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Abstract. In galaxy survey analysis, the observed clustering statistics do not directly match
theoretical predictions but rather have been processed by a window function that arises from
the survey geometry including the sky footprint, redshift-dependent background number
density and systematic weights. While window convolution of the power spectrum is well
studied, for the bispectrum with a larger number of degrees of freedom, it poses a significant
numerical and computational challenge. In this work, we consider the effect of the survey
window in the tripolar spherical harmonic decomposition of the bispectrum and lay down a
formal procedure for their convolution via a series expansion of configuration-space three-point
correlation functions, which was first proposed by Sugiyama et al. (2019). We then provide a
linear algebra formulation of the full window convolution, where an unwindowed bispectrum
model vector can be directly premultiplied by a window matrix specific to each survey geometry.
To validate the pipeline, we focus on the Dark Energy Spectroscopic Instrument (DESI) Data
Release 1 (DR1) luminous red galaxy (LRG) sample in the South Galactic Cap (SGC) in
the redshift bin 0.4 ⩽ z ⩽ 0.6. We first perform convergence checks on the measurement of
the window function from discrete random catalogues, and then investigate the convergence
of the window convolution series expansion truncated at a finite of number of terms as well
as the performance of the window matrix. This work highlights the differences in window
convolution between the power spectrum and bispectrum, and provides a streamlined pipeline
for the latter for current surveys such as DESI and the Euclid mission.
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1 Introduction

Measurements of cosmological observables usually cannot be directly compared to their
theoretical predictions not only because they are noisy realisations, but also because they have
been processed by a window function that filters the underlying signal. In galaxy clustering
analysis, the window function encodes the survey geometry and includes selection functions of
the background number density, as well as any weights applied to compensate for systematic
effects or to enhance the signal-to-noise ratio [1]. For correlation functions in configuration
space, their window functions are locally multiplicative and are thus relatively easy to account
for; in Fourier space, the window function instead convolves with the polyspectra such as
the power spectrum and bispectrum. This mixes clustering modes on different scales, and
modulates both the shape and the amplitude of the clustering statistics [2]; moreover, since
the window function itself is typically anisotropic, it couples to anisotropies arising from
redshift-space distortions (RSD) and the Alcock–Paczyński (AP) effect [3, 4], and therefore
must be accounted for in their statistical analysis.

One way to disentangle the window function is to deconvolve it from clustering statistics
such as the quadratic and cubic (near-)optimal estimators of the power spectrum and
bispectrum [e.g. 5–11], which are numerically difficult to obtain and require the inversion
and differentiation of covariance and Fisher matrices at the map pixel level. Fundamentally,
deconvolution is an inverse operation (akin to division in configuration space), and so it may
suffer from ill-conditioning especially with noisy estimates of clustering statistics.
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The alternative approach, which has become standard for the analysis of the galaxy
clustering power spectrum, is to forward model the window function by performing convolution
as multiplication in configuration space [12, 13]. This is particularly advantageous for
compressed clustering statistics such as Legendre multipoles of the correlation function or the
power spectrum (ξL or PL), where the window function multipoles QL can be measured in a
similar way, and multipoles in configuration and Fourier spaces are related through the Hankel
transform. In addition, for predefined binning, the entire procedure is a combination of linear
algebra operations and can be cast as matrix multiplications for fast computation [14, 15].

Although the treatment of the window function for power spectrum has been standardised
this way in recent analyses of the 6-degree Field Galaxy Redshift Survey (6dFGRS), the
Baryon Oscillation Spectroscopic Survey (BOSS) and its extension eBOSS [e.g. 13, 14, 16–19],
it remains challenging for three-point clustering statistics in Fourier space, where perturbative
models of the bispectrum such as the effective field theory of large-scale structure are
presented [e.g. 20–26]. This is because higher-order clustering statistics have many more
degrees of freedom; for instance, whereas the power spectrum is a function of a single
wavevector k under the assumption of statistical homogeneity, the bispectrum is a function of
two wavevectors defining a closed triangle also under statistical homogeneity.

In the analysis of BOSS galaxy catalogues, refs. [27, 28] have replaced the bispectrum
window convolution with convolution of the two-point window function with each power
spectrum kernel in the bispectrum model; this is a mathematically inequivalent procedure
and an inaccurate approximation on large scales. More recently, ref. [29] has suggested
the deployment of deep neural networks to ‘learn’ the effect of the window function on the
bispectrum from a large suite of training simulations; aside from the computational cost of
this approach which needs to be repeated for each window function, this proof-of-concept
study has had to assume a relation between the unwindowed and windowed bispectra that
is a local and isotropic response function in Fourier space. For the commonly considered
Scoccimarro bispectrum multipoles BM

L (k1, k2, k3) in the basis proposed by ref. [30], ref. [31]
has laid down the analytical expressions for the window convolution, but the window function
is decomposed into a much larger set of multipole components with five additional spherical
degrees ℓ, each requiring the summation over multiple spherical orders m. This induces a
significant computational cost, even when they can be recast in a form amenable to the fast
Fourier transform (FFT).

In this work, we consider an alternative decomposition of three-point clustering statistics
in the tripolar spherical harmonic (TripoSH) basis, which was first proposed by ref. [32]. In
this decomposition, the third internal angle (or equivalently, its corresponding side) of the
bispectrum triangles is integrated out, resulting in multipoles Bℓ1ℓ2L(k1, k2) with only two
wavenumbers and two additional spherical degrees ℓ1, ℓ2.1 In contrast to the Scoccimarro
multipoles which have three wavenumbers, this is a form of data dimensionality reduction, as
the bispectrum multipoles are now effectively two-dimensional rather than three-dimensional
quantities, which reduces the computational cost, especially for covariance matrix estimation.
The three-point correlation function (3PCF) admits a similar expansion into multipoles that
are related to the bispectrum multipoles through a double spherical Bessel transform. More
crucially, as demonstrated in ref. [32] and discussed later in this work, the window function in
the TripoSH formulation can be decomposed into similar multipoles that can be measured
in the same way as for the bispectrum and 3PCF multipoles using FFTs. The full window

1Throughout this work, we consider only single-digit spherical degrees ℓ1,2 < 10 and do not delimit the
subscripts with commas.
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convolution procedure is then analogous to that of two-point clustering statistics as laid
down by refs. [12, 13], where in configuration space the windowed 3PCF multipoles are series
expansions in terms of the window function multipoles and the unwindowed 3PCF multipoles.
Whereas ref. [32] only considers the leading-order term in the series and ref. [33] focuses on
the configuration space, we investigate the importance of non-leading-order terms here in
Fourier space. Moreover, this approach also allows us to propose a simple linear algebra
formulation where a given unwindowed bispectrum model vector is premultiplied by a window
matrix, the result of which can then be compared with the measured data vector as for the
power spectrum [15].

This article proceeds as follows. We first introduce the TripoSH decomposition and
write down the FFT-based estimators proposed by ref. [32] in section 2. We then lay out the
window convolution procedure in section 3, including the numerical implementation of the
double spherical Bessel transform required to convert between Fourier- and configuration-space
statistics and the linear algebra formulation of a window matrix. In a series of validation
tests detailed in section 4, we discuss the convergence of window function measurements with
respect to the sampling of the number density field, as well as truncation and approximations
adopted in the window convolution formula. We will highlight some technical differences in
window convolution between three-point and two-point clustering statistics as well as between
Fourier and configuration space, before drawing a conclusion in section 5.

Throughout this work, we will use our publicly available code Triumvirate2 to measure
all three-point clustering statistics including the window function and to perform window
convolution [34].

2 Tripolar spherical harmonic decomposition

Given a catalogue of discrete particles, one could assign their positions x to a regular mesh
grid of cells to compute fluctuations in the number density field n(x) with any weights w(x)
(such as the Feldman–Kaiser–Peacock scheme [1]),

δn(x) = w(x)[n(x) − n̄(x)] . (2.1)

Here the background number density n̄(x) is constant for a simulation snapshot, and for a
galaxy survey catalogue, it may include the selection function and any additional systematic
weights to correct for observational effects such as incompleteness. In the latter case, n̄(x)
is typically sampled by a much denser random catalogue but rescaled to match the number
density of the data catalogue.

In redshift space where the radial distance to each galaxy is converted from its observed
redshift subject to peculiar velocity, clustering statistics such as the 3PCF depends on the
line of sight, n̂, in addition to the separation r1,2,

ζ(r1, r2, n̂) = ⟨δ(x + r1) δ(x + r2) δ(x)⟩ , (2.2)

where ⟨·⟩ denotes the ensemble average, and δ(x) = δn(x)/ n̄(x) is the over-density field. In the
expression above, we have assumed the end-point definition of the line-of-sight vector n̂ = x/|x|
in the local plane-parallel picture.

Analogously, the bispectrum B(k1, k2, n̂) in Fourier space is a function of two wave-
vectors k1, k2 and the line-of-sight vector n̂ in the local plane-parallel picture [30, 35]. Under

2github.com/MikeSWang/Triumvirate
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the assumption of parity symmetry, one could construct a basis of functions from three
spherical harmonics [32],

Sℓ1ℓ2L

(
k̂1, k̂2, n̂

)
= H−1

ℓ1ℓ2L

∑
m1m2M

(
ℓ1 ℓ2 L
m1 m2 M

)
ym1

ℓ1

(
k̂1
)

ym2
ℓ2

(
k̂2
)

yM
L (n̂) , (2.3)

where the Wigner 3-j factor

Hℓ1ℓ2L =
(

ℓ1 ℓ2 L
0 0 0

)
(2.4)

enforces (ℓ1 + ℓ2 + L) ∈ 2Z to be even, and the spherical harmonics ym
ℓ =

√
4π /(2ℓ + 1)Y m

ℓ

are normalised such that y0
0 ≡ 1. In this basis, the bispectrum can be expanded as

B(k1, k2, n̂) =
∑

ℓ1+ℓ2+L∈2Z
Bℓ1ℓ2L(k1, k2) Sℓ1ℓ2L

(
k̂1, k̂2, n̂

)
, (2.5)

where the multipoles are given by

Bℓ1ℓ2L(k1, k2) = Nℓ1ℓ2LHℓ1ℓ2L

∑
m1m2M

(
ℓ1 ℓ2 L
m1 m2 M

)

×
∫ d2k̂1

4π
d2k̂2
4π

d2n̂
4π ym1

ℓ1
∗(k̂1

)
ym2

ℓ2
∗(k̂2

)
yM

L
∗(n̂) B(k1, k2, n̂) (2.6)

with the prefactor Nℓ1ℓ2L = (2ℓ1 + 1)(2ℓ2 + 1)(2L + 1).
Similarly, the 3PCF also admits the same expansion as eqs. (2.3) and (2.5), with its

multipoles given by

ζℓ1ℓ2L(r1, r2) = Nℓ1ℓ2LHℓ1ℓ2L

∑
m1m2M

(
ℓ1 ℓ2 L
m1 m2 M

)

×
∫ d2r̂1

4π
d2r̂2
4π

d2n̂
4π ym1

ℓ1
∗(r̂1

)
ym2

ℓ2
∗(r̂2

)
yM

L
∗(n̂) ζ(r1, r2, n̂) . (2.7)

These are related to the bispectrum multipoles (eq. 2.6) through a double spherical Bessel
transform:3

Bℓ1ℓ2L(k1, k2) = (4π)2i−ℓ1−ℓ2

∫
d2r1 r2

1

∫
d2r2 r2

2 jℓ1(k1r1) jℓ2(k2r2) ζℓ1ℓ2L(r1, r2) , (2.8a)

ζℓ1ℓ2L(r1, r2) = (4π)2iℓ1+ℓ2

∫ dk1 k2
1

(2π)3

∫ dk2 k2
2

(2π)3 jℓ1(k1r1) jℓ2(k2r2) Bℓ1ℓ2L(k1, k2) . (2.8b)

2.1 Estimators of three-point clustering statistics

For convenience, we define the spherical harmonic weighted fluctuation field and its Fourier
transform,

δnm
ℓ (x) = ym

ℓ
∗(x)δn(x) and δnm

ℓ (k) =
∫

d3k e−ik·x δnm
ℓ (x) , (2.9)

where the latter can be computed using fast Fourier transform (FFT) with mesh assignment
window corrections applied [36, 37]. Assuming the end-point definition of the line of sight,

3These transforms can be related to and recast as Hankel transforms as commonly known in the literature.
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the TripoSH multipoles of the bispectrum and 3PCF in eqs. (2.6) and (2.7) can be cast in a
form compatible with FFT [32]:

pBℓ1ℓ2L(k1, k2) = I−1
3 Nℓ1ℓ2LHℓ1ℓ2L

∑
m1m2M

(
ℓ1 ℓ2 L
m1 m2 M

)

×
∫

d3x F m1
ℓ1

(x; k1) F m2
ℓ2

(x; k2) GM
L (x) , (2.10a)

pζℓ1ℓ2L(r1, r2) = I−1
3 Nℓ1ℓ2LHℓ1ℓ2L

∑
m1m2M

(
ℓ1 ℓ2 L
m1 m2 M

)

×
∫

d3x F m1
ℓ1

(x; r1) F m2
ℓ2

(x; r2) GM
L (x) , (2.10b)

with the normalisation constant

I3 =
∫

d3x w(x)3 n̄(x)3 . (2.11)

Here the one-point functions

F m
ℓ (x; k) =

∫ d2k̂
4π eik·xym

ℓ
∗(k̂)δn(k) , (2.12a)

F m
ℓ (x; r) = iℓ

∫ d3k
(2π)3 eik·x jℓ(kr)ym

ℓ
∗(k̂)δn(k) , (2.12b)

Gm
ℓ (x) =

∫ d3k
(2π)3 eik·x δnm

ℓ (k) (2.12c)

are obtained from δnm
ℓ (k) either through binning in spherical shells in wavenumbers for

F m
ℓ (x; k), or through inverse Fourier transforms of F m

ℓ (x; r) and Gm
ℓ (x). The overall integra-

tion in eq. (2.10) is computed as a sum of the product of these three one-point functions over
all grid cells in configuration space.

Finally, to account for the discrete sampling of continuous number density fields by
particles in a finite-sized catalogue, the shot noise components should be subtracted from
the multipoles. We shall use the expressions derived in ref. [32] (see eqs. 44–46 and 51
therein); however, we account for the mesh assignment window and aliasing effects in the
shot components slightly differently, using the original exact prescription from ref. [36] (see
eqs. 19–21 and the discussion therein).

2.2 Estimator of the three-point window function

A key advantage of the TripoSH decomposition is that the window function for three-point
clustering statistics can be decomposed in exactly the same basis as for the bispectrum or
3PCF, as we will demonstrate in the next section. In configuration space, the window function
multipoles Qℓ1ℓ2L(r1, r2) can be estimated from dense random catalogues using eq. (2.10b)
derived for the 3PCF by replacing δn with wn̄ in eq. (2.12). Note that under the simultaneous
exchange ℓ1 ↔ ℓ2 and r1 ↔ r2, the value of TripoSH multipoles remains the same. This
exchange symmetry means that for multipoles with degrees ℓ1 = ℓ2, only the upper triangular
part (r1 ⩽ r2) of the 2-dimensional quantity Qℓ1ℓ2L(r1, r2) needs to be computed.

By contrast, in other approaches such as ref. [31], the window function multipoles have
a complex form with a larger number of degrees of freedom (namely additional spherical
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degree ℓ and order m indices) than the three-point clustering statistics themselves and thus
need computationally efficient estimators to be separately developed. In this aspect, window
convolution in the TripoSH formalism resembles the standard window convolution procedure
for two-point clustering statistics much more closely [12, 13].

The estimation of the three-point window function multipoles and the shot noise com-
ponents are both implemented by our publicly available code Triumvirate [34] introduced
in section 1.

3 Window convolution recipe

In this section, we will briefly review the window convolution formula given in ref. [32] and
then discuss the practical implementation of the window convolution procedure, including
a linear algebra formulation that provides a window matrix for premultiplication with the
bispectrum model vector.

3.1 Window convolution series
Since the true background number density is unknown and has to be inferred from observations,
this leads to an integral constraint placed on the over-density field and its correlators [2];
consequently, this needs to be corrected for in any observable 3PCF, ζ 7→ ζ − ζ̄. In this work,
we adopt the treatment from ref. [32] by assuming the correction ζ̄ is a constant determined
from the isotropic condition ∫

dr1 r2
1 dr2 r2

2ζ000(r1, r2) = 0 . (3.1)

More generally, this correction should be scale-dependent as the constraint placed on the over-
density field couples with the field itself, as demonstrated for two-point clustering statistics in
ref. [38]. In addition, here we also ignore any radial integral constraint that arises when the
radial selection function also has to be inferred from the survey observations directly. We
leave a more formal and consistent study of the integral constraint corrections in three-point
clustering statistics to future work.

To proceed, we consider the following 3PCF multipole estimator that is mathematically
equivalent to eq. (2.10b):

pζℓ1ℓ2L(r1, r2) = I−1
3 Nℓ1ℓ2LHℓ1ℓ2L

∑
m1m2M

(
ℓ1 ℓ2 L
m1 m2 M

)∫ d2r̂1
4π ym1

ℓ1
∗(r̂1

)d2r̂2
4π ym2

ℓ2
∗(r̂2

)
×
∫

d3x1

∫
d3x2

∫
d3x3 δ(D)(r1 + x1 − x3) δ(D)(r2 + x2 − x3)

× yM
L

∗(x̂3) δn1(x1) δn2(x2) δn3(x3) , (3.2)

where δ(D) denotes the Dirac delta function. By taking the ensemble average of this estimator
and substituting eq. (2.2) with the integral constraint correction ζ 7→ ζ − ζ̄ and the TripoSH
multipole expansion, one obtains the window-convolved 3PCF model [32]

〈
pζℓ1ℓ2L(r1, r2)

〉
= Nℓ1ℓ2L

∑
ℓ′

1ℓ′
2L′

∑
ℓ′′

1 ℓ′′
2 L′′


ℓ′′

1 ℓ′′
2 L′′

ℓ′
1 ℓ′

2 L′

ℓ1 ℓ2 L

Hℓ1ℓ′
1ℓ′′

1
Hℓ2ℓ′

2ℓ′′
2
HLL′L′′Hℓ1ℓ2L

Hℓ′
1ℓ′

2L′Hℓ′′
1 ℓ′′

2 L′′

× Qℓ′′
1 ℓ′′

2 L′′(r1, r2) ζℓ′
1ℓ′

2L′(r1, r2) − Qℓ1ℓ2L(r1, r2)ζ̄ . (3.3)
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Here the window function multipoles Qℓ1ℓ2L(r1, r2) are given by eq. (3.2) with the replacement
of δn(x) by w(x) n̄(x), and the integral constraint correction is given by

ζ̄ = ⟨Q000, 1⟩−1 ∑
ℓ1ℓ2L

⟨Qℓ1ℓ2L, ζℓ1ℓ2L⟩
Nℓ1ℓ2LH2

ℓ1ℓ2L

, (3.4)

where we have defined

⟨A, B⟩ =
∫

dr1 r2
1 dr2 r2

2 A(r1, r2) B(r1, r2) . (3.5)

In general, eqs. (3.3) and (3.4) are infinite series which have to be truncated in practical
evaluations. As the multipole degree L, L′ or L′′ associated with line-of-sight anisotropies
increases, the amplitude of the corresponding multipole generally decreases, but this relation
does not necessarily hold for ℓ1,2; as such, for each survey geometry, the convergence of
eq. (3.3) or (3.4) needs to be validated by empirically determining which terms in the series
make a significant contribution. This is what we will verify in section 4.

3.2 Double spherical Bessel transform

The double spherical Bessel transform (eqs. 2.8) required to convert between bispectrum
and 3PCF multipoles is numerically challenging because of the oscillatory nature of the
spherical Bessel functions in the integrand. The same type of transform, however, also appears
in the transform between power spectrum and two-point correlation function multipoles
and is dealt with using the FFTLog algorithm [12, 39–41]. In this work, we take the same
approach as in ref. [32] by treating the double spherical Bessel transform as two sequential
one-dimensional Hankel transforms performed using FFTLog. In the future, one may wish to
consider alternative numerical algorithms such as 2D-FFTLog [42], Levin integration [43–45]
and a complex integration method based on the Picard–Lefschetz theory [46].

If one is interested in a 3PCF analysis, then only the backward double spherical Bessel
transform of a bispectrum model into configuration space is needed. However, the bispectrum
multipoles must be specified in the full two-dimensional form, Bℓ1ℓ2L(k1, k2), even when
the 3PCF multipoles are restricted to the diagonal form, ζℓ1ℓ2L(r, r). On the other hand,
only the diagonal part of the window function multipoles, Qℓ1ℓ2L(r, r), is needed as the
convolution is locally multiplicative in eq. (3.3). By contrast, a bispectrum analysis even
when restricted to the diagonal part Bℓ1ℓ2L(k, k) requires the full two-dimensional window
function multipoles Qℓ1ℓ2L(r1, r2), since additional forward double spherical Bessel transforms
are required after window convolution is performed in configuration space.

3.3 Linear algebra formulation

Following the discussion in the previous subsections, the full window convolution recipe for a
bispectrum analysis can be summarised by the steps below.

1) Measure the full two-dimensional window function multipoles Qℓ1ℓ2L(r1, r2) from a
random catalogue that samples the survey geometry (applying eq. 2.10b).

2) Transform a given bispectrum model for all multipoles Bℓ1ℓ2L(k1, k2) required by the
(truncated) window convolution series into 3PCF multipoles ζℓ1ℓ2L(r1, r2) (applying
eq. 2.8b).
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3) Evaluate the window convolution series to obtain the window-convolved 3PCF multi-
poles ζ̃ℓ1ℓ2L(r1, r2) (applying eq. 3.3).

4) Transform the window-convolved 3PCF multipoles back into desired window-convolved
bispectrum multipoles B̃ℓ1ℓ2L(k1, k2) (applying eq. 2.8a).

The truncation of the window convolution series eq. (2.8b) to achieve convergence depends on
the specific survey geometry and needs to be verified for each analysis as we will demonstrate
in section 4.

It transpires that each step above is a linear algebra operation: the double spherical
Bessel transform is a linear integral transform, and the window convolution series including
the integral constraint is a linear combination of unwindowed model multipoles. Therefore,
the full window convolution procedure can be recast as a single linear algebra operation;
schematically, B̃ = WB, where B and B̃ are the unwindowed and windowed bispectrum model
vectors and W is the window matrix that captures the full window convolution procedure.

Although the elements of the window matrix W can be explicitly and individually
computed, one may rely on the fact that for a linear transformation, the columns of the
transformation matrix correspond to the transformed basis vectors. Therefore, one could
construct the window matrix W as follows, provided the wavenumbers {ki}Nk

i=1 at which the
bispectrum model is evaluated are predefined. First,

1) fix the ordering of multipoles, e.g. sort the multipole degrees {(ℓ1, ℓ2, L)} by ℓ1,2 and
then by L overall;

2) vectorise the two-dimensional bispectrum multipoles in row-major order, i.e. Bℓ1ℓ2L(ki, kj)
is the [Nk(i − 1) + j]-th element of the (unwindowed) multipole vector Bℓ1ℓ2L;

3) concatenate the required unwindowed multipole vectors (say Npole in total) to form the
full unwindowed model vector B⊺ =

(
B⊺

ℓ1ℓ2L, . . .
)

in the fixed order.

Next,

4) feed the basis of unit vectors uI = (0, . . . , 1, . . . , 0)⊺, where the index I = 0, . . . , NpoleN
2
k ,

as B into the full window convolution procedure; in other words, each time set
Bℓ′

1ℓ′
2L′
(
ki′ , kj′

)
= 1 for one particular multipole (ℓ′

1, ℓ′
2, L′) at specific wavenumbers

(ki′ , kj′), and all other multipole values to zero;

5) for the I-th unit vector, concatenate the resulting windowed multipole vectors into
ũ⊺ =

(
ũ⊺

ℓ1ℓ2L, . . .
)

in the fixed order, and this is the I-th column of the window matrix W.

Now for any unwindowed bispectrum model evaluated at the same wavenumbers and vectorised
as above, one could premultiply the model vector B by the same window matrix W to obtain a
windowed bispectrum model vector B̃ that can be compared with the bispectrum measurements
vectorised in the same way, e.g. in a likelihood analysis.

4 Validation tests

Having laid down the full procedure for the window convolution of the TripoSH bispectrum
multipoles, we now validate the pipeline (including the linear algebra formulation) with the
Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) survey specification [47–
62]. We will focus on the luminous red galaxy (LRG) sample in the South Galactic Cap (SGC)
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in the redshift bin 0.4 ⩽ z ⩽ 0.6 in the DR1 data [53, 54], and consider the diagonal
windowed bispectrum monopole B̃000(k, k) and quadrupole B̃202(k, k) which have the highest
signal-to-noise ratio [32].

To perform the validation tests, we make use of the DESI Second-Generation mock
catalogues based on 25 realisations of the AbacusSummit simulation suite in the baseline
Planck 2018 cosmology [63–65], which have been calibrated against the two-point clustering
characteristics of the DESI One-Percent Survey [66]. These mock catalogues include fixed-
redshift simulation snapshots in (2 h−1 Gpc)3 cubic boxes (at z = 0.5 for the sample considered
here), as well as cut-sky catalogues (including random catalogues) replicated from the snapshots
to match the DR1 survey footprint including the veto mask and the number density redshift
distribution, n̄(z).

We will use the mean of the 25 cubic-box measurements as a proxy bispectrum model
without window effects since they share exactly the same underlying clustering signal as the
cut-sky mock catalogues on scales below the box size.4 We measure the three-point window
function from the cut-sky random catalogues and compare any window-convolved bispectrum
multipoles with the mean of the 25 cut-sky measurements taken as the reference. For the
full pipeline validation, the cut-sky mock catalogues used have been generated from the
alternate merged target ledgers (AMTL) [67], which realistically simulate the fibre assignment
procedure of actual DESI observations. However, we focus solely on the survey window effect
here and do not discuss any potential impact of fibre assignment.

4.1 Window function measurements
On scales larger than the catalogue extent, the window function multipoles Qℓ1ℓ2L(r1, r2)
should be identically zero; however, the relatively limited number of wavevector modes on the
largest scales means that sample variance may manifest itself as a non-vanishing multipole
value. Therefore, the random catalogue should be assigned to a mesh grid that is appreciably
larger than its extent for FFT sampling.

At the other end, the FFT measurements suffer from aliasing effects localised to small
scales in Fourier space (which may spread over a wider range of scales in configuration space).
This can be mitigated by using a higher-resolution mesh grid, which means a substantial
number of grid cells when the physical size of the mesh grid is large. As such, the requirement
to measure three-point window function multipoles over a large dynamic range imposes a
significant computational demand.

For the two-point window function of a single scale variable, one may circumvent this
issue by repeating the measurement over two mesh grids separately: one larger and coarser
for long scales, and one smaller and finer for short scales. The measurements should agree
well on intermediate scales and can thus be concatenated. Unfortunately, the fact that the
three-point window function multipole Qℓ1ℓ2L is a function of two scale variables means that
this would not work for its off-diagonal elements. Instead, in section 4.1.1 we measure the
window function using the largest mesh grid computationally feasible in terms of physical
size and cell numbers, and verify that the measurements have already converged with smaller
mesh grid dimensions and cell numbers.

A separate issue with small-scale measurements of the window function arises when
the random catalogue is not sufficiently dense so that the short-scale modes below the mean
inter-particle separation are poorly sampled. In section 4.1.2, we also perform convergence
tests by varying the number density of the random catalogue.

4The cut-sky mock catalogues are not light cones and thus have no redshift evolution.

– 9 –



0.0

0.1

0.2

0.3

0.4

0.5

0.6

Q
00

0(
r 1

,r
2)

= 3 h 1 Mpc (ref.)
= 4 h 1 Mpc
= 6 h 1 Mpc

r1 = 7.8 h 1 Mpc
r1 = 16.1 h 1 Mpc
r1 = 25.6 h 1 Mpc

r1 = 7.8 h 1 Mpc
r1 = 16.1 h 1 Mpc
r1 = 25.6 h 1 Mpc

101 102 103

r2 [h 1 Mpc]

0.025
0.000
0.025

Q
/Q

re
f

Figure 1: Three-point window function monopole Q000(r1, r2) for the DESI DR1 LRG SGC
sample in the redshift bin 0.4 ⩽ z ⩽ 0.6, measured with different grid cell sizes to check
convergence with respect to aliasing effects. The top panel shows the measurements at multiple
small fixed values r1 = 7.8, 16.1 and 25.6 h−1 Mpc with a varying mesh grid cell size ∆ = 3,
4 and 6 h−1 Mpc. The bottom panel shows the relative difference of the measurements with
respect to the reference case of ∆ = 3 h−1 Mpc, where the grey shaded region delimits ±1 %
deviations.

After finding the measurement configuration that achieves percent-level convergence, we
measure the set of window function multipoles used for testing the window convolution series
in section 4.2. Some of these multipoles are shown in figure 4 at the end of section 4.1.2.

4.1.1 Convergence with mesh sampling

We first measure the window function monopole Q000(r1, r2) from a mesh grid of size
(Lx, Ly, Lz) = (3072, 6144, 3072) h−1 Mpc, which is at least twice the extent of the ran-
dom catalogue in each dimension. The separation r1,2 is chosen to be binned linearly for
r ∈ (0, 50] h−1 Mpc and logarithmically for r ∈ (50, 4000] h−1 Mpc. In figure 1, we compare
the measurements at multiple small fixed values of r1 for a varying grid cell size ∆.5 As
the grid cell size approaches ∆ = 3 h−1 Mpc, the measurement of Q000(r1, r2) has converged
to within about 1 %, and hereafter this will be used as the maximum grid cell size when
measuring the three-point window function.

Next, with the grid cell size fixed at ∆ = 3 h−1 Mpc, we measure the diagonal win-
dow function monopole Q000(r, r) in the same separation bins for multiple mesh grid sizes
(Lx, Ly, Lz) = (L, 2L, L) where L is varied. In figure 2, we see that as r increases, the window

5For fixed mesh grid dimensions, varying the cell size is equivalent to varying the cell number. Values of r1
are the effective separation obtained after averaging in each bin.
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Figure 2: Diagonal three-point window function monopole Q000(r, r) for the DESI DR1 LRG
SGC sample in the redshift bin 0.4 ⩽ z ⩽ 0.6, measured with different mesh grid sizes to
check the effect of sample variance of large-scale modes. Each line shows the measurement
with a different mesh grid size (Lx, Ly, Lz) = (L, 2L, L), where L = 2048, 2304, 2688 and
3072 h−1 Mpc respectively. The horizontal dashed line marks 0.5 % of the maximum value, i.e.
0.005 maxr Q000(r, r).

function multipole becomes vanishingly small, albeit with a nonzero fluctuating amplitude
due to the sample variance of large-scale modes; however, with a greater mesh grid size,
the sample variance is reduced and so is the window function residual. For the LRG SGC
sample in the redshift bin 0.4 ⩽ z ⩽ 0.6 considered in this section, the mesh grid size with
L = 2688 h−1 Mpc is adopted, as the residual amplitude of Q000(r, r) for large r is suppressed
to below about 0.1 % of its maximum.

4.1.2 Convergence with number density

We also test the convergence of the window function measurements with respect to the
number density of the random catalogue. Typically, the number density of the random
catalogue is expressed as an inverse ratio of weighted number counts compared with that of
the data catalogue, α = (

∑
data ws)/

∑
random ws, where ws is the systematic weight (unity if

not applied). In figure 3, we compare the measurements at multiple small fixed values of r1
for a varying ratio α−1. As the random catalogue becomes denser with an increasing value
of α−1, the measurement of Q000(r1, r2) has converged to within about 1 %. Given that the
increased number density of the random catalogue has a negligible impact on computation
time, hereafter we will always use the densest random catalogue available for all measurements.

We briefly note here that the number density of the random catalogue appears to have an
effect on the largest scales, but there is no discernible trend with α−1. We attribute this also
to the sample variance of the large-scale modes, as the random catalogues at different number
densities are fundamentally different realisations. This effect is visually more pronounced
in the bottom panel of figure 3 showing the relative deviation, because the amplitude of
Q000(r1, r2) is itself small and close to zero for large r2; the absolute deviation remains small.
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Figure 3: Three-point window function monopole Q000(r1, r2) for the DESI DR1 LRG SGC
sample in the redshift bin 0.4 ⩽ z ⩽ 0.6. The top panel shows the measurements at multiple
small fixed values r1 = 7.8, 16.1 and 25.6 h−1 Mpc with a varying random catalogue number
density ratio α−1 = 14, 36, 59 and 82. The bottom panel shows the relative difference of the
measurements with respect to the reference case of α−1 = 82, where the grey shaded region
delimits ±1 % deviations.

Having tested the convergence of window function measurements, in figure 4 we show
some of the three-point window function multipoles to be used in the convolution series
in section 4.2. These measurements have been made from the densest random catalogue
available (α−1 = 82) with a mesh grid of minimum dimension L = 2688 h−1 Mpc and cell
size ∆ = 2.6 h−1 Mpc.

4.2 Window convolution series

In this subsection, we examine the contribution of the various terms in the window convolution
series (3.3) for the bispectrum monopole B̃000 and quadrupole B̃202. We consider the following
truncated series with a large number of 3PCF multipoles as the reference formula,

ζ̃000 = Q000ζ000

+ 1
3Q110ζ110 + 1

5Q220ζ220

+ 1
5(Q022ζ022 + Q202ζ202) + 1

6Q112ζ112 + 1
9(Q132ζ132 + Q312ζ312)

− Q000ζ̄ , (4.1a)
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Figure 4: Some of the three-point window function multipoles Qℓ1ℓ2L(r1, r2) for the DESI
DR1 LRG SGC sample in the redshift bin 0.4 ⩽ z ⩽ 0.6, with r1 fixed at multiple different
values.
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ζ̃202 = Q000ζ202

+ Q202ζ000

+ 1
3(Q112ζ110 + Q312ζ110 + Q110ζ112 + Q110ζ312) + 1

5(Q022ζ220 + Q220ζ022)

+ 2
7Q202ζ202 + 1

6(Q112ζ112 + Q132ζ132) + 8
63Q312ζ312 + 1

21(Q312ζ112 + Q112ζ312)

− Q202ζ̄ . (4.1b)

Here the set of input multipoles are (ℓ1, ℓ2, L) ∈ {(0, 0, 0), (1, 1, 0), (2, 2, 0), (2, 0, 2), (1, 1, 2),
(1, 3, 2)} plus their counterparts under the exchange ℓ1 ↔ ℓ2, which include monopoles and
quadrupoles with high signal-to-noise ratios. The integral constraint correction given by the
series (3.4) is calculated from the same set of multipoles.

To obtain the set of unwindowed 3PCF multipoles ζℓ1ℓ2L(r1, r2), we double spherical
Bessel transform the two-dimensional proxy model Bℓ1ℓ2L(k1, k2) in 50 logarithmic bins
of wavenumber k ∈ [0.001, 0.520] h Mpc−1 in each dimension. The window function and
unwindowed 3PCF multipoles are resampled over the same logarithmically spaced points
wherever necessary for the multiplication in eq. (3.3) and for the FFTLog algorithm. Finally,
we double spherical Bessel transform the window-convolved 3PCF multipoles ζ̃ℓ1ℓ2L(r1, r2)
back into Fourier space to obtain the window-convolved bispectrum multipoles B̃ℓ1ℓ2L(k1, k2)
as described in section 3.

In figure 5, we compare the window-convolved bispectrum proxy model B̃ℓ1ℓ2L with
the windowed cut-sky measurements and the unwindowed cubic-box measurements in the
wavenumber range (0, 0.12] h Mpc−1. As mentioned earlier, we focus on the diagonal monopole
and quadrupole which retain the most amount of signal relative to noise. We find that the
window function significantly changes the amplitude and shape of the bispectrum multipoles;
without accounting for its effect, there can be a deviation of up to 14 σ in the monopole B̃000
and up to 5 σ in the quadrupole B̃202, where σ is the standard deviation of the windowed
cut-sky measurements. By contrast, the window-convolved bispectrum proxy model has no
noticeable deviation from the cut-sky measurements.

As a useful diagnostic tool, we consider the possibility of a constant amplitude offset of
the window-convolved bispectrum proxy model from the windowed cut-sky measurements,
which is parametrised as a relative difference, B̃ℓ1ℓ2L 7→ (1 + β)B̃ℓ1ℓ2L. To determine the
amplitude offset parameter β as well as the contribution of the various terms in the window
convolution series (3.3), we define the following loss function:

χ2
ℓ1ℓ2L(Λ, β) =

∑
i,j

[
(1 + β) B̃

(Λ)
ℓ1ℓ2L(ki, ki) − B

(cut-sky)
ℓ1ℓ2L (ki, ki)

]
×
(
C−1

ℓ1ℓ2L

)
ij

[
(1 + β) B̃

(Λ)
ℓ1ℓ2L(kj , kj) − B

(cut-sky)
ℓ1ℓ2L (kj , kj)

]
. (4.2)

Here the diagonal window-convolved bispectrum proxy model B̃
(Λ)
ℓ1ℓ2L(k, k) depends on the

window convolution formula labelled by Λ, and Cℓ1ℓ2L is the covariance matrix of the diagonal
windowed cut-sky bispectrum multipole B

(cut-sky)
ℓ1ℓ2L (k, k) estimated from 25 measurements.

These quantities are evaluated at the effective wavenumber ki in 12 (≪ 25) bins in the range
mentioned above so that the estimated covariance matrix can be inverted [68].

If we fix the window convolution formula to the reference case Λref given by eq. (4.1), we
can minimise eq. (4.2) over the amplitude offset β to find the best-fitting value β = 6 × 10−3
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Figure 5: The top panels compare the diagonal bispectrum monopole B000(k, k) (left column)
and quadrupole B202(k, k) (right column) of unwindowed cubic-box measurements, windowed
cut-sky measurements and the window-convolved proxy model. The bottom panels show the
deviation ∆Bℓ1ℓ2L of the window-convolved proxy model from the cut-sky measurements as a
multiple of the standard deviation σ

(cut-sky)
Bℓ1ℓ2L

of the cut-sky measurements.

for the monopole B̃000 and β = 4 × 10−2 for the quadrupole B̃202. In both cases, this value
is well within the fractional error of the cubic-box measurements (which we have used as a
noisy proxy model) in this scale range. We thus consider the offset to be consistent with zero
and assume β = 0 hereafter in this section. For the monopole B̃000, the loss function χ2

000
is 0.08 per wavenumber bin, and for the quadrupole B̃202, the loss function χ2

202 is 0.03 per
wavenumber bin.

To evaluate the relative contribution of each term Qℓ′′
1 ℓ′′

2 L′′ζℓ′
1ℓ′

2L′ (numerical prefactor
omitted in text for brevity) in eq. (4.1), we define the weight function

γℓ1ℓ2L(Λ) =
χ2

ℓ1ℓ2L(Λ, β) − χ2
ℓ1ℓ2L(Λref , β)

χ2
ℓ1ℓ2L(Λ0, β) − χ2

ℓ1ℓ2L(Λref , β)
, (4.3)

where Λ0 denotes the case of a zero bispectrum model, i.e. B̃ℓ1ℓ2L ≡ 0. This weight function
is akin to a sliding scale with the end-points chosen to correspond to a zero bispectrum model
and the reference formula, but it should not be interpreted as a percentage contribution.6
We first consider a set of window function formulae Λ each with precisely one term removed
from Λref , in which case a larger value of γℓ1ℓ2L(Λ) indicates a more significant term, since its

6Both positive and negative terms in the window convolution formula may lead to an increased or decreased
value of χ2

ℓ1ℓ2L(Λ, β).
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Figure 6: Absolute values of the weight function (4.3), 100|γℓ1ℓ2L(Λ)|, for each convolution
formula Λ with precisely one term Qℓ′′

1 ℓ′′
2 L′′ζℓ′

1ℓ′
2L′ removed from the reference formula Λref

given by eq. (4.1). For visual clarity, the values have been multiplied by 100 and the colour
map is in a logarithmic scale. Sub-figure (a) shows the relative contribution of each term to the
windowed bispectrum monopole B̃000, and sub-figure (b) to the windowed quadrupole B̃202.

removal leads to a greater deviation in the window-convolved bispectrum model. In figure 6,
we show the absolute weight function value of the various terms in the reference window
convolution formula (4.1) for the bispectrum monopole B̃000 and quadrupole B̃202 separately.
It is clear that the latter terms in the reference formula (4.1), e.g. those with the multipole
factor ζ132 or ζ312, are negligible. The integral constraint correction is also negligible for both
the monopole B̃000 and the quadrupole B̃202.

To visualise the convergence of the window convolution series, in figure 7 we consider
the quantity (1 − γℓ1ℓ2L) for a set of window function formulae Λ that cumulatively adds each
term in eq. (4.1), starting from the leading term, i.e. ζ̃ℓ1ℓ2L = Q000ζℓ1ℓ2L. Once sufficiently
many terms have been included, the value of (1 − γℓ1ℓ2L) should stabilise to 1, as observed in
figure 7. Based on figures 6 and 7, we can write down a window convolution formula from a
reduced set of multipoles by removing terms with |γ000|, |γ202| < 4 × 10−4,

ζ̃000 = Q000ζ000 + 1
3Q110ζ110 + 1

5(Q022ζ022 + Q202ζ202) , (4.4a)

ζ̃202 = Q000ζ202 + Q202ζ000 + 1
3(Q112ζ110 + Q110ζ112) + 1

5Q022ζ220 + 2
7Q202ζ202 . (4.4b)
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Figure 7: The quantity 100(1 − γℓ1ℓ2L), where γℓ1ℓ2L(Λ) is the weight function (4.3), for
a series of convolution formulae Λ that adds each term Qℓ′′

1 ℓ′′
2 L′′ζℓ′

1ℓ′
2L′ cumulatively to the

leading term Q000ζℓ1ℓ2L. Sub-figure (a) shows the convergence of the window convolution
formula (4.1) for the windowed bispectrum monopole B̃000, and sub-figure (b) for the windowed
quadrupole B̃202.
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The loss function (4.2) remains the same as for the full reference formula, at 0.08 for the
monopole B̃000 and 0.03 for the quadrupole B̃202 per wavenumber bin. In the next subsection,
we will use this reduced window convolution formula to test the window matrix in the linear
algebra formulation.

Although the validation tests in this section have focused on the LRG SGC sample in
the redshift bin 0.4 ⩽ z ⩽ 0.6 in DESI DR1, we have also checked other samples such as
quasars (QSO) in the North Galactic Cap (NGC) in the redshift range 0.8 ⩽ z ⩽ 2.1.7 These
results are presented in appendix A.

4.3 Window matrix performance

When the set of unwindowed model multipoles ζℓ1ℓ2L included in the window convolution
formula for different windowed model multipoles ζ̃ℓ1ℓ2L do not entirely coincide, the overall
window matrix W will contain sparse sub-matrices. In such cases, it may be computationally
advantageous to consider the window matrix for each required windowed multipole separately.
Without loss of generality, we compute in this subsection the window matrices for the
bispectrum monopole B̃000 and quadrupole B̃202 separately, which correspond to the two
reduced window convolution formulae (4.4).

The input bispectrum multipoles Bℓ1ℓ2L(k1, k2) are as before the proxy model obtained
from the mean of the cubic-box measurements, which have been resampled from 50 to 64 = 26

logarithmic bins in k1,2.8 We fix the ordering of the multipoles as they appear in eq. (4.4)
to form the vectorised bispectrum model vector B. To generate the window matrix W, we
feed a basis of unit vectors as B into the full window convolution recipe as described in
section 3.3. This results in window matrices of dimensions (642, 4×642) for the monopole B̃000
and (642, 5 × 642) for the quadrupole B̃202, since the input bispectrum multipoles are two-
dimensional before vectorisation and there are respectively four and five unwindowed model
multipoles required by them in eq. (4.4). Although the sub-matrices of W here are square
with dimensions (642, 642) as the numbers of input and output FFTLog sample points are
the same, generally they can be non-square with more columns (input sample points) than
rows (output sample points); to compare with the windowed cut-sky bispectrum data vector
with fewer wavenumber bins, a simple interpolation step can be performed after convolution.
In figure 8, we show the structure of the window matrices W for the windowed bispectrum
monopole B̃000 and quadrupole B̃202.

Whether we compute the windowed bispectrum multipole from the window matrix
multiplication B̃ = WB or following the step-by-step recipe in section 3.3, the results are
found to agree within floating-point arithmetic precision. However, the full convolution
pipeline without using the window matrix takes order 10−1 s on a single processor core,
whereas the window matrix multiplication takes order 10−2 s. While the initial computation
of the window matrix can be relatively expensive, it can be easily parallelised and only needs
to be done once, as long as the wavenumber sample points remain the same; by contrast,
window convolution needs to be performed repeatedly in a cosmological inference analysis.
Finally, in figure 12 in appendix B, we show the matrix multiplication time for a range of
matrix dimensions similar to the window matrix considered in this section. We note that

7Data products of the three-point window function for different samples will be made public at https://
github.com/MikeSWang/DESI-DR1-Clustering-ThreePointWindow. Additional DESI DR1 data products can
be generated and provided upon request.

8This is the nearest power of two above, which is a more natural sample number for the FFTLog algorithm.
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DESI DR1 LRG SGC 0.4 ⩽ z ⩽ 0.6

B000 B110 B022 B202

B000

10 2 100 102 104 106 108 1010 1012
|W 1

IJ |

(a) window matrix for monopole B̃000

B202 B000 B110 B112 B220

B202

(b) window matrix for quadrupole B̃202

Figure 8: Inverse absolute value of the window matrix elements, (W)−1
IJ , for the windowed

bispectrum monopole B̃000 (sub-figure a) and quadrupole B̃202 (sub-figure b) according to
the reduced window convolution formula (4.4). The column blocks of the matrix corresponds
to the input unwindowed bispectrum multipole vectors Bℓ1ℓ2L, and the rows corresponds to
the output windowed bispectrum multipole vectors B̃ℓ1ℓ2L.

the execution time is all below 10−1 s, and thus the linear algebra formulation of window
convolution will be performant and well-suited for cosmological likelihood analyses.

5 Conclusion

Window convolution for the galaxy clustering bispectrum has long been a challenging issue: its
formulation is usually analytically complex, and the window function itself is computationally
expensive to estimate. The problem stems from the so-called ‘curse of dimensionality’, as the
3PCF or bispectrum in Fourier space has more degrees of freedom than the two-point correction
function (2PCF) and the power spectrum. With the advent of Stage IV spectroscopic surveys
including DESI and Euclid, non-Gaussian clustering statistics have become a frontier in
driving the exploration of cosmological models; as such, the survey window effect which
modulates both the amplitude and shape of the three-point clustering statistics must be
properly accounted for through forward modelling.

– 19 –



We have built on the TripoSH formalism developed in refs. [32, 33] to address some
of these difficulties. In this decomposition, the bispectrum multipoles in redshift space are
functions of two wavenumbers instead of a full triangle configuration, thus providing a natural
form of data reduction and avoiding the triangle binning issue. At the same time, the window
convolution series derived in this formalism are structurally similar to that of the 2PCF/power
spectrum [12, 13, 15], and require window function multipoles that can be conveniently
estimated using FFTs in the same way as for the 3PCF. In particular, by utilising the linear
algebra nature of the window convolution operations, we have proposed a formulation that
encapsulates the full procedure as a window matrix multiplication.

In this work, we have focused on tracer samples in the DESI DR1 data release, and
employed a suite of unwindowed cubic-box snapshots and windowed cut-sky catalogues with
the same underlying clustering signal, to validate the window convolution pipeline for the
bispectrum. We have checked the convergence of the window function measurements with
respect to FFT sampling and the number density of the random catalogue, and highlighted
some of the technicalities that differ from the case of the two-point window function. We have
also systematically verified the convergence of the window convolution series truncated at a
finite but large number of terms, which has been either ignored or performed in configuration
space for 3PCF in previous works [32, 33]. The window matrix formulation is found to provide
the same results as the full convolution procedure, but with a computation time that is an
order of magnitude lower once it has been generated.

The results in this work offer a replicable window convolution pipeline to implement for
generic survey configurations, with all the computational tools publicly available as part of
the Triumvirate code (see footnote 2 or Data Availability for the link). However, we caution
that the convergence of the window function measurements and the window convolution series
depends on the specific survey geometry and scales of interest, and should be verified in each
case as detailed in section 4.

Finally, some topics remain to be explored, such as the performance of alternative al-
gorithms for the double spherical Bessel transform and the scale-dependent integral constraint,
including the radial integral constraint. We leave these issues for future studies.
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A Window convolution tests of additional samples

We have additionally studied the DESI DR1 QSO sample which has a single redshift bin
0.8 ⩽ z ⩽ 2.1 in both NGC and SGC, and is lower in number density and higher in
redshift compared to the LRG sample studied in section 4. For the NGC sample which
has a larger survey footprint, we measure the window function multipoles Qℓ1ℓ2L using a
random catalogue α−1 ≈ 127 times denser than the data catalogue with a mesh grid of
minimum dimension L = 8000 h−1 Mpc and cell size ∆ = 7.8 h−1 Mpc, which is limited by
the computational memory available. Both data and random mock catalogues have been
generated from the ATMLs which simulate fibre assignment in DESI observations.

Starting from the same reference formula (4.1) and the weight function (4.3) in section 4.2,
we derive the convergent window convolution series based on the criterion |γℓ1ℓ2L| ⩾ 5 × 10−4,

ζ̃000 = Q000ζ000 + 1
3Q110ζ110 + 1

5Q220ζ220 − Q000ζ̄ , (A.1a)

ζ̃202 = Q000ζ202 + Q202ζ000 + 1
3(Q112ζ110 + Q110ζ312 + Q312ζ110)

+ 1
5Q022ζ220 + 2

7Q202ζ202 − Q202ζ̄ . (A.1b)

In figure 9, we compare the window-convolved bispectrum proxy model B̃ℓ1ℓ2L with the win-
dowed cut-sky measurements and the unwindowed cubic-box measurements in the wavenumber
range (0, 0.12] h Mpc−1. As before, the effect of the window function is significant especially
for the bispectrum monopole B̃000, but to a lesser extent than the LRG SGC sample as the
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Figure 9: The same as figure 5 but for the DESI DR1 QSO NGC sample in the redshift bin
0.8 ⩽ z ⩽ 2.1.

larger survey volume reduces the impact of the window function in this scale range. The
window-convolved model matches the amplitude and shape of the cut-sky measurements
well, with the loss function χ2

ℓ1ℓ2L (eq. 4.2) per wavenumber bin valued at 0.03 for the mono-
pole B̃000 and 0.12 for the quadrupole B̃202. If we allow for a relative amplitude offset β and
minimise eq. (4.2) over it, we find β consistent with zero offset for both the monopole B̃000
and quadrupole B̃202 within the fractional error of the cubic-box measurements used as the
noisy proxy model.

However, when we test the window convolution pipeline on complete LRG mock cata-
logues without fibre assignment (in the SGC redshift bin 0.4 ⩽ z ⩽ 0.6), we find there is
a small and almost constant amplitude offset. The convergent window convolution series
satisfying |γℓ1ℓ2L| ⩾ 5 × 10−4 are given by

ζ̃000 = Q000ζ000 + 1
3Q110ζ110 + 1

5(Q022ζ022 + Q220ζ220) − Q000ζ̄ , (A.2a)

ζ̃202 = Q000ζ202 + Q202ζ000 + 1
3(Q112ζ110 + Q110ζ112) + 2

7Q202ζ202 − Q202ζ̄ . (A.2b)

When the loss function χ2
ℓ1ℓ2L is minimised over β, we find β = 9×10−2 for the monopole B̃000

and quadrupole B̃202. In figure 10, we make the same comparison as before between windowed
and unwindowed bispectrum multipoles including the window-convolved model rescaled by
(1 + β) to account for the amplitude offset. With this amplitude rescaling, the loss function
value per wavenumber bin reduces from 0.62 to 0.28 for the monopole B̃000 and 0.11 to 0.07
for the quadrupole B̃202. We have checked that the optimal value of β does not change
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DESI DR1 LRG SGC 0.4 ⩽ z ⩽ 0.6 (complete mock catalogues)
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Figure 10: The same as figure 5 but for the complete mock catalogues. In addition, the
window-convolved proxy model rescaled by (1 + β) is shown where β = 9 × 10−2 accounts for
the amplitude offset.

significantly with the measurement parameters of the window function multipoles such as the
mesh grid physical size, cell resolution and the random catalogue number density, or when
the full reference formula is used.

We have repeated the same checks with the complete QSO mock catalogues in both NGC
and SGC in the redshift bin 0.8 ⩽ z ⩽ 2.1, but do not find any significant amplitude offset
(see figure 11 for the NGC case). We thus suspect there may be systematic effects specific
to the complete LRG mock catalogues; the relative amplitude offset parameter β, as well as
being a diagnostic tool in conjunction with the loss function χ2

ℓ1ℓ2L, also serves as a useful
nuisance parameter to absorb unknown systematic residuals in window convolution. In the
cosmological analysis of DESI DR1 samples, it is the AMTL not complete mock catalogues
that will be used to validate the full pipeline as they resemble the actual survey data more
closely; therefore, the validation of our window convolution pipeline with the AMTL mock
catalogues in this work is more important.

B Window matrix multiplication computation time

We consider a range of window matrix dimensions (Nd, 4Nd), where d = 1024 is the base
dimension and N ∈ {2, 4, 8, 12, 16} is an integer multiplier. For instance, the window matrix W
for the windowed bispectrum monopole B̃000 used in section 4.2 has N = 4. In figure 12, we
plot the measured processor time of matrix multiplication for random matrices generated with
these dimensions and compare three matrix multiplication methods available in the public
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DESI DR1 QSO NGC 0.8 ⩽ z ⩽ 2.1 (complete mock catalogues)
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Figure 11: The same as figure 9 but for the complete mock catalogues.

NumPy Python package [69]. These multiplication methods perform similarly well, with an
execution time all below 10−1 s; therefore, the window matrix multiplication step will not be
the dominant operation in a typical cosmological likelihood analysis.
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