
One to rule them all: natural language to bind
communication, perception and action
Simone Colombani

1,3
, Dimitri Ognibene

2
and Giuseppe Boccignone

1

2University of Milan, Italy
1University of Milano-Bicocca, Milan, Italy
3Oversonic Robotics, Carate Brianza, Italy

Abstract
In recent years, research in the area of human-robot interaction has focused on developing robots capable of

understanding complex human instructions and performing tasks in dynamic and diverse environments. These

systems have a wide range of applications, from personal assistance to industrial robotics, emphasizing the

importance of robots interacting flexibly, naturally and safely with humans.

This paper presents an advanced architecture for robotic action planning that integrates communication, percep-

tion, and planning with Large Language Models (LLMs). Our system is designed to translate commands expressed

in natural language into executable robot actions, incorporating environmental information and dynamically

updating plans based on real-time feedback.

The Planner Module is the core of the system where LLMs embedded in a modified ReAct framework are employed

to interpret and carry out user commands like ‘Go to the kitchen and pick up the blue bottle on the table’. By

leveraging their extensive pre-trained knowledge, LLMs can effectively process user requests without the need

to introduce new knowledge on the changing environment. The modified ReAct framework further enhances

the execution space by providing real-time environmental perception and the outcomes of physical actions. By

combining robust and dynamic semantic map representations as graphs with control components and failure

explanations, this architecture enhances a robot’s adaptability, task execution efficiency, and seamless collabora-

tion with human users in shared and dynamic environments. Through the integration of continuous feedback

loops with the environment the system can dynamically adjusts the plan to accommodate unexpected changes,

optimizing the robot’s ability to perform tasks. Using a dataset of previous experience is possible to provide

detailed feedback about the failure. Updating the LLMs context of the next iteration with suggestion on how to

overcame the issue.

This system has been implemented on RoBee, the cognitive humanoid robot developed by Oversonic Robotics,

showcasing its adaptability and potential for integration across diverse environments. By leveraging LLMs and

semantic mapping, the architecture enables RoBee to navigate and respond to real-time changes.

Keywords
Human-Robot interaction, Robot task planning, Large Language Models, Automated planning

1. Introduction

The integration of LLMs in robotic systems has opened new avenues for autonomous task planning

and execution [2, 3]. These models demonstrate exceptional natural language understanding and

commonsense reasoning capabilities, enhancing a robot’s ability to comprehend contexts and execute

commands [4, 5]. However LLMs are not be able to plan autonomously, they need to be integrated in

architectures that enable them to understand the environment, the robot capabilities and state [6]. This

research aims to empower robots to comprehend user requests and autonomously generate actionable

plans in diverse environments.

The efficacy of these plans relies on the robot’s understanding of its operating environment [7]. To

bridge this gap, our work employs scene graphs [8] as a semantic mapping tool, offering a structured

representation of spatial and semantic information within a scene.

AI4CC-IPS-RCRA-SPIRIT 2024: International Workshop on Artificial Intelligence for Climate Change, Italian Workshop on Planning
and Scheduling, RCRA Workshop on Experimental evaluation of algorithms for solving problems with combinatorial explosion,
and SPIRIT Workshop on Strategies, Prediction, Interaction, and Reasoning in Italy. November 25-28th, 2024, Bolzano, Italy [1].
$ simone.colombani@studenti.unimi.it (S. Colombani); dimitri.ognibene@unimib.it (D. Ognibene);

giuseppe.boccignone@unimi.it (G. Boccignone)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

ar
X

iv
:2

41
1.

15
03

3v
1 

 [
cs

.R
O

] 
 2

2 
N

ov
 2

02
4

mailto:simone.colombani@studenti.unimi.it
mailto:dimitri.ognibene@unimib.it
mailto:giuseppe.boccignone@unimi.it
https://creativecommons.org/licenses/by/4.0/deed.en


In our approach, we leverage LLMs through in-context [9], which enables the models to learn and adapt

based on the information provided in the context. Our work implements a modified version of the

ReAct [10] framework that expand the context of LLMs with environmental information and execution

feedback, allowing the model to plan and execute skills [11] translating them into physical actions.

Motivation The primary focus of our work is to enable robot to interact flexibly and robustly in

dynamic and diverse environments with limited human intervention. Traditional robotic systems usually

rely on static, pre-programmed instructions or closed world predefined knowledge and settings, limiting

their adaptability to dynamic environments. Interacting with humans in daily tasks within complex

environments disrupts these assumptions. LLMs and VLM can provide open-domain knowledge to

represent novel conditions without human intervention. However, these models are not informed of

the specific robot, task and settings at hand, that define what information can be relevant and necessary

to find and reason about [12]. Exceeding in the level of detail may lead to impractical computational

requirements and response time. Discarding crucial information, spatial or semantic, may lead to

repeated failures due to the introduced non-managed partial observability [13]. To find the relevant

information may be too slow [14]. LLMs can still produce outputs that are logically inconsistent or

impractical [15], expecially if they are not integrated into systems that allow them to adapt to changes

in the environment and the physical capabilities of the robots. Finally task execution, robots may

encounter unexpected situations, such as unanticipated obstacles, sensor errors, or changes in the

environment that were not accounted for in the initial plan. Such scenarios necessitate robust error

handling mechanisms and adaptive planning strategies that enable the system to reassess and modify

its actions in real-time [16]. By introducing execution controlling and failure management into the

planning process at different levels as well as retrieval of previous successful plans, we propose a

solution to enhance the robustness and flexibility of LLM-based robotic systems. This approach ensures

that the robot can effectively perceive changes in the environment and the failures that may arise from

them, allowing it to adapt strategies in response to new challenges.

Proposed approach Our system addresses the challenges of dynamic environments through a real-

time perception module and a Planner module that integrates execution control, and failure management.

It comprise a Controller that monitors the execution of tasks and detects errors, while the Explainer

analyzes failures and suggests adjustments based on past experiences. This feedback loop enables

adaptive re-planning, allowing the system to modify its actions as needed. Specifically, we propose the

use of the ReAct [10] framework, expanding its operational space with skills, physical actions of the

robot and with perception action, to access information from the environment. By leveraging LLMs for

natural language understanding and a perception system, the architecture supports autonomous task

execution in dynamic scenarios.

2. Related works

A substantial body of literature explores the utilization of LLMs for robotic task planning [4, 5].

LLM for robot planning Recent works highlight the potential of Large Language Models (LLMs)

in robotic planning [17, 18, 19]. DEPS [20] introduces an iterative planning approach for agents in

open-world environments, such as Minecraft. It utilizes LLMs to analyze errors during execution and

refine plans, improving both reasoning and goal selection processes. However, this approach has been

primarily developed and tested in virtual environments, with notable differences in comparison to

real-world settings due to the dynamic and unpredictable nature of physical environments. Additionally,

DEPS does not leverage previous issues and solutions but relies solely on feedback from humans and

vision-language models (VLMs).



Figure 1: Architecture of the system.

Scene graph as environemental representation The use of scene graphs [21] as a means to

represent the robot’s environment has gained traction. [22] employs 3D scene graphs to represent

environments and uses LLMs to generate Planning Domain Definition Language (PDDL) files. This

method decomposes long-term goals into natural language instructions and enhances computational

efficiency by addressing sub-goals. However, it lacks a mechanism for replanning based on feedback

during execution, which could limit its adaptability in dynamic scenarios. SayPlan [23] integrates

semantic search with scene graphs and path planning to aid robots in navigating complex environments

through natural language. By combining these techniques, SayPlan simulates various scenarios to refine

task sequences, which helps improve overall task performance in complex environments. However, it is

reliance on static pre-built 3D scene graphs, hindering adaptability to dynamic real-world environments.

Replanning Replanning enables long-term autonomous task execution in robotics [24]. DROC [25]

empowers robots to process natural language corrections and generalize that information to new

tasks. It introduces a mechanism to distinguish between high-level and low-level errors, allowing

more flexible plan corrections. However, DROC does not address the types of failures that may occur

during plan execution, focusing instead on high-level corrections provided by users. [26] supports

autonomous long-term task execution by integrating LLMs for planning and VLMs for feedback. This

approach adapts to changes in the environment through a structured component system that verifies

and corrects plans as needed. Yet, the feedback is limited to what is visible to the robot’s camera,

potentially overlooking other significant environmental changes.

3. Architecture

Our system is based on two components:

• Perception Module: it is responsible for sensing and interpreting the environment. It builds

and mantains a semantic map in the form of a directed graph that integrates both geometric and

semantic information.

• Planner Module: it takes the information provided by the Perception Module to formulate plans

and actions that allow the robot to perform specific tasks.

Figure 1 show how these components interact to allow the robot to understand its environment

and act accordingly to satisfy user requests. The Perception module uses data provided by the robot’s

sensors to supply the semantic map to the Planner module, which in turn processes it to generate

specific action plans. In what follows we precisely address the Planner Module while details on the



Figure 2: Architecture of the planner module.

Perception Module will be provided in a separate article.

3.1. Planner module

The architecture of the Planner module is designed to translate user requests, expressed in natural

language, into specific actions executable by a robot. This module is responsible for understanding

instructions, planning appropriate actions, and managing the execution of those actions in a dynamic

environment. The Planning module is composed by five sub-modules:

• Task Planner: Translates user requests, expressed in natural language, into a sequence of

high-level skills.

• Skill Planner: Translates high-level skills into specific, low-level executable commands.

• Executor: Executes the low-level actions generated by the Skill Planner.

• Controller: Monitors the execution of actions and manages any errors or unexpected events

during the process.

• Explainer: Interprets the causes of execution failures by analyzing data received from the

Controller and provides suggestions to the Task Planner on how to adjust the plan.

The architecture of the planner module is shown in Figure 2. The main component of the system is

the Task Planner, which receives the user’s request and translates it into a list of high-level "skills"

that represent the robot’s capabilities. These skills include actions such as "PICK" (grasp an object),

"PLACE" (place an object), and "GOTO" (move to a position).



3.1.1. Task Planner

The decision-making process of the Task Planner is driven by a policy, which is implemented as a

LLM. A policy is a strategy or rule that defines how actions are selected based on the current state or

context,[27].

Task Planner is implemented using the ReAct framework [10], which alternates between reasoning

and action phases during the process. In the reasoning phase, the Task Planner can access various

"perception" actions to gather information from the environment, such as the semantic map and the

current state of the robot, and can execute one or more "skill" actions to perform physical actions.

The classical idea of ReAct is to augment the agent’s action space to �̂� = 𝐴 ∪ 𝐿, where 𝐿 is the

space of language-based reasoning actions. An action �̂�𝑡 ∈ 𝐿, referred to as a "thought" or reasoning

trace, does not directly affect the external environment but instead updates the current context 𝑐𝑡+1 =
(𝑐𝑡, �̂�𝑡) by adding useful information to support future decision-making [10]. In the classical idea

there could be various types of useful thoughts, such as decomposing task goals and creating action

plans, injecting commonsense knowledge relevant to task solving, extracting important parts from

observations, tracking progress and transitioning action plans, handling exceptions and adjusting action

plans, and so on, but always without modifying the physical environment, only embedding it within

the context. Interestingly, this approach mixes reasoning and action in a flexible manner. In the future,

we will analyse the potential of this approach also connecting to the planning-to-plan [28, 29] and

meta-reasoning [30, 31, 32] concepts.

In our work, we augment the agent’s [33] action space with two types of actions:

• A skill action 𝑎𝑡 ∈ 𝐴
skill

, which involves physically interacting with the environment, such

as manipulating objects or navigating. The result of a skill action provides new feedback that

updates the current context.

• A perception action 𝑎𝑡 ∈ 𝐴perception, which involves accessing information from the environment,

such as querying the semantic map or sensors, and integrating that information into the context.

The augmented action space is defined as:

�̂� = 𝐴
skill
∪𝐴perception ∪ 𝐿

Thus, the LLM serves as the policy 𝜋 that selects different types of actions from the augmented action

space and dynamically adapting the current context 𝑐𝑡 used to plan based on real-time information and

reasoning.

Formal Description: The Task Planner’s policy 𝜋, represented by the LLM, can be formalized as a

function that maps the current context 𝑐𝑡 to an action �̂�𝑡 from the augmented action space �̂�:

𝜋 : 𝐶 → �̂�, 𝜋(𝑐𝑡) = �̂�𝑡

Where:

• 𝐶 is the set of all possible contexts.

• �̂� is the augmented action space �̂� = 𝐴
skill
∪𝐴perception ∪ 𝐿.

• 𝑐𝑡 represents the current context at time 𝑡, which includes the state of the robot, the environment,

and any past actions or thoughts.

• �̂�𝑡 ∈ �̂� is the action chosen by the policy, which can be a skill action 𝑎𝑡 ∈ 𝐴
skill

, a perception

action 𝑎𝑡 ∈ 𝐴perception, or a reasoning trace �̂�𝑡 ∈ 𝐿.

The context 𝑐𝑡 is updated based on the chosen action:

• If �̂�𝑡 ∈ 𝐿 (a reasoning action), the context updates to:

𝑐𝑡+1 = (𝑐𝑡, �̂�𝑡)

This represents the thought process, where reasoning contributes new information without

affecting the external environment.



• If �̂�𝑡 ∈ 𝐴perception (a perception action), the result of querying the environment updates the

context:

𝑐𝑡+1 = (𝑐𝑡, 𝑓perception(�̂�𝑡))

Here, 𝑓perception represents the function that gathers information and modifies the context based

on the perception action’s outcome.

• If �̂�𝑡 ∈ 𝐴
skill

(a skill action), the robot interacts with the environment, and the context updates

based on feedback from the physical action:

𝑐𝑡+1 = (𝑐𝑡, 𝑓skill
(�̂�𝑡))

Where 𝑓
skill

is the function that captures the result of executing a physical skill, such as manipu-

lating an object or moving to a location.

3.1.2. Skill Planner

Once a high-level request for the execution of a skill is made, the Skill Planner is responsible for

translating the high-level skills, provided by the Task Planner, into sequences of low-level commands

executable by the robot. While the Task Planner focuses on understanding natural language and creating

a general plan, the Skill Planner deals with the specific details of how each skill should be executed,

considering the robot’s state and the environment.

Let a skill be represented in the following general form, defined by the Task Planner with specific

syntax:

𝑆𝐾𝐼𝐿𝐿_𝑁𝐴𝑀𝐸(𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2, . . . , 𝑝𝑎𝑟𝑎𝑚𝑁 )

Where:

• SKILL_NAME is the name of the skill to be executed (e.g., PICK, PLACE, GOTO).

• param_1, param_2, . . . , param_N are parameters for the skill, such as the object to

manipulate or the destination to navigate to.

Using a strict syntax ensures that the Skill Planner can correctly interpret the high-level commands

without ambiguity. For instance, a natural language command like "Move near the table and grab the
bottle" would lack precision. The Skill Planner needs concrete parameters for the robot to act effectively.

Skill Planner workflow: The Skill Planner operates by performing three functions:

1. Precondition Verification: Before translating a skill into low-level commands, the Skill Planner

verifies that the necessary preconditions for execution are met. Let 𝑠𝑡 represent the current state of the

robot and the environment at time 𝑡, and 𝑃 (skill, 𝑠𝑡) denote a function for every skill that evaluates the

preconditions for a given skill. The precondition check can be expressed as:

𝑃 (skill, 𝑠𝑡) =

{︃
1, if all preconditions are met

0, otherwise

For example, before executing the PICK skill, the following checks may be performed:

• The object is visible by the robot.

• The object is reachable for the robotic arm.

• The robotic arm is free.

If any of these conditions are not met (𝑃 (skill, 𝑠𝑡) = 0), the Skill Planner reports a failure to the Task

Planner.

2. Target nodes extraction: Based on the parameters of the skill, the Skill Planner extracts the

target nodes from the semantic mapℳ, which contains geometric and semantic information about



the environment. Every node provides geometric information such as object’s position and relevant

context, which is then used to generate low-level commands.

3. Generation of Low-Level Commands: When𝑃 (skill, 𝑠𝑡) = 1, the Skill Planner translate the skill

into a sequence of low-level commands to control the robot behavior. In this system, we represent skill

decomposition in commands as Hierarchical Task Networks (HTNs) that contains low-level commands

executable by the robot. Let 𝐶𝑀(skill, node, 𝑠𝑡) denote the function that translates the given skill into

low-level commands based on the target nodes extracted from the semantic map and current state. The

output is a sequence of pre-modeled commands parameterized with the information of the robot state

and the target nodes, {𝑐𝑚1, 𝑐𝑚2, . . . , 𝑐𝑚𝑘}, where each command 𝑐𝑚𝑖 directs specific components of

the robot. Our implementation use HTNs solely on the breakdown of skills into commands without

using them with advanced features like re-planning or error recovery of the commands. In this case, if

any command fails, the entire skill fails, with no attempt at re-planning at the skill planner level. The

process can be represented as:

{𝑐𝑚1, 𝑐𝑚2, . . . , 𝑐𝑚𝑘} = 𝐶𝑀(skill, node, 𝑠𝑡)

The Skill Planner is designed to be flexible and extendable. The skill functions 𝑃 , and 𝐶𝑀 can be

adapted or extended to accommodate new skills, hardware, or environments.

3.1.3. Executor

The Executor is responsible for directly interacting with the robot’s hardware to execute the commands

provided by the Skill Planner. It translates the low-level commands into physical actions by controlling

various hardware elements such as motors, robotic arm grippers, and other actuators required for task

execution.

Let the set of low-level commands generated by the Skill Planner be represented as above, i.e.,

𝑐𝑚1, 𝑐𝑚2, . . . , 𝑐𝑚𝑘 = 𝐶𝑀(skill, node, 𝑠𝑡), where 𝐶𝑀(skill, node, 𝑠𝑡) defines the sequence of com-

mands based on the skill, the target node, and the current state of the robot and the environment.

The Executor is tasked with executing these commands on the physical robot. Let the state of the

robot at time 𝑡 be denoted by ℎ𝑡, and the function that maps a low-level command 𝑐𝑖 to an effect on the

robot’s state be denoted as 𝐻(𝑐𝑚𝑖, ℎ𝑡). The execution of a command at time 𝑡 can be described as:

ℎ𝑡+1 = 𝐻(𝑐𝑚𝑖, ℎ𝑡)

where ℎ𝑡+1 is the updated state after executing the command 𝑐𝑚𝑖. This process is repeated for each

command in the sequence {𝑐𝑚1, 𝑐𝑚2, . . . , 𝑐𝑚𝑘} until the entire skill is executed.

Executor workflow:

• Command reception: The Executor receives a set of low-level commands {𝑐𝑚1, 𝑐𝑚2, . . . , 𝑐𝑚𝑘}
from the Skill Planner. Each command specifies a concrete action to be performed by the robot’s

hardware components.

• Hardware interaction: For each command 𝑐𝑚𝑖, the Executor interacts with the robot’s hardware,

adjusting the motors, grippers, and other actuators. This interaction can be represented by the

function 𝐻(𝑐𝑚𝑖, ℎ𝑡) that determines the effect of a command on the robot’s state ℎ𝑡.

• Command execution: The Executor executes each command 𝑐𝑚𝑖 in the sequence, ensuring

that the robot’s state transitions from state ℎ𝑡 to ℎ𝑡+1. Formally:

ℎ_𝑡+ 1 = 𝐻(𝑐𝑚_𝑖, ℎ_𝑡), ∀𝑖 = 1, 2, . . . , 𝑘

After executing all commands, the robot’s reaches the final state ℎ𝑡+𝑘, corresponding to the

completion of the skill.



• Real-Time feedback: During execution, the robot’s provides feedback on its current state. Let

𝑓𝑡 denote the feedback at time 𝑡, and 𝑓𝑡+1 be the updated feedback after executing command 𝑐𝑚𝑖:

𝑓𝑡+1 = 𝐹 (𝑐𝑚𝑖, ℎ𝑡)

where 𝐹 is the feedback function. If unexpected feedback 𝑓𝑡+1 is received, the Executor can

trigger adjustments to the plan or inform the Skill Planner of a potential issue.

Different robots may use different communication protocols, and hardware configurations. Therefore,

the Executor must be adapted for each specific robot system, ensuring that it correctly interacts with

the robot’s hardware.

3.1.4. Controller

The Controller is responsible for monitoring the robot’s status and the environment during command

execution, ensuring that they are carried out as planned. After each command is executed, the Executor

sends feedback indicating either success or failure. If a failure occurs, it results in the failure of the entire

skill. Upon the completion of all commands, a success feedback will indicate the successful execution of

the skill.

Denote 𝑓𝑡 the feedback from the Executor at time 𝑡. The Controller processes 𝑓𝑡 to determine the

outcome of the executed skills. The feedback can be classified into two categories: success and failure.

Feedback processing:

• Success: If the feedback 𝑓𝑡 indicates successful execution of a command and it is the last com-

mand to execute, the skill is considered successfully completed, the Controller sends a positive

acknowledgment to the Task Planner to continue the planning process. However, if the feedback

indicates success but the command is not the last one, the Controller waits for the execution of

the next command:

if 𝑓𝑡 = Success =⇒ Task Planner continues

• Failure: If a failure occurs during the execution of any command, the planned skill fails and the

Controller generates a failure message 𝑚𝑓 that includes the reason for the failure. This message

is sent to the Explainer. Let 𝑒𝑡 represent the specific error detected at time 𝑡. The failure message

can be represented as:

𝑚𝑓 = Failure(𝑒𝑡)

where 𝑒𝑡 can include various error reasons such as obstacles detected, non-executable trajectories,

or environmental changes.

The Controller’s operation is highly dependent on the specific robot system in use, as it relies on the

characteristics of the robot and the employed software system. In a ROS environment, for example, the

Controller interacts with ROS nodes that control the robot’s hardware. In our work, RoBee, described

in section 5, has a system that allows to obtain feedback on the execution of commands.

3.1.5. Explainer

The Explainer component plays a critical role in enhancing the planning process by providing insights

to the Task Planner when failures occur during the execution phase. After receiving the failure reason,

the Explainer searches a dataset 𝒟 for previous instances of similar failures. This dataset comprises

records of failures associated with specific skills and user requests. Let 𝒟𝑟𝑓 denote the subset of the

dataset containing records of failures and solutions related to the same skill and error message. The

dataset has been manually built based on previous experiences, desired behaviors, and expected failures.

The search can be expressed as:

𝒟𝑟𝑓 = {(𝑠𝑘, 𝑢𝑟, 𝑟𝑓 ) ∈ 𝒟 | 𝑠𝑘 = skill_name, 𝑒𝑟 = 𝑟𝑓 , 𝑢𝑟 ∼ user_request}

where:



• 𝑠𝑘 is the skill being executed (e.g., PICK).

• 𝑢𝑟 represents the specific user request associated with the failure.

• 𝑟𝑓 is the failure reason provided by the Controller

• 𝑢𝑟 ∼ user_request indicates that the user request in the dataset is similar to the current user

request.

Rather than searching for an exact match to the user’s request, the Explainer assesses the similarity of

the user’s request (𝑢𝑟) to the instances in the dataset linked to the suggestion, using cosine similarity in

our approach [34]. This method enables the system to identify the most relevant past instances, even

when the user’s requests are not identical.

Once relevant instances are identified, the Explainer analyzes these cases to generate a suggestion 𝑠𝑔
for the Task Planner on how to proceed. The suggestion is structured as follows:

𝑠𝑔 = Suggest(𝒟𝑟𝑓 )

For instance, if the Controller reports the failure reason:

𝑟𝑓 = "Cannot execute the approach movement for the PICK skill, object too far"

The Explainer analyzes this failure and may find a previous instance where the robot successfully

resolved a similar issue. It could recommend a command to the Task Planner:

𝑠𝑔 = "Use the GOTO skill to move near the object to pick"

This suggestion enables the Task Planner to adjust its strategy effectively, moving the robot closer to

the object before attempting the PICK action again.

The suggestions provided by the Explainer can be tailored to accommodate specific behaviors of the

robot. This adaptability can be achieved by modifying the parameters of the data utilized to generate

the suggestions. Thus, the Explainer enhances the resilience of the system, facilitating its ability to

adapt to changing conditions and recover from errors efficiently.

4. Behavior example of the system

To illustrate the proposed system’s behavior in a dynamic environment, consider a scenario where the

robot is tasked with picking up a bottle from a table in a room and placing it in a designated area in

other room. In this example, the system must react to unexpected changes, such as the bottle being

moved by an external agent during the task.

Example User Request: The user provides the instruction: "Go to the table in the kitchen, pick

up the bottle, and place it on the table in the bedroom." Perception Module: The robot senses the

environment and generateds a semantic map, which includes the pose and types of objects. Task
Planner: The request is interpreted, and the Task Planner begins the planning procedure. It starts by

calling perception actions to gather information about the environment and the robot’s state. Using

the results of these perception actions, the Task Planner determines the next steps in its execution

by calling skill actions and incorporating the outcomes of each skill into the planning process. LLM

interprets the request and reasons as follows.



User Request: "Go to the table in the kitchen, pick up the bottle, and place it on the table in the

bedroom."

Robot State: The robot is currently in the bedroom and has both the right and left arms empty.

Thought: The task is to fetch the bottle from the kitchen and place it on the table in the bedroom.

I need to know all the rooms where the robot can go to.

Perception action: GetMapRooms()
Observation: The robot identifies the rooms: [kitchen, bedroom].

Thought: Now, I will navigate to the kitchen to find the bottle.

Skill action: GOTO(kitchen)
Observation: The robot moves to the kitchen.

Thought: I should identify the specific location of the bottle within the kitchen.

Perception action: GetObjectInRoom(kitchen)
Observation: The robot finds the following objects in the kitchen: [sink on the table_1,
stove on the table_1, bottle, table_1, table_2].

Thought: I will now move to the location of the bottle.

Skill action: GOTO(bottle)
Observation: The robot moves to the bottle’s location in the kitchen.

Thought: I will pick up the bottle now.

Skill action: PICK(bottle, right)
Observation: The robot can’t see the bottle to pick, find a bottle in the semantic map and try

again to pick it.

Thought: The bottle is not visible where expected, I need to check the location of the bottle

again.

Perception action: GetObjectInRoom(kitchen)
Observation: The robot finds the following objects in the kitchen: [sink on the table_1,
stove on the table_1, bottle on the table_2, table_1, table_2 ].

Thought: I will go to the table to pick up the bottle instead.

Skill action: GOTO(table_2)
Observation: The robot moves to the table.

Thought: I will pick up the bottle from the table now.

Skill action: PICK(bottle, right)
Observation: The robot successfully picks up the bottle.

Thought: Next, I need to navigate to the bedroom to place the bottle.

Skill action: GOTO(bedroom)
Observation: The robot moves to the bedroom.

Thought: I need to locate the table in the bedroom where I will place the bottle.

Perception action: GetObjectInRoom(bedroom)
Observation: The robot sees: [table, bed, lamp on the table] in the bedroom.

Thought: I will approach the table to place the bottle.

Skill action: GOTO(table)
Observation: The robot approaches the table.

Thought: Finally, I will place the bottle on the table.

Skill action: PLACE(bottle, right)
Observation: The robot places the bottle on the table successfully.

Skill Planner: For each high-level skill, once the preconditions are met, the Skill Planner translates

the choosen skill in a sequence of low-level commands, such as motor movements for navigation, arm



articulation for picking, and placing actions. For example once the PICK(bottle, right) skill is

planned, it can be translated and divided into the following phases with relative commands:

• Approach: The robot arm moves towards the object’s position, making any necessary adjustments

to align correctly, and opens the gripper.

• Grasp: The robot activates the gripping mechanisms to seize the object. This phase includes

closing the gripper and verifying the grasp.

• Lifting: The robot lifts the object from the surface it is on.

Execution: The Executor begins executing the planned skill, which is composed of a sequence of

commands by the Skill Planner. The Executor follows the ordered steps to achieve the goal. For example

with the skill PICK(bottle, right), the Executor receive the list of command and execute:

• Execute approach: The robot arm moves towards the object’s position and open the gripper.

• Execute grasp: This phase includes closing the gripper and verifying the grasp.

• Execute lifting: The robot lifts the object from the surface it is on.

Thus, when an unexpected event occurs, such as the bottle being moved or is not reachable the executor

may raise a failure message.

Controller and Explainer interaction:

• The Controller detects that the object is no longer in the expected location and sends a failure

message to the Explainer.

• The Explainer analyzes the failure, referencing previous instances where objects were moved

unexpectedly. It suggests the Task Planner to re analyse the semantic map and update the object’s

location.

Re-planning: Based on the suggestion, the Task Planner issues a new plan:

• Execute GOTO(table) to go near the identified bottle.

• After locating the bottle on the table, the robot updates its actions and proceeds to execute the

remaining tasks.

This example demonstrates how the system adapts in real-time, allowing for continuous task execution

even in dynamic and unpredictable environments.

Planning algorithm We now formalize this process in the form of an adaptive planning algorithm.

In this algorithm, the used LLM is a generalist model such as Llama 3 70B Instruct [35], whose behavior

we influence through in-context learning [9].



Figure 3: Robee, humaniod robot developed by Oversonic Robotics.

Algorithm 1 Planning with extedend ReAct Framework

1: Input: User request 𝑟, Robot state 𝑅𝑠

2: Output: Execution of user request

3: procedure Planning(𝑟,𝑀 )

4: 𝐶0 ← InitializeLLMContext(𝑟, 𝑀, 𝑅𝑠)
5: while not goal achieved do
6: 𝑎𝑐𝑡𝑖𝑜𝑛← TaskPlanner(𝑟, 𝐶0) ◁ Get first skill

7: if 𝑎𝑐𝑡𝑖𝑜𝑛 = "Skill" then
8: 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠← SkillPlanner(𝑠𝑘𝑖𝑙𝑙, 𝐶𝑡) ◁ Translate skill into low-level commands

9: 𝑠𝑢𝑐𝑐𝑒𝑠𝑠← Executor(𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠) ◁ Execute commands

10: if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = False then
11: 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑀𝑠𝑔 ← Controller(𝐶𝑡) ◁ Detect failure

12: 𝑐𝑡 ← Explainer(𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑀𝑠𝑔) ◁ Generate suggestion

13: else
14: 𝑐𝑡 ← Skill succesfully executed

15: end if
16: else
17: 𝑐𝑡 ← CallPerceptionAction() ◁ Reading semantic map from Perception Module

18: end if
19: 𝐶𝑡+1 ← UpdateContext(𝐶𝑡) ◁ Update context

20: 𝑠𝑘𝑖𝑙𝑙← TaskPlanner(𝑟, 𝐶𝑡+1) ◁ Get next skill based on updated context

21: end while
22: end procedure

This algorithm shows the adaptive behavior of the system by incorporating feedback loops that

facilitate real-time re-planning. By alternating between action and reasoning phases, the robot can

continuously adapt to changes, ensuring task success even in unpredictable environments.



Figure 4: Environment used during the execution of experiments.

5. Robot Hardware

The system was implemented using RoBee, a cognitive humanoid robot developed by Oversonic Robotics.

RoBee measures 160 cm in height and weighs 60 kg. It has 32 degrees of freedom, enabling highly

flexible movement. The robot is equipped with multiple sensors, including cameras, microphones, and

force sensors.

The cameras provide real-time visual data, supporting navigation and object recognition tasks. The

microphones facilitate audio input, enabling speech recognition and interaction through natural lan-

guage processing. The force sensors are used for handling objects, allowing RoBee to adjust grip force

based on the characteristics of the item being manipulated, enhancing precision and safety during

interactions.

RoBee’s mechanical structure includes two arms capable of bimanual manipulation, each capable of

handling objects weighing up to 5 kg. The system includes a torso and leg system designed for bal-

ance and mobility. RoBee is equipped with LIDAR sensors for real-time environment mapping and

obstacle detection. These LIDAR sensors enable the robot to navigate autonomously through complex

environments, ensuring safe operation in shared spaces. The combination of autonomous navigation

technologies and LIDAR-based detection enhances the ability of RoBee to move efficiently and avoid

collisions in dynamic industrial environments.

In addition to its physical capabilities, RoBee integrates with cloud-based systems, allowing for remote

monitoring, task scheduling, and data analytics.

The Planner-module takes into account RoBee’s embodiment, ensuring that the system is aligned with

the robot’s capabilities such as its degrees of freedom, sensor suite, and ability to perform manipulation

and navigation.

6. Preliminary results

Preliminary experiments were conducted in a simulated environment replicating two main rooms: a

kitchen and a bedroom, as illustrated in Figure 6.

During the experiments, three types of requests were tested, each varying in complexity:

• Simple requests: direct commands that involve only one skill. For example, "Pick up the bottle
in front of you", where the task planner needs only to identify the parameters and activate the

appropriate skill.

• Moderately complex requests: tasks that require the robot to perform multiple skills in

sequence, as explicitly described in the command. An example is "Go to the kitchen, pick up the
bottle, and bring it to the table in the bedroom", which involves multiple skills. These tasks require

a higher level of complexity, with planning across several steps and handling potential failures.



• Complex requests: such as "I’m thirsty, can you help me?", which were more open-ended and

required the robot to interpret the task and break it down into multiple steps.

The results in table 1 showed that the system performed well with simple requests, followed by

moderately complex ones. However, the success rate for complex requests was significantly lower,

with only 25% of the tasks completed correctly. This lower performance was attributed to the system’s

difficulty in understanding and managing ambiguous or under-specified instructions.

It is important to note that these are preliminary results, and further analysis is ongoing. A thorough

evaluation of the data is currently underway, including a comparison with the state of the art in robot

task execution and natural language understanding. This will allow for a deeper understanding of the

system’s strengths and areas for improvement.

Request type Number of attempts Success rate
Simple requests 30 90%

Moderately complex requests 20 75%
Complex requests 10 25%

Table 1
Number of attempts and success rate for each request type

7. Conclusions

The proposed planning system exhibits notable strengths, particularly its adaptability and seamless with

the robot’s diverse set of skill for executing complex tasks. The system’s core advantage lies in its ability

to interpret user commands through natural language processing, converting them into high-level

actions that are further refined into low-level, executable tasks. By integrating real-time environmental

feedback from the Perception Module through an extended version of ReAct framework, the system can

dynamically adjust to unexpected situations, such as obstacles or execution failures. This adaptability

is supported by an architecture, where the Task Planner, Skill Planner, Controller, and Explainer

components work in harmony to ensure smooth task execution even in changing environments.

One of the system’s key strengths is its ability to manage error recovery through feedback loops,

allowing the robot to adapt quickly to failures during task execution. The Explainer module provides on

the fly suggestions to modify the plan based on past errors, enhancing the system’s validity. The use of

semantic maps and scene graphs provides the robot with a structured understanding of its environment,

ensuring that actions are contextually accurate and responsive to real-world conditions.

The integration of LLMs, perceptual feedback, and flexible task planning mechanisms makes the system

highly versatile for complex, dynamic environments. Its implementation on RoBee, the humanoid robot

developed by Oversonic Robotics, has demonstrated its practical potential, positioning it as a valuable

tool for applications requiring advanced human-robot interaction and adaptability in unpredictable

settings.

In the future, other than extending the low level skill set available, we will investigate the possibility to

autonomously expand the Explainer dataset as well as providing similar information directly to the Task

Planner, increasing flexibility and reliability and reducing the number of re-planning events. We will

also study capability of the system to proactively acquire information about the environment [14] and

human partners both through sensors [36] and communication strategies, leveraging the potential for

proactive information gathering behaviours of LLMs [37, 38, 39]. Moreover, it will be crucial to assess

the reliability of the system both at the planning level as well as the communication level, considering

the introduction of embodiment and environment while the limitation in pragmatic understanding of

LLM are still to be understood [39, 40, 41].



Acknowledgments

Special thanks to Oversonic Robotics for enabling the implementation of this project using their

humanoid robot, RoBee.

References

[1] D. Aineto, R. De Benedictis, M. Maratea, M. Mittelmann, G. Monaco, E. Scala, L. Serafini, I. Serina,

F. Spegni, E. Tosello, A. Umbrico, M. Vallati (Eds.), Proceedings of the International Workshop

on Artificial Intelligence for Climate Change, the Italian workshop on Planning and Scheduling,

the RCRA Workshop on Experimental evaluation of algorithms for solving problems with com-

binatorial explosion, and the Workshop on Strategies, Prediction, Interaction, and Reasoning in

Italy (AI4CC-IPS-RCRA-SPIRIT 2024), co-located with 23rd International Conference of the Italian

Association for Artificial Intelligence (AIxIA 2024), CEUR Workshop Proceedings, CEUR-WS.org,

2024.

[2] D. Driess, F. Xia, M. S. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong,

T. Yu, et al., Palm-e: an embodied multimodal language model, in: Proceedings of the 40th

International Conference on Machine Learning, 2023, pp. 8469–8488.

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakrishnan,

K. Hausman, et al., Do as i can, not as i say: Grounding language in robotic affordances, arXiv

e-prints (2022) arXiv–2204.

[4] J. Wang, Z. Wu, Y. Li, H. Jiang, P. Shu, E. Shi, H. Hu, C. Ma, Y. Liu, X. Wang, et al., Large language

models for robotics: Opportunities, challenges, and perspectives, arXiv preprint arXiv:2401.04334

(2024).

[5] F. Zeng, W. Gan, Y. Wang, N. Liu, P. S. Yu, Large language models for robotics: A survey, arXiv

e-prints (2023) arXiv–2311.

[6] S. Kambhampati, K. Valmeekam, L. Guan, K. Stechly, M. Verma, S. Bhambri, L. Saldyt, A. Murthy,

Llms can’t plan, but can help planning in llm-modulo frameworks, arXiv preprint arXiv:2402.01817

(2024).

[7] S. Tellex, N. Gopalan, H. Kress-Gazit, C. Matuszek, Robots that use language, Annual Review of

Control, Robotics, and Autonomous Systems 3 (2020) 25–55.

[8] G. Zhu, L. Zhang, Y. Jiang, Y. Dang, H. Hou, P. Shen, M. Feng, X. Zhao, Q. Miao, S. A. A. Shah,

et al., Scene graph generation: A comprehensive survey, arXiv e-prints (2022) arXiv–2201.

[9] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, Z. Sui, A survey on in-context

learning, arXiv preprint arXiv:2301.00234 (2022).

[10] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, Y. Cao, React: Synergizing reasoning and

acting in language models, in: International Conference on Learning Representations (ICLR), 2023.

[11] L. Heuss, D. Gebauer, G. Reinhart, Concept for the automated adaption of abstract planning

domains for specific application cases in skills-based industrial robotics, Journal of Intelligent

Manufacturing (2023) 1–26.

[12] M. Shanahan, Frame problem, the, Encyclopedia of Cognitive Science (2006).

[13] L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and acting in partially observable

stochastic domains, Artificial intelligence 101 (1998) 99–134.

[14] D. Ognibene, G. Baldassare, Ecological active vision: four bioinspired principles to integrate

bottom–up and adaptive top–down attention tested with a simple camera-arm robot, IEEE

transactions on autonomous mental development 7 (2014) 3–25.

[15] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, P. Fung, Survey of

hallucination in natural language generation, ACM Computing Surveys 55 (2023) 1–38.

[16] O. Ruiz, J. Rosell, M. Diab, Reasoning and state monitoring for the robust execution of robotic

manipulation tasks, in: 2022 IEEE 27th International Conference on Emerging Technologies and

Factory Automation (ETFA), IEEE, 2022, pp. 1–4.



[17] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, A. Zeng, Code as policies:

Language model programs for embodied control, in: 2023 IEEE International Conference on

Robotics and Automation (ICRA), IEEE, 2023, pp. 9493–9500.

[18] B. Liu, Y. Jiang, X. Zhang, Q. Liu, S. Zhang, J. Biswas, P. Stone, Llm+ p: Empowering large language

models with optimal planning proficiency, arXiv e-prints (2023) arXiv–2304.

[19] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, Y. Su, Llm-planner: Few-shot grounded

planning for embodied agents with large language models, in: Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2023, pp. 2998–3009.

[20] Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, Y. Liang, Describe, explain, plan and select: Interactive

planning with large language models enables open-world multi-task agents, arXiv e-prints (2023)

arXiv–2302.

[21] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, S. Savarese, 3d scene graph: A

structure for unified semantics, 3d space, and camera, in: Proceedings of the IEEE/CVF international

conference on computer vision, 2019, pp. 5664–5673.

[22] Y. Liu, L. Palmieri, S. Koch, I. Georgievski, M. Aiello, Delta: Decomposed efficient long-term robot

task planning using large language models, arXiv e-prints (2024) arXiv–2404.

[23] K. Rana, J. Haviland, S. Garg, J. Abou-Chakra, I. Reid, N. Suenderhauf, Sayplan: Grounding large

language models using 3d scene graphs for scalable robot task planning, in: 7th Annual Conference

on Robot Learning, 2023.

[24] M. Cashmore, A. Coles, B. Cserna, E. Karpas, D. Magazzeni, W. Ruml, Replanning for situated

robots, in: Proceedings of the International Conference on Automated Planning and Scheduling,

volume 29, 2019, pp. 665–673.

[25] L. Zha, Y. Cui, L.-H. Lin, M. Kwon, M. G. Arenas, A. Zeng, F. Xia, D. Sadigh, Distilling and

retrieving generalizable knowledge for robot manipulation via language corrections, in: 2024 IEEE

International Conference on Robotics and Automation (ICRA), IEEE, 2024, pp. 15172–15179.

[26] M. Skreta, Z. Zhou, J. L. Yuan, K. Darvish, A. Aspuru-Guzik, A. Garg, Replan: Robotic replanning

with perception and language models, arXiv e-prints (2024) arXiv–2401.

[27] H. Geffner, Non-classical planning with a classical planner: The power of transformations, in:

European Workshop on Logics in Artificial Intelligence, Springer, 2014, pp. 33–47.

[28] D. Ognibene, G. Pezzulo, H. Dindo, Resources allocation in a bayesian, schema-based model

of distributed action control, in: NIPS-Workshop on Probabilistic Approaches for Robotics and

Control, 2009.

[29] M. Ho, D. Abel, J. Cohen, M. Littman, T. Griffiths, People do not just plan, they plan to plan, in:

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, 2020, pp. 1300–1307.

[30] S. Russell, E. Wefald, Principles of metareasoning, Artificial intelligence 49 (1991) 361–395.

[31] S. Zilberstein, S. J. Russell, Anytime sensing, planning and action: A practical model for robot

control, in: IJCAI, volume 93, 1993, pp. 1402–1407.

[32] R. Ackerman, V. A. Thompson, Meta-reasoning: Monitoring and control of thinking and reasoning,

Trends in cognitive sciences 21 (2017) 607–617.

[33] S. J. Russell, P. Norvig, Artificial intelligence: a modern approach, Pearson, 2016.

[34] F. Rahutomo, T. Kitasuka, M. Aritsugi, et al., Semantic cosine similarity, in: The 7th international

student conference on advanced science and technology ICAST, volume 4, University of Seoul

South Korea, 2012, p. 1.

[35] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,

A. Fan, et al., The llama 3 herd of models, arXiv. org (????).

[36] D. Ognibene, Y. Demiris, Towards active event recognition., in: IJCAI, 2013, pp. 2495–2501.

[37] S. Patania, E. Masiero, L. Brini, G. Donabauer, U. Kruschwitz, V. Piskovskyi, D. Ognibene, Large

language models as an active bayesian filter: information acquisition and integration, in: Proceed-

ings of the 28th Workshop on the Semantics and Pragmatics of Dialogue - Full Papers, SEMDIAL,

Trento, Italy, 2024. URL: http://semdial.org/anthology/Z24-Patania_semdial_0006.pdf.

[38] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley, et al.,

Robots that ask for help: Uncertainty alignment for large language model planners, Proceedings

http://semdial.org/anthology/Z24-Patania_semdial_0006.pdf


of Machine Learning Research 229 (2023).

[39] B. Magnini, Toward collaborative llms: Investigating proactivity in task-oriented dialogues, in:

Proceedings of the 28th Workshop on the Semantics and Pragmatics of Dialogue - Invited Talks,

SEMDIAL, Trento, Italy, 2024. URL: http://semdial.org/anthology/Z24-Magninini_semdial_0003a.

pdf.

[40] A. Martinenghi, C. Koyuturk, S. Amenta, M. Ruskov, G. Donabauer, U. Kruschwitz, D. Ognibene,

Von neumidas: Enhanced annotation schema for human-llm interactions combining midas with

von neumann inspiredsemantics, in: Proceedings of the 28th Workshop on the Semantics and

Pragmatics of Dialogue - Poster Abstracts, SEMDIAL, Trento, Italy, 2024. URL: http://semdial.org/

anthology/Z24-Martinenghi_semdial_0045.pdf.

[41] A. Martinenghi, G. Donabauer, S. Amenta, S. Bursic, M. Giudici, U. Kruschwitz, F. Garzotto,

D. Ognibene, Llms of catan: Exploring pragmatic capabilities of generative chatbots through

prediction and classification of dialogue acts in boardgames’ multi-party dialogues, in: Proceedings

of the 10th Workshop on Games and Natural Language Processing@ LREC-COLING 2024, 2024,

pp. 107–118.

8. Online Resources

More information about RoBee and Oversonic Robotics are available:

• RoBee,

• Oversonic Robotics

http://semdial.org/anthology/Z24-Magninini_semdial_0003a.pdf
http://semdial.org/anthology/Z24-Magninini_semdial_0003a.pdf
http://semdial.org/anthology/Z24-Martinenghi_semdial_0045.pdf
http://semdial.org/anthology/Z24-Martinenghi_semdial_0045.pdf
https://oversonicrobotics.com/robee-humanoid-robot/?lang=en
https://oversonicrobotics.com/?lang=en

	1 Introduction
	2 Related works
	3 Architecture
	3.1 Planner module
	3.1.1 Task Planner
	3.1.2 Skill Planner
	3.1.3 Executor
	3.1.4 Controller
	3.1.5 Explainer


	4 Behavior example of the system
	5 Robot Hardware
	6 Preliminary results
	7 Conclusions
	8 Online Resources

