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Abstract

Neural networks can learn spurious correlations in the data, often leading to per-
formance disparity for underrepresented subgroups. Studies have demonstrated
that the disparity is amplified when knowledge is distilled from a complex teacher
model to a relatively “simple” student model. Prior work has shown that ensemble
deep learning methods can improve the performance of the worst-case subgroups;
however, it is unclear if this advantage carries over when distilling knowledge from
an ensemble of teachers, especially when the teacher models are debiased. This
study demonstrates that traditional ensemble knowledge distillation can signifi-
cantly drop the performance of the worst-case subgroups in the distilled student
model even when the teacher models are debiased. To overcome this, we pro-
pose Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD), a
simple ensembling strategy to ensure that the student model receives knowledge
beneficial for unknown underrepresented subgroups. Leveraging an additional
biased model, our method selectively chooses teachers whose knowledge would
better improve the worst-performing subgroups by upweighting the teachers with
gradient directions deviating from the biased model. Our experiments on several
datasets demonstrate the superiority of the proposed ensemble distillation technique
and show that it can even outperform classic model ensembles based on majority
voting.

1 Introduction

When trained with empirical risk minimization (ERM), neural networks are susceptible to capturing
spurious correlations in the data (Tiwari and Shenoy, 2023), which are features that correlate with but
not causally related to the class label (Qiu et al., 2023). In particular, the class label might spuriously
correlate with patterns in the data that are easier to learn than the intended pattern. For example, in
the Waterbirds dataset (Sagawa et al., 2019), which contains images of landbirds and waterbirds,
most landbirds images have a land background, and waterbirds images have a water background.
Instead of predicting the actual bird species, the model trained with ERM can achieve high accuracy
by looking at the background. This results in a significantly higher error for underrepresented
subgroups that do not exhibit the spurious correlation (e.g., landbird on water background and water
bird on land background). Several works have shown that model compression methods such as
pruning (Hooker et al., 2020), and knowledge distillation (Lukasik et al., 2023; Lee and Lee, 2023;
Wang et al., 2023) can exacerbate the performance disparities between different subgroups. In
knowledge distillation (KD), a network with a smaller capacity (student) is trained using the output of
a higher capacity network (teacher) (Hinton et al., 2015). While KD can improve the student model’s
average performance, the gain is not uniform across subgroups (Lukasik et al., 2023).
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On the other hand, deep ensemble models have been shown to enhance generalization performance
compared to individual models (Ganaie et al., 2022), and simple deep ensemble models with the same
architecture, objective, and optimization settings can attenuate this shortcoming and improve the
worst-case group performance (Ko et al., 2023; Kenfack et al., 2021). However, evaluating several
models at test time can be computationally expensive, making them less practical for deployment on
edge devices. To address this issue, ensemble knowledge distillation involves distilling the knowledge
of multiple teachers to a single student model (You et al., 2017; Radwan et al., 2024), and it remains
unclear whether distilling from an ensemble of teachers improves student’s worst-group performance.

This paper studies how knowledge distillation from multiple teachers impacts underrepresented
subgroups. We investigate whether the subgroup performance gains of deep ensemble models apply
to ensemble knowledge distillation. Focusing on logit distillation, we consider teacher models
debiased by the last-layer retraining (Kirichenko et al., 2022) and investigate whether the student
model can learn debiased representations from the output of retrained last-layer of the teacher. In
last-layer retraining, a small held-out validation set of the group-balanced data is used to retrain
the last layer of the teacher model to mitigate the spurious correlation. Our results reveal that
underrepresented subgroups can be negatively impacted when distilling from multiple teachers, even
when the teachers are debiased. There are other ensemble distillation approaches designed to boost
the student’s performance by modeling a better aggregation of the teachers’ knowledge (Du et al.,
2020; Zhang et al., 2022). In particular, the ensemble distillation method proposed by Du et al.
(2020) aims to find a better compromise when teachers have conflicting predictions, and the method
by Zhang et al. (2022) ensures distillation is done only using teachers with confident predictions.
Our results show that these ensemble distillation methods cannot effectively fix the performance
disparity of the student.
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Figure 1: Illustration of our adaptive weighting
method based on gradient direction. The bolder
lines indicate the teacher’s higher weight in the
aggregated output.

We propose an Adaptive Group Robust Ensemble
Knowledge Distillation (AGRE-KD) method to
encourage the student to improve the performance
of unknown worst-case subgroups. Specifically,
our method relies on a model that has captured the
spurious correlation (i.e., a biased model) to guide
the teachers’ outputs aggregation process and en-
sure the student model does not capture biased
knowledge from the teacher. Prior work has relied
on a reference classifier to target and upweight
samples from unknown worst-case, using the er-
rors of the reference classifier (Liu et al., 2021;
Nam et al., 2020) or its per-sample gradient mag-
nitude (Ahn et al., 2022). In contrast, our proposal
uses the gradient direction of the biased model
to select and weigh teachers’ outputs adaptively
during the training.

Intuitively, training the student model solely following the gradient direction that minimizes its KD
loss with a biased teacher can result in local/global minima with a higher loss for the underrepresented.
Our results suggest this behavior can be exacerbated in ensemble knowledge distillation since the
inherent consensus from the teachers’ gradient direction can be dominated by a direction that
minimizes the average error at the expense of the worst-case error. Our proposed methods compare
the gradient direction of student loss with the biased model and each teacher in the ensemble and
upweight teachers whose gradient direction deviates the most from the biased model since minimizing
the student loss with the biased model likely results in poor worst-case group error. Figure 1 illustrates
the gradient directions of the student loss with the biased model and three teachers and shows how our
weighting scheme ensures the aggregated gradient direction is mainly influenced by the least biased
model. As the gradient magnitude can be very noisy, we compare gradient directions by computing
the dot product of their normalized vectors (i.e., the cosine similarity), which removes the influence
of the gradient magnitude. The contribution of this paper can be summarized as follows:

• We demonstrate empirically that ensemble knowledge distillation amplifies performance
disparities contrary to deep ensemble models. We attribute this to the reduced capacity
of the student network by showing that ensemble self-distillation using models with the
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same capacity reduces the performance disparity but, in some cases, achieves comparable
performance with the teachers.

• We propose a novel gradient-based weighting scheme to ensure the student model minimizes
teachers’ loss towards better worst-case group error. The proposed method acts in the
gradient space and utilizes a model that has learned the spurious correlation (biased model)
to orchestrate the distillation process.

• We perform intensive experiments on three well-known benchmarks, and the results demon-
strate the superiority of the proposed method.

2 Background

We consider a multiclass classification task using a given the training D = {(xi, yi)}mi=1, where
xi ∈ X is input feature and yi ∈ Y the target variable with c = |Y| classes, we aim to build a classifier
h(·) that accurately predicts the class of the unlabelled test dataset. The classifier uses mapping
function f : X → Rc, that assigns scores [σ1(z1), . . . , σc(zc)], such that z is the output logits of the
a given sample x and σy(z) the softmax function defined as σy(z) =

exp(zy)∑
j∈[c] exp(zj)

, ∀y ∈ [c].

The classifier is derived by predicting the class label that maximizes the softmax, h(x) =
argmaxj∈[c] σj(z). We evaluate the classifier’s performance during training using a loss func-
tion, such as the softmax cross-entropy loss function, which measures how accurately samples are
classified.

Knowledge Distillation (KD). In KD, a student network fs aims to achieve performance close to
the higher-capacity network by mimicking the teacher model f t Hinton et al. (2015). In practice,
we train the student model to mimic the teacher’s output by minimizing the Kullback-Leibler (KL)
divergence between their outputs, defined as follows:

LKD = τ2 ·KL(σ(
zs

τ
) , σ(

zt

τ
)) (1)

where zs and zt are the student and the teacher logits, respectively. τ is the temperature parameter
controlling the smoothness of the probability distribution for more fine-grained information. The
student loss is combined with the classification loss on the ground truth label. The overall student
loss is defined by the equation 2,

L = α · LKD + (1− α) · Lcls (2)
where Lcls is the classification loss (e.g., cross-entropy loss) between the student’s output and the
ground truth label (y), and α is a hyperparameter controlling the classification loss and knowledge
distillation loss. In other KD techniques, the student network is enforced to mimic the teacher’s
internal representation instead of only outputs (Romero et al., 2014). Transferring knowledge from
intermediary representation (feature-level) can provide more fine-grained information and boost
the students’ performance Romero et al. (2014). Recent studies have shown that models trained
with ERM still learn core features, and spurious features are only amplified in the network’s last
layer (Kirichenko et al., 2022; Qiu et al., 2023; LaBonte et al., 2024). In this regard, we restrict
ourselves to logit distillation and leave feature distillation for future exploration.

Like in ensemble learning, distilling knowledge from multiple teachers instead of a single one is
expected to improve the student model (You et al., 2017). Ensemble learning is a widely used
technique to boost the generalization performance of a model (Allen-Zhu and Li, 2020). Studies have
shown that training several independent models and averaging their predictions at test time can yield
a model that outperforms every individual model in the ensemble (Ganaie et al., 2022). However,
evaluating multiple models for predictions at test time limits the practical use of deep ensembles due
to computational overhead. Knowledge distillation can address this issue by enforcing the student
network to mimic the ensemble’s output. In ensemble KD, we train the student model using the
averaged softened output or the averaged knowledge distillation loss 1 as follows:

LensKD = τ2 ·KL(σ(
zs

τ
) ,

1

M

M∑
m=1

σ(
zm

τ
)) (3)

1(Du et al., 2020) showed that the averaged softened output is equal to averaged KD loss.
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Where M is the number of teachers and the loss 3 can be plugged in equation 2 for training the
student with KD from an ensemble of M teachers. In contrast to these methods, our method is
fully unsupervised, both based in terms of ground truth class label and group information. Related
works more aligned with our approach are unsupervised methods that leverage teachers’ diverse
knowledge to improve students’ performance. (You et al., 2017; Du et al., 2020; Fukuda et al., 2017;
Zhang et al., 2022; Kwon et al., 2020). For example, Fukuda et al. (2017) suggest that randomly
selecting a teacher during mini-batch training can allow the student model to capture complementary
knowledge of teachers. Other authors argue that simply averaging teachers’ softmax outputs can
mislead the student model, particularly when there is competition or contradictions between teachers.
In this regard, Zhang et al. (2022) proposes a sample-wise weighting for teacher loss based on
the confidence of the teacher’s prediction compared to the ground label. Other methods consider
label-free weighing schemes by comparing teachers in the gradient space. For instance, Du et al.
(2020) use a multi-objective optimization approach in the gradient space to find teachers that agree
the most in the gradient direction that minimizes their loss with the student model. Similarly, Zhou
et al. (2024) sample-wise teachers selection by only averaging the majority of teachers with the same
gradient directions. Our method also operates within gradient space to enhance students’ resilience to
spurious correlation. Our experiments demonstrate that adhering to the majority of teachers’ opinions
does not always benefit the underrepresented subgroups.

3 Related Work

Bias mitigation without group label. We consider settings where samples in the dataset D are
associated with unknown group labels that spuriously correlate with the class label. For example,
in the CelebA dataset, the class ‘hair color‘ (blond, non-blond) correlates with the gender (male,
female) since most images with blond hair belong to the female group. Neural networks can capture
this correlation, resulting in poor performance for certain subgroups (e.g., blond males) (Sagawa
et al., 2019). We aim to ensure that the model does not capture spurious correlations in the data
and accurately classifies samples from all subgroups. In particular, we measure the model’s bias
using the performance of worst-case group. Several methods have been proposed to mitigate these
biases in single models (Kenfack et al., 2024b). When the group information is known, Sagawa et al.
(2019) propose Group Distributionally Robust Optimization (DRO) that minimizes loss of the group
experiencing the maximum loss. However, group information can be costly to collect or unavailable
due to privacy restrictions (Lahoti et al., 2020; Kenfack et al., 2024a). Several methods have been
proposed in this setting to improve the worst-case group performance without group labels (Kenfack
et al., 2024b). For instance, Lahoti et al. (2020) proposes to use an adversary to up-weight regions
where the model makes the most mistakes and demonstrates that this adversary can upweight sample
from the worst-case group. Liu et al. (2021) and Nam et al. (2020) rely on a reference classifier to a
reference classifier to target and upweight worst-performing. These methods use the mistakes of the
reference classifier to improve group robustness by up-weighting misclassified samples (Liu et al.,
2021). The reference classifier is generally trained to amplify the misclassification of samples from
the unknown worst-performing group (Nam et al., 2020). While these methods do not use group
labels during the training, they require access to a small validation set with group labels for model
selection or hyperparameter tuning (Kenfack et al., 2024b). Kirichenko et al. (2022) proposed Deep
Feature Reweighting (DRF) for training group robust model by training the model empirical risk
minimization (ERM) on the training dataset, and then retraining the last layer of neural network with
a small subset of a held-out group-balanced dataset. The proposed method achieves state-of-the-art
worst-case group performance. The study demonstrated that neural networks can encode relevant
and spurious features during training. Still, the impact of spurious features is upweighted in the
classification layer due to high group imbalance. In a subsequent study, LaBonte et al. (2024); Qiu
et al. (2023) demonstrated comparable performance by fine-tuning the last layer with fewer group
information or without group labels using proxy group information from a reference classifier. This
work builds on Kirichenko et al. (2022); LaBonte et al. (2024) for debiasing the teacher models
by retraining their last layers using a held-out group balanced with fewer group annotations. We
investigate whether distilling knowledge from an ensemble of (debiased) teachers can lead to more
robust student models.

Bias in Knowledge Distillation. Several works have studied bias in knowledge distillation with a
single teacher model (Lukasik et al., 2023; Lee and Lee, 2023; Lukasik et al., 2023; Tiwari et al.,
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2024; Bassi et al., 2024). In particular, Lukasik et al. (2023) demonstrates that teacher errors can
be amplified by the student during distillation and proposed a mitigation strategy that distills only
the confident predictions of the teacher. However, their study focuses on worst-class errors and KD
with a single teacher, while we study worst-subgroup errors with multiple teachers. Lee and Lee
(2023) propose an adapted version of Simple knowledge distillation (SimKD (Chen et al., 2022)) that
transplants the last layer of the teacher to student and only distills features. With the teacher trained
with Group DRO, they show that transplanting the teacher’s last layer to the student only improves
the worst-case group performance if the feature distillation is performed by upweighting misclassified
sample from a reference classifier (Lee and Lee, 2023). However, their method uses the reference
classifier by Liu et al. (2021), and the efficiency of sample weighting requires intensive tuning of
the number of epochs to train the reference classifier. Similarly, Tiwari et al. (2024) uses the earlier
layers of the neural network to train a reference classifier and shows that it improves the recall of
worst group samples within the misclassification set, which are upweighted in the KD loss. However,
their method also requires class labels to derive the misclassified samples.. Lukasik et al. (2023)
study where it is best to apply the debiasing mechanism (Group DRO) and conclude that applying
the robust loss to both the teacher and student model improves the average performance along with
the worst-case group performance. In contrast to these prior works, we study bias in knowledge
distillation with multiple teachers without group information and class labels. We investigate whether
the subgroup’s performance gain observed in deep ensemble models also applies when the knowledge
of the ensemble is distilled to a single model. We aim to achieve better worst-case performance across
subgroups when aggregating the outputs of multiple teachers in knowledge distillation. To the best of
our knowledge, this represents the first study on bias in ensemble knowledge distillation.

4 Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD)

Batch Samples

Biased
Network

Student
Network

Logits

KL Loss
Logits

Logits

Adaptive
weighting

Weights... ... ...

Weighted Average of KL Losses

Teacher Networks Gradient 
Dot ProductsGradients

KL Losses

Figure 2: Overview of AGRE-KD. Detailed algo-
rithm is provided in Supplementary A.

In this work, we considered each teacher in
the ensemble to have the same architecture
and trained using different random initializa-
tions. Prior work has shown ensemble models
with different random initializations are diverse
enough to improve the performances (Ganaie
et al., 2022). This work shows that while deep
ensemble models can improve the worst-case
group (Ko et al., 2023), it is not necessarily the
case in ensemble knowledge distillation. To
address this problem, we propose AGRE-KD,
an adaptive ensembling knowledge distillation
strategy that ensures the student model captures
robust knowledge from the teachers. Figure 4
provides an overview of our proposed method.
AGRE-KD relies on a model pretrained with
ERM that captured the dataset’s spurious corre-
lation (biased). Intuitively, suppose a student model takes gradient steps toward the direction that
minimizes its KD loss with the biased model. In that case, the resulting student model will likely
capture and even amplify the reliance on the spurious correlation, i.e., the local/global minimum in
that direction likely provides the worst performance for the underrepresented subgroups. Note that an
additional biased model does not add extra complexity compared to related work using a reference
classifier to identify the worst-performing subgroups (Nam et al., 2020; Liu et al., 2021; Kenfack
et al., 2024b). Furthermore, as we will see in the experiments, our proposed method works with any
biased model trained using ERM without further modifications.

Gradient-based weighting scheme. For a given minibatch, we compute the student KD loss
regarding the biased model b and each teacher t. Before aggregating the teachers’ outputs, we
compute sample weights based on the similarity between the direction of the teacher and the biased
model. Consider ℓti(θ) the KD loss on sample i regarding the t-teacher, and ℓbi (θ) KD loss regarding
the biased model, with θ the parameters of the student model. The dot product (⟨·, ·⟩) between the
normalized2 gradients of the student KD loss with the teacher and the biased model indicates which

2Table 4 in the Supplementary shows the importance of ignoring the magnitude of the gradients.
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teachers align with the biased model in gradient space. In particular, when ⟨∇ℓti(θ),∇ℓbi (θ)⟩ > 0
both models have the same gradient directions and their gradients are in the opposite direction when
⟨∇ℓti(θ),∇ℓbi (θ)⟩ < 0. In extreme cases, when the dot product of the gradients is closer to 1, both
models have precisely the same directions; if the dot product is close to -1, the models are in opposite
directions. Thus, to penalize teachers with a gradient direction closer to the biased model, we
downweight teachers’ output for samples having dot products get closer to −1 and upweight samples
as their dot products get closer to 1. We compute the sample-wise teacher’s weight as follows:

Wt(xi) = 1− ⟨∇ℓti(θ),∇ℓbi (θ)⟩ (4)

Adaptive knowledge distillation. The weighting scheme in Equation 4 suggests that teacher
models who behave similarly to the biased model in the gradient space will have less influence on the
aggregated outputs. Therefore, we aggregate the teacher’s outputs using the sample-wise weighted
average KD (wKD) loss defined as follows:

LwKD =
Wt(xi) · LKD∑

t Wt
(5)

And we train the student model with the following final loss L = αLwKD + (1− α)Lcls

In this work, we focused on unsupervised knowledge distillation, i.e., we set α = 1. This means
we train the student model only using the output of the teacher models that are eventually debiased.
Supplementary A provides a detailed algorithm of the training process of AGRE-KD.

5 Experimental Results

In this section, we present the experimental setup and the empirical results. We compare our adaptive
ensemble knowledge distillation to other methods and demonstrate our method’s effectiveness in
improving the student model’s worst-case performance.

5.1 Setup

We evaluate the worst-case performance of the proposed method on three classification tasks: two
from the vision domain (Waterbird and CelebA dataset) and one from the language domain (Civil-
Comments)

• Waterbird (Sagawa et al., 2019; Liu et al., 2021) is a dataset of birds derived from Caltech-
UCSD Birds (CUB) (Wah et al., 2011) by synthetically creating a spurious correlation
between bird species and the background. In particular, the class label is the type of bird
appearing in the image (waterbirds, landbirds), and the background landscape (water, land)
spuriously correlates with the bird type. Here, the minority subgroups represent images
with the background landscape not aligned with the bird type, i.e., {waterbird, land
background} and {landbird, water background}.

• CelebA (Liu et al., 2015) dataset contains images of celebrities with 40 facial attributes.
In this dataset, the attribute hair color is spuriously correlated gender. We consider
hair color {blond, non-blond} as the class label and gender {male, female} as group
information.

• CivilComments (Koh et al., 2021) is a textual dataset collected from online comments.
The task is to predict whether a comment is toxic or non-toxic. The label is spuriously
correlated with comments related to some demographic subgroups such as gender (male,
female), race (white, black), and sexual orientation (LGBT). We consider a binary indicator
of comments related to these demographic subgroups as spurious group information.

Network Architecture and Training. Following prior work (Tiwari et al., 2024; Lee and Lee,
2023), we use the Resnet-18 (He et al., 2016) architecture for the student model and the Resnet-
50 (He et al., 2016) architecture for the teacher models for the forvision tasks. Both networks are
pretrained on the ImageNet-1K (Russakovsky et al., 2015) dataset. For the language task, we used the
BERT (Devlin et al., 2019) model for teachers and the DistilBERT (Sanh et al., 2019) for the student
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model; and language models are pretrained on Book Corpus and English Wikipedia. Following
related works on KD (Du et al., 2020; Fukuda et al., 2017; Chen et al., 2022), we set the temperature
hyperparameter τ = 4 (Eq. 1) and show in an ablation study in Supplementary C (Figure 5) that
increasing τ can exert positive effect on WGA up to certain values. We provide further details about
hyperparameters in the Supplementary B.

Teacher training. We train each teacher model in the ensemble independently using standard ERM
and cross-entropy loss with the ground truth class labels. Teacher models have the same architecture
and hyperparameters and only differ in random seeds used for weights initialization; prior studies
have shown that independent training with different random weight initializations can provide models
sufficient diversity to improve the performance of the model ensemble (Allen-Zhu and Li, 2020;
Ganaie et al., 2022). As aforementioned, we obtain debiased teachers using the approach introduced
by Kirichenko et al. (2022) to retrain the last layer of the ERM model on the small proportion of
the held-out group-balanced dataset. We perform the retraining step of the last layer using group-
balanced batch sampling instead of the averaging models trained over group-balanced subsets of the
data (LaBonte et al., 2024). This debiasing process is very simple and computationally inexpensive
since it involves training a logistic regression model on a smaller dataset.

For the biased model used by our method to compute teachers’s weights, we randomly select one
teacher model trained with ERM and without DFR. We provide in Supplementary C (Table 3)
experiment with different choices of biased model showing the robustness of the proposed gradient-
based weighting to the biased model choice. Following Kirichenko et al. (2022); LaBonte et al.
(2024), we use half of the validation set of each benchmark to perform last-layer retraining with
DFR; as we do not use the group and class labels during the KD training, we do not perform further
hyperparameter tuning or model selection.

Baselines In addition to the standard training process using the one-hot class label for training each
teacher model (Section 2), we consider other ensemble knowledge distillation methods aiming to
improve the student’s performance. In particular, we consider the following baseline:

• Deep Ensemble: This baseline corresponds to deep ensembling using a majority voting
scheme of models with the same capacity as the student model. In particular, given a set of
models, the predicted class label represents the class that received the most votes for models
in the ensemble.

• KD with averaged teachers outputs (AVER) (You et al., 2017): Here, we perform standard
knowledge distillation following equation 3 by minimizing the KL loss between the student’s
softmax output and the averaged softened outputs (dark knowledge) from teachers.

• Random (Fukuda et al., 2017): During each mini-batch training, this method randomly
selects a teacher model from the ensemble to train the student model. Fukuda et al. (2017)
referred to this technique as switched-training as the weights of the student model are
updated by switching across teacher labels at the minibatch level.

• AE-KD (Du et al., 2020): This method is an adaptive ensembling distillation technique
closest to ours. However, the method postulates that when teachers have conflicting gradient
directions, a multi-objective optimization problem is solved to select the gradient direction
(teachers) that satisfies most of the teachers in the ensemble.

5.2 Results

We train each model using three random seeds and report the means and standard deviations. We
consider ensemble distillation with ten teacher models randomly sampled from a poll of pretrained
(biased) teachers across random seeds. In addition to the teacher’s performance and deep ensemble
approach, we report the performance of the "student" trained only using the ground truth class labels
(One-hot), i.e., without knowledge distillation. We report the overall average and Worst-Group
Accuracy (WGA). In the Supplementary C (Table 5), we provide the group-wise accuracy of each
baseline method on the Waterbirds and CelebA datasets. We consider models trained using ERM or
with last-layer retraining for debiasing. Specifically, for ensemble knowledge distillation methods,
we train the student model with biased teachers (trained using ERM) and debiased teachers (last
layer retrained with DFR (Kirichenko et al., 2022)). Table 1 summarizes the main results of the paper
from which we draw the following observations:
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Table 1: Comparison of ensemble KD methods. We report the average and worst-group test
accuracy (WGA) on each dataset. The Debiased column indicates whether the model involves
debiasing with DFR or whether teacher models are debiased when the KD column is checked (✓).
Bolded represents the best-performing student with the debiased teacher ensemble and underlined
represents the best-performing with the biased teacher ensemble.

Models Debiased KD Waterbirds CelebA CivilComment

Average WGA Average WGA Average WGA

Teacher ✗ ✗ 85.7±1.80 65.6±5.75 95.4±0.07 37.5±2.27 90.0±0.25 75.9±1.15

✓ ✗ 94.2±0.53 90.9±1.00 93.7±2.44 90.1±1.68 85.9±0.49 77.9±0.49

Deep Ensemble ✗ ✗ 84.4±0.00 59.3±0.44 95.6±0.02 37.2±0.00 90.6±0.02 76.1±0.10

✓ ✗ 93.5±0.17 90.0±0.56 92.4±0.18 90.3±0.55 85.9±0.17 76.6±0.09

One-hot ✗ ✗ 83.8±0.97 54.1±2.21 95.5±0.07 32.3±2.66 90.1±0.21 75.5±0.84

✓ ✗ 91.4±1.31 86.7±1.85 92.3±0.39 88.9±2.90 85.7±0.47 76.5±1.09

Random ✗ ✓ 80.0±0.37 39.6±3.63 95.2±0.03 27.2±0.00 90.8±0.21 75.2±0.95
✓ ✓ 89.6±0.71 77.3±2.23 92.5±0.29 85.1±0.84 91.0±0.18 74.2±1.04

AVER ✗ ✓ 79.2±0.80 46.4±2.39 95.5±0.05 28.8±0.78 90.9±0.03 74.7±1.16

✓ ✓ 90.8±2.44 82.9±1.23 92.4±0.25 83.4±0.45 90.8±0.07 75.0±0.73

AE-KD ✗ ✓ 81.7±0.80 46.9±7.57 95.3±0.06 30.5±1.88 90.8±0.54 73.1±3.05

✓ ✓ 90.9±1.72 85.0±1.23 92.3±0.26 87.5±1.17 90.7±0.23 74.8±1.11

AGRE-KD (Ours) ✗ ✓ 82.2±1.37 55.0±5.47 95.4±0.04 37.6±0.78 89.3±3.65 74.7±3.00

✓ ✓ 91.3±0.49 87.9±1.23 91.7±0.20 91.9±0.71 90.2±0.49 75.9±1.75

• The deep ensemble using models with the same architecture as the student model im-
proves the worst-case group performance. While for all ensemble knowledge distillation,
the worst-case group performance can drop up to 10%. The drop is more severe for the
random ensemble distillation but improved average accuracy, which suggests switching be-
tween teachers during the training harms worst-case groups. On the other hand, AE-KD (Du
et al., 2020) performs better than other standard KD methods, showing that addressing
disagreement between teachers’ gradient direction can benefit the worst group samples.

• The fairness property of the last-layer retraining of neural network using DFR is
transferable. When we train the teacher models using ERM and then retrain the classifica-
tion layer with the group-balanced set, the resulting student models achieve significantly
better worst-case group accuracy. We only train the student model using the combined
teachers’ outputs without any feature distillation. These results demonstrate that the re-
trained classifications can provide pseudo-label distribution (dark knowledge) that reduces
students’ reliance on spurious features. This shows that by mimicking the teacher’s outputs,
the classifier layer of the student model also downweights the spurious features in its last
layers (Kirichenko et al., 2022). However, the improved students’ WGA across ensemble
distillation methods does not match the WGA of the debiased teacher models. We attribute
this to the smaller capacity of the student model, which we discuss in the next experiment.

• Our weighting scheme consistency improves the WGA compared to other ensembling
methods. On the CelebA dataset, we achieve better teachers’ average performance in terms
of worst-case group accuracy as well as the deep ensemble of models with the same capacity
as the student. This observation is consistent with settings where teacher models are biased
or debiased. On the other hand, we can see that our method does not provide significant
improvement for the worst-case group when all teacher models in the ensemble are biased;
we attribute this to the fact all these teachers will likely have a similar gradient direction
with biased models for many samples.

Impact of the model capacity. In this experiment, we study whether the student’s network capacity
is a source of the implication of spurious feature learning in ensemble KD. In particular, we perform
the same experiments as previously but using self-distillation, i.e., we use the same architecture for the
student and teacher models (i.e., resnet50); we report the results on Waterbirds and Celeba datasets in
Table 2 and provide results with resnet34 student in the Supplementary C (Figure 4). The ensemble
KD methods with self-distillation significantly improve the worst-case test group accuracy. The gap
between the teacher models and students is reduced compared to KD with a smaller capacity student
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Table 2: Results on self-distillation. The student and the teacher models have the same network
architecture (resnet50). The student’s worst-group test accuracy increases when we distill to a network
with higher capacity.

Models Debiased KD Waterbirds CelebA

Average WGA Average WGA

Deep Ensemble ✗ ✗ 84.4±0.00 59.3±0.44 95.6±0.02 37.7±0.00

✓ ✗ 93.5±0.17 90.0±0.56 92.4±0.18 88.8±0.55

One-hot ✗ ✗ 85.7±1.80 65.6±5.75 95.4±0.07 37.5±2.27

✓ ✗ 92.2±0.53 90.9±1.00 92.5±0.34 88.2±1.68

Random ✗ ✓ 83.5±0.68 64.0±2.88 95.5±0.00 35.8±1.17

✓ ✓ 92.8±0.49 90.3±0.23 92.6±0.26 87.9±0.64

AVER ✗ ✓ 83.5±0.75 63.7±2.72 95.6±0.02 35.3±1.95

✓ ✓ 92.8±0.64 90.2±0.23 92.6±0.20 88.3±1.66

AE-KD ✗ ✓ 84.2±1.52 61.0±4.45 95.6±0.02 36.9±0.39

✓ ✓ 91.9±1.89 89.0±3.59 92.3±0.04 89.4±1.11

AGRE-KD ✗ ✓ 84.9±1.40 66.3±4.76 94.5±3.22 39.2±0.78
✓ ✓ 91.4±1.99 91.1±2.56 91.1±0.09 91.9±1.17

model (i.e., resnet18 in Table1). The results indicate that the students’ higher capacity can help the
network learn more core features and reduce the influence of spurious features in the last layer. On
the other hand, AGRE-KD outperforms other baselines, showing that our adaptive weighting scheme
effectively guides the student models to focus on minimizing worst-case group error during training.
We further illustrate the effectiveness of our weighting scheme in the next experiment by adjusting
the number of debiased teachers in the ensemble.

Effect of the number of debiased teachers in the ensemble. We study how the WGA of the
student model is impacted when the teacher ensemble contains biased and debiased models with
different proportions. We consider five teachers in this experiment and use the same training process
as previously with different proportions of debiased teachers (i.e., { 1

5 , 2
5 , . . . , 5

5}); we report the
average and WGA in Figure 3 for the Waterbirds and CelebA datasets. The results indicate our
method can adaptively identify and rely more on the knowledge of debiased teachers while reducing
reliance on biased teachers. AGRE-KD can significantly improve worst-case performance when
the ensemble contains a single debiased teacher. The aggregation process of other ensemble KD
methods relies more on biased teachers, leading the student model to capture spurious correlation.
As the proportion of debiased teachers increases, the worst-case group accuracy of all ensemble
methods also increases. Additionally, AGRE-KD outperforms or matches the performance of the
deep ensembling model, where the last layer of each model in the ensemble is directly retrained.
These findings highlight the effectiveness of using gradients to steer model training towards specific
goals, such as bias mitigation.

6 Conclusion

In this paper, we studied bias in ensemble knowledge distillation (KD) and demonstrated that, unlike
deep ensemble models that reduce bias, traditional ensemble KD methods can amplify it. We
proposed AGRE-KD, an adaptive gradient-based weighting method that improves group robustness in
ensemble KD by guiding the student model to learn core features and boosting worst-group accuracy
(WGA). Our experiments across several benchmarks demonstrated the effectiveness of our approach
in distilling knowledge with reduced spurious correlations. While our results highlight AGRE-KD’s
advantages over existing methods, several questions remain. First, this study focused on unsupervised
KD using teachers’ logits alone, without access to group or class labels. Second, WGA improvements
are less pronounced when all teachers in the ensemble are biased, suggesting an opportunity to exploit
class labels in this setting to further boost WGA, e.g., by considering the teachers’ misclassifications.
Finally, additional evaluations on more complex datasets, such as language tasks, are needed to
validate the approach across more diverse applications.
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Figure 3: Results on the proportion of debiased teachers in the ensemble. We trained the student
model using an ensemble of 5 teachers with different debiased teacher ratios within the ensemble
({ 1

5 , 2
5 , . . . , 5

5}). AGRE-KD effectively upweights and favors the least biased teachers in the
ensemble, while other ensemble methods rely on them and decrease the WGA. AGRE-KD maintains
significantly higher WGA, despite having only a single debiased model in the ensemble..
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A Algortihm

Algorithm 1 Adaptive Group Robust Ensemble Knowledge Distillation (AGRE-KD)
1: Input: Ensemble of pretrained teachers T = {T1, T2, . . . , TM}, biased model Tb, student model

S with parameters θ, dataset D, distillation coefficient α, temperature parameter τ
2: for each minibatch {(xi, yi)}Bi=1 from D do
3: for each teacher Tt ∈ T do
4: Compute knowledge distillation loss ℓti(θ) for sample i between S and Tt ▷ (Eq. 1).
5: Compute biased model distillation loss ℓbi (θ) for sample i between S and Tb ▷ (Eq. 1).
6: Compute gradient alignment Gt

i = ⟨∇ℓti(θ),∇ℓbi (θ)⟩ ▷ Dot product of normalized
gradient vectors. Table 4 shows the importance of ignoring the magnitude of the gradients.

7: Compute the adaptive sample weight for teacher t on sample i: Wt(xi) = 1−Gt
i;

8: end for
9: Compute weighted knowledge distillation loss:

LwKD =

∑
t Wt(xi) · ℓti(θ)∑

t Wt(xi)

10: Compute classification loss (if labeled data available): Lcls

11: Compute final loss:
L = αLwKD + (1− α)Lcls

12: Update student model parameters θ using gradient descent on L
13: end for

B Hyperparameters

We train all models using standard hyperparameters from previous work (LaBonte et al., 2024;
Kirichenko et al., 2022; Izmailov et al., 2022) and keep their value fixed across experiments. For
the vision tasks, we used an initial learning rate of 1× 10−3 with a cosine learning rate scheduler;
we used a batch size of 32 and 100 for the Waterbirds and the CelebA datasets, respectively. For
the CiviComments dataset, we use an initial learning rate of 1 × 10−5 with a linear learning rate
scheduler, a batch size 16, and train for ten epochs. We keep all hyperparameters fixed to train
the teacher and student models. For the optimizer, we used AdamW (Loshchilov et al., 2019) and
SGD for the language and vision datasets, respectively, with a weight decay of 1 × 10−4. Our
implementation uses PyTorch (Paszke et al., 2017, 2019), Torch Lightning (Falcon and team, 2019),
and Milkshake (LaBonte, 2023).

C Supplemental experiments

Table 3: Sensitivity of AGRE-KD to the biased model architecture. In the main paper, we used a
biased model with the same architecture as the teacher models (i.e., resnet50). We experiment with
different network backbones for the biased models in AGRE-KD. The results below do not show
significant differences across biased model choices, demonstrating the robustness of the proposed
method to the choice of biased model. These results suggest that the gradient direction of any biased
pretrained model can provide sufficient guidance for debiased distillation.

Biased model Waterbirds CelebA

Average WGA Average WGA

Resnet50 90.6±0.49 86.7±2.82 91.8±0.20 90.5±0.24

Resnet34 90.0±1.63 85.2±3.48 91.8±0.14 90.5±0.24

Resnet18 90.2±1.10 86.8±2.88 91.5±0.09 89.8±0.16
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Figure 4: Results on student model capacity. We perform experiments on WaterBirds and CelebA
using resnet50 teachers and varying the capacity of the student network (resnet18, resnet34, and
resnet50). We plot the average and the worst-case accuracy of different ensemble distillation methods
across three random seeds. The WGA tends to increase as the student model has more capacity for
learning the core features. Most baselines match or outperform the teachers when the student model
has the same capacity as the teachers (i.e., resnet50), and our method remains superior in terms of
WGA. These results suggest that the reduced capacity of the student model is a source of the disparity
observed.
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Figure 5: Effect of the temperature parameter on the WGA. We study the effect of the temperature
parameter (Eq. 3) in WaterBirds and CelebA datasets using five resnet50 teachers and a resnet18 stu-
dent. We perform knowledge distillation with different temperature parameters τ ∈ {1, 2, 4, ..., 10}
and report the average test WGA across three independent random seeds. The WGA can improve
with increased temperature and steady or decrease after certain higher values of temperature (τ ≥ 10
and τ ≥ 8 for the Waterbirds and CelebA datasets, respectively). These results align with recent work
by Mohammadshahi and Ioannou (2024) studying the benefit of increased temperature for fairness in
knowledge distillation.

Table 4: Training AGRE-KD using gradient direction with (w/) and without (w/o) gradient
normalization. On the Waterbirds and CelebA datasets, we study how using the gradient magnitude
in the weighting scheme impact the results. We trained our AGRE-KD method without normalizing
the gradient vectors in the dots product, i.e., accounting for the gradient magnitude of the losses.
The results below show that accounting for the gradient magnitude in the weighting scheme reduces
the WGA performance. This shows the importance of using normalized dot products to compare
directional changes in gradients, making the computed weights independent of the gradient scales
themselves, which are generally very noisy.

Model Waterbirds CelebA

Average WGA Average WGA

AGRE-KD w/ grad norm 90.6±0.49 86.8±1.86 91.7±0.20 90.9±0.71

AGRE-KD w/o grad norm 91.0±1.32 81.5±4.07 93.1±0.21 87.9±0.52
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Table 5: Group-wise accuracy comparison. We report the group-wise accuracy of different ensemble
KD methods on the Waterbirds and CelebA datasets. As in previous experiments, we average the
performances across three different random seeds and considered ensembles of five teachers.

Datasets Sub Groups #Samples ERM Teacher Random AVER AEKD AGRE-KD

Waterbirds

(landbirds,land) 3498 99.3±0.13 95.5±0.97 96.7±0.57 96.8±0.62 96.1±1.29 94.3±1.46

(landbirds,water) 184 74.0±2.54 94.3±0.96 86.2±2.20 87.4±0.91 86.4±3.88 87.5±3.14

(waterbirds,land) 56 54.1±1.80 92.1±1.39 82.3±1.65 82.1±1.06 84.6±3.37 86.7±2.82

(waterbirds,water) 1057 93.4±0.72 90.9±0.81 91.5±1.08 90.9±0.67 91.4±1.97 90.6±1.85

CelebA

(nonblond,female) 71629 96.0±0.39 91.1±0.37 91.8±0.52 91.8±0.52 91.3±0.36 90.4±0.77

(nonblond,male) 66874 99.5±0.06 92.9±0.20 94.3±0.37 94.2±0.20 93.7±0.40 92.4±0.53

(blond,female) 22880 85.2±1.21 94.4±0.30 93.8±0.35 93.9±1.13 94.6±0.34 95.0±0.83

(blond,male) 1387 32.3±2.17 90.1±0.86 88.3±0.78 87.5±0.52 89.4±1.63 91.6±0.78
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Figure 6: Effect of teacher size. We train the resnet18 student model with different ensemble sizes
of resnet50 teachers (5, 10, 20, . . . , 50). Increasing ensemble size exerts a positive effect on both the
average and the worst-group performance. However, the Random KD method tends to get worse as
we increase the number of teachers.
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