
ar
X

iv
:2

41
1.

14
99

5v
1 

 [
cs

.A
I]

  2
2 

N
ov

 2
02

4

Learning Lifted STRIPS Models from Action Traces Alone:
A Simple, General, and Scalable Solution
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Abstract

Learning STRIPS action models from action traces alone is a
challenging problem as it involves learning the domain pred-
icates as well. In this work, a novel approach is introduced
which, like the well-known LOCM systems, is scalable, but
like SAT approaches, is sound and complete. Furthermore,
the approach is general and imposes no restrictions on the
hidden domain or the number or arity of the predicates. The
new learning method is based on an efficient, novel test that
checks whether the assumption that a predicate is affected by
a set of action patterns, namely, actions with specific argu-
ment positions, is consistent with the traces. The predicates
and action patterns that pass the test provide the basis for
the learned domain that is then easily completed with pre-
conditions and static predicates. The new method is studied
theoretically and experimentally. For the latter, the method is
evaluated on traces and graphs obtained from standard clas-
sical domains like the 8-puzzle, which involve hundreds of
thousands of states and transitions. The learned representa-
tions are then verified on larger instances.

Introduction

The problem of learning lifted STRIPS action models from
action traces alone is challenging because it requires learn-
ing the domain predicates which are not given. The problem
has been addressed by the LOCM systems (Cresswell and
Gregory 2011; Cresswell, McCluskey, and West 2013), and
more recently, through SAT and deep learning approaches
(Bonet and Geffner 2020; Rodriguez et al. 2021; Asai and
Fukunaga 2018; Asai et al. 2022). Still all these approaches
have severe limitations. The LOCM systems are scalable but
heuristic, and their scope is not clear and can fail even in
simple domains. The SAT approaches are sound and com-
plete, but they work on graphs, not traces, and more impor-
tantly, they do not scale up. Deep learning approaches can
deal with traces combining state images and actions, but do
not yet produce meaningful lifted representations.

In this work, we address the problem using a different ap-
proach that combines the benefits of some of these methods
while avoiding their pitfalls. Like LOCM, the new method is
scalable, and like SAT approaches, it is sound and complete,
while learning from either action traces or graphs, without
making any assumptions on the “hidden” STRIPS domains

except that they are “well formed”, so that action effects
must change the state.

The new method, named SIFT, utilizes an efficient, novel
test that checks whether it is consistent with the inputs
(traces or graphs) to assume that a predicate can be af-
fected by a set of action patterns; namely, actions with spe-
cific argument positions. The predicates and action patterns
that pass the test provide the basis for the learned domain
that is then easily completed with preconditions and static
predicates. The approach is evaluated on traces and graphs
obtained from standard domains like the 8-puzzle, which in-
volves hundreds of thousands of states and transitions, and
the learned domains are verified on larger instances.

The rest of the paper is organized as follows: We preview
the new ideas through an example, discuss related work, re-
view background notions, and introduce the new learning
formulation. Then we present details of the implementation,
experimental results, and a summary and discussion.

Preview

The intuition for the approach is simple. Consider for exam-
ple the following action trace τ for the Delivery domain:

pick(o1, c),move(c, c′), drop(o1, c
′), pick(o1, c

′) .

This is an applicable sequence of actions in an instance of
the domain where an object o1 is picked from a cell c, a
move is done from c to cell c′, the object is dropped, and
picked up again. The task is to learn the hidden domain from
traces such as this, and this involves learning some predi-
cates, and learning the action schemas for the three domain
actions pick, drop, and move, including their effects and
preconditions.

Given traces like τ drawn from a hidden domain D, the
new method will address the learning task by considering
questions like the following, where the symbol “ ” stands
for any values (“don’t cares”):

1. Is the assumption that D involves a unary atom p(x)
affected only by actions of the form pick(x, ) and
drop(x, ), consistent with τ?

2. Is the assumption that D involves a unary atom q(x) af-
fected only by actions pick(x, ), consistent with τ?

We will show that these questions can be answered in
a crisp and efficient manner, and moreover, that a domain
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equivalent to the one generating the traces can be obtained
from the answers to such questions.

Related Work

The problem of learning lifted STRIPS models has a long
history in planning. Most works however have been focused
on learning lifted action models from traces that combine ac-
tions and states where the domain predicates are given. Ob-
servability of these traces can be partial, complete, or noisy
(Yang, Wu, and Jiang 2007; Mourão et al. 2012; Zhuo and
Kambhampati 2013; Arora et al. 2018; Aineto, Celorrio, and
Onaindia 2019; Lamanna et al. 2021; Verma, Marpally, and
Srivastava 2021; Le, Juba, and Stern 2024; Balyo et al. 2024;
Bachor and Behnke 2024; Xi, Gould, and Thiébaux 2024;
Aineto and Scala 2024). Fewer works have considered in-
puts that are pure action traces.

LOCM: The work that is closest to ours is the one on
the LOCM system (Cresswell, McCluskey, and West 2013;
Cresswell and Gregory 2011; Gregory and Cresswell 2015;
Lindsay 2021), which also accepts action traces as inputs,
and outputs lifted domain descriptions. Moreover, there is a
common intuition guiding both works, namely, that the in-
formation to be extracted from the action traces is about the
action that are “consecutive” in a trace. In LOCM, this hap-
pens when two ground actions in a trace share a common ob-
ject as argument, and no ground action between them does.
In our setting, this basic intuition is formulated in a differ-
ent way. The notions of action patterns and features provide
the basis of SIFT, which is scalable like LOCM but with the
right theoretical properties and with no domain restriction.
The LOCM approach, on the other hand, is heuristic and
does not have a clear scope where it is sound and complete.1

SAT: A very different approach has been aimed at learn-
ing domains from labeled state graphs G of hidden domain
instances. For this, the simplest instance that produces the
structure of graph G is sought. The problem is addressed
with weighted Max-SAT solvers (Bonet and Geffner 2020)
and ASP solvers (Rodriguez et al. 2021). The limitations of
the approach is that it does not learn from traces and does
not scale up to graphs with more than a few hundred states.

Deep learning: LATPLAN learns STRIPS models without
supervision from traces where states are represented by im-
ages (Asai and Fukunaga 2018; Asai et al. 2022). For this, an
encoder mapping states into latent representations is learned
along with a model that predicts the next latent representa-
tion given the action. This enables planning in latent space
from new initial states encoded by images. The approach,

1Using terminology to be introduced later, LOCM can be
thought as learning nullary and unary features (predicates), but not
all of those which are required. SIFT, on the other hand, is complete
and has no arity restrictions. A simple example with nullary pred-
icates only which is beyond the reach of LOCM is the following:
actions a : ¬r → r, b : r,¬p1 → ¬r, p1, c : r,¬p2 → ¬r, p2,
d : p1, p2 → ¬p1,¬p2, where a : A → B stands for action a with
preconditions A and effects B. LOCM will identify p1 or p2 but
not both, because one pi is sufficient to explain why d cannot be
done twice in a row.

however, is propositional and hence does not generalize to
different state spaces, while approaches that aim to so, do
not result yet in meaningful action schemas (Asai 2019).

Background

A classical STRIPS problem is a pair P = 〈D, I〉 where
D is a first-order domain and I contains information about
the instance (Geffner and Bonet 2013; Ghallab, Nau, and
Traverso 2016). The domain D has a set of predicate sym-
bols p and a set of action schemas with preconditions and
effects given in terms of atoms p(x1, . . . , xk), where p is
a predicate symbol of arity k, and each xi is an argu-
ment of the schema. The instance information is a tuple
I = 〈O, Init, G〉 where O is a set of object names ci, and Init
and G are sets of ground atoms p(c1, . . . , ck) denoting the
initial and goal situations. A STRIPS problem P = 〈D, I〉
defines a state graph G(P ) whose nodes are the reachable
states in P , the root node is the initial state, and edges stand
for state transitions labeled with the actions causing them.
A path in this graph starting in a node represents an action
sequence that is applicable in the state represented by the
node.

Current PDDL standards support a number of STRIPS
extensions (Haslum et al. 2019), and SIFT learns domains
expressed in STRIPS with negation where negative literals
can be used in the initial situation, action preconditions, and
goals. The states in such a case are not sets of ground atoms
but sets of ground literals. Since the goals of an instance
P = 〈D, I〉 play no role in learning, we will regard I as
just representing the initial situation through a set of signed
ground atoms (literals).

Traces, Extended Traces, and Graphs

An action trace or simply a trace from a domain instance
P = 〈D, I〉 is an action sequence that is applicable from
a reachable state in P . An action trace from a domain is a
trace from a domain instance. For each action trace, there
is a hidden initial state s1 and hidden states si+1 generated
by the actions in the trace. When learning from action traces
alone, these states are not known, and moreover, there is no
assumption about whether any pair of hidden states si and
sj represent the same state or not. In certain cases, how-
ever, the information that two states in a trace or in differ-
ent traces represent the same state is available (e.g., traces
drawn from the same state) and can be used. We will refer to
sets of traces extended with such state equalities as extended
traces. Extended traces generalize plain traces, where no
state equalities are revealed, and can provide a good approx-
imation of labeled state graphs G(P ) considered in (Bonet
and Geffner 2020; Rodriguez et al. 2021), that represent all
possible traces in P and all state equalities (more about this
below). We refer to both plain traces and extended traces as
traces, and make their difference explicit when relevant.

Formulation

We aim to learn classical planning domains from traces as-
suming that the traces come from a hidden STRIPS domain
with negation that is well-formed:



Assumption 1. The hidden STRIPS domain D is well-
formed if each action that makes a literal true, has the com-
plement of the literal as a precondition.

This assumption rules out situations where an action adds
a literal that is already true, or deletes a literal that is already
false. The effects of the actions must change the state.

Dual Representation of Action Effects

A planning domain D is described normally in terms of a set
of actions schemas that involve a set of lifted atoms in action
preconditions and effects. There is, however, an alternative
way of describing action effects that will be convenient in
our setting, leaving aside for now the signs of these effects.
For example, a domain D with two actions with effects:

Action a(x1, x2) : Effects p(x1, x2),

Action b(x1, x2, x3) : Effects q(x1, x2), q(x3, x2)

can also be expressed in “dual form” in term of the two
atoms affected by the actions as:

Atom p(x1, x2) : Affected by a(x1, x2)

Atom q(x1, x2) : Affected by b(x1, x2, ), b( , x2, x1),

where the missing arguments “ ” are don’t cares that can
take any value. We will refer to lifted actions of the form
b(y1, y2, ) and b( , y1, y2), as action patterns.

In the normal representation of action effects, each action
schema occurs once and may involve many atoms with the
same predicate; in this alternative, dual representation, each
lifted atom occurs once and may involve multiple action pat-
terns. The two representations are equivalent.

Action Patterns and Features

We will say that an action b(x1, x2, x3) has the atom
q(x3, x2) as an effect, by saying that the predicate q is af-
fected by the action pattern b[3, 2]. This means that the ar-
guments of q bind to the third and second arguments of b
respectively. Formally, an action pattern is:

Definition 1 (Action patterns). An action pattern a[t] of arity
k is an action name a of arity k′ ≥ k followed by a tuple t
of k different indexes t = 〈t1, . . . , tk〉, 1 ≤ ti ≤ k′, i =
1, . . . , k.

A lifted atom in a domain is not affected by actions a but
by action patterns a[t] that bind the arguments of the atom
to the action arguments. For learning a domain, leaving pre-
conditions and the sign of effects aside, it will be sufficient to
learn the predicates p involved in the domain and the action
patterns a[t] that affect them. We will refer to the predicates
that are possible given a set of action patterns, as features:

Definition 2 (Features). A feature f of arity k is a pair f =
〈k,B〉, where B is a non-empty set of action patterns of arity
k. B is called the feature support, also referred to as Bf .

A feature f = 〈k,B〉 represents an assumption about the
hidden domain; namely, that it contains atoms f(x1, . . . , xk)
of arity k which are affected by all and only the action pat-
terns a[t] in B which must have the same arity k. The actions
a in these patterns, however, can have any arity k′ greater

than or equal to k, as the indexes in the pattern t select the
k relevant action arguments of a in order. For example, if
k′ = 3, the action pattern a[3, 2] in B says that f(x3, x2) is
an effect of the action a(x1, x2, x3).

A finite set of inputs in the form of traces determines a
finite set of action names a with their arities, and these de-
termine a finite set of action patterns a[t] and a finite set of
features. The learning task will reduce to a large extent to
finding the features that are consistent with the given traces.

Action Groundings Af (o)

By the action grounding Af (o) of a feature f in a given set
T of traces, we will refer to the set of ground actions a(o′)
in T that are assumed to affect the truth of the hypothetical
ground atom f(o). For making this precise, for an action
pattern a[t], t = 〈t1, . . . , tk〉, and a ground action a(o), o =
〈o1, . . . , ok′〉, k′ ≥ k, let ti[o] refer to oj if ti = j, and
let t[o] refer to the tuple of objects t1[o], . . . , tk[o]. Then the
action grounding Af (o) can be defined as follows:

Definition 3 (Action groundings). The action grounding
Af (o) of a feature f in a set of traces T refers to the set
of ground actions a(o′) in T such that a[t] is a pattern in Bf

and o = t[o′].

For example, if o = 〈o1, o2〉 and a[4, 1] is a pattern in Bf ,
Af (o) will include all the ground actions in T of the form
a(o2, , , o1), as o = t[o′] is true for t = [4, 1] if the two
elements of o are the fourth and first elements of o′.

The action grounding Af (o) contains all and only the
ground actions appearing in T that affect the truth of the
hypothetical atom f(o). Interestingly, by just “looking” at
the traces in T , we will be able to tell in time that is linear in
the length of the traces, whether the assumption expressed
by a feature is consistent with the traces.

Pattern Constraints

Each pattern a[t] in Bf represents an effect on the hypotheti-
cal atom f(x), and hence must have a sign: positive (1) when
the atom becomes true, and negative (0) when the atom be-
comes false.

Definition 4 (Signs). Each pattern a[t] in Bf must have a
unique sign, sign(a[t]) that can be 0 or 1.

A feature f = 〈k,B〉 is consistent with the input traces
if it’s possible to assign a sign to each action pattern a[t] in
B in a way that is compatible with the traces. For this, we
extract two types of pattern constraints from sets of traces
T : those that follow from patterns appearing sequentially in
some grounding of T , and those that follow from patterns
appearing in parallel in some grounding of T :

Definition 5 (Consecutive patterns). Two action patterns
a[t] and b[t′] in Bf are consecutive in T , if some trace τ
in T contains two actions a(o1) and b(o2) that appear in
some action grounding Af (o), such that no other action
from Af (o) appears between them.

If a[t] and b[t′] affect f and are consecutive in T , the two
patterns must have different signs. Indeed if a(o1) adds the
atom f(o), b(o2) must delete f(o), and vice versa, if b(o2)
adds it, a(o1) must delete it. A different type of constraint



on action patterns arises from extended traces that start at or
reach the same state:

Definition 6 (Fork patterns). Two patterns a[t] and b[t′] in
Bf express a fork in a set of extended traces T if actions
a(o1) and b(o2) in Af (o) appear in two traces τ1 and τ2
respectively, that diverge from (resp. converge to) the same
state, and no other action in Af (o) appears between the
common state and each of the actions (resp. between each
of the actions and the common state).

If the patterns a[t] and b[t′] in Bf express a fork in T
arising from a state s or converging to a state s′, they will
have the same f(o) precondition in s or the same f(o) effect
in s′, and in either case, they must have the same sign. As
a a result, the set of patterns constraints Cf (T ) that follow
from a set of traces T is:

Definition 7. The set of Cf (T ) of pattern constraints is
given by the inequality constraints sign(a[t]) 6= sign(b[t′])
for consecutive patterns a[t] and b[t′] from Bf in T , and by
the equality constraints sign(a[t]) = sign(b[t′]) for fork
patterns a[t] and b[t′] from Bf in T , if any.

Feature consistency

The constraints Cf (T ) for the feature f are extracted from
the given traces T , and the solution to these constraints is
a sign assignment to the patterns a[t] in Bf ; namely, a 0/1
valuation over the expressions sign(a[t]), such that all the
constraints in Cf (T ) are satisfied. If there is one such valu-
ation, the set of constraints Cf (T ) and the feature f are said
to be consistent, and the sign of the patterns a[t] in Bf is
given by such a valuation.

Definition 8 (Feature consistency). The feature f is consis-
tent with a set of (extended) traces T if the set of pattern
contraints Cf (T ) is consistent.

The good news is that both the extraction of the pattern
constraints from traces, and the consistency test are easy
computational problems. The latter can indeed be reduced
to 2-CNF satisfiability:

Theorem 9. The problem of determining if a feature f is
consistent with a set of (extended) traces T is in P and re-
duces to the problem of checking 2-CNF satisfiability.

The reduction is direct: if the propositional symbol pa[t]
stands for sign(a[t]) = 1, then the equalities sign(a[t]) =
sign(b[t′]) map into implications pa[t] → pb[t′] and

¬pa[t] → ¬pb[t′], and inequalities sign(a[t]) 6= sign(b[t′])
into implications pa[t] → ¬pb[t′] and ¬pa[t] → pb[t′], all of
which define clauses with two literals. A 2-CNF formula is
unsatisfiable iff implication chains p → l1 → l2 · · · → ¬p
and ¬p → l′1 → l′2 · · · → p can be constructed for one of
the symbols p. For our constraints, the first chain implies the
second, and vice versa, so that the satisfiability algorithm
required is even simpler. For checking the consistency of
a feature f given the traces T , an arbitrary pattern a[t] in
Bf is chosen and given the arbitrary value 1. Then, all pat-
terns b[t′] in Bf that are directly related to a[t] through a
constraint in Cf (T ) and which have no value, get the same
value as a[t], if the relation is equality, and the inverse value

if the relation is inequality. If there are then patterns in Bf

that did not get a value, one such pattern a[t] is chosen and
given value 1, and the whole process is repeated over such
patterns. The iterations continue til an inconsistency is de-
tected or all patterns get a sign. The algorithm runs in time
that is linear in the number of patterns in Bf .

Example. We considered the trace τ given by the action se-
quence pick(o1, c), move(c, c′), drop(o1, c

′), pick(o1, c
′).

The question was whether a unary atom p(x) affected by
actions of the form pick(x, ) and drop(x, ) is consistent
with the trace. The question becomes now whether the fea-
ture f = 〈1, B〉 with B = {pick[1], drop[1]} is consistent
with the set of traces T = {τ}. For this, the only (non-
empty) action grounding Af (〈o1〉) in τ for f is given by
the set of actions pick(o1, c), drop(o1, c

′), and pick(o1, c
′).

There are two pattern inequality constraints then in Cf (T )
that follow from pattern drop[1] following pattern pick[1]
in τ , and pick[1] following drop[1]. These consecutive pat-
terns in B result in the single constraint sign(pick[1]) 6=
sign(drop[1]), which is indeed satisfiable, so feature f is
consistent with the trace τ . On the other hand, the other
feature considered, f ′ = 〈1, B′〉 with B′ = {pick[1]}, is
not consistent with T as the the action grounding Af ′(〈o1〉)
contains just the two pick(o1, ) actions in τ (the other ac-
tions not being in B′), with one pick[1]-pattern following
another pick[1]-pattern, resulting in the unsatisfiable pattern
constraint sign(pick[1]) 6= sign(pick[1]).

From Features to Domains

We will refer to features that are consistent with the given
traces T as admissible, and to the collection of admissible
features, as F (T ). We show first how to use these features
to define the learned domains DT and the learned instances
PT = 〈DT , IT 〉 from T . For this, notice that a trace in T
with a non-empty action grounding Af (o), defines a unique
truth value for the atom f(o) in every state of the trace,
while in a set of connected (extended) traces, where each
pair of traces shares a common state, a non-empty ground-
ing Af (o) in one of the traces, determines the truth value of

the atom f(o) in every state of each of the connected traces.2

These truth values are used to infer the action preconditions
in the learned domain DT :

Definition 10 (Learned domain). The domain DT learned
from a set of action traces T is defined as follows:

• Lifted actions a(x) with arities as appearing in T

• Predicates f(x) of arity k if f = 〈k,B〉 is in F (T )

• Effects f(t[x]) of a(x) with sign(a[t]) if a[t] ∈ B

2A trace with a non-empty action grounding Af (o) defines the
truth value of f(o) right after and right before any action a(o′) ∈

Af (o); the first is the sign of the pattern a[t] in Bf for which o =
t[o′], the latter is the inverse sign. These values persist along the
trace, forward after a(o′) and backward before a(o′) til another
action b(o′′) ∈ Af (o) appears in the trace, if any. Such an action
inverts the value of the atom, and the propagation continues in this
way til reaching the beginning and end of the trace.



• Preconditions f(t[x]) (resp. ¬f(t[x])) of a(x) for f ∈
F (T ), if in all traces where an action a(o′) is applied
and the truth of the literal f(o) is defined, f(o) is true
(resp. false) right before a(o′) for o = t[o′].

The expression t[x] selects elements of x according to the
indices in t, and while t in effects comes from the action
pattern a[t] ∈ B; t in preconditions ranges over the possible
precondition patterns of a. That is, if the arities of f and a
are k and k′ ≤ k, then t ranges over all tuples 〈t1, . . . , tk〉
where the indexes ti are different and 1 ≤ ti ≤ k. The
reason that action preconditions can be learned by just taking
the “intersection” of the f(t[x])-literals that are true when
the action a is applied, is that such literals include the true,
hidden, domain literals, as we will see in the next section.

The instance PT = 〈DT , IT 〉 learned from a set of con-
nected traces T is defined in terms of the set A(D,T ) of
ground atoms f(o) whose truth values over all states along
the traces in T are determined by the domain D and the
traces T . These are:

Definition 11 (Relevant ground atoms). A(D,T ) stands for
the set of ground atoms p(o) such that p is a predicate in
D, and some action a(o′) in a trace in T has an effect or
precondition p(o) in D with any sign.

Indeed, the truth values of the atoms p(o) in A(D,T ) in each
of the states over the traces in T , follow from D and T by
simple constraint propagation:

Theorem 12 (Truth values). The truth values of each ground
atom p(o) in A(D,T ) in each of the states s underlying a set
of connected traces in T are fully determined by D and T .

The truth values are determined because the signs of the
action preconditions and effects in D are known, and every
atom p(o) in A(D,T ) is the precondition or effect of an ac-
tion in a trace from T . The instance PT = 〈DT , IT 〉 learned
from T assumes that at least one trace from T is drawn from
the initial state of P = 〈D, I〉. We call the initial state of this
trace, the initial state of T :

Definition 13 (Learned instance). For a set of connected
traces T drawn from a hidden instance P = 〈D, I〉, the
learned instance is PT = 〈DT , IT 〉 where DT is the domain
learned from T , and IT is A(DT , T ) with the truth values of
the atoms f(o) in IT as derived at the initial state of T .

We can now express a soundness and completeness result
for the instances PT learned from a hidden instance P =
〈D, I〉 with no static predicates, as static predicates can be
treated separately (see below). For stating the conditions, we
ask the traces to be complete in the following sense:

Definition 14. A set of traces T is complete for an instance
P = 〈D, I〉 if the traces in T are all drawn from the initial
state of P and hence are connected, they affect each pred-
icate p in D, and I contains the same atoms as I(D,T ),
ignoring the signs.

A set of traces T is complete for P = 〈D, I〉 basically
if one can infer I from the domain and the traces. The con-
dition that the traces in T affect each predicate p in D asks
for p not to behave like a static predicate in T ; i.e., some
state is reached by the traces where some p-literal changes

sign. This ensures that some feature f ∈ F (T ) will capture
p, as the features “do not see” static predicates or those that
behave as such in the traces. A key result is:

Theorem 15 (Soundness and completeness). Let T be a
complete set of traces τ from P = 〈D, I〉. Then 1) Each
τ ∈ T is applicable in the initial state of the learned in-
stance PT = 〈DT , IT 〉. 2) If τ reaches a state in P where a
ground action a(o) that appears in T is not applicable, then
τ reaches a state in PT where a(o) is not applicable.

The intuition behind this result is as follows. First, the
definition of the action preconditions in DT , ensures that
the traces in T are executable in PT , as they must all be true
then. Second, as we will see, the atoms p(x) in the hidden
domain D define features p that are admissible over any set
of traces T drawn from D. Thus, if an action a(o) is not ap-
plicable in P after τ but a(o) is applied elsewhere in T , then
the truth values of the preconditions of a(o) in DT will be
known in all nodes of T , and if T is complete, such precon-
ditions will include the true hidden preconditions of a(o) in
D. So hence if a(o) is not applicable after τ in P , it will not
be applicable after τ in PT either.

Static Predicates

Static predicates refer to predicates that are not changed by
any action, and they just control the grounding of the actions.
Many domains are described using static predicates that de-
tail, for example, the topology of a grid. Yet static predicates
can be defined in a very simple and general manner, and
while it’s possible to learn them from traces, it is not strictly
necessary. For this, it suffices to introduce a static predicate
pa for each lifted action a appearing in the traces T , with the
same arity as a. Then, for extending Theorem 15 to domain
D with static predicates, atoms pa(o) are set to true in IT iff
the ground action a(o) appears in a trace in T . The theorem
extends then in a direct manner. Of course, a more meaning-
ful and compact characterization of static predicates can be
obtained in terms of predicates of lower arity that may be
shared across actions, but this has nothing to do with gen-
eralization. In a new instance, the static atoms that are true
initially must be given explicitly: in one case, in terms of
predicates like pa, in the other case, in terms of predicates
of lower arity. Both forms are equally correct and the latter
is just more convenient and concise. Since obtaining a com-
pact representation of the static pa relations is not necessary,
we will not address the problem in this work.

Generalization

We address next the relation between the hidden domain D
and the learned domain DT . For this, we make first explicit
the notion of domain feature, which was implicit in our dis-
cussion of the dual representation of action effects:

Definition 16. For a domain D with predicates p1, . . . , pn,
the domain features f1, . . . , fn are fi = 〈ki, Bi〉, where ki
is the arity of pi, and Bi contains the action pattern a[ti] iff
the atom pi(t

i[x]) is an effect of action a(x) in D.

For example, if a(x1, x2, x3) has effects p1(x1, x2) and
p1(x3, x1), and no other action affects p1, the feature



f1 corresponding to p1 is f1 = 〈2, B1〉 where B1 =
{a[1, 2], a[3, 1]}. The first result is that features drawn from
a domain D are admissible given any set of traces from D:

Theorem 17. Let T be any set of extended traces from D,
and let f be a feature from D. Then, f is consistent with T
and hence admissible.

This means that in the learned domain DT , there will be
atoms f(x) that represent the atoms in the hidden domain or
their complements. Still the learned domain DT may con-
tain other f(x) atoms as well. There may be indeed many
domains D′ that are equivalent to D, meaning that they can
generate the same set of traces and labeled state graphs. The
pairs of equivalent domains that are interesting are those that
result in different domain features. It turns out that the do-
mains that are equivalent to D, can be all combined (after
suitable renaming) into a single domain Dmax that is equiv-
alent to D. For this, all preconditions and effects must be
joined together with their corresponding signs. The domain
Dmax is equivalent to D and provides indeed a maximal de-
scription of D. We will refer to the features f that follow
from Dmax as the valid features:

Definition 18. Feature f is valid in D if f is from Dmax.

Since the notion of admissibility does not distinguish D
from domains that are equivalent to D, Theorem 17, can be
generalized as follows:

Theorem 19. If a feature f is valid in D, then f is consistent
with any traces from D, and hence admissible.

A feature f that is not valid can be shown to be inconsis-
tent in some set of extended traces, and since there is a finite
set of features given a set of traces, this means that:

Theorem 20. There is a finite set of extended traces T such
that f is consistent with T iff f is valid. The learned domain
DT is then equivalent to the hidden domain D.

Proving that a finite set of traces has this property or that
a feature f is valid for an arbitrary domain, however, is not
simple. The experiments below test generalization and va-
lidity empirically.

Implementation

We explain next some relevant details about the implemen-
tation of the domain learning algorithm called SIFT. The al-
gorithms accepts a set of traces or extended traces T in the
form of graphs with nodes that are hidden states and edge
labels that are actions. For plain traces, these graphs are la-
beled chains. SIFT then performs three steps: 1) generation
of the features f , 2) pruning the inconsistent features, and
3) construction of the learned domain DT and of the set of
ground atoms f(o) ∈ A(D,T ) with the truth values over
each input node. We explained these three steps above. Here
we provide details about the implementation of 1 and 2.

Features. The key idea to make the learning approach com-
putationally feasible and to avoid the enumeration of fea-
tures is the extraction of type information about the action
arguments from the traces, as done in LOCM (Cresswell,
McCluskey, and West 2013), and its use for making the fea-
tures typed. The types are constructed as follows. Initially,

there is a type ωa,i for each action a of arity ka > 0 in the
traces, and each argument index i, 1 ≤ i ≤ ka. Then two
types ωa,i and ωb,j are merged into one if there is an object
o in the traces that appears both as the i-th argument of an a-
action and as the j-th argument of a b-action. This merging
of types is iterated until a fixed point is reached, where the
objects mentioned in the traces are partitioned into a set of
disjoint types. The following step is to use such types to enu-
merate the possible feature types, and for each feature type,
the possible features. This massively reduces the number of
features f = 〈k,B〉 that are generated and checked for con-
sistency. We explain this through an example. In Gripper,
the actions pick(b, g, r) and drop(b, g, r) take three argu-
ments of types ball, gripper, and room, while the other ac-
tion, move(r1, r2), takes two arguments of type room. Sim-
ple calculations that follow from the arities of these actions,
show that 14 action patterns a[t] of arity two can be formed
from these actions, and thus 214 − 1 = 16, 383 features.
If types are taken into account and read from the traces, 7
possible binary feature types are found (namely, ball and
gripper, ball and room, etc), each of which accommodates
2 action patterns at most (e.g., pick[1, 2] and drop[1, 2] for
ball and gripper). Hence, the number of (typed) binary fea-
tures f becomes 7 × (22 − 1) = 21, which is much smaller
than 16, 383. A further reduction is obtained by ordering the
types and using the types in the feature arguments in an or-
dering that is compatible with such a fixed, global ordering,
avoiding the generation of symmetrical features. This reduc-
tion leaves the number of binary features to be tested in Grip-
per down to 4×(22−1) = 12. The number of ternary (typed
and ordered) action patterns in Gripper is 2, and hence, there
are (22 − 1) = 3 ternary features to check, while the num-
ber of nullary action patterns is 3, and hence the number of
nullary features is 23 − 1 = 7.

Pattern constraints Cf (T ). This optimization is critical for
processing very large state graphs, not plain traces. We will
show for example that SIFT can learn the n-puzzle domain
by processing the full state graph for n = 8, which involves
almost 200,000 states and 500,000 state transitions.3 For
this, the pattern constraints Cf (T ) are obtained by travers-
ing reduced graphs where edges (n, n′) labeled with actions
a with no pattern in Bf are eliminated by merging the nodes
n and n′. This simplification, that applies to plain traces as
well, is carried out at the level of feature types, because there
are actions that due to their argument types, cannot be part of
any feature of a given type. In our current implementation,
the process of collecting the pattern constraints in Cf (T ) for
a given action groundingAf (o) is actually done by a simple
0-1 coloring algorithm that runs in time that is linear in the
size of such reduced graphs.

Experiments

We have tested the SIFT algorithm over a number of bench-
marks in classical planning. For this, a set of traces T is

3This data is actually not needed for learning the domain, but
illustrates the scalability of the approach. Indeed, we will show that
the same domain can be learned from a few long traces that span
no more than a few thousand states too.



Full Graphs Partial Graphs Traces
Domain #O #P #F #Fa #E Time Verif #Fa #E Time Verif #Fa #E Time Verif

blocks3 6 3 1220 5.0 21300 51 s 100% 5.0 81 28 s 100% 5.0 65 29 s 100%
blocks4 7 5 93 9.0 186578 587 s 100% 9.0 86 17 s 100% 9.0 85 17 s 100%
delivery 13 3 62 5.0 57888 183 s 100% 5.0 601 105 s 100% 5.0 350 100 s 100%
driverlog 11 4 560 13.0 63720 700 s 100% 13.0 1201 777 s 100% 13.0 350 683 s 100%
ferry 10 4 31 4.0 156250 347 s 100% 4.0 251 31 s 100% 4.0 170 24 s 100%
grid 14 6 290 7.0 99863 546 s 100% 7.0 10001 37 s 100% 29.7 10000 36 s 0%
grid lock 14 6 1042 7.0 152040 1678 s 100% 7.0 500 123 s 100% 7.0 800 117 s 100%
gripper 12 4 43 6.0 95680 212 s 100% 6.0 230 64 s 100% 6.0 250 306 s 100%
hanoi 12 2 134 4.0 59046 2164 s 100% 4.0 50 25 s 100% 4.0 25 24 s 100%
logistics 18 2 212 7.0 648648 12866 s 100% 7.0 5003 1403 s 100% 7.0 350 1304 s 100%
miconic 10 3 99 8.0 127008 376 s 100% 8.0 46 33 s 100% 8.0 60 36 s 100%
npuzzle 14 2 912 26.0 483840 11598 s 100% 26.0 130 312 s 100% 26.0 200 311 s 100%
sokoban 16 2 352 3.0 26834 231 s 100% 3.0 10002 195 s 100% 126.2 10000 220 s 4%
sokoban pull 16 2 20740 3.0 66328 401 s 100% 3.0 300 77 s 100% 3.0 300 123 s 100%

Table 1: Results table. For each domain: number of objects #O in training instance, number of non-static predicates #P ,
number of features to test #F , and for each input (full and partial graphs, plain traces): avg. number of admissible features
#Fa, avg. number of edges in input graphs #E (trace length for traces), avg. total time (data generation, learning, verification),
and ratio of successful verification tests (Verif). Averages over 25 runs except for full graphs (not sampled)

generated from one or more instances of a hidden domain
D, a domain DT is learned, and DT is verified over traces
T ′ from larger domain instances. The experiments have
been run on two types of Intel(R) Xeon(R) nodes: Platinum
8352M CPU, running at 2.30GHz, and Gold 6330 CPU, run-
ning at 2.00GHz, using 22 cores per experiment. The code
and the data is to be made publicly available.

Domains: include Blocks with 3 and 4 operators, Delivery,
Driverlog, Grid, Ferry, Gripper, Hanoi, Logistics, Miconic,
Sliding n-puzzle, Sokoban. These are all standard domains,
some of which have been used in prior work on lifted model
learning. Grid-Lock and Sokoban-Pull are variations of Grid
and Sokoban, each one adding one action schema to make
the resulting domains dead-end free (an extra lock action
in Grid, and a pull-action in Sokoban). Dead-ends present
a problem for data generation from traces, as most random
traces end up being trapped in parts of the state space, failing
to reach other parts.

Training Data: For each domain, the training data (traces) is
obtained from a single large instance P with approximately
100k edges. This size is used to determine the number of
objects in the instance P used to generate the data, except
for Logistics that required more data. The (plain) traces are
sampled using two parameters: the number of traces n, and
their length L (number of actions). The first trace is sampled
from the initial state s0, while the rest are sampled start-
ing in a state s that is reached from s0 in m random steps,
2L ≤ m ≤ 5L. The number n of traces has been set to 5,
and the length of the traces have been set roughly to the min-
imum lengths L needed so that 5 random traces of length
L result in learned domains with 100% validation success
rates (as explained below). In some domains, the length L
required involves tens of actions, in others, a few hundred.
These are all plain traces with no state equalities. A sec-
ond type of training input is considered for reference which

uses full state graphs G(P ) as in (Bonet and Geffner 2020).
This input corresponds to traces augmented with state equal-
ities. The SAT approach can deal with graphs with a few
hundred states; as we will see, SIFT can deal with hundreds
of thousands, without making assumptions that the graph is
complete or that different nodes represent different states.
Indeed, a third type of training input is considered as well
which is given by a subgraph of G(P ). For this, a breadth
first search is done in P from the initial state and a few other
sampled states until a number of states and edges are gen-
erated that yield 100% validation success rates. The differ-
ence with the plain traces, is that these are extended traces
(state equalities) sampled in “breadth” and not in “depth”.
The number of sampled initial states is 5 except for Deliv-
ery, Driverlog, and Logistics that required more data (resp.
10, 30, and 20 samples). In Grid and Sokoban, a single large
sample drawn from the initial state of P was used instead,
because samples from deeper states fail to reach many other
states, as mentioned above.

Validation and Verification: For testing validity and gen-
eralization, we consider hidden instances P ′ = 〈D, I ′〉 that
are larger than the instances P = 〈D, I〉 used in training,
and use the methods above for obtaining a set of traces and
of extended traces (partial state graphs) T ′ from P ′. For
checking if these sets of validation and test traces is com-
patible with the learned domain DT , we check if there is a
node in the input where an action a(o) is done in T ′ such
that a precondition f(o′) of a(o) in DT is found to be false
in n. If there is no such node, then T ′ is regarded as being
compatible with DT . The reason that we cannot demand the
preconditions of a(o) to be true rather than being “not false”,
is that the information in a trace is incomplete. We also test
if sequences of actions that are not applicable in P ′ are not
applicable in the learned domain DT either. For doing this in
a sound manner, if τ is trace from P ′ that involves an action



a(o), we look for prefixes τ ′ of τ such that in the end node
of τ ′, the action a(o) is not applicable. Since, the action a(o)
occurs in τ , the truth value of all its preconditions f(o′) is
known in all such nodes, and hence if a(o) is not applicable
after the sequence τ ′ in D, it should not be applicable in DT

either (as in Theorem 15). We thus check for false positives
and false negatives, and report the percentage of successful
verification tests (verification rate). Both plain and extended
traces (partial graphs) T ′ are used in these tests.

Results: Table 1 shows the results. The first columns state
the domain, the number of objects #O in the instance used
for training, the number of non-static predicates #P in the
domain (hidden features), and the number of features #F
whose consistency must be tested. There are then three sets
of columns for each of the three learning inputs: full state
graphs, partial state graphs, and plain traces. Each includes
columns for number of features #Fa found to be consis-
tent, number of edges #E in the input graphs (for traces,
#E is their length L), and overall time, which includes data
generation, feature generation and pruning, and testing (ver-
ification rate; Verif). The results for traces and partial state
graphs are averages over 25 runs (SIFT is a deterministic al-
gorithm, but sampling is random). As it can be seen from the
table, domains that verify 100% of the test traces are found
in all the domains when the inputs are full state graphs and
partial state graphs. Plain traces, on the other hand, fail in
two domains: Grid and Sokoban, and the problem does not
have to do with the learning method, but with the data: the
random traces hit dead-ends early and don’t yield good sam-
ples. Indeed, for the domains Grid-Lock and Sokoban-Pull
that just add one more action schema to Grid and Sokoban,
the random traces deliver domains with 100% verification
rates, in 2-3 minutes. In Sokoban, the 4% success rate means
actually that just in 1 of the 25 runs of the algorithm, the
traces provided enough information to learn domains DT

that verify all test traces. The scalability of the approach
appears clearly when the inputs are full state graphs with
500,000 edges or more, like in the n-puzzle and Logistics,
which are learned successfully. In almost all domains, the
number of admissible features#Fa is slightly larger than the
number of (non-static) predicates #P , meaning that a few
“redundant” predicates from Dmax are being learned along
with the hidden predicates in D. The exceptions are: Grid
and Sokoban, which are not learned from random traces and
result in many non-valid features not being pruned, and the
n-puzzle that results in 26 predicates in a domain that in-
volves just 2 dynamic predicates. More about this below.

Analysis. We have also looked at the domains learned, and
they all look correct indeed, containing the hidden predicates
in D, and redundant predicates from Dmax. For example,
in Blocksworld, an undirected version of the on relation is
learned that is true if two blocks are directly on top of each
other without revealing which one is above. In Gripper, an
extra unary predicate is learned that captures if a ball is being
held, without specifying the gripper. In Driverlog, a learned
predicate keeps track of the driver location even if on a truck.
In Logistics, eight predicates are learned, including a ternary
relation that tracks both the location and city of a truck. In

the n-sliding puzzle, SIFT learns 24 “redundant” but mean-
ingful features (details in the appendix).

All these predicates are correct but redundant, and
roughly correspond to derived predicates that can be tracked
with action effects, and hence, which do not need to be
tracked by axioms. They are all part of the maximal do-
main description Dmax. One consequence of this “expan-
sion” in the number of predicates is on the width of problems
(Lipovetzky and Geffner 2012; Bonet and Geffner 2024).
A problem that involves moving to an object to pick it up
and placing it elsewhere has width 2, but with the “derived”
predicate in Dmax that tracks the location of the object being
held, the width reduces to 1. The maximal domain descrip-
tion Dmax of a domain D is an interesting notion in itself,
but its study goes beyond the scope of this paper.

Discussion

We have presented the first general, and scalable solution to
the problem of learning lifted STRIPS models from traces
alone. The approach makes use of the intuitions that un-
derlie the LOCM systems (Cresswell and Gregory 2011;
Cresswell, McCluskey, and West 2013) but the formulation,
the scope, and the theoretical guarantees are different. The
learning task is challenging because there is no information
about the structure of states, which must be fully inferred
from the traces. The new approach is based on the notion of
features f = 〈k,B〉 that represent assumptions: the possi-
bility of an atom f(x) in the hidden domain of arity k, being
affected by the action patterns in B only. The consistency
of these assumptions can be tested efficiently over the input
traces T by collecting a set Cf (T ) of tractable, 2-CNF-like
equality and inequality pattern constraints. The consistent
features define the learned domain in a simple manner which
is guaranteed to generalize correctly for a suitable finite set
of traces. The experiments show the generality and scalabil-
ity of the learning method and its implementation in SIFT.
Three direct extensions that we have not addressed in the
paper are: the elimination of “redundant” features and pred-
icates, the derivation of static predicates of lower arity, and
the variations needed to make the learning approach robust
to noisy inputs. For this, notice that rather than “pruning” a
feature f when found to be inconsistent with a trace, f can
be pruned when inconsistent with k traces. A more chal-
lenging extension involves learning models over languages
that are more expressive than STRIPS with negation. For ex-
ample, the n-puzzle domain can be represented in terms of
four actions, up, down, left, and right, with no arguments,
but not in STRIPS. Such an extension would be needed for
learning lifted models from traces obtained from simulators
or real settings. Indeed, the proposed approach can’t learn
Blocksworld from traces that just involve a single type of
move actions, because there is simply not such a STRIPS
model.
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Xi, K.; Gould, S.; and Thiébaux, S. 2024. Neuro-Symbolic
Learning of Lifted Action Models from Visual Traces. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 34, 653–662.

Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artificial
Intelligence, 171(2-3): 107–143.

Zhuo, H. H.; and Kambhampati, S. 2013. Action-model ac-
quisition from noisy plan traces. In Proc. IJCAI.

Appendix

Proof Theorem 9. In the main text.

Proof Theorem 12. The truth values of all ground atoms are
determined because the signs of the action preconditions
and effects in D are known, and every ground atom p(o)
in A(D,T ) is, by definition, a precondition or effect of an
action in T . Since the traces are connected the values prop-
agate through them.

Proof Theorem 15. The preconditions of the learned actions
in the DT are all true in every node of the traces where the
action is applied, so that the traces T from D are applicable
in DT . At the same time, DT contains predicates f that rep-
resent the (dynamic) predicates p in D (Theorem 17), as the
corresponding features are consistent with any set of traces
from D, and T is complete. This means that p and f will
have the same arity and involve the same action patterns.
Thus, if p(o′) is a precondition of the action a(o) in D, then
f(o′) will be a precondition of the same action in DT (possi-
bly with the inverse sign), and if a(o) is not applicable after
τ in P because a p(o′)-precondition of a(o) is false, then
a(o) will not be applicable after τ in PT because the f(o′)-
precondition of a(o) will also be false.

Proof Theorem 17. For any set of traces T drawn from D,
the domain features f will be consistent with T , as the actual
signs of the action patterns a[t] in Bf that follow from D,



1 Trace 2 Traces 3 Traces 4 Traces
Domain #Fa Verif #Fa Verif #Fa Verif #Fa Verif

blocks3 6.6 68% 5.1 96% 5.0 100% 5.0 100%
blocks4 9.0 100% 9.0 100% 9.0 100% 9.0 100%
delivery 6.2 36% 5.4 68% 5.2 84% 5.0 100%
driverlog 13.9 44% 13.0 100% 13.0 96% 13.0 100%
ferry 4.0 100% 4.0 100% 4.0 100% 4.0 100%
grid lock 8.9 40% 7.2 88% 7.0 92% 7.1 96%
gripper 6.0 100% 6.0 100% 6.0 100% 6.0 100%
hanoi 4.9 84% 4.6 92% 4.0 100% 4.0 100%
logistics 7.8 44% 7.2 88% 7.2 80% 7.0 96%
miconic 8.0 100% 8.0 100% 8.0 100% 8.0 100%
npuzzle 28.2 64% 27.2 84% 26.3 92% 26.0 100%
sokoban pull 4.6 92% 3.0 100% 3.0 100% 3.0 100%

Table 2: Results data when 1,2,3, or 4 traces considered in-
stead of the 5 traces used in the paper. These can be regarded
as “intermediate” results, although each is an average over
new traces.

provide a valuation of the action pattern signs sign(a[t]) that
satisfy the pattern constraints Cf (T ). If f(t[x]) is an effect
of action a(x) in D, the sign of the action pattern a[t] in Bf

is the sign of effect f(t[x]).

Proof Theorem 19. Since Dmax is equivalent to D in the
sense of generating the same traces and graphs, then the
proof argument for Theorem 17 applies here as well.

Proof Theorem 20. A feature f that is not valid can be
shown to be inconsistent in some set of extended traces.
There is a finite set of features given a hidden domain, as the
number of patterns only depends on the action arity. Thus
only a finite set of finite extended traces is needed to rule
out all invalid features.



Domain Instance ( # V, # E) Verification Instance

blocks3 6 blocks ( 4051, 21300) 7 blocks
blocks4 7 blocks ( 65990,186578) 8 blocks
delivery 3× 3 grid 2 packages 2 trucks ( 9639, 57888) 3× 3 grid 3 packages 2 trucks
driverlog 5 loc 2 drivers 2 trucks 2 packages ( 10575, 63720) 7 loc 2 drivers 2 trucks 3 packages
ferry 5 loc 5 cars ( 31250,156250) 6 cars 5 loc
grid 3× 3 grid 3 keys 2 shapes (3 locks) ( 32967, 99863) 3× 4 grid 4 keys 2 shapes (6 locks)
grid lock 3× 3 grid 3 keys 2 shapes (3 locks) ( 51436,152040) 3× 4 grid 4 keys 2 shapes (6 locks)
gripper 2 rooms 3 grippers 7 balls ( 17728, 95680) 2 rooms 3 grippers 8 balls
hanoi 3 pegs 9 discs ( 19683, 59046) 3 pegs 10 discs
logistics 2 plane 4 truck 7 loc 3 city 2 package ( 54756,648648) 2 plane 3 truck 9 loc 3 city 2 package
miconic 5 floors 5 persons ( 38880,127008) 6 floors 6 persons
npuzzle 3× 3 grid 8 tiles (181440,483840) 4× 4 grid 15 tiles
sokoban 4× 4 grid (4 boxes) ( 10071, 26834) 5× 5 grid (3 boxes)
sokoban pull 4× 4 grid (4 boxes) ( 21824, 66328) 5× 5 grid (3 boxes)

Table 3: Further details about the instances used in the experiments, including the number of nodes and edges in the full state
graphs

Feature Patterns Meaning

1 move-to-table[1], move-from-table[1] block is on table

2 move[3], move-from-table[2] block is clear
move[2], move-to-table[2]

3 move[1, 2], move-to-table[1, 2] block at index 1 is stacked onto block at index 2
move[1, 3], move-from-table[1, 2]

4 move-from-table[2, 1], move[3, 1] block at index 2 is stacked onto block at index 1
move[2, 1], move-to-table[2, 1]

5 move[1, 2], move-to-table[1, 2] blocks at indexes 1 and 2 are stacked onto each other
move[2, 1], move-to-table[2, 1]
move-from-table[2, 1], move[3, 1]
move[1, 3], move-from-table[1, 2]

Table 4: List of admissible features for blocks4. Actions are move among blocks, and move to and from table. Left patterns are
positive (adds), and right patterns are negative (deletes)

Feature Patterns Meaning

1 pick[1], drop[1] ball is grabbed

2 move[1], move[2] location of the robot

3 drop[3], pick[3] is gripper free

4 pick[1, 2], drop[1, 2] location of ball

5 move[2, 1], move[1, 2] location with previous room

6 pick[3, 1], drop[3, 1] grabbed ball in gripper

Table 5: List of admissible features for gripper



Feature Patterns Meaning

1 unload[1], load[1] package is loaded

2 drive[1, 2], drive[1, 3] location of truck

3 fly[1, 2], fly[1, 3] location of plane

4 unload[2, 1], load[2, 1] location of package

5 drive[1, 2], drive[1, 3] location of vehicle
fly[1, 2], fly[1, 3]

6 load[1, 3], unload[1, 3] package in vehicle

7 drive[3, 4, 1], drive[2, 4, 1] location of truck in city

Table 6: List of admissible features for logistics

Feature Patterns Meaning

1 disembark-truck[1], board-truck[1] Driver < 1 > is currently inside a truck

2 load-truck[1], unload-truck[1] package < 1 > is loaded

3 disembark-truck[2], board-truck[2] Driver seat of Truck < 2 > is empty

4 drive-truck[4, 3], board-truck[1, 3] location of the driver while driving
disembark-truck[1, 3], drive-truck[4, 2]

5 walk[1, 2] drive-truck[4, 2] location of the driver
drive-truck[4, 3], walk[1, 3] independent of driving status

6 walk[1, 2], board-truck[1, 3] location of the driver while walking
disembark-truck[1, 3], walk[1, 3]

7 unload-truck[1, 3], load-truck[1, 3] location of package

8 drive-truck[1, 2], drive-truck[1, 3] location of truck

9 disembark-truck[2, 3], board-truck[2, 3] truck parked at location

10 drive-truck[1, 2], disembark-truck[2, 3] location of truck while driving
drive-truck[1, 3], board-truck[2, 3]

11 disembark-truck’, (1, 2), board-truck’, (1, 2) driver driving truck

12 load-truck’, (1, 2), unload-truck’, (1, 2) package in truck

13 drive-truck[4, 1, 2], disembark-truck[1, 2, 3] location of truck driver pair while driving
board-truck[1, 2, 3], drive-truck[4, 1, 3]

Table 7: List of admissible features for driverlog



Feature Patterns Meaning

1 move-down[2, 4], move-up[2, 4], blank has has a different x,y coordinate.
move-left[4, 3], move-right[4, 3], Negated Hidden Domain predicate.
move-down[2, 3], move-up[2, 3],
move-left[2, 3], move-right[2, 3]

2 move-up[1, 3, 2], move-down[1, 3, 2], Tile < 1 > is not on this y,x coordinate.
move-right[1, 3, 2], move-left[1, 3, 2], Negated Hidden Domain predicate.
move-up[1, 4, 2], move-down[1, 4, 2],
move-right[1, 3, 4], move-left[1, 3, 4]

3 move-left[4], move-right[2] blank is right of me.

4 move-down[4], move-up[3] blank is above of me.

5 move-right[1, 2], move-left[1, 4] Tile < 1 >is right of me.

6 move-up[4, 1], move-down[3, 1] Tile < 1 >is not below of me.

7 move-right[4], move-left[2] blank is left of me.

8 move-up[4], move-down[3] blank is below of me.

9 move-left[1, 2], move-right[1, 4] Tile < 1 >is left of me.

10 move-down[4, 1], move-up[3, 1] Tile < 1 >is not above of me.

11 move-left[4], move-right[4], black has a different x corrdinate.
move-right[2], move-left[2]

12 move-right[1, 2], move-left[1, 2], Tile < 1 >has a different x corrdinate.
move-right[1, 4], move-left[1, 4]

13 move-up[4], move-down[4], blank has a different y coordinate.
move-down[3], move-up[3]

14 move-down[3, 1], move-up[3, 1], Tile < 1 >has a different y corrdinate.
move-down[4, 1], move-up[4, 1]

15 move-right[4, 2], move-left[2, 4] Arrow pointing to blank (left)
if blank is left.

16 move-down[4, 3], move-up[3, 4] Arrow pointing to blank (up)
if blank is above.

17 move-right[2, 1, 4], move-left[4, 1, 2] Arrow pointing to Tile < 1 >(right)
if Tile < 1 >is right.

18 move-down[3, 1, 4], move-up[4, 1, 3] Arrow pointing to Tile < 1 >(down)
if Tile < 1 >is below.

19 move-right[2, 4], move-left[4, 2] Arrow pointing from blank (right)
if blank is left.

20 move-down[3, 4], move-up[4, 3] Arrow pointing from blank (down)
if blank is above.

21 move-right[4, 1, 2], move-left[2, 1, 4] Arrow pointing from Tile < 1 >(left)
if Tile < 1 >is right.

22 move-down[4, 1, 3], move-up[3, 1, 4] Arrow pointing from Tile < 1 >(up)
if Tile < 1 >is below.

23 move-right[4, 2], move-right[2, 4], Undirected x-Edge if blank is left.
move-left[4, 2], move-left[2, 4] Or Arrow pointing from blank on x axis.

24 move-down[4, 3], move-down[3, 4], Undirected y-Edge if blank is above.
move-up[4, 3], move-up[3, 4] Or Arrow pointing from blank on y axis.

25 move-right[2, 1, 4], move-right[4, 1, 2], Undirected edge on x-axis if Tile < 1 >is right.
move-left[4, 1, 2], move-left[2, 1, 4] Or Arrow pointing to Tile < 1 >on x axis.

26 move-up[4, 1, 3], move-up[3, 1, 4], Undirected edge on y-axis if Tile < 1 >is above.
move-down[4, 1, 3], move-down[3, 1, 4] Arrow pointing from Tile < 1 >on y axis.

Table 8: List of admissible features for npuzzle


