1,2 are twin Q networks with parameters
φ = {φ1,φ2} and with target networks Qφ ′

i
. The objective of

the policy improvement step is L(θ) = Lbehavior cloning(θ)−
αEsss∼D,aaa0∼πθ

[
Qφ1(sss,aaa

0)
]
, where α is the trade-off hyperpa-

rameter between two losses. The behavior cloning loss is
a standard supervised learning loss of DDPM, i.e. fitting a
diffusion prediction model πθ (·|sss) to predict aaa0.

The main drawback of optimizing the objectives L(φ)
and L(θ) is the high computational demand of hav-
ing to perform a multitude of sampling steps in or-
der to obtain aaa0 ∼ πθ (·|sss). Ding et. al. [13] pro-
pose using consistency models fθ (sss,aaaτ ,τ) with πθ (sss) =
Consistency Inference(sss, fθ ) [37] to reduce the num-
ber of steps and show that they can effectively be applied
for online RL.

D. Hybrid Actor-Critic for Non-prehensile Manipulation

Our work is based on Feldman et al. [6] and HACMan [7].
Both propose to use a hybrid action space which consists
of a continuous action space for motion prediction and a
discrete action space for inferring contact locations, and
employ similar actor-critic based network architectures. They
learn an actor which predicts a per-point motion parameter
map aaam = {aaam

i = πθ (X) | i = 1 . . .N} for a given input point
cloud X , as well as a critic which determines a per-point
Q-value map Q = {Qi = Qφ (X ,aaam

i ) | i = 1 . . .N} for the
motion parameter of each point aaam

i . Both networks share
a common encoder f (X) = { fi | i = 1 . . .N} which predicts
a per-point feature map. Based on Q, a location policy πloc
then selects a discrete point xi and, in that way, also the
corresponding continuous aaam

i . Feldman et. al. [6] add a max-
entropy term for exploring the continuous motion prediction
space, but ignore the exploration on discrete location space.
HACMan [7] uses TD3 which resorts to a simple ε-greedy
strategy for exploring both locations and motion parameters.
It computes the probability of a point being selected as the
contact location by

πloc(xi | Xob j) =
exp(βQi)

∑k=1..N exp(βQk)
, (3)

where β is the softmax’s temperature, and N is the number
of points on the object point cloud Xob j

1.

IV. METHODOLOGY

A. Problem Formulation

The goal of this work is to develop policies for non-
prehensile manipulation tasks, specifically targeting 6D ob-
ject pose alignment. This task requires the policy to process

1Points on the background point cloud Xb determined through separate
segmentation component are not considered.



a point cloud X as input, where each point is represented by
its 3D coordinates, a 1D segmentation mask, and a 3D goal
flow vector. To solve this problem, the policy must handle
both discrete actions, such as selecting contact points, and
continuous actions, like generating motion primitive vectors.

We formulate this problem in a principled manner as an
online off-policy maximum entropy reinforcement learning
task. This framework is chosen to encourage exploration and
diversity in the learned behaviors. To represent the policies,
we leverage Diffusion Probabilistic Models (DDPMs) [12]
and Consistency Models (CMs) [37], which are well-suited
for capturing diverse behaviors. Specifically, we first intro-
duce a principled formulation to integrate diffusion policies
into the Soft Actor-Critic (SAC) algorithm, enabling the
continuous policies to capture multi-modalities. We then
extend this approach to support both discrete and contin-
uous actions within a hybrid RL framework, leading to our
Hybrid Diffusion Policy (HyDo). This principled formulation
enhances exploration across both action spaces, ensuring the
development of diverse and robust manipulation policies.

B. Soft Actor-Critic with Diffusion Policy

Given a policy π parameterized by a diffusion model
defined in Eq. 2, we propose to incorporate a Diffusion
Policy that optimizes an objective similar to SAC, i.e. the
entropy-regularized cumulative return:

Jπ(θ) = ∑
t
Essst ,aaa0:K

t ∼πθ

[
r(ssst ,aaa0

t )

−α

K

∑
k=0

logπθ (aaak−1
t |aaak

t ,k,ssst)

]
,

(4)

where α is a hyperparameter. The entropy term in Eq. 4 can
also be interpreted as − log p(aaat |ssst) of the whole sampling
action diffusion path instead of only − log p(aaa0

t |ssst) (with the
true RL action) as in the standard SAC’s objective, because
it is intracble to compute the density of diffusion models. We
follow the derivation of the structured variational inference
[40] to prove that Jπ(θ) is the lower-bound of the maximum
reward likelihood,

log p(O1:T )≥ Esss1:T ,aaa0:K
1 ,...,aaa0:K

T ∼q(sss1:T ,aaa0:K
1 ,...,aaa0:K

T )[
T

∑
t=1

r(ssst ,aaa0
t )−α

K

∑
k=0

logq(aaak−1
t |aaak

t ,k,ssst)

]
.

where the binary random variable O denotes if time step t is
optimal or not, and q is the variational distribution, in which
the distribution over O is p(Ot |ssst ,aaat) = exp( 1

α
r(ssst ,aaat)). The

proof applies Jensen’s inequality as follows,

logp(O1:T ) = log
∫

p(O1:T ,τ)dτ

≥ Eτ∼q(τ) [log p(O1:T ,τ)− logq(τ)]

= Eτ∼q(τ)

[
T

∑
t=1

(
r(ssst ,aaat)−α

K

∑
k=1

logq(aaak−1
t |aaak

t ,ssst)

)]
.

where the variational policy distribution q(aaak−1
t |aaak

t ,ssst) is
parameterized as πθ (aaak−1

t |aaak
t ,k,ssst).

As a result, we obtain the policy evaluation step of the
soft policy iteration with the modified soft Bellman backup
operator T π

T π Q(ssst ,aaa0
t ) = r(ssst ,aaa0

t )+ γEaaa0:K
t+1∼π,ssst+1∼P

[
Q(ssst+1,aaa0

t+1)

−α

K

∑
k=0

log pθ (aaak−1
t+1 |aaa

k
t+1,k,ssst+1)

]
. (5)

The policy improvement step updates the policy with
the same objective as SAC, i.e., we minimize L(θ) =

Essst∼D

[
DKL

(
π ′(·|ssst)∥

exp(Qφ (ssst ,·))
Zφ (ssst )

)]
. Using DDPMs or CMs

[13], each probability pθ (aaak−1
t |aaak

t ,k,ssst) is a Gaussian and
benefits from the reparameterization trick using this trans-
formation aaak−1

t = fθ (ε
k−1
t ;aaak

t ,k,ssst). Thus the gradient of the
actor loss can be approximated as

∇θ L(θ) =−∇aaa0
t
Qφ (ssst ,aaa0

t )
∂aaa0

t

∂θ

+
K

∑
k=1

∇aaak−1
t

log pθ (aaak−1
t |aaak

t ,k,ssst)∇θ fθ (ε
k
t ;aaak

t ,k,ssst),

(6)
where the term ∂aaa0

t
∂θ

is also computed with reparameterization
trick as already used in previous methods as direct policy
optimization [16], [38].

C. Hybrid Diffusion Policy

To address the challenge of non-prehensile manipulation,
we build on the formulation presented in Subsection IV-B
by extending it to a hybrid setting, where the policy must
handle both discrete and continuous actions. To achieve this,
we first augment the HACMan [7] objective with entropy
regularization terms for both location and motion policies:

Ji(θ) =−Qφ ( fi,aaam
i )+α logπθ ,i(xi,aaam

i |sss),

where logπθ ,i(xi,aaam
i |sss) includes both location entropy

logπ loc
i (xi|sss) and motion parameter’s entropy logπm

i (aaam
i |sss).

As a result, the total objective of the actor is Jθ (θ) =

∑
N
i π loc(xi|sss)Ji(θ). Similarly, the critic loss is defined in Eq.1

with an addition of the maximum entropy term to the target

yt = rt + γExi∼π loc,aaam
i ∼πm

[
Qφ ( fi(ssst+1,aaam

i ))

−α logπθ ,i(xi,aaam
i |sss)

]
.

We then introduce Hybrid Diffusion Policy (HyDo), which
models the motion parameter policy πm using diffusion
models. In particular, diffusion policy πm predicts action map
aaam as a denoising process

π
m(aaam|sss) = pθ (aaam,0:K |sss)

= N(aaam,K ;000, III)
K

∏
k=1

pθ (aaam,k−1|aaam,k,sss),

where we denote aaam,k is an action map at denoising step k.
As a result of applying HyDo in IV-B, the per-point loss of
the actor is rewritten as



Ji(θ) =−Qφ ( fi,aaam,0)+α1 logπ
loc
i (xi|sss)

+α2

K

∑
k=0

log pθ (aaak−1
t |aaak

t ,k,sss),

for i = 1, . . . ,N. Thus, the total objective of the actor is
Jπ(θ) = ∑

N
i π loc(xi|sss)Ji(θ), and its gradient is computed

using the chain rule through the softmax of Q of the location
policy in Eq. 3 and the gradient in Eq. 6. Finally, the critic is
updated using a standard update in Eq. 1 with the following
entropy maximization term in the target as

yt =rt + γE

[
Qφ ( fi(ssst+1,aaa

m,0
i ))−α logπ

loc
i (xi|ssst+1)

−α

K

∑
k=1

log pθ (aaak−1
t |aaak

t ,k,ssst+1)

]
,

where the expectation is taken over both the location and
motion policies, xi ∼ π loc(·|ssst+1),aaa

m,0:K
i ∼ πm(·|ssst+1).

In addition, the diffusion policy can be replaced by a con-
sistency model πm(aaam|sss) = Consistency Model(sss; fθ )
without changing the underlying optimization procedure (as
shown in Algo. 1). We name this variant, Hybrid Diffusion
Policy with Consistency Models (HyDo + CM). Both vari-
ants are summarized with pseudo-code in Alg. 2.

Algorithm 1 Consistency Model Action Sampling

1: Given: state sss, fθ , a sub-sequence of time points
{τn}n∈[N], diffusion steps K.

2: Initialize mean aaaN = 000, variance ΣN = K2III
3: for n = N to 1 do
4: Sample âaa from N(aaan,Σn)
5: Compute cskip = 0.25/

(
(τn − ε)2 +0.25

)
and cout =

0.5(τn − ε)/
√

(τ2
n +0.25)

6: Compute aaan,Σn = fθ (sss, âaa,τn)
7: Compute output aaan = cskip · âaa+ cout ·aaan
8: end for
9: return aaa1

V. EXPERIMENTS

In this section, we evaluate our proposed algorithms,
HyDo and HyDo + CM, with the main baseline HACMan
and its variants, HACMan + Diff, and HACMan + CM.
In addition, we also investigate HyDo (w/o diffusion). All
methods are evaluated on a set of simulated and real-world
tasks. Our primary goal is to assess their performance in
terms of success rate, behavior diversity, and generalization
ability across different task settings. We use the same training
settings as HACMan [7]. The input is a 4D point cloud
obtained by concatenating 3D goal flow vectors with a 1D
segmentation mask which indicates if the point belongs to
the target object or the background. In simulation, ground-
truth object masks are used as segmentation labels. In the real
world robot experiments labels are obtained by background
subtraction.

Algorithm 2 HyDo: Hybrid Diffusion Policy

1: Initialize policy πθ and critic networks Qφ1 and Qφ2
2: Initialize the target networks: Qφ ′

1
and Qφ ′

2
3: Initialize replay buffer: D = /0
4: while not converge do
5: Forward the encoder to compute features f = f (ssst)
6: Sample action map aaam

t from diffusion policy as in
Eq. 3, e.g. DDPM or CM sampling presented in Algo. 1

7: Compute Q-value map Q = Qφ ( f ,aaam
t )

8: Select contact point xi using location policy Eq. 4
9: Select corresponding action’s motion parameter aaam

t,i

10: Execute action (xi,aaa
m,0
t,i ), observe rt and ssst+1

11: Add sample {ssst ,(xi,aaa
m,0
t,i ),rt ,ssst+1} to replay buffer D

12: Sample a minibatch {sss,(xi,aaa0
t,i),rt ,sss′} from D

13: Critic update as with target yt defined in IV-C.
14: Actor update with loss Jπ(θ) as defined in IV-C
15: Adjust temperature α

16: Update the target networks like SAC.
17: end while
18: return final policy πθ .

A. Experimental Setup

We validate our method through comparisons and ablation
studies performed on the 6D object pose alignment task and
translation task introduced in HACMan [7]. This task re-
quires diverse non-prehensile manipulations like pushing and
flipping to achieve a specified goal pose. Simulation setting:
The environment is built using Robosuite [41] and MuJoCo
[42] and provides 44 different objects for alignment. The
dataset is split into training (32 objects), unseen instances
(7 objects), and unseen categories (5 objects). Success is
defined by a mean distance of less than 3 cm between the
corresponding points of the object and the goal. More details
can be found in HACMan [7]. Real robot setting: The
robot system for sim2real evaluations is equipped with a
7DoF Franka Panda arm and three static Realsense cameras.
Evaluations: We evaluate the algorithms on training objects
set. Subsequently, we test these two different configurations:
i) Planar goals, where the object starts at a fixed pose
and with a randomized planar translation goal pose; and ii)
6D goals, where both the initial and goal poses are stable
SE(3) poses that are randomized. Specifically, for both real-
world and simulation evaluations, the goals are sampled from
SE(3). Initially, object poses are sampled from SE(3) in the
air above the center of the bin. The object is dropped into
the bin and allowed to settle into a stable position, which is
recorded as the goal pose. In simulation, 100 stable poses are
collected for each object, and at the start of each episode, a
goal is randomly selected from these poses. The location of
the selected stable pose is then randomized within the bin.

B. Experimental Results

1) Simulation Results: Tab. I presents the evaluation re-
sults of the experiments conducted in simulation for 6D pose
tasks on unseen category, unseen instance objects, as well as



Fig. 2: A simulation task showcases the multi-modalities of action sequences, (top) Push→ Push → Push→ Flip→ Push;
(bottom) Push→ Push → Flip→ Push→ Push. In this task, we fixed the goal and initial pose and generated the action
sequences with two different random seeds.

Fig. 3: A real robot task showcases the multi-modalities of action sequences, (top) Push→ Push → Push→ Push→ Flip;
(bottom) Push→ Push → Push→ Flip→ Push. In this task, we fixed the goal and initial pose and generated the action
sequences with two different random seeds.

the objects in the training set. In this evaluation, we report
the interquartile mean (IQM) [43] success rate over 10 seeds
and using the best checkpoint for each method.

TABLE I: Generalization performance on the 6D pose sim-
ulation task (using IQM with 95% confidence intervals).

Method Unseen Category Unseen Instance Training Objects

HACMan 0.760±0.042 0.818±0.049 0.769±0.062
HACMan + Diff 0.728±0.041 0.780±0.028 0.712±0.047
HACMan + CM 0.671±0.123 0.703±0.130 0.632±0.128

HyDo (w/o Diff) 0.816±0.026 0.848±0.032 0.794±0.028
HyDo 0.843±0.043 0.884±0.046 0.814±0.044
HyDo + CM 0.827±0.034 0.861±0.030 0.794±0.038

Overall, these results indicate a substantial performance
improvement with the introduction of the entropy term as
a regularization. Specifically, HyDo and its variants con-
sistently outperform the HACMan baselines on the Unseen
Category and Unseen Instance object sets. The difference
in performance is particularly highlighted in diffusion-based
policies (+ Diff or + CM), where HyDo and HyDo + CM
with the additional entropy regularization terms yields up to
a 10% and 15% improvement compared to HACMan + Diff
and HACMan + CM, respectively. In addition, either with
or without the entropy terms, the diffusion policies achieve
slightly better performance than consistency models across
all evaluation sets.

These findings demonstrate the effectiveness of entropy
regularization and underscore its critical role in optimizing
complex policies, such as diffusion and consistency models,
for improved generalization in unseen scenarios.

2) Real Robot Results: We evaluate the trained policies
on the ”All Objects + 6D Goals” simulation task on a real-
world robot for which we use the same real-world setup,
pose randomization, and success criteria as in HACMan (see
Fig. 4).

(a) Lego (b) Lotion (c) Milk (d) Soja (e) Cube

Fig. 4: Set of 5 objects used for real robot evaluations.

TABLE II: Real Robot Experiments for Planar (left) and 6D
(right) Goals.

Object HACMan HyDo (w/o Diff) HyDo HyDo + CM

Lego 6/10 6/10 8/10 5/10 8/10 6/10 9/10 7/10
Lotion 6/10 5/10 7/10 6/10 8/10 7/10 7/10 7/10
Milk 4/10 6/10 8/10 6/10 7/10 7/10 8/10 7/10
Soja 5/10 5/10 6/10 4/10 6/10 6/10 7/10 5/10
Cube 5/10 5/10 8/10 6/10 8/10 5/10 9/10 6/10

Total 26/50 27/50 37/50 27/50 37/50 31/50 40/50 32/50



Tab. II reports the evaluation results on both the planar
and 6D tasks. We run each method with ten object trials
and randomize the initial and target poses. To make it fair,
we keep them similar across evaluations for all methods.
The average success rates of the four methods are 53%
for HACMan, 64% HyDo (w/o Diffusion), 68% for HyDo,
and 72% for HyDo + CM. These results demonstrate that
all methods are also capable of effectively generalizing to
unseen objects in real world. We do, however, observe a gap
between non-diffusion and diffusion policy methods which
is larger than in simulation. The gap between simulation
and real world scenes is generally larger than the one for
simulated training to simulated evaluation scenarios. Our
hypothesis is that the diverse behaviors of the learned multi-
modal diffusion policies allow for better generalization to
such new environments. To further assess this diversity,
we evaluate multi-modal action sequences under the same
environment conditions, differing only by action sampling
seeds. Fig. 2 and Fig. 3 show two distinct action sequences
achieving the same goal pose in both simulation and real
robot experiments, demonstrating how the order of flips and
pushes can vary, achieving the same outcome through diverse
execution actions.

C. Qualitative Policy Diversity Analysis

(a) Pushing task (b) Entropy vs. Success Rates

Fig. 5: Diverse behaviors of different diffusion-based policies
on a simple pushing task (a). In (b), we show the Pareto
plot between Entropy and Success Rates. Overall, methods
without entropy regularization (HACMan) result in lower
entropy compared to its counterparts. Note that we disable
the entropy term on the location action to solely investigate
the effect of the entropy on the continuous policies.

We follow the proposal to analyze the policy diversity
as defined in [10]. They approximate behavior entropy of
diffusion policies π with the following function H(π(β )) =
−∑β∈B π(β ) log|B| π(β ), where B is defined as the set of
task-specific behavior descriptors. We run simulations using
the final policy of each method to estimate π(β ). We design
a controlled task with |B|= 2 where the robot can push the
target object (on the left) along the upper or below path
around the white static obstacle object to the target pose (on
the right) as depicted in Fig. 5a. If the entropy H(π(β )) = 0,
it indicates that the policy has collapsed to a single solution
or a single path (either upper or lower).

We qualitatively evaluate only methods with policies rep-
resented by diffusion and consistency models. More specifi-
cally, we train HyDo, HyDo + CM, HACMan + Diffusion,
and HACMan + CM until convergence with random initial
poses. Then, we evaluate them for 200 trials with the
same initial pose depicted in Fig. 5a. In this experiment,
to highlight the effect of the entropy on the continuous
motion parameter, we disable the entropy term for the lo-
cation action. As shown in Fig. 5b, methods without entropy
regularization such as HACMan, and HACMan + CM result
in less diverse behaviors (low entropy) and/or non-optimal
actions (low success rate).

D. Computational Efficiency Analysis of Consistency and
Diffusion Models

To assess the computational speed of consistency and
diffusion models with varying denoising steps, we run an ex-
periment measuring inference times for K ∈ {2,5,10,20,50},
using a single-object ”Hammer” training setup. As shown
in Tab. III, the consistency model [37] achieves similar
performance to the diffusion model with fewer denoising
steps, demonstrating its efficiency advantage. Both models
reach a performance plateau around K = 5, with further
increases in K = 50 leading to a drop in performance.

TABLE III: Inference Time in milliseconds per sample for
each method and diffusion step. (using IQM with 95%
confidence intervals)

Method K Inference Time (in ms) Success Rate

HyDo 2 3.54 ± 0.60 0.631 ± 0.041
HyDo 5 7.90 ± 1.06 0.684 ± 0.038
HyDo 10 17.01 ± 2.66 0.646 ± 0.059
HyDo 20 29.27 ± 3.67 0.677 ± 0.045
HyDo 50 74.23 ± 10.25 0.644 ± 0.025

HyDo + CM 2 3.23 ± 0.69 0.684 ± 0.043
HyDo + CM 5 7.51 ± 1.14 0.787 ± 0.077
HyDo + CM 10 14.89 ± 1.77 0.731 ± 0.007
HyDo + CM 20 26.72 ± 3.65 0.713 ± 0.058
HyDo + CM 50 67.70 ± 9.93 0.575 ± 0.009

VI. CONCLUSIONS

We presented Hybrid Diffusion Policy (HyDo), an online
diffusion-based off-policy maximum entropy RL algorithm
for 6D non-prehensile manipulation. We derived a princi-
pled objective, i.e. the maximum entropy regularization, that
considers diffusion policies as a class of stochastic policies.
We showed that treating the stochastic diffusion policy with a
principled objective significantly improves its performance in
RL applications. Our qualitative results indicated that online
RL is hard for learning multi-modal policy distributions with
diffusion models, as it can make diffusion policies converge
to uni-modal quickly. Therefore, stochastic diffusion-based
and entropy maximizing RL algorithms can be a promising
combination for improved exploration strategies and learning
more diversity behaviors. For future work, we envision



extending our approach to more complex, dynamic envi-
ronments, such as closed-loop settings and tasks requiring
continuous adaptation [44].
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