
JOURNAL OF LATEX CLASS FILES 1

MSSF: A 4D Radar and Camera Fusion Framework
With Multi-Stage Sampling for 3D Object Detection

in Autonomous Driving
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Abstract—As one of the automotive sensors that have emerged
in recent years, 4D millimeter-wave radar has a higher resolution
than conventional 3D radar and provides precise elevation
measurements. But its point clouds are still sparse and noisy,
making it challenging to meet the requirements of autonomous
driving. Camera, as another commonly used sensor, can capture
rich semantic information. As a result, the fusion of 4D radar
and camera can provide an affordable and robust perception
solution for autonomous driving systems. However, previous
radar-camera fusion methods have not yet been thoroughly
investigated, resulting in a large performance gap compared
to LiDAR-based methods. Specifically, they ignore the feature-
blurring problem and do not deeply interact with image semantic
information. To this end, we present a simple but effective multi-
stage sampling fusion (MSSF) network based on 4D radar and
camera. On the one hand, we design a fusion block that can
deeply interact point cloud features with image features, and
can be applied to commonly used single-modal backbones in a
plug-and-play manner. The fusion block encompasses two types,
namely, simple feature fusion (SFF) and multi-scale deformable
feature fusion (MSDFF). The SFF is easy to implement, while the
MSDFF has stronger fusion abilities. On the other hand, we pro-
pose a semantic-guided head to perform foreground-background
segmentation on voxels with voxel feature re-weighting, further
alleviating the problem of feature blurring. Extensive experiments
on the View-of-Delft (VoD) and TJ4DRadset datasets demonstrate
the effectiveness of our MSSF. Notably, compared to state-of-the-
art methods, MSSF achieves a 7.0% and 4.0% improvement in
3D mean average precision on the VoD and TJ4DRadSet datasets,
respectively. It even surpasses classical LiDAR-based methods on
the VoD dataset.

Index Terms—3D object detection, 4D radar, camera, multi-
modal fusion, deep learning, autonomous driving.

I. INTRODUCTION

AUTONOMOUS driving is a hot topic in both academia
and industry in recent years, and the research around it

can be mainly divided into three parts, namely perception,
planning & decision, and control [1]. Perception plays an
important role in autonomous driving. It covers a lot of
content, such as object detection [2]–[4], tracking [5] [6], and
segmentation [7] [8]. 3D object detection, as one of the main
tasks in perception, has attracted much attention nowadays. Its
purpose is to obtain the categories and 3D bounding boxes of

Hongsi Liu, Jun Liu, and Guangfeng Jiang are with the Department of
Electronic Engineering and Information Science, University of Science and
Technology of China, Hefei 230027, China (e-mail: liuhs3@mail.ustc.edu.cn;
junliu@ustc.edu.cn; jgf1998@mail.ustc.edu.cn).

Xin Jin is with Ningbo Institute of Digital Twin, Eastern Institute of
Technology, Ningbo, Zhejiang 315201, China (e-mail: jinxin@eitech.edu.cn).

†Corresponding author.

critical objects (e.g., cars and pedestrians) in 3D scenes from
sensor data. To achieve this, a wide variety of sensors can be
used, such as LiDAR, radar, and camera.

LiDAR can obtain high-precision point clouds of 3D scenes
which well reflect the geometric information of objects,
thereby achieving remarkable detection performance. How-
ever, it may be infeasible due to the high cost and susceptibility
to adverse weather conditions such as rain and fog.

Millimeter wave radar (refer to radar for convenience) is a
more common vehicle sensor [9] compared to LiDAR, with
the advantages of low price, slight influence by rain and fog,
and long detection range [10]. Before the emergence of 4D
radar, conventional 3D radar, which can measure distance,
azimuth, and Doppler, is primarily employed. Nevertheless, the
lack of elevation measurements limits the perception capability
of 3D radar. 4D radar addresses this limitation and offers
a high resolution [10]. As a result, it can provide relatively
dense three-dimensional point clouds like LiDAR, which is
increasingly being recognized as an affordable alternative to
LiDAR.

Although 4D radar point clouds share numerous similarities
with LiDAR point clouds, they are still sparse and noisy
due to the limited ranging and angle resolution, multipath
effects, and penetrability [10]. Hence, relying solely on 4D
radar point clouds for 3D object detection has limitations
in performance. However, there is substantial potential for
performance improvement through fusion with other sensors.
Meanwhile, it is worth noting that cameras are relatively
cheap and easy to deploy, which can provide rich semantic
information due to the high spatial resolution and ability to
perceive the color and texture of objects.

Considering the above factors, some recent works attempt to
integrate information from both radar and camera modalities.
Some researchers [12]–[14] specifically design the fusion
strategy of 3D radar point clouds and images, and have
shown obvious improvement over single-modal baselines. As
an increasing number of 4D radar datasets [15]–[18] are
released, recent studies [19] [20] focus on the fusion method
for 4D radar and camera. RCFusion [19] adopts orthographic
feature transform (OFT) [21] to obtain image bird’s eye view
(BEV) feature maps and design an interactive attention module
to fuse the BEV feature maps of point clouds and images. LXL
[20] uses a depth-based sampling strategy to lift image features
to 3D space with the help of the predicted radar occupancy.

Although existing 4D radar and camera fusion methods
achieve good performance, they are mostly based on the BEV
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Fig. 1. An explanation of the feature-blurring problem. (a) elucidates the
definitions of 2D foreground points, 3D foreground points, and 3D blurred
points. (b) and (c) show the radar points and LiDAR points projected onto
the image, respectively. The blue mask is the instance segmentation generated
by SAM [11], the green points represent the 3D foreground points, and the
red points represent the 3D blurred points. (d) illustrates quantitatively by
averaging the ratio of the number of 3D foreground points to the number of
2D foreground points over around 200 instance masks for each class. “# 3D
fore. pts” represents the number of 3D foreground points, and “# 2D fore.
pts” represents the number of 2D foreground points.

domain fusion framework designed for LiDAR-camera fusion,
without explicitly considering the characteristics of radar. Con-
sequently, the potential of radar-camera fusion has not been
fully explored, leading to a large performance gap compared
to LiDAR-based methods. Specifically, in contrast to the dense
point clouds produced by LiDAR, the 4D radar captures
fewer details in terms of geometry information. Hence, radar-
camera fusion places a greater reliance on image semantic
information compared to LiDAR-camera fusion. However, ex-
isting methods only fuse radar and camera information on the
BEV, lacking sufficient feature interaction and neglecting the
characteristic that radar relies more on semantic information
from images.

Meanwhile, serious feature-blurring problems may arise
when projecting radar points onto the corresponding image for
feature sampling. In Fig. 1, we explain this problem through
visualization and statistics in the View-of-Delft (VoD) dataset.
We first provide the definitions of 2D foreground points, 3D
foreground points, and 3D blurred points, as illustrated in
Fig. 1(a). A radar point is a 2D foreground point when its
corresponding projection point falls within 2D instance masks,
because it can sample image features of foreground objects.
Further, if a 2D foreground point also falls within 3D ground
truth boxes, it is defined as a 3D foreground point, otherwise,
it is classified as a 3D blurred point. Fig. 1(b) and (c) show the
2D foreground points of radar and LiDAR, respectively, where
the 3D foreground points are marked in green and the 3D
blurred points in red. Additionally, as the VoD dataset does not
provide segmentation labels, we generate around 200 instance

masks of each class with Segment Anything Model (SAM)
[11] as exemplified by the blue mask shown in Fig. 1(b) and
(c). Interestingly, in 3D object detection, we mainly care about
the 3D foreground points, and other points should be regarded
as the background points. However, when sampling features
on the image, all 2D foreground points capture features of
foreground objects, which may lead to false alarms. We refer
to this as the feature-blurring problem.

For quantitative analysis, we further calculate the ratio of
the number of 3D foreground points to the number of 2D
foreground points for each instance. The result after averaging
all instances of each class is shown in Fig. 1(d). It is observed
that radar has significantly lower ratios than LiDAR, especially
for the pedestrian and cyclist categories. As for the car
category, the gap between the two modalities is relatively
small, due to the metal materials which weaken the penetration
capability of radar. This observation indicates that the feature-
blurring problem is severe under radar modality.

To address the above problems, we propose a simple but
effective multi-stage sampling fusion (MSSF) network based
on 4D radar and camera. We fuse point cloud and image fea-
tures more deeply in the backbone rather than using a separate
image BEV branch. In particular, two types of fusion blocks
based on image feature sampling are proposed to replace
the blocks in some commonly used 3D sparse backbones.
Through the deep interaction of point cloud features and
image features achieved by the fusion blocks, MSSF can well
identify 3D foreground points, thereby alleviating the feature-
blurring problem. The cascading of multiple fusion blocks ef-
fectively leverages image features, further enhancing detection
performance. Furthermore, we add a semantic-guided head to
explicitly help the network distinguish 3D foreground points.
Our approach can be easily applied to many single-modal 3D
object detection networks based on voxel or pillar.

Our contributions are summarized in four folds:
1) Taking into account the sparsity of 4D radar point clouds

and the feature-blurring problem, we propose a simple
but effective MSSF network. As an early attempt in the
field, it provides a strong baseline for later research.

2) We propose two general, plug-and-play voxel-image fea-
ture fusion blocks and insert them into some commonly
used 3D sparse networks in multiple stages to achieve
deep interaction between voxel and image features. It
has good scalability and can be traded off as needed.

3) A semantic-guided head is proposed to further alleviate
the feature-blurring problem. On the one hand, the seg-
mentation loss guides the network to distinguish between
foreground and background points. On the other hand,
the segmentation scores are used to re-weight the voxel
features to play the role of attention.

4) Experiments on the VoD and TJ4DRadset datasets show
that the proposed method outperforms state-of-the-art
radar-camera fusion methods by 7.0% mAP and 4.0%
mAP, respectively. In particular, for the car category
in the VoD dataset, our method achieves a substantial
increase of 18.6% AP compared to state-of-the-art meth-
ods. Notably, our MSSF even surpasses some classic
LiDAR-based models.
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The remainder of this article is organized as follows. Section
II briefly reviews recent works on single-modal and multi-
modal 3D object detection. Section III introduces our proposed
model in detail. In Section IV, the experimental setups and
implementation details are introduced, and the performance
of our method is shown and analyzed. Finally, our work is
summarized in Section V.

II. RELATED WORK

A. 3D Object Detection based on LiDAR/Radar Point Cloud

LiDAR-based 3D object detection methods can be divided
into [1] point-based [4] [22], pillar-based [2], and voxel-based
methods [3] [23] [24], etc., according to the representation
of point cloud during network processing. In [25], it is
found that the point-based methods are less effective for 3D
object detection under radar modality compared with pillar-
based and voxel-based methods. At present, the 3D object
detection methods of radar point clouds are mostly improved
based on pillar-based methods. RPFA-Net [26] replaces the
pillar feature extractor in PointPillars [2] with its proposed
self-attention-based feature extraction layer, so that context
information can be better perceived when encoding pillar
features. RCFusion [19] believes that the Doppler and radar
cross section (RCS) information of 4D radar is important, and
codes the spatial, velocity, and RCS features separately when
extracting pillar features. SMURF [27] adds additional kernel
density estimation features to the backbone. Both MVFAN
[28] and MUFASA [29] leverage BEV and cylindrical co-
ordinate views simultaneously to better capture radar point
cloud features. RadarPillar [30] applies self-attention to pillar
features to enlarge the receptive field.

B. 3D Object Detection based on LiDAR-Camera Fusion

LiDAR and camera fusion strategies can be mainly divided
into three categories, i.e., early fusion, middle fusion, and late
fusion [31]. In early fusion [32]–[35], image information is
embedded into the point cloud in various ways before the
point cloud is input to the detection network, which is direct
to implementation but lacks deep interaction with point cloud
features and image features. For instance, PointAugmenting
[34] and MVX-Net [35] both sample image features at a very
early stage and adopt simple fusion strategies. In addition,
middle fusion is more effective and has been studied more in
recent years [36]–[41]. It realizes the interaction and fusion of
point cloud features and image features at the feature level.
Among these methods, we noted that LoGoNet [39] also
projects the centroids of non-empty voxels into the image and
uses multi-scale deformable cross-attention to fuse features.
However, the features after fusion are only used for the
refinement of proposals. The detection results are limited by
the quality of proposals generated by the single-modal detector
in the first stage. Additionally, EPNet [40] and DeepInteraction
[41] also fuse image features through projection. The former
emphasizes point-level correspondence and mainly focuses on
point-based backbones. The latter operates on point cloud BEV
and image planes, and the correspondence between the two
modalities is relatively coarse. Compared with these methods,

we establish the correspondence between voxels of different
resolutions and images from fine to coarse. As for the late
fusion methods [42] which operate on the output of a LiDAR-
based 3D object detector and a camera-based 2D object
detector. Insufficient feature interactions limit the potential of
such methods. The existing research on LiDAR and camera
fusion is of significant reference value when studying radar
and camera fusion, since both 4D radar and LiDAR data can
be presented in the form of point clouds.

C. 3D Object Detection based on Radar-Camera Fusion

Some studies have pioneered the fusion of 3D radar and
camera. CenterFusion [13] extends radar points into pillars,
which are associated with the proposals predicted from images
in the view frustum and assist in 3D attribute estimation.
CRAFT [14] employs the spatio-contextual fusion transformer
to refine image proposals by radar measurements. CRN [12]
adopts the BEV fusion framework and utilizes radar occupancy
map to assist image view transformation and BEV feature
fusion. Until recently, some 4D radar datasets [15]–[18] have
been released, and there are relatively few studies focusing on
the fusion of 4D radar and camera. RCFusion [19] employs
OFT [21] along with its shared attention encoder to generate
image BEV feature maps. These feature maps are then fused
with radar BEV features in an attention-based manner. LXL
[20] utilizes a sampling-based method to lift image features,
in which the radar occupancy grid predicted from the radar
BEV feature map and the image depth prediction are used to
assist the image BEV features generation. UniBEVFusion [43]
proposes Radar Depth Lift-Splat-Shoot, which incorporates
additional radar data into the depth prediction process.

These methods are mainly based on the BEV domain fusion
framework without explicitly considering the characteristics
of radar, resulting in a large performance gap compared to
LiDAR-based methods. The sparsity and noisiness of radar
point clouds, along with the ill-posed nature of image depth
estimation, can cause challenges in these methods when
converting image features to voxel or BEV features. In this
study, we propose a new fusion network. Specifically, we
directly adopt radar points to sample image features, rather
than doing explicit view transformation. By employing an
effective multi-stage fusion strategy along with a semantic-
guided head, multi-scale image features are fully utilized to
achieve comprehensive and efficient fusion with point cloud
features. Even so, our network remains simple and compatible
while maintaining high performance.

III. PROPOSED METHOD

A. Overall Architecture

The overall network structure is shown in Fig. 2, which can
be divided into four parts: image branch, voxel-image fusion
backbone, semantic-guided head, and detection head.

1) The image branch is employed to extract multi-scale fea-
tures of images and encode image semantic information.
In our method, we have no restrictions on the specific
structure of the image branch.
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Fig. 2. The overall architecture of our MSSF. The image branch extracts features from images to obtain multi-scale feature maps. The voxel-image fusion
backbone contains n fusion blocks and m ordinary blocks (abbreviated as “Block” in the figure), which absorb features from the image feature maps in
multiple stages through our proposed fusion blocks. The non-empty voxel features of the last layer fusion block are fed into the semantic-guided head for
foreground and background prediction, and the segmentation scores are utilized to weight the voxel features. The multi-scale features output by the last few
blocks are passed through the 3D neck to obtain the fused BEV feature map which is sent to the detection head to obtain the final detection results.

2) The voxel-image fusion backbone is one of the key com-
ponents of the proposed method, which is responsible for
extracting point cloud features and deeply fusing with
image features output by the image branch. It consists of
a cascade of several proposed fusion blocks and ordinary
blocks. Through multi-stage fusion, point cloud features
are deeply interacted with image features. The 3D neck
aggregates the output of the last few blocks, obtaining
the fused BEV feature map which contains information
from both modalities.

3) The semantic-guided head performs foreground and
background segmentation on non-empty voxels with
explicit supervision, helping the network to perceive
3D foreground points and further alleviate the feature-
blurring problem. The segmentation scores are used to
re-weight the voxel features to play the role of attention.

4) The detection head utilizes the fused BEV feature map
to predict the 3D bounding box (center, size, and orien-
tation) and category of the object in the scene.

More details for each part are introduced in the following
subsections. Note that the fusion method introduced below
is based on the voxel-based implementation. A pillar-based
version is provided at the end of this section.

B. Image Branch

The image branch is employed to extract multi-scale seman-
tic features of the image, usually consisting of a backbone
and a neck. The backbone extracts image features, and the
neck fuses features with different receptive fields and sizes
output by the backbone in different stages. The input of
the image branch is an RGB image I ∈ RH×W×3, where

H and W represent the height and width of the image,
respectively. And the outputs are nI multi-scale feature maps
FI,i ∈ RHi×Wi×Ci , i = 1, 2, . . . , nI , where Hi, Wi and
Ci represent the height, width and channel dimensions of
the i-th level, respectively. In our model, we adopt a classic
configuration where the backbone is ResNet-50 [44] and the
neck is FPN [45].

C. Voxel-Image Fusion Backbone

Fig. 2 shows a general voxel-image fusion backbone ar-
chitecture, which consists of n fusion blocks and m ordinary
blocks. For the input point cloud P ∈ RN×Cin , with N points
and Cin channels, a sparse tensor X is obtained after voxeliza-
tion, which can be expressed as a collection of 3D coordinates
and non-empty voxel features, i.e., X = {FV ,CV }, where
FV ∈ RNV ×Cin represents the features of NV non-empty
voxels and CV ∈ RNV ×3 represents the coordinate of these
voxels. After obtaining X , it is passed through several fusion
blocks and ordinary blocks. Following VoxelNeXt [24], we
employ 6 blocks, i.e., n+m = 6.

1) Ordinary Block: An ordinary block is a stage in a
commonly used sparse backbone such as SECOND [23] and
VoxelNeXt [24], which is generally composed of a sparse con-
volution layer used for downsampling and several submanifold
convolution layers or residual blocks. The input of an ordinary
block is a sparse tensor Xin, and the output is another sparse
tensor Xout with the same or downsampled spatial shape.

2) General Fusion Block: As shown in Fig. 3, the fusion
block can be regarded as an extension of the ordinary block.
It provides an extra operation between the sparse convolution
layer and the residual blocks to retrieve multi-scale image
features provided by the image branch. Specifically, we first
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compute the centroids of non-empty voxels in the sparse
tensor Xsc output by the sparse convolution. That is, for
the k-th non-empty voxel Vk with feature fvox,k, assuming
Pk = {pj},pj ∈ R3, j = 1, · · · , |Pk| is the points located in
Vk, the centroid ck ∈ R3 can be obtained by

ck =
1

|Pk|

|Pk|∑
j=1

pj , (1)

where | · | represents taking the cardinality of a set. Note that
“non-empty voxel” refers to a voxel with non-zero features
in the sparse tensor, and its inferior may not necessarily
contain radar points which is due to the dilation effect of
sparse convolution [46]. Thus, for non-empty voxel Vk with
no internal points, i.e., |Pk| = 0, we use its center instead. For
convenience, we refer to them as centroid as well. We omit
the subscript k in the following, which defaults to a single
non-empty voxel.

The centroid of each non-empty voxel is then projected
onto the image according to the camera intrinsic matrix
Tintr ∈ R3×4 and the radar-to-camera coordinate transfor-
mation matrix Tr2c ∈ R4×4, which can be formulated as

c′img = Tintr ·Tr2c · c′, (2)

where c′ = [c; 1] ∈ R4 represents the homogeneous coordi-
nates of c. As a result, c′img = [ud, vd, d]T is the homoge-
neous coordinate in the image coordinate system where (u, v)
and d denote the pixel index and the corresponding depth,
respectively. Given the pixel index cimg = [u, v]T , the normal-
ized coordinate can be obtained by c̃img = [u/W, v/H]T ∈
R[0,1]×[0,1].

After obtaining the projection points for each non-empty
voxel, image features are then retrieved from the multi-scale
image feature maps by operator E . Generally, the inputs of E
are the normalized coordinate c̃img , multi-scale image features
{FI,i}nI

i=1, and other useful input like queries denoted as u ∈
RCu . The output is the corresponding image feature fimg ∈
RCimg , i.e.,

fimg = E(c̃img, {FI,i}nI
i=1,u). (3)

The image feature is then fused with the corresponding voxel
feature fvox by operator FV I , obtaining the fused feature
ffuse ∈ RCfuse , that is

ffuse = FV I(fimg, fvox). (4)

The fused sparse tensor Xfuse containing both voxel and
image information can be constructed by simply replacing
fvox to ffuse in Xsc. Finally, Xfuse is passed through the
residual block to further process and fuse neighborhood fea-
tures, obtaining the final output Xout. In our model, we let
Cimg = Cvox = Cfuse. Thus, the operators E and FV I do
not change the feature dimension of Xsc.

The above is a general strategy and no specific implemen-
tations of E and FV I are given. In this study, we propose two
implementations of the operator E , i.e., simple feature fusion
(SFF) and multi-scale deformable feature fusion (MSDFF).
For FV I , we simply adopt addition, i.e.,

ffuse = FV I(fimg, fvox) = fimg + fvox. (5)

3) Fusion Block Based on the SFF: The detailed process of
the SFF is illustrated in Fig. 3(a). According to the normalized
image coordinate c̃img projected from the centroid c, we can
use bilinear interpolation to sample image features from the
multi-scale image feature maps. For the i-th level, we can
obtain the sampled feature f iimg by

f iimg = Sample(FI,i, c̃img), (6)

which can be accomplished using the “grid sample” oper-
ation in Pytorch. The final image feature can be obtained by
concatenating image features from all levels, and applying a
linear project with batch normalization. The SFF operation is
defined as:

fimg = ESFF (c̃img, {FI,i}nI
i=1)

= LinearBN(Cat({f iimg}
nI
i=1)).

(7)

4) Fusion Block Based on the MSDFF: Simple feature
fusion can only focus on a single location for each projected
point, resulting in a limited receptive field. To utilize the
surrounding information of objects, increase the receptive
field, and further enhance the ability of the feature extraction
operator E , we propose multi-scale deformable feature fusion,
i.e., MSDFF, as shown in Fig. 3(b).

The MSDFF is based on multi-scale deformable cross-
attention [47] which can select different sample positions
and adjust the weight of sampled features according to the
corresponding query. The process can be divided into two
steps: query generation and deformable cross-attention.

a) Query Generation: Extra queries are needed to guide
the sampling process, and the queries are expected to have rich
image and point cloud information to better select the desired
features on the image feature maps.

To meet this requirement, we add a query initialization
module before the first fusion block to get high-quality queries.
Specifically, for each reference point, we initialize the query
as follows

q = qinit = LinearBN(Cat({fvox, f1img,p})), (8)

where p ∈ RN×3 is the normalized center coordinate of
the corresponding voxel. As can be seen from Eq. (8), the
initial query qinit combines information from three sources.
Among them, the voxel feature fvox provides radar information
like RCS and velocity. The normalized center coordinate p
indicates the position and distance of the corresponding voxel.
As for f1img , it is obtained by sampling the image feature
in FI,1 following Eq. (6). As a result, qinit contains rich
information from both modalities.

For the subsequent fusion block, we directly use fvox as the
query, since it already contains the previously fused image
information, which means q = fvox.

b) Deformable Cross-Attention: Guided by the query, de-
formable cross-attention is employed for the sampling process.
For clarity, only single-head attention is considered below.
Suppose we have nI image feature maps and want to sample
ns features from each feature map for one query. The query
q is passed through two parallel linear layers to obtain offsets
{oi,j = (oxi,j , o

y
i,j)},oi,j ∈ R2 and weights {wi,j}, wi,j ∈ R,

where i = 1, · · · , nI and j = 1, · · · , ns. The offsets are
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Fig. 3. Two types of fusion blocks. (a) shows the fusion block based on the SFF. The sparse tensor Xn with spatial shape (DV
n , HV

n ,WV
n ) output by the

previous block is fed to a sparse convolution layer with stride 2. The centroid of each non-empty voxel (use the center instead if the centroid is not available)
is projected onto the image. Image features are then sampled from the multi-scale image feature maps through bilinear interpolation. After concatenation and
mapping, the sampled feature fimg is fused with the voxel feature fvox through FV I , obtaining ffuse. The final output is obtained after several residual
blocks. (b) shows the fusion block based on the MSDFF. Unlike (a), for a non-empty voxel, the corresponding query q is first passed through two parallel
linear layers to obtain sampling offsets and weights. Image features are sampled from the multi-scale image feature maps according to the sampling offsets.
After the weighted summation and fusion operator, the fused feature ffuse is obtained. Other processes are consistent with (a).

then normalized by the width and height of the corresponding
image feature map, obtaining {õi,j = (oxi,j/Wi, o

y
i,j/Hi)}. For

the i-th feature map, the j-th normalized sampling position
c̃si,j is calculated according to the reference point c̃img and
the offset õi,j by

c̃si,j = c̃img + õi,j . (9)

Then, we sample features from the corresponding image
feature level by bilinear interpolation following Eq. (6) and
weighted summation is performed according to the normalized
weight {w̃i,j} = Softmax({wi,j}). After applying a linear
project with batch normalization, the image feature fimg is
obtained. To sum up, the MSDFF operation can be formulated
as:

fimg = EMSDFF (c̃img, {FI,i}nI
i=1,q)

= LinearBN(

nI∑
i=1

ns∑
j=1

w̃i,j · Sample(FI,i, c̃
s
i,j)).

(10)

Through the above method, the point cloud features are
deeply interacted with the image features, so that the fused
features contain rich geometric and semantic information,
provided by the point clouds and images, respectively. These
features help the network distinguish 3D foreground points
and alleviate the feature-blurring problem.

D. Semantic-Guided Head

To better utilize the fused features and further mitigate the
feature-blurring problem, we apply the semantic-guided head
to the output of the last fusion block.

In particular, for each non-empty voxel, we pass its feature
ffuse through a multi-layer perceptron (MLP) and obtain the
corresponding foreground score sseg to predict whether this
voxel is a foreground one, i.e.,

sseg = Sigmoid(MLP(ffuse)). (11)

A foreground voxel is defined as a non-empty voxel whose
centroid is in a 3D ground truth bounding box. Otherwise,
we define it as a background voxel. Focal Loss [48] is used
for explicit supervision. When the score of each non-empty
voxel is obtained, the voxel features are further multiplied by
the score to guide the network to pay more attention to 3D
foreground points. The weighted feature is obtained by

f ′fuse = ffuse · sseg. (12)

E. 3D Neck & Detection Head

It should be noted that we mainly focus on the voxel-image
fusion backbone, especially the fusion strategy. The 3D neck
and the detection head are not limited to specific methods. For
our voxel version, we adopt the methodology of VoxelNeXt
[24]. The following is a brief introduction. Please refer to [24]
for more details.

Given the sparse tensor Xout,i = {FV,i,CV,i} output by
the block i, the 3D neck combines the non-empty voxels
contained in {Xout,4,Xout,5,Xout,6}. Specifically, taking CV,4

as a reference, the voxel coordinates CV,i, i > 4 is multiplied
by its downsampling stride relative to CV,4 to align the voxel
coordinates, e.g., C′

V,5 = {2×x, 2×y, 2×z|(x, y, z) ∈ CV,5}.
A new sparse tensor Xcomb can be constructed by Xcomb =
{∪6

i=4FV,i,∪6
i=4C

′
V,i}. All the features corresponding to the

same X and Y coordinates are added to obtain the output BEV
feature map.

The detection head of VoxelNeXt is a sparse version of
center head [49] and has lower computational costs [24].

F. Extend to Pillar

To facilitate the introduction of the proposed fusion module,
the descriptions above are based on the voxel-based backbone.
But our approach can be easily extended to lightweight yet
powerful pillar-based networks with slightly adaptation.
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Fig. 4. The pillar version of the proposed method.

Fig. 4 presents the pillar version of our method. The
major difference from the voxel version is that, in the pillar
version, the intermediate features in the backbone are 2D BEV
features rather than 3D sparse tensors. This difference does not
affect the application of our fusion methodology. Specifically,
for pillar-based networks, the input point cloud is typically
pillarized before being fed into a BEV backbone with several
conventional blocks. We replace the first n blocks with our
fusion block, as shown in Fig. 4. For the BEV feature output by
a conventional block, the original point cloud can be voxelized
with the same X and Y-resolution. For any non-empty voxel
V with coordinates (x, y, z), we can index the feature from
the corresponding BEV feature map based on (x, y). This
feature can be directly lifted as the voxel’s feature. However,
to preserve height information, we introduce a learnable height
embedding. The final voxel feature fvox is obtained by adding
the corresponding BEV feature and the height embedding,
expressed as

fvox = BEV(x, y) + HeightEmb(z), (13)

where BEV(x, y) represents the BEV feature at (x, y), and
HeightEmb(z) represents the height embedding corresponding
to height z. In this way, the BEV feature is effectively
lifted into the non-empty voxels within 3D space. The SFF
and MSDFF described above can then be used to aggregate
features from images and fuse them into the non-empty voxels.
Then, the voxel features with identical (x, y) coordinates are
summed to produce the fused BEV feature. Similar to the
voxel-based version, we also employ a semantic-guided head
after the last fusion block. Finally, the fused BEV feature pass
through the remaining convolutional blocks, followed by the
2D neck and detection head, to produce the final detection
results.

G. Loss

Compared with the loss of the single-modal 3D object
detection network, our method includes an additional segmen-
tation loss in the semantic-guided head. Assuming Lseg is the
segmentation loss based on Focal Loss [48], and Ldet is the

detection loss corresponding to the single-modal method [24]
[2], which is generally composed of classification, location
and other losses depending on the specific method. The total
loss can be obtained by

L = α1Lseg + α2Ldet, (14)

where α1 and α2 are the weights used to balance these two
losses. In our model, we simply set α1 = α2 = 1.

IV. EXPERMENTS AND ANALYSIS

A. Dataset and Evaluation Metrics

1) Dataset: We use two datasets to evaluate our model, i.e.,
the VoD dataset [16] and the TJ4DRadset dataset [17]. Both
of them are oriented toward autonomous driving applications,
especially for 4D radar perception.

The VoD dataset has a total of 8682 frames, including
5139 frames in the training set, 1296 frames in the validation
set, and 2247 frames in the test set. Since the official eval-
uation system is not yet open, our comparison and ablation
experiments were completed on the validation set. The VoD
dataset is collected in the city of Delft (The Netherlands) and
covers campus, suburb and old-town scenarios. It provides
synchronized 4D radar, LiDAR, camera, and GPU/IMU data
with 3D annotations and tracking IDs. Moreover, the official
also provides radar point clouds accumulated from multiple
scans, which is implemented by compensating ego-motion.
Following previous works [27] [20] [50], we use the five-scan
radar points and consider three categories, i.e., car, pedestrian,
and cyclist.

The TJ4DRadset dataset was collected in Suzhou, China,
covering different road types, such as urban roads, elevated
roads and industrial zones. Compared with the VoD dataset, it
contains more difficult scenarios, e.g., nighttime, glare, under
the bridge, and wrong camera focus, which are big challenges
for the camera. It has a total of 7746 frames, of which
5706 frames are for training and 2040 frames for testing.
Its sensor configuration is similar to that in the VoD dataset,
but it only provides synchronized 4D radar and camera data,
with 3D annotations and tracking IDs up to now. For the
TJ4DRadset dataset, we adopt single-frame radar data without
accumulation and consider four categories, i.e., car, pedestrian,
cyclist, and truck.

2) Evaluation Metrics: Both the VoD and TJ4DRadSet
datasets use averaging precision (AP) as the main evaluation
metric.

For the VoD dataset, according to the official recommenda-
tions, two metrics are used, i.e., AP under the entire annotated
area (APEAA) and AP under the driving corridor (APDC). The
former means that all annotations are used for evaluation
regardless of range. The latter means that we only consider
annotations located in a specific area which is defined as
ADC = {(x, y, z)| − 4m < x < 4m, z < 25m} in camera
coordinates. When calculating AP, the intersection-over-union
(IoU) threshold is set to 0.25 for cyclists and pedestrians, and
0.5 for cars. The IoU threshold is used to determine positive
and negative samples.
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For the TJ4DRadset dataset, 3D AP (AP3D) and BEV AP
(APBEV) are evaluated with a uniform range of 0-70m, and the
IoU thresholds are set in line with the VoD dataset, with an
IoU threshold of 0.5 for the additional truck category.

B. Implementation Details

We implement our model based on MMDetection3D [51]
framework which is an open-source 3D object detection tool-
box based on PyTorch. For the VoD dataset, following official
configurations, we set the point cloud range to {(x, y, z)|0m <
x < 51.2m,−25.6m < y < 25.6m,−3m < z < 2m}. We use
the radar point cloud accumulated over 5 scans as input. The
input feature is selected as

fVoD
in = [x, y, z, RCS, vr, vrc, t]

T , (15)

where RCS represents the radar cross section reflecting the
reflection intensity of the object, vr is the relative radial
Doppler velocity, vrc is the absolute radial Doppler velocity,
and t is the time ID, indicating which scan it originates from.

For the TJ4DRadset dataset, as previous works [49] [24]
on KITTI [52], we use slightly different point cloud ranges
for the voxel-base and pillar-based methods, to make the
point cloud ranges divisible by the size of the voxel or pillar.
Specifically, for pillar-based methods, we set the point cloud
range to {(x, y, z)|0m < x < 69.12m,−39.68m < y <
39.68m,−4m < z < 2m}. For voxel-based methods, we set
the point cloud range to {(x, y, z)|0m < x < 70.4m,−40m <
y < 40m,−4m < z < 2m}. The input feature is selected as

fTJ4D
in = [x, y, z, vrc, Power]T , (16)

where vrc has the same definition as that in the VoD dataset,
Power is in dB scale and represents the signal-to-noise ratio
of the detection. It should be noted that the official public data
of the TJ4DRadset dataset only provide the relative radial
Doppler velocity vr and no IMU data. Following [50], we
use the method in [53] to estimate ego-motion to obtain the
absolute radial Doppler velocity vrc.

In both datasets, the voxel sizes are set to 0.05m, 0.05m
and 0.125m along the X-, Y- and Z-axis, respectively. The
pillar sizes are set to 0.16m, 0.16m along the X- and Y-
axis, respectively. We use the hybrid task cascade network
(HTC) [54] provided by MMDetection [55] to initialize the
image branch and freeze its parameters during training. The
HTC is pre-trained on COCO [56] and fine-tuned on nuImage
[57]. For PointPillars, predefined anchor boxes are needed.
As official settings, for the VoD dataset, the dimensions of
anchor boxes for the car, pedestrian, and cyclist categories
are (3.9m, 1.6m, 1.56m), (0.8m, 0.6m, 1.73m), and (1.76m,
0.6m, 1.73m), respectively. For the TJ4DRadset dataset, the
dimensions of anchor boxes for the car, pedestrian, cyclist,
and truck categories are (1.84m, 4.56m, 1.70m), (0.6m, 0.8m,
1.69m), (0.78m, 1.77m, 1.60m), and (2.66m, 10.76m, 3.47m),
respectively. For VoxelNeXt, compared with the original con-
figuration, the voxel features in our backbone need to contain
both point cloud and image information, so we double the
output feature dimensions of all blocks. By default, we adopt

the MSDFF-based fusion block and set n = 2. Other config-
urations show equally good performance, which is confirmed
in the ablation experiment section.

The network is trained on a single NVIDIA RTX 3090
graphic processing unit (GPU) by the AdamW optimizer and
one-cycle learning rate scheduler in an end-to-end manner.
The initial learning rate is set to 0.001. We use random flip,
random scaling and random rotation data augmentation for the
input point cloud, and no data augmentation is used for the
input image.

C. Experiment Results

Since there are relatively few models designed specifically
for 4D radar, we choose some methods originally designed for
LiDAR for comparison. In Table I and Table II, PointPillars
[2], CenterPoint [49], and VoxelNeXt [24] are reproduced
by us under the MMDetection3D framework. Focals Conv
[46] and PointAugmenting [34] are reproduced according to
the configuration in their official GitHub repositories with
minimal changes to adapt to the 4D radar datasets. Focals
Conv marked with ‡ means using the same radar backbone as
ours. Additionally, the detection results of PointPillars based
on LiDAR and ImVoxelNet [58] based on monocular camera
are also provided. For the VoD dataset, the inference speed in
frames per second (FPS) is measured. The FPS results with
∗ and † represent the use of different GPUs and different
implementation frameworks, respectively.

For our method, multiple variants are given for comparison.
Among them, MSSF-PP and MSSF-V represent the multi-
modal versions of our method based on PointPillars and
VoxelNeXt, respectively, while MSSF-PP-R and MSSF-V-R
are the corresponding single-modal networks.

1) Results on VoD Dataset: In Table I, we report the results
on the validation set of the VoD dataset.

a) The Characteristic of the Metrics: It can be seen that
the detection results of the cyclist class are consistently good
for all models, even outperforming the detection capabilities
of LiDAR. This is because most of the cyclists in the dataset
are in motion [16], and radar can measure the radial Doppler
velocity of the object. Hence, radar is more sensitive to moving
objects and can achieve good detection results even in a
single modal. In contrast, there are many stationary objects
in cars and pedestrians, which are not friendly to radar and
easily confused with noisy background points, leading to poor
detection results. Moreover, the difference between APEAA
and APDC reflects that radar has better detection performance
for close objects, as ones contain more detection points. In
addition, the detection results of ImVoxelNet [58] indicate
that despite high resolution and rich semantic information
provided by camera, the lack of depth information leads to
poor performance, especially for distant objects, as evidenced
by mAPDC being greater than mAPEAA.

b) Comparison with the State-of-the-Art Methods: The
experiment results also show that our methods outperform
the others in almost all metrics. Comparing MSSF-PP with
the latest strong published benchmark LXL [20], we achieved
significant improvements of 7.0% and 6.9% on mAPEAA and
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TABLE I
DETECTION RESULTS ON VOD

Method Modality AP in the Entire Annotated Area (%) AP in the Driving Corridor (%) FPSCar Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP
ImVoxelNet (WACV 2022) [58] C 19.35 5.62 17.53 14.17 49.52 9.68 28.97 29.39 11.1
PointPillars (CVPR 2019) [2] R 42.19 39.29 66.66 49.38 71.59 50.67 85.23 69.16 106.4

RadarPillarNet (IEEE T-IM 2023) [50] R 39.30 35.10 63.63 46.01 71.65 42.80 83.14 65.86 -
CenterPoint (CVPR 2022) [49] R 35.84 41.03 67.11 47.99 70.65 50.14 85.67 68.82 38.3
VoxelNeXt (CVPR 2023) [24] R 36.98 42.37 68.15 49.17 70.95 51.85 87.33 70.04 31.6

SMURF (IEEE T-IV 2023) [27] R 43.31 39.09 71.50 50.97 71.74 50.54 86.87 69.72 -
MSSF-V-R R 38.28 42.93 69.96 50.39 71.76 52.92 88.93 71.21 24.6
MSSF-PP-R R 42.17 40.28 65.41 49.29 72.04 51.06 83.09 68.73 104.9

PointAugmenting (CVPR 2021) [34] R+ C 39.62 44.48 73.70 52.60 71.02 48.59 87.57 69.06 7.9†

Focals Conv‡ (CVPR 2022) [46] R+ C 40.01 48.67 75.42 54.70 71.79 53.41 87.53 70.91 10.4†

RCFusion (IEEE T-IM 2023) [50] R+ C 41.70 38.95 68.31 49.65 71.87 47.50 88.33 69.23 -
LXL (IEEE T-IV 2023) [20] R+ C 42.33 49.48 77.12 56.31 72.18 58.30 88.31 72.93 6.1∗

UniBEVFusion (Arxiv 2024) [43] R+ C 42.22 47.11 72.94 54.09 72.10 57.71 93.29 74.37 -
MSSF-V (Ours) R+ C 52.53 51.58 75.77 59.96 89.08 66.78 88.10 81.32 10.3
MSSF-PP (Ours) R+ C 60.96 51.28 77.69 63.31 90.60 60.39 88.35 79.78 13.9

PointPillars (CVPR 2019) [2] L 68.81 51.26 66.00 62.02 90.84 62.80 85.25 79.63 56.1

mAPDC, respectively. For MSSF-V, there are also 3.7% and
8.4% improvements. The consistent improvements shown by
MSSF-PP and MSSF-V illustrate the versatility of our method.
Specifically, for the car category, MSSF-PP and MSSF-V out-
perform LXL by 18.6% and 10.2% under APEAA, respectively.
APDC also has a notably substantial improvement of 18.4%
and 16.9%, respectively, which is much higher than other
categories. The reason is that the number of radar points on
cars is relatively large, so there are more reference points
projected onto the image, and sufficient semantic information
can be captured. For the pedestrian category, there are also
improvements of 1.8% and 2.1% respectively on APEAA,
which shows the effectiveness of the proposed method. It is
worth noting that our method does not improve significantly on
the cyclist category, which we attribute to the fact that cyclists
are already easier to detect even in single-modal, as mentioned
in the above analysis. During the experiment, we also find
that cyclists and pedestrians are occasionally confused after
fusing image features. This is because bicycles are sometimes
confused with the background, and the riders above are likely
mistaken for pedestrians.

c) Comparison with the Methods Designed for LiDAR-
Camera Fusion: Our methods also demonstrate advantages
when compared with Focals Conv [46] and PointAugmenting
[34] which are proposed in the context of the fusion of LiDAR
and camera. As for Focals Conv, MSSF-PP performs better
in all three categories, improving 21.0%, 2.6%, and 2.3%
under APEAA for cars, pedestrians, and cyclists, respectively.
Although Focals Conv explicitly classifies foreground and
background points which is similar to us, it mainly focuses on
its focal sparse convolution and only uses a shallow network
as the image backbone. The absorbed image features have
insufficient semantic expression capabilities. For PointAug-
menting, it uses DLA-34 [59] as the image backbone with
richer image features, but it only fuses image features in
the early stage without additional segmentation. Our method
still demonstrates better performance than PointAugmenting.
The above experiments reveal that the proposed fusion blocks
and fusion strategy can effectively absorb and utilize image

features.
d) Comparison with PointPillars under LiDAR Modality:

We narrow the performance gap with LiDAR-based methods.
Compared to the classic PointPillars [2] model in the LiDAR
modality, we achieve superior performance both within the
entire annotated area (EAA) and driving corridor (DC), with
significantly lower costs. Specifically, we notably outperforms
PointPillars by 11.7% under APEAA for the cyclist category.
Although PointPillars exhibits a considerable advantage in
detecting cars, it is important to note that this is partly
attributed to the distinct installation positions of LiDAR (on
the roof) and 4D radar (behind the front bumper), which results
in a limited field of view of radar, especially when considering
the EAA.

e) Inference Speed: As for the inference speed, MSSF-
PP and MSSF-V achieved 13.9 and 10.3 FPS, respectively. A
quasi-real-time detection speed is achieved with significantly
better performance than other methods, without dedicated code
optimization.

f) Visualization: Fig. 5 shows the visualization results
of MSSF-PP and MSSF-PP-R on the VoD dataset, indicating
that the proposed fusion strategy can make good use of two
modalities. Stationary and distant objects are weaknesses of
single-modal models. Our method can use image information
to reduce missed detections, e.g., for the cars in the opposite
lane on the left side shown in the first row. In addition,
when the object is far away or occluded (e.g., pedestrians at
a distance shown in the first and second rows), our model
can still use radar information for detection, showing certain
modal robustness. The fourth column demonstrates that our
model can distinguish 3D foreground points well, thus guiding
the network to focus on foreground objects without triggering
excessive false alarms caused by the feature-blurring problem.

2) Results on TJ4DRadSet Dataset: Compared with VoD,
TJ4DRadset is a more challenging dataset because it contains
complex scenes such as nighttime, under bridges, and camera
out-of-focus. In these scenarios, the image quality degrades
significantly. Object detection in these difficult scenarios
requires good cooperation between different modalities. In
addition, TJ4DRadset has an additional truck category, and the
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Image MSSF-PP MSSF-PP-R Segmentation Score Map (MSSF-PP)

Fig. 5. Visualization results on the VoD dataset (best viewed in color and zoom). Each row represents a frame. The first column shows the image, where the
orange boxes represent ground truth. The second column shows the detection results of MSSF-PP from the BEV perspective, where the green points are radar
points, the red crosses represent the self-vehicle position, the orange boxes represent ground truth bounding boxes and the cyan boxes represent predicted
bounding boxes. The third column is the detection results of the single-modal version MSSF-PP-R with the same meaning as the second column. The fourth
column shows the visualization results of the segmentation scores output by the semantic-guided head under BEV (darker colors indicate higher scores).

TABLE II
DETECTION RESULTS ON TJ4DRADSET

Method Modality AP3D (%) APBEV (%)
Car Ped. Cyclist Truck mAP Car Ped. Cyclist Truck mAP

ImVoxelNet (WACV 2022) [58] C 15.69 9.63 16.66 13.53 13.87 22.35 11.18 17.12 18.17 17.21
PointPillars (CVPR 2019) [2] R 19.78 29.79 51.83 13.67 28.76 39.42 32.56 59.45 20.93 38.09

RadarPillarNet (IEEE T-IM 2023) [50] R 28.45 26.24 51.57 15.20 30.37 45.72 29.19 56.89 25.17 39.24
CenterPoint (CVPR 2022) [49] R 11.23 25.47 56.20 4.95 24.47 24.01 29.46 61.08 8.03 30.65
VoxelNeXt (CVPR 2023) [24] R 13.27 33.54 52.59 8.32 26.93 23.17 35.83 57.11 12.12 32.06

SMURF (IEEE T-IV 2023) [27] R 28.47 26.22 54.61 22.64 32.99 43.13 29.19 58.81 32.80 40.98
MSSF-V-R R 12.34 31.73 53.16 9.15 26.60 22.85 33.03 58.69 14.70 32.32
MSSF-PP-R R 21.08 31.99 50.39 10.36 28.45 38.47 35.97 57.98 22.01 38.61

PointAugmenting (CVPR 2021) [34] R+ C 22.63 26.23 53.52 13.37 28.94 43.42 29.65 59.21 23.88 39.04
Focals Conv‡ (CVPR 2022) [46] R+ C 12.24 31.80 54.01 6.66 26.18 22.52 35.33 59.37 10.30 31.88
RCFusion (IEEE T-IM 2023) [50] R+ C 29.72 27.17 54.93 23.56 33.85 40.89 30.95 58.30 28.92 39.76

LXL (IEEE T-IV 2023) [20] R+ C - - - - 36.32 - - - - 41.20
UniBEVFusion (Arxiv 2024) [43] R+ C 44.26 27.92 51.11 27.75 37.76 50.43 29.57 56.48 35.22 42.92

MSSF-V (Ours) R+ C 45.18 33.61 55.88 17.20 37.97 56.25 36.53 58.70 20.97 43.11
MSSF-PP (Ours) R+ C 52.04 35.11 55.72 24.14 41.75 64.31 38.39 60.08 30.86 48.41

size of objects in this category varies greatly, further increasing
the difficulty of detection. Similar to Table I, we present the
results of the single-modal baseline, multi-modal baseline, and
our methods on the TJ4DRadset test set in Table II.

a) The Characteristic of the Metrics: As can be seen
from the results, the AP is obviously lower than that of the
VoD dataset, indicating that the TJ4DRadSet is more challeng-
ing as mentioned above. Note that, the pillar-based method has
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more advantages in this dataset. The possible reason is that
the 4D radar used in the TJ4DRadset dataset is different from
that in VoD and there is no multi-frame accumulation. The
resulting point cloud distribution is different, which makes it
hard for the voxel-based method to effectively extract point
cloud features. This observation is consistent with [50]. In
addition, for cars and trucks with relatively large and various
dimensions, the anchor-free method is inferior to the anchor-
based ones. Moreover, compared to ImVoxelNet [58], radar-
based methods demonstrate significant advantages in detecting
moving objects (e.g., pedestrians and cyclists).

b) Comparison with Other Methods: Even if the image
quality is poor in some scenes, our method still achieves
significant improvements. Compared to the corresponding
single-modal baselines, the MSSF-PP and MSSF-V exhibit
improvements on mAP3D by 13.3% and 11.4%, respectively,
demonstrating the effectiveness of our proposed fusion net-
work. Furthermore, our MSSF-PP also outperforms the recent
state-of-the-art method UniBEVFusion [43] by 4.0% and 5.5%
on mAP3D and mAPBEV, respectively. In line with the results
observed on the VoD dataset, our method exhibits the largest
improvement in the car category. PointAugmenting [34] and
Focals Conv [46] do not show the advantages of multi-modal
methods due to the use of weak image features and simple
fusion strategies. These results indicate that our approach can
effectively leverage multimodal features and achieve better
performance, even in challenging and complex scenarios.

c) The Impact of Lighting Conditions: To analyze the
impact of image quality on multi-modal methods in more
detail, following LXL, we classify the sequences in the
TJ4DRadset dataset according to different image degradations.
Specifically, we classify the sequence into dark, dazzle and
normal, accounting for approximately 15%, 25% and 60%
of the test set, respectively. Evaluations are conducted on
different image degradation sequences, and the results are
shown in Table III. It can be seen that in scenarios with
severe image degradation, e.g., dark and dazzle, MSSF-PP’s
improvements over MSSF-PP-R is relatively small (+10.5%
and +2.8% on mAPBEV). As the image quality improves
(i.e., normal scenario), the gain also increases (+15.6% on
mAPBEV). This conclusion is obvious because images cannot
provide accurate object information in bad scenarios. However,
it is worth noting that our method does not produce negative
gains due to image degradation, which shows that our fusion
method has a certain degree of robustness.

d) Visualization: Fig. 6 shows the visualization results
of MSSF-PP and MSSF-PP-R on the TJ4DRadSet dataset.
The three rows show the dark, normal and dazzle conditions.
Even when the image quality is severely degraded, our method
still shows robust detection results and is not affected by the
failure of image features. Under normal lighting conditions,
our method steadily improves the performance of the single-
modal baseline, as shown in the second row. The fourth
column demonstrates the ability of our method to distinguish
3D foreground points, even under dark conditions.

3) The Plug-and-Play Capability of MSSF: To demon-
strate the plug-and-play capability of our method and vali-
date the effectiveness of the proposed fusion framework, we

TABLE III
THE PERFORMANCE IN DIFFERENT SCENARIOS

Model AP3D (%) APBEV (%)
Dark Dazzle Normal Dark Dazzle Normal

MSSF-PP-R 19.97 16.85 33.15 23.79 33.12 39.09
MSSF-PP 31.77 28.71 48.47 34.32 35.93 54.66

TABLE IV
THE PLUG-AND-PLAY CAPABILITY OF MSSF

Method AP in the EAA (%) AP in the DC (%)
Car Ped. Cyc. mAP Car Ped. Cyc. mAP

CenterPoint [49] 35.84 41.03 67.11 47.99 70.65 50.14 85.67 68.82
+MSSF 52.13 49.28 76.97 59.46 (+11.47) 81.07 59.54 87.31 75.97 (+7.15)

SECOND [23] 40.95 39.97 64.92 48.61 72.05 50.25 81.99 68.10
+MSSF 53.92 50.97 75.49 60.13 (+11.52) 90.44 60.91 94.16 81.84 (+13.74)

VoxelNeXt-2D [24] 38.34 41.62 68.07 49.35 71.48 52.38 87.68 70.51
+MSSF 52.48 50.69 77.87 60.35 (+11.00) 80.90 60.55 88.66 76.70 (+6.19)

TABLE V
EFFECTS OF THE FEATURE-BLURRING PROBLEM

Method AP in the EAA (%) AP in the DC (%)
Car Ped. Cyc. mAP Car Ped. Cyc. mAP

No Voxel 46.99 33.05 53.00 44.35 80.89 42.11 71.26 64.75
No Image 37.12 46.24 74.34 52.56 72.18 53.01 87.78 70.99
MSSF-V 50.10 50.92 77.57 59.53 81.07 61.59 88.26 76.98

Mask Blur 50.75 56.37 79.95 62.36 80.42 68.36 90.91 79.90

integrate MSSF with three detection networks: CenterPoint
[49], SECOND [23], and VoxelNeXt-2D [24]. CenterPoint
and SECOND are representative voxel-based methods, while
VoxelNeXt-2D is the pillar version of VoxelNeXt [24]. Table
IV summarizes the detection performance of these networks
on the VoD validation set, both with and without MSSF.
The results highlight consistent and significant performance
improvements across all networks after incorporating MSSF.
This demonstrates that our fusion block can effectively capture
and fuse image features into different detection networks,
leading to enhanced detection performance.

D. Ablation Experiments

To analyze and verify the effectiveness of the proposed
fusion network, we conduct detailed ablation experiments on
the VoD dataset. The following experiments are done based
on MSSF-V. In addition, the VoD dataset adopts 11-point
sampling when calculating AP. However, we find that the AP
calculated by 11-point sampling fluctuates more than that of
40-point sampling, especially when the recall rate is near the
sampling point. As a result, for better analysis, we present
the results in AP40, which is widely adopted in datasets like
KITTI [52], for some experiments below.

a) Effects of the Feature-Blurring Problem: We inves-
tigate the mitigating effect of our model on the feature-
blurring problem and explore the impact of feature-blurring
on detection performance. For analysis, we categorize the
centroids of non-empty voxels that are input to the semantic-
guided head into 2D foreground points, 3D foreground points,
and 3D blurred points, following the definition in Fig. 1(a),
where the 2D instance masks in the definition are replaced
by the 2D ground truth boxes. We further define the blur
ratio as rblur(τ) = nblur(τ)

nfore2d
and the foreground recall as

rfore(τ) =
nfore3d(τ)
nfore2d

, where nfore2d is the number of 2D
foreground points, nfore3d(τ) and nblur(τ) is the number of
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Image MSSF-PP MSSF-PP-R Segmentation Score Map (MSSF-PP)

Fig. 6. Visualization results on the TJ4DRadset dataset. The content and meaning are consistent with Fig. 5.

TABLE VI
EFFECTS OF DIFFERENT FUSION BLOCKS AND # FUSION STAGES

Fusion Block n
AP in the Entire Annotated Area (%) AP in the Driving Corridor (%) FPSCar Pedestrian Cyclist mAP mAPstr Car Pedestrian Cyclist mAP mAPstr

MSDFF

0 38.28 42.93 69.96 50.39 27.53 71.76 52.92 88.93 71.21 48.59 24.6
1 50.10 50.92 77.57 59.53 37.30 81.07 61.59 88.26 76.98 63.88 10.7
2 52.53 51.58 75.77 59.96 39.92 89.08 66.78 88.10 81.32 66.44 10.3
3 53.50 52.22 74.55 60.09 40.82 90.85 61.66 87.61 80.04 65.84 9.9
4 53.49 51.66 69.79 58.32 41.07 90.59 61.86 88.40 80.28 66.11 9.5

SFF

0 38.28 42.93 69.96 50.39 27.53 71.76 52.92 88.93 71.21 48.59 24.6
1 46.62 49.81 75.46 57.30 35.46 80.89 60.90 87.69 76.49 61.01 10.9
2 53.20 51.31 76.18 60.23 41.78 81.66 61.77 87.37 76.93 64.79 10.5
3 53.23 51.58 76.18 60.33 41.79 90.16 62.14 87.32 79.88 64.52 10.2
4 53.27 51.39 69.70 58.12 40.85 90.08 61.44 87.66 79.73 66.60 9.8

3D foreground points and the number of 3D blurred points
above the segmentation threshold τ , respectively. In Fig. 7(a)
and (b), we depict the curves of rblur(τ) and rfore(τ) with
respect to τ , respectively. In the legend, “No Image” means no
use of image features in MSSF-V (equivalent to a radar-only
version with the semantic-guided head). “No Voxel” signifies
not using point cloud voxel features in MSSF-V, which means
the voxel feature fvox is excluded in the query initialization
(i.e., Eq. (8)) and the fusion operator (i.e., Eq. (5)). “Mask
Blur” denotes masking out the image features sampled from
3D blurred points using ground truth boxes. Corresponding

detection results are presented in Table V.

As can be seen from Fig. 7(a), when there is only image
information (i.e., No Voxel), numerous 3D blurred points con-
tain image features of foreground objects without geometric
features. This makes them difficult to distinguish, leading to
a high blur ratio. In Table V, the corresponding detection
performance also drops significantly, especially for pedestrians
and cyclists. When only point cloud information is available
(i.e., No Image), the 3D blurred points are not assigned
incorrect image semantic features, eliminating the feature-
blurring problem and resulting in a low blur ratio. However,
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Fig. 7. The blur ratio (lower is better) and foreground recall (higher is better)
curve with respect to the segmentation threshold τ .

sparse radar point clouds result in a weak representation
of object geometric information, causing a decrease in the
model’s discriminative ability, and subsequently exhibiting low
foreground recall in Fig. 7(b) and poor detection performance
in Table V. In contrast, our multi-stage fusion structure enables
deep interaction between image and point cloud features,
resulting in the fused features with high discriminability. As
a result, we achieve both high foreground recall and low blur
ratio, mitigating the feature-blurring problem and resulting
better detection performance shown in Table V. When further
masking out the image features sampled from the blurred
points (i.e., Mask Blur), the blur ratio is minimized, leading to
a further improvement in detection performance. This indicates
that the feature-blurring problem has a substantive impact on
detection performance under radar modality.

b) Effects of Different Fusion Blocks and # Fusion
Stages: We conduct two groups of experiments to observe
the performance difference between the two proposed fusion
blocks and the impact of the number of fusion blocks. In the
first group, we adopt the MSDFF-based fusion block and fix
n+m = 6. The number of fusion blocks n increases from 0 to
4. When n = 0, it degenerates into a single-modal baseline.
In the second group, we choose the fusion block based on
SFF, and the other experimental settings are the same as those
of the first group. The experiment results are shown in Table
VI. For better comparison, we also list the mAP calculated
at stricter IoU thresholds, i.e., mAPstr. In particular, the IoU
thresholds corresponding to the categories of cars, pedestrians,
and cyclists are 0.7, 0.5, and 0.5, respectively.

For the first group, the detection performance compared
to the baseline has been significantly improved, when only
one fusion block is used. When the number of fusion blocks
gradually increases, mAP does not increase significantly. On
the contrary, there is a slight decrease in AP for the cyclist
category. This is because the rich image features make it easy
for the network to mistake distant cyclists as pedestrians. For
cyclists who are far away or blocked, the bicycle is easily
confused with the background, and the rider above is easier
to detect. In addition, the deeper the block, the larger the cor-
responding voxel volume, causing the image features sampled
by its centroid no longer represent the entire voxel accurately,
especially when n = 4. However, it should be noticed that as n
increases, mAPstr improves. This result indicates that sufficient
image features and deep fusion can help object positioning.

TABLE VII
EFFECTS OF THE SEMANTIC-GUIDED HEAD

n
Operation AP40 in the EAA (%) AP40 in the DC (%)
SL SW Car Ped. Cyc. mAP Car Ped. Cyc. mAP

1
47.44 44.43 75.91 55.92 84.40 53.84 94.20 77.48

✓ 49.60 48.66 73.53 57.26 88.68 55.58 91.62 78.63
✓ ✓ 48.65 49.09 76.26 58.00 83.96 60.61 94.05 79.54

3
52.66 50.67 72.59 58.64 88.87 62.39 93.32 81.52

✓ 53.70 52.52 73.05 59.76 91.88 62.29 93.91 82.69
✓ ✓ 54.38 51.44 74.01 59.94 94.60 62.05 93.29 83.31

This makes sense for radar, as radar point clouds lack accurate
geometric information of objects due to sparsity and noisiness.
Nevertheless, information like object orientation is easier to
perceive in images. More accurate object localization can be
achieved through deep interaction of voxel and image features.
Furthermore, as the fusion block has higher computational
costs than the ordinary block, FPS also decreases slightly, as n
increases. The decrease in FPS is slight thanks to the sparsity
of radar point clouds.

Interestingly, the improvement for the second group is not
as obvious as that in the first group when n = 1. This is
because the MSDFF has a stronger image feature extraction
ability than SFF. The MSDFF can adaptively focus on the
desired image features depending on the query. As n increases
(except n = 4), both mAP and mAPstr increase. In particular,
the improvement of mAPstr is obvious, which is consistent
with the first group. When n = 2, 3, it even surpasses the
first group under the EAA. This is because multi-stage feature
fusion drowns out the advantages of MSDFF. In addition,
the increase in voxel volume leads to unrepresentative image
features as mentioned above, which also weakens the effect
of MSDFF.

In summary, both groups of results illustrate the effective-
ness of the proposed multi-stage sampling, especially under
tighter IoU thresholds.

c) Effects of the Semantic-Guided Head: We analyze
the effect of two components in the semantic-guided head,
namely, the segmentation loss (SL) and the segmentation score
weighting (SW). Table VII shows the experimental results in
AP40 when n = 1 and n = 3. It is observed that when the
semantic-guided head is not used, that is, neither SL nor SW
is used, mAPEAA decreases by 2.1% and 1.3% for n = 1
and 3, respectively. Despite this, the detection performance
without the semantic-guided head is still significantly bet-
ter than the single-modal baselines. The reason is that the
classification loss in the detection head plays a similar role
to SL, which can help the model identify 3D foreground
points based on the fused BEV feature map with radar and
image information. When SL is added but SW is not used,
the detection performance is improved by 1.3% and 1.1%,
indicating that additional explicit supervision can promote
the network’s discrimination of foreground and background
points. However, only explicit supervision cannot effectively
utilize the segmentation results, and the predicted foreground
scores cannot be fed back to the network. After adding SL
and SW at the same time, the detection performance is further
improved. This shows that it is beneficial for the network to
explicitly perceive the foreground and background in radar
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TABLE VIII
EFFECTS OF DIFFERENT FUSION LOCATIONS

Location AP40 in the EAA (%) AP40 in the DC (%)
Car Ped. Cyc. mAP Car Ped. Cyc. mAP

AR 53.72 51.38 72.48 59.19 91.84 62.06 94.15 82.68
BR 54.38 51.44 74.01 59.94 94.60 62.05 93.29 83.31
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Fig. 8. The structures of BR and AR.

TABLE IX
COMPUTATIONAL REQUIREMENTS

Model FLOPs (G) # Params. (M) FPS mAPEAA (%)
BEVFusion (ICRA 2023) [38] 385 39.8 7.1 49.25
LXL (IEEE T-IV 2023) [20] - - 6.1 56.31

MSSF-PP 388 32.3 13.9 63.31

point clouds, when the feature-blurring problem is serious.
d) Effects of Different Fusion Locations: As can be

seen from Fig. 3, the fusion process occurs between sparse
convolution and residual blocks. The purpose of this design
is to further process the fused features and interact with
neighborhood features through residual blocks. In Table VIII,
we examine the impact of the fusion location, where “BR”
represents fusion before the residual block, which is the default
setting of our model, and “AR” represents fusion after the
residual block. These two structures are illustrated in Fig. 8.
It can be seen from Table VIII that the two fusion locations
have no obvious impact on the results. In particular, AR is
slightly inferior to BR. This is because the AR only has one
sparse convolution layer between two fusion operations, and
does not perform sufficient feature mapping and exchange to
better process the fused features.

e) Computational Requirements Analysis: Table IX
presents the floating-point operations per second (FLOPs),
parameter count, and inference speed of MSSF-PP, compared
with BEVFusion [38] and LXL [20]. Under the same hardware
and input resolution, our method achieves higher inference
speed and comparable FLOPs while delivering significantly
better detection performance. Notably, the FLOPs of the BEV
pooling operation in BEVFusion are not included, despite its
non-negligible time cost, which reaches approximately 20ms
at our resolution. In contrast, our method does not involve
explicit view transformation but instead uses sampling, with
MSDFF requiring only about 2ms under the same conditions.

V. CONCLUSION

In this study, we proposed a simple but efficient 4D radar
and camera fusion network, namely MSSF, for 3D object
detection. Specifically, we designed two plug-and-play fusion
blocks to effectively utilize and fuse image features, which al-
leviate the feature-blurring problem in image feature sampling.

Through the cascade of multiple fusion blocks, the detection
performance is further improved, especially in terms of the
localization accuracy of bounding boxes, which is attributed
to the deep interaction between voxel features and image
features. Moreover, we devised a semantic-guided head to
guide the network to explicitly perceive foreground points,
thereby further mitigating the feature-blurring problem and
enhancing performance. The effectiveness of our method has
been verified on the VoD and TJ4DRadset datasets, signifi-
cantly surpassing existing methods and achieving new state-
of-the-art performance. Notably, MSSF even outperforms the
classic LiDAR-based models.

Note that our MSSF provides a concise and effective
architecture based on the fusion of 4D radar and camera.
It can inspire subsequent work and remind upcoming efforts
to pay attention to the feature-blurring problem. Future work
may involve leveraging temporal information and the depth
information estimated from images for better matching radar
points and image pixels, thus eliminating feature blurring and
improving detection capabilities.
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