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LINEAR CONVERGENCE OF PROXIMAL DESCENT SCHEMES ON
THE WASSERSTEIN SPACE

RAZVAN-ANDREI LASCU, MATEUSZ B. MAJKA, DAVID ŠIŠKA, AND  LUKASZ SZPRUCH

Abstract. We investigate proximal descent methods, inspired by the minimizing move-
ment scheme introduced by Jordan, Kinderlehrer and Otto, for optimizing entropy-
regularized functionals on the Wasserstein space. We establish linear convergence under
flat convexity assumptions, thereby relaxing the common reliance on geodesic convexity.
Our analysis circumvents the need for discrete-time adaptations of the Evolution Vari-
ational Inequality (EVI). Instead, we leverage a uniform logarithmic Sobolev inequality
(LSI) and the entropy “sandwich” lemma, extending the analysis from [27, 12]. The ma-
jor challenge in the proof via LSI is to show that the relative Fisher information I(·|π)
is well-defined at every step of the scheme. Since the relative entropy is not Wasserstein
differentiable, we prove that along the scheme the iterates belong to a certain class of
Sobolev regularity, and hence the relative entropy KL(·|π) has a unique Wasserstein
sub-gradient, and that the relative Fisher information is indeed finite.

1. Introduction

We consider the problem of minimizing an entropy-regularized flat-convex function

(1.1) min
µ∈P2(Rd)

F σ(µ), with F σ(µ) := F (µ) + σKL(µ|π),

over the Wasserstein space
(

P2(R
d),W2

)

, where F : P2(R
d) → R is a function bounded

below on P2(R
d), i.e., infµ∈P2(Rd) F (µ) > −∞, π ∈ P2(R

d) is a reference probability
measure, σ > 0 is a regularization parameter and KL is the KL-divergence (relative
entropy). Such optimization problems are motivated by many applications in data science
and machine learning, including the task of training two-layer neural networks (NNs) in
the mean-field regime [26, 13, 24, 30, 34], generative modeling [18, 2] and reinforcement
learning [22, 40].

In this work, we tackle (1.1) from the perspective of discrete-time stepping schemes by
proposing the following Jordan–Kinderlehrer–Otto (JKO)-based optimization methods:
proximal point, prox-linear and proximal gradient,1 for which we prove linear convergence
to the minimizer of F σ, without requiring that F is geodesically convex. For π ∝ e−U

with a sufficiently regular potential U : Rd → R and F = 0, given a step-size τ > 0 and
starting from µ0 ∈ P2(R

d), the JKO scheme, also called minimizing movement scheme or
proximal descent in the Wasserstein space, was originally introduced in [20] and constructs
a sequence (µn)n∈N ⊂ P2(R

d) by the update rule

(1.2) µn+1 = argmin
µ∈P2(Rd)

{

σKL(µ|π) +
1

2τ
W2

2 (µ, µ
n)

}

,
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Mean-field optimization, logarithmic Sobolev inequality.
1We maintain the terminology used for analogous methods in finite-dimensional optimization; see e.g.

[14, 29]. Indeed, our naming convention is justified since the JKO step (1.2) can be viewed as a proximal
operator on the Wasserstein space

(

P2(Rd),W2

)

.
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whereW2 is the L
2-Wasserstein distance. Note that, by replacing π in (1.2) with e−σ−1f−U

for some function f : Rd → R, and normalizing appropriately, (1.2) covers optimization
problems for functions of the form F σ(µ) =

∫

Rd fdµ+ σKL(µ|e−U).
Numerical methods for implementing the JKO scheme (1.2) were proposed in [19, 4].

A survey of these methods is also included in [33, Section 4.7]. Moreover, if the initial
measure µ0 and the target measure π are both Gaussian, it is showed in [38, Section 3;
Example 5] that the update step in (1.2) can be computed in closed form. Note that,
however, these works do not cover the case of non-linear F .

1.1. JKO-based stepping schemes. A natural approach to solving (1.1) for a general
F is to start with the proximal point scheme

(1.3) µn+1 = argmin
µ∈P2(Rd)

{

F (µ) + σKL(µ|π) +
1

2τ
W2

2 (µ, µ
n)

}

.

However, this scheme requires one to solve, at each step, a convex but nonlinear minimiza-
tion problem and hence is mostly of theoretical interest. Its advantage on the theoretical
level is that it lends itself to a clean convergence proof with fewest regularity assumptions,
which is why we include analysis of this scheme.

A more practical scheme can be created by linearizing F around µn and leveraging
the fact that the Wasserstein penalty term W2

2 (µ, µ
n) ensures that the linearization is

accurate enough, provided there is appropriate regularity of F . Thus, we define the
prox-linear scheme

(1.4) µn+1 = argmin
µ∈P2(Rd)

{
∫

Rd

δF

δµ
(µn, x)(µ− µn)(dx) + σKL(µ|π) +

1

2τ
W2

2 (µ, µ
n)

}

.

Since the map µ 7→
∫

Rd
δF
δµ
(µn, x)µ(dx) is linear, by replacing π in (1.2) with appropriately

normalized e
−σ−1 δF

δµ
(µn,·)−U

, we see that (1.2) covers (1.4) as a special case (cf. the remark
below (1.2)). In other words, one could view (1.4) as corresponding to (1.2) with a

relative entropy of the form KL(µ|Φ[µn]), where Φ[µn] ∝ e
−σ−1 δF

δµ
(µn,·)−U

. Thus, (1.4) can
be implemented numerically as discussed in [33, Section 4.7]. More recently, [35] proposed
an algorithm for solving (1.4) in the case where F (µ) = 1

2

∫

Rd

∫

Rd W (x, x′)µ(dx)µ(dx′),

for an interactive potential W : Rd × R
d → R that satisfies W (x, x′) = W (x′, x), for all

x, x′ ∈ R
d. Several numerical experiments were performed but no convergence rates for

the algorithm were proved.
Another natural approach is to consider the proximal gradient algorithm, which in our

context translates to updating µn by a pushforward, which in fact we will show is an
optimal transport map for F regular enough and sufficiently small τ, and updating the
resulting measure via a JKO step. Thus, the proximal gradient scheme is

νn+1 = (Id − τ∇µF (µ
n)(·))# µ

n,

µn+1 = argmin
µ∈P2(Rd)

{

σKL(µ|π) +
1

2τ
W2

2 (µ, ν
n+1)

}

.
(1.5)

A proximal scheme related to (1.5) was recently introduced in [31] for the case where
F = 0 in (1.1). This method splits KL(µ|π) into the sum of

∫

Rd Udµ and the entropy
H(µ) (cf. Subsection 2.1) and then implements a gradient descent step on U and a JKO
update step for H , see the discussion in Section 1.4 for more details.

It is worth emphasizing that an “explicit” scheme in which both F and KL(·|π) are
linearized around µn is not expected to converge due to the non-smoothness of the relative
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entropy in the Wasserstein space [38, Subsection 3.1.1]. Recently, [39] provided two
counterexamples for which updating µn by the pushforward

µn+1 = (Id − τ∇µ KL(µn|π))# µ
n,

fails to converge for µ0 and U appropriately chosen.
Utilizing techniques from optimal transport and the theory of gradient flows on the

space of probability measures, we prove that the iterates (µn)n∈N generated by each of the
schemes (1.3), (1.4) and (1.5) converge linearly to the minimizer of F σ. A notable aspect
of our proof is the application of the uniform LSI and a “sandwich” entropy lemma, which
makes our work a discrete-time counterpart to [27, 12].

1.2. Connection to the Wasserstein gradient flow. As τ → 0, schemes (1.3), (1.4)
and (1.5) are expected to recover the Wasserstein gradient flow of F σ, given by

(1.6) ∂tµ = ∇ ·

((

∇
δF

δµ
(µ, ·) + σ∇U

)

µ

)

+ σ∆µ, µ|t=0 := µ0 ∈ P2(R
d).

In continuous time, there are two potential approaches to show that (1.6) converges with
rate O(e−κt), for κ > 0, to the minimizer µ∗

σ of F σ. The appropriate approach depends
on F.

On the one hand, assume that F is geodesically convex and U is β-strongly-convex for
β > 0. Then F σ is σβ-geodesically convex, which implies that

F σ(µ∗
σ)− F σ(µt) ≥

〈

∇
δF σ

δµ
(µt, ·), T

µ∗

σ
µt

− Id

〉

L2
µt

(Rd)

+
σβ

2
W2

2 (µt, µ
∗
σ),

where T
µ∗

σ
µt : Rd → R

d is the optimal transport map from µt to µ
∗
σ, provided that it exists.

Furthermore, by [1, Lemma 8.4.7] applied to (1.6), it holds that

1

2

d

dt
W2

2 (µt, µ
∗
σ) =

〈

∇
δF σ

δµ
(µt, ·), T

µ∗

σ
µt

− Id

〉

L2
µt

(Rd)

.

Hence one obtains the following Evolution Variational Inequality (EVI, cf. [1, Theorem
11.1.4])

1

2

d

dt
W2

2 (µt, µ
∗
σ) ≤ − (F σ(µt)− F σ(µ∗

σ))−
σβ

2
W2

2 (µt, µ
∗
σ),

which implies convergence of (1.6) to µ∗
σ in the Wasserstein distance with rate O(e−σβt).

On the other hand, assume that F is flat-convex, which implies that

(1.7) F (µ∗
σ)− F (µt) ≥

∫

Rd

δF

δµ
(µt, x)(µ

∗
σ − µt)(dx),

and assume that the proximal measure Φ[µ] ∝ e−σ−1 δF
δµ

(µ,·)−U satisfies the log-Sobolev
inequality (LSI) with a constant θ > 0 for any µ ∈ P2(R

d). By (1.7), we obtain

(1.8) F σ(µt)− F σ(µ∗
σ) ≤ σKL(µt|Φ[µt]),

which is the right-hand side of the “sandwich” entropy lemma (Lemma 2.7). Then via
the arguments in [27, 12] using the LSI and (1.8), we have

d

dt
(F σ(µt)− F σ(µ∗

σ)) = −σ2I(µt|Φ[µt]) ≤ −2θσ2 KL(µt|Φ[µt])

≤ −2θσ (F σ(µt)− F σ(µ∗
σ)) .

3



Hence, convergence of (1.6) to µ∗
σ with rate O(e−2θσt) is obtained from Gronwall’s lemma.

In this setting, the same rate of convergence in the Wasserstein distance then follows
immediately from Lemma 2.7 and Talagrand’s inequality since µ∗

σ = Φ[µ∗
σ].

We stress that the proof strategy via EVI fails if F is not geodesically convex, and
that there are examples of applications where the assumption of geodesic convexity is
not satisfied, while flat convexity holds (cf. Example 3.3). Motivated by this, in the
present paper we adapt the proof via LSI and the “sandwich” entropy lemma to discrete-
time stepping schemes, and prove linear convergence of (1.3), (1.4) and (1.5) to µ∗

σ. In
particular, our proof only requires the notion of flat convexity of F instead of more
restrictive geodesic convexity.

A related line of research focuses on establishing LSIs for particle approximations of
the mean-field Langevin dynamics (1.6). This has received significant attention lately
with positive results [11, 37, 25].

1.3. Our contribution. We propose JKO-based methods for solving the mean-field op-
timization problem (1.1). Our contribution can be summarized as follows:

• In Theorem 5.1, 6.1, 7.2, we prove existence and uniqueness of the minimizer for
each scheme (1.3), (1.4) and (1.5), respectively.

• In Proposition 5.3, 6.3, 7.4, we prove that along the iterates generated by these
schemes the relative entropy KL(·|π) admits a unique Wasserstein subgradient,
and hence, in Lemma 5.4, 6.4, 7.5, we show that the iterates satisfy first-order
optimality conditions.

• Finally, our main contributions are Theorem 3.1 and Corollary 3.2 where we prove
linear convergence of (1.3), (1.4) and (1.5) to the minimizer µ∗

σ of F σ, with respect
to F σ(·)− F σ(µ∗

σ), KL(·|µ∗
σ) and W2

2 (·, µ
∗
σ). In particular, we show that for each

of the schemes there exists κ > 1 such that

0 ≤ F σ(µn)− F σ(µ∗
σ) ≤ κ−n

(

F σ(µ0)− F σ(µ∗
σ)
)

,

for all n ∈ N.

1.4. Related works. As discussed in the first part of the introduction, [31] considered
the case where F = 0, σ = 1 and π ∝ e−U in (1.1), with U strongly convex, LU -smooth
for some LU > 0, and the proximal scheme

νn+1 = (Id − τ∇U)# µ
n,

µn+1 = argmin
µ∈Pλ

2
(Rd)

{

H(µ) +
1

2τ
W2

2 (µ, ν
n+1)

}

,
(1.9)

with step-size τ > 0 and starting from µ0 ∈ Pλ
2 (R

d), where H is the entropy (cf. (2.1)).
Given that τ < L−1

U , it is proved in [31, Corollary 11] that the iterates (µn)n∈N generated
by (1.9) converge with linear rate with respect to µ 7→ W2

2 (µ, π) by establishing a discrete-
time variant of the EVI (see [31, Proposition 8]). One of the key ingredients in [31] for
proving the EVI is the geodesic convexity of

∫

Rd Udµ, which follows from assuming strong
convexity of U.

As we have already mentioned, for problem (1.1) the approach via EVI fails since F
is not necessarily geodesically convex. Hence, we prove convergence of (1.3), (1.4) and
(1.5) with linear rate via the LSI and the entropy “sandwich” lemma. We work under
the assumptions that F is flat-convex and U is strongly-convex. Moreover, since the JKO
step in (1.5) uses the relative entropy KL(·|π) instead of the entropy H, LU -smoothness
of U is not needed.
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The setting of [31] was extended in [23] by assuming that U is non-convex but expressed
as U := U1 − U2, where U1, U2 : Rd → R are convex, have quadratic growth and U2 is
LU2

-smooth, for some LU2
> 0. In this setup, the proximal scheme considered in [23] is

νn+1 = (Id + τ∇U2)# µ
n,

µn+1 = argmin
µ∈Pλ

2
(Rd)

{
∫

Rd

U1(x)dx+H(µ) +
1

2τ
W2

2 (µ, ν
n+1)

}

,
(1.10)

with step-size τ > 0 and starting from µ0 ∈ Pλ
2 (R

d). Under the assumption that
π ∝ e−(U1−U2) satisfies LSI, it is proved in [23, Theorem 4.5 (ii)] that the iterates
(µn)n∈N generated by (1.10) converge with linear rate with respect to µ 7→ KL(µ|π)
and µ 7→ W2

2 (µ, π). However, to apply the results from [23], one would need to verify
that π ∝ e−(U1−U2) indeed satisfies LSI, which is not immediate, and may require addi-
tional conditions on U1 and U2. Although in our setting the potential σ−1 δF

δµ
(µ, ·) + U

is also non-convex, we rigorously show that the proximal measure Φ[µ] ∝ e−σ−1 δF
δµ

(µ,·)−U

satisfies LSI for any µ ∈ P2(R
d) due to the Holley–Stroock criterion.

Moreover, the existence and uniqueness of the minimizer for the JKO step in (1.9)
and (1.10) are just postulated as assumptions in both [31, Assumption B2] and [23,
Assumption 1 (iv)], respectively. In contrast, we provide a fully rigorous proof of the
existence and uniqueness of the minimizer for each of our schemes (1.3), (1.4) and (1.5).

We also cover the issue of Wasserstein sub-differentiability of the relative entropy
KL(·|π) at every step of each scheme (1.3), (1.4) and (1.5). Since the relative entropy
is not Wasserstein differentiable (but only Wasserstein sub-differentiable), one needs to
prove that along each scheme the iterates belong to a certain class of Sobolev regularity,
and hence the relative entropy KL(·|π) has a unique Wasserstein sub-gradient at µ given
by ∇ log dµ

dπ
. Moreover, within this class we are guaranteed that the relative Fisher in-

formation is finite. These two points, namely existence of unique minimizers for scheme
steps and Wasserstein differentiability are in fact technically the most challenging steps
of all our convergence proofs.

2. Preliminaries and assumptions

In this section, we introduce the necessary notations and assumptions used throughout
the paper, and recall some definitions and results.

2.1. Notation. By P2(R
d) we denote the space of probability measures with finite second

moment. We equip P2(R
d) with the 2-Wasserstein distance W2, and as it is common in

the literature we refer to the metric space
(

P2(R
d),W2

)

as the Wasserstein space. Let

B(Rd) denote the Borel σ-algebra over Rd. For any measures µ, ν on
(

R
d,B(Rd)

)

, we write
µ ≪ ν if µ is absolutely continuous with respect to ν. The set of absolutely continuous
measures in P2(R

d) with respect to ν is denoted by Pν
2 (R

d) :=
{

µ ∈ P2(R
d) : µ≪ ν

}

.

We denote by λ the Lebesgue measure on R
d. For any measures µ, ν ∈ P2(R

d), the
map T ν

µ : Rd → R
d denotes the optimal transport map from µ to ν. Let p ∈ {1, 2}.

For any µ ∈ P2(R
d), let

(

Lp
µ(R

d), ‖ · ‖Lp
µ(Rd)

)

be the space of B(Rd)-measurable functions

f : Rd → R
d such that ‖f‖Lp

µ(Rd) :=
(∫

Rd |f(x)|
pµ(dx)

)
1

p < ∞. Note that the identity

map Id : Rd → R
d, given by I(x) = x, for all x ∈ R

d, is an element of L2
µ(R

d). For

any µ ∈ P2(R
d), we denote by 〈·, ·〉L2

µ(R
d) the inner product on the space L2

µ(R
d). Let

W 1,p
µ (Rd) be the weighted Sobolev space of B(Rd)-measurable functions f : Rd → R

d

5



such that f ∈ Lp
µ(R

d) and ∇f ∈ Lp
µ(R

d). Let W 1,1
λ,loc(R

d) be the Sobolev space of B(Rd)-

measurable functions f : Rd → R
d such that f ∈ L1

λ,loc(R
d) and ∇f ∈ L1

λ,loc(R
d). For any

f, g : Rd → R
d, the composition f ◦ g : Rd → R

d is denoted by f(g).
For the Lebesgue measure λ on R

d, the entropy H : P2(R
d) → [0,∞] is given for any

µ ∈ P2(R
d) by

(2.1) H(µ) :=

{

∫

Rd log
dµ
dλ
(x)µ(dx), µ ∈ Pλ

2 (R
d),

+∞, else.

For π ∈ P2(R
d), the relative entropy KL(·|π) : P2(R

d) → [0,∞] with respect to π is
given for any µ ∈ P2(R

d) by

KL(µ|π) :=

{

∫

Rd log
dµ
dπ
(x)µ(dx), µ ∈ Pπ

2 (R
d),

+∞, else,

and the relative Fisher information I(·|π) : P2(R
d) → [0,∞] with respect to π is given

for any µ ∈ P2(R
d) by

I(µ|π) :=

{

∫

Rd

∣

∣∇ log dµ
dπ
(x)
∣

∣

2
µ(dx), µ ∈ Pπ

2 (R
d) and

√

dµ
dπ

∈ W 1,2
π (Rd),

+∞, else.

Assumption 2.1 (Flat-convexity of F ). Assume that F ∈ C1 (cf. Definition B.1) is
convex on P2(R

d), i.e., for any µ′, µ ∈ P2(R
d), it holds

F (µ′)− F (µ) ≥

∫

Rd

δF

δµ
(µ, x)(µ′ − µ)(dx).

Assumption 2.2 (Lipschitzness and boundedness of the flat derivative). Assume that
F ∈ C1 and there exist CF , LF > 0 such that for all µ, µ′ ∈ P2(R

d) and all x, x′ ∈ R
d, we

have

(2.2)

∣

∣

∣

∣

δF

δµ
(µ′, x′)−

δF

δµ
(µ, x)

∣

∣

∣

∣

≤ LF (|x′ − x|+W2(µ
′, µ)) ,

(2.3)

∣

∣

∣

∣

δF

δµ
(µ, x)

∣

∣

∣

∣

≤ CF .

Assumption 2.3. Assume that π(dx) ∝ e−U(x)dx for a continuously differentiable func-
tion U : Rd → R such that:

(i) U is bounded below and has at least quadratic growth, i.e.,

(2.4) ess inf
x∈Rd

U(x) > −∞ and lim inf
x→∞

U(x)

|x|2
> 0,

(ii) U is αU -strongly convex, i.e., there exists αU > 0 such that for all x, y ∈ R
d, it holds

(2.5) αU |x− y|2 ≤ (x− y) · (∇U(x)−∇U(y)) ,

Assumption 2.1, 2.2 and 2.3 are standard in the mean-field optimization literature;
see e.g. [17, 27, 12, 9]. In particular, the last two allow us to establish existence and
uniqueness of the minimizer of (1.1).

Proposition 2.4 ([9, Proposition 1]). Let Assumption 2.2 and (2.4) in Assumption 2.3
hold. Then F σ admits a unique minimizer µ∗

σ ∈ Pλ
2 (R

d) given by

µ∗
σ(dx) =

1

Z(µ∗
σ)
e−

1

σ
δF
δµ

(µ∗

σ ,x)−U(x)dx,

6



where Z(µ∗
σ) is a normalization constant.

Next, we recall the definition of the so-called proximal Gibbs measure which is a crucial
ingredient in proving convergence via LSI.

Definition 2.5 (Proximal Gibbs measure; [27, 12]). For any µ ∈ Pλ
2 (R

d), define the
operator Φ : Pλ

2 (R
d) → Pλ

2 (R
d) by

(2.6) Φ[µ](dx) :=
1

Z(µ)
e−

1

σ
δF
δµ

(µ,x)−U(x)dx,

where, for each µ ∈ Pλ
2 (R

d), Z(µ) is a normalization constant. We call Φ[µ] the proximal
Gibbs measure.

It follows via (2.5) in Assumption 2.3 and the Bakry–Émery criterion [3], that π satisfies
the LSI with constant αU > 0. This fact together with (2.3) in Assumption 2.2 and the

Holley–Stroock criterion [16] imply that Φ[µ] satisfies the LSI with constant αUe
−

4CF
σ ,

i.e., for any µ ∈ Pλ
2 (R

d), it holds

(2.7) KL
(

µ
∣

∣

∣
Φ[µ]

)

≤
e

4CF
σ

2αU
I
(

µ
∣

∣

∣
Φ[µ]

)

.

Furthermore, according to [28], since Φ[µ] satisfies (2.7), it also satisfies Talagrand’s
inequality, i.e., for any µ ∈ Pλ

2 (R
d), it holds

(2.8) W2
2 (µ,Φ[µ]) ≤

2e
4CF
σ

αU
KL
(

µ
∣

∣

∣
Φ[µ]

)

.

We also highlight that µ∗
σ satisfies both (2.7) and (2.8) since µ∗

σ = Φ[µ∗
σ].

Remark 2.6. Condition (2.3) in Assumption 2.2 that is used for the Holley-Stroock crite-
rion could be relaxed into Lipschitz continuity of the map x 7→ δF

δµ
(µ, x) uniformly over µ.

Under this assumption, according to [8, Theorem 2.7 (2)], we obtain an upper bound on

the log-Sobolev constant of Φ[µ]. Thus, our results will still hold if we replace αUe
−

4CF
σ

by that upper bound.

Using Assumption 2.1, [27, 12] proved the following entropy “sandwich” lemma, which
provides bounds for the distance between F σ and the minimum value F σ(µ∗

σ).

Lemma 2.7 ([27, 12]). Let Assumption 2.1, 2.2 and (2.4) in Assumption 2.3 hold. Let
µ∗
σ ∈ Pλ

2 (R
d) be the unique minimizer of F σ. Then, for any µ ∈ P2(R

d), we have

σKL(µ|µ∗
σ) ≤ F σ(µ)− F σ(µ∗

σ) ≤ σKL(µ|Φ[µ]).

It is worth stressing that for proving linear convergence of (1.3), (1.4) and (1.5), it
suffices to show that for each scheme, there exists κ > 1 such that

F σ(µn)− F σ(µ∗
σ) ≤ κ−n

(

F σ(µ0)− F σ(µ∗
σ)
)

,

for all n ∈ N, where (µn)n are the iterates generated by (1.3), (1.4) and (1.5), respec-
tively. Then convergence with respect to µ 7→ KL(µ|µ∗

σ) and µ 7→ W2
2 (µ, µ

∗
σ) will follow

immediately from Lemma 2.7 and Talagrand’s inequality (2.8). The dependence of other
constants on κ will be made explicit in the statement of the convergence result.

The following standard assumptions are concerned with the Wasserstein regularity of
F, in particular the existence of its Wasserstein gradient understood as the Euclidean
gradient of the flat derivative, and the Lipschitz continuity of the Wasserstein gradient.

7



Assumption 2.8 (Wasserstein differentiability of F ). Assume that, for any µ ∈ P2(R
d),

the function R
d ∋ x 7→ δF

δµ
(µ, x) ∈ R is differentiable,

(i) there exists C ′
F > 0 such that

∣

∣

∣
∇ δF

δµ
(µ, x)

∣

∣

∣
≤ C ′

F , for all (µ, x) ∈ P2(R
d)× R

d, and

(ii) the derivative P2(R
d)×R

d ∋ (µ, x) 7→ ∇ δF
δµ
(µ, x) ∈ R

d is jointly continuous in (µ, x).

Under Assumption 2.8, by [7, Proposition 5.48; Theorem 5.64], it follows that F :
P2(R

d) → R
d is Wasserstein differentiable at µ ∈ P2(R

d) (cf. Definition B.4) and
∇µF (µ)(·) = ∇ δF

δµ
(µ, ·).

Assumption 2.9 (Lipschitzness of the Wasserstein gradient). Assume there exists L′
F >

0 such that for all µ, µ′ ∈ P2(R
d) and all x, x′ ∈ R

d, we have

|∇µF (µ
′)(x′)−∇µF (µ)(x)| ≤ L′

F (|x′ − x|+W2(µ
′, µ)) .

3. Main results

In this section, we present the main convergence results. There are three groups of
auxiliary results on which the convergence proofs are built, each corresponding to one
of the schemes (1.3), (1.4) and (1.5), but these are deferred to Appendix 5, 6 and 7,
respectively. Before we state the main results, we first outline the general proof steps
applicable to all schemes:

(1) Modifying the argument in the proof of [20, Proposition 4.1], we prove that given
µn ∈ Pπ

2 (R
d), each scheme (1.3), (1.4) and (1.5) admits a unique minimizer µn+1 ∈

Pπ
2 (R

d).
(2) Then, leveraging results that connect the metric slope of the relative entropy and

the relative Fisher information, we prove that, for each scheme (1.3), (1.4) and
(1.5),

µn+1 ∈ C :=

{

m ∈ Pπ
2 (R

d) :
dm

dπ
∈ W

1,1
λ,loc(R

d),

√

dm

dπ
∈ W 1,2

π (Rd)

}

.

Hence, by Theorem A.5, we conclude that the relative entropy KL(·|π) has a

unique Wasserstein subgradient at µn+1, and it is given by ∇ log dµn+1

dπ
.

(3) As a consequence of the previous result, we prove first-order optimality conditions
for each scheme (1.3), (1.4) and (1.5). The optimality conditions enable us to
connect the Fisher information relative to the proximal measures Φ given by (2.6)
with the Wasserstein distance W2

2 (µ
n+1, µn).

(4) Finally, for (1.3), the convergence proof is concluded via the LSI and Lemma 2.7.
For (1.4) and (1.5), the proofs are concluded in the same way as for (1.3) but
they also require smoothness of F relative to W2

2 (µ
n+1, µn), and convexity along

(generalized) geodesics of KL(·|π).

Theorem 3.1 (Linear convergence of the schemes (1.3), (1.4), 1.5). Let Assumption 2.1,
2.2, 2.3, 2.8 hold. Let µ0 ∈ Pλ

2 (R
d). Then

(i) for the iterates (µn)n≥1 of (1.3), we have

F σ(µn)− F σ(µ∗
σ) ≤

(

1 + e−
4CF
σ τσαU

)−n
(

F σ(µ0)− F σ(µ∗
σ)
)

, for all n ∈ N.

(ii) Let Assumption 2.9 hold. If τ < 2
L′

F

, then for the iterates (µn)n≥1 of (1.4), we have

F σ(µn)−F σ(µ∗
σ) ≤

(

1 +
τσαU (1− 2τL′

F )

1 + (τL′
F )

2
e−

4CF
σ

)−n
(

F σ(µ0)− F σ(µ∗
σ)
)

, for all n ∈ N.
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(iii) Let Assumption 2.9 hold. If τ < 1
L′

F
, then for the iterates (µn)n≥1 of (1.5), we have

F σ(µn)− F σ(µ∗
σ) ≤

(

1 +
τσαU (1− τL′

F )

1 + 4(τL′
F )

2
e−

4CF
σ

)−n
(

F σ(µ0)− F σ(µ∗
σ)
)

, for all n ∈ N.

As mentioned in Section 2, once we have Theorem 3.1, the convergence with respect to
µ 7→ KL(µ|µ∗

σ) and µ 7→ W2
2 (µ, µ

∗
σ) follows from Lemma 2.7 and the Talagrand inequality

(2.8).

Corollary 3.2 (Linear convergence in KL and W2
2 ). For κ > 1 corresponding to each

rate in (i), (ii) and (iii) in Theorem 3.1, we obtain

KL (µn|µ∗
σ) ≤

1

σ
κ−n

(

F σ(µ0)− F σ(µ∗
σ)
)

and

W2
2 (µ

n, µ∗
σ) ≤

2e
4CF
σ

αUσ
κ−n

(

F σ(µ0)− F σ(µ∗
σ)
)

, for all n ∈ N .

We finish this section by considering the example of an L2-loss function for a two-layer
mean-field NN and showing that, under regularity conditions on the activation function,
the loss function satisfies Assumption 2.1, 2.2, 2.8, 2.9.

Example 3.3 (Two-layer mean-field neural network; [17]). Let ν be a compactly sup-
ported measure representing the training data (y, z) ∈ R × R

d−1, let (w, b) ∈ R
d−1 × R

be the parameters of the neural network and let ϕ : R → R be a bounded, continuous,
non-constant activation function.

For x := (w, b) ∈ R
d and z ∈ R

d−1, define the function ϕ̂(x, z) := ℓ(b)ϕ(〈w, z〉), where
ℓ : R → [−K,K] is a clipping function with clipping threshold K > 0. The training of
the two-layer neural network aims to find the optimal set of parameters {xi}

N
i=1 which

minimize the non-convex L2-loss function

(3.1) FN (x1, ..., xN) :=

∫

Rd

∣

∣

∣

∣

y −
1

N

N
∑

i=1

ϕ̂(xi, z)

∣

∣

∣

∣

2

ν(dy, dz).

Instead of the non-convex minimization problem (3.1), we consider the mean-field opti-
mization problem

min
µ∈P2(Rd)

F (µ), with F (µ) :=

∫

Rd

∣

∣y − E
X∼µ[ϕ̂(X, z)]

∣

∣

2
ν(dy, dz).

Observe that by linearity of the expectation in µ and convexity of | · |2, the function F
satisfies the flat-convexity condition F ((1 − ε)µ + εµ′) ≤ (1 − ε)F (µ) + εF (µ′), for any
µ, µ′ ∈ P2(R

d) and any ε ∈ [0, 1]. Hence, by [17, Lemma 4.1], F satisfies Assumption 2.1.
We stress that F is not geodesically convex in the Wasserstein space. If it were, then

this would require FN to be convex, which is clearly not the case (see also [10, Remark
3.4] for more details).

Assume that ∇xϕ̂,∇
2
xϕ̂,∇bℓ,∇

2
bℓ are bounded and continuous. Then

δF

δµ
(µ, x) = −

∫

Rd

(

y − E
X∼µ[ϕ̂(X, z)]

)

ϕ̂(x, z)ν(dy, dz),

∇µF (µ)(x) = −

∫

Rd

(

y − E
X∼µ[ϕ̂(X, z)]

)

∇xϕ̂(x, z)ν(dy, dz),

and a straightforward calculation shows that F satisfies Assumption 2.2, 2.8, 2.9. In view
of Remark (2.6), note that the clipping function ℓ is not needed if Lipschitz continuity
of the map x 7→ δF

δµ
(µ, x) uniformly over µ is assumed instead of condition (2.3) in

Assumption 2.2.
9



Before we give the proof of Theorem 3.1, for convenience, we give a short calculation
that we will repeatedly use in the proof. For F satisfying Assumption 2.8, π ∝ e−U , any
µ ∈ P2(R

d) and any µ′ ∈ Pλ
2 (R

d), it holds

(3.2)

∇µF (µ) + σ∇ log
dµ′

dπ
= ∇

δF

δµ
(µ, ·) + σ∇ log

dµ′

dπ

= −σ∇ log e−
1

σ
δF
δµ

(µ,·) + σ∇ log
dµ′

dπ
= σ∇ log

dµ′

dΦ[µ]
,

where the last equality follows from (2.6).

4. Proof of Theorem 3.1

4.1. Proof of (i). First, note that by Proposition 5.3, the iterates (µn)n∈N ⊂ C. Since
µn+1 ∈ C is a minimizer of (1.3), it follows that

(4.1) F σ(µn+1) +
1

2τ
W2

2 (µ
n+1, µn) ≤ F σ(µn) +

1

2τ
W2

2 (µ
n, µn) = F σ(µn).

By Lemma 5.4, the optimality condition for (1.3) reads

∇µF (µ
n+1)(x) + σ∇ log

dµn+1

dπ
(x) =

1

τ

(

T
µn

µn+1(x)− x
)

, for µn+1-a.e. x.

By (3.2) with µ′ = µ = µn+1, we obtain

(4.2) ∇ log
dµn+1

dΦ[µn+1]
(x) =

1

τσ

(

T
µn

µn+1(x)− x
)

, for µn+1-a.e. x.

Squaring both sides of (4.2) and integrating with respect to µn+1 gives

(4.3) I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

=
1

τ 2σ2
W2

2 (µ
n+1, µn).

Using (4.3) in (4.1) gives

F σ(µn+1) ≤ F σ(µn)−
1

2τ
W2

2 (µ
n+1, µn) = F σ(µn)−

τσ2

2
I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

≤ F σ(µn)− τσ2 αU

e
4CF
σ

KL
(

µn+1
∣

∣

∣
Φ[µn+1]

)

≤ F σ(µn)− τσ
αU

e
4CF
σ

(

F σ(µn+1)− F σ(µ∗
σ)
)

,

where the second and third inequalities follow from (2.7) and Lemma 2.7, respectively.
Let κ := 1 + τσαU

e
4CF
σ

> 1. Rearranging the inequality above gives

F σ(µn+1)− F σ(µ∗
σ) ≤ κ−1 (F σ(µn)− F σ(µ∗

σ)) .

The convergence estimate follows by iterating over n ∈ N.

4.2. Proof of (ii). First, note that by Proposition 6.3, the iterates (µn)n∈N ⊂ C. Com-
bining Lemma 6.5 with Lemma 6.6 gives

(4.4)
F σ(µn+1)− F σ(µn)−

〈

∇µF (µ
n) + σ∇ log

dµn+1

dπ

(

T
µn+1

µn

)

, T
µn+1

µn − Id

〉

L2
µn

(Rd)

≤ L′
FW

2
2 (µ

n+1, µn).
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Using (3.2) with µ = µn and µ′ = µn+1, observe that for µn-a.e. x, we have

(4.5)

∇µF (µ
n)(x) + σ∇ log

dµn+1

dπ

(

T
µn+1

µn (x)
)

= ∇µF (µ
n)(x)−∇µF (µ

n)
(

T
µn+1

µn (x)
)

+∇µF (µ
n)
(

T
µn+1

µn (x)
)

+ σ∇ log
dµn+1

dπ

(

T
µn+1

µn (x)
)

= ∇µF (µ
n)(x)−∇µF (µ

n)
(

T
µn+1

µn (x)
)

+ σ∇ log
dµn+1

dΦ[µn]

(

T
µn+1

µn (x)
)

.

Hence, using (4.5) in (4.4) gives

(4.6)

F σ(µn+1)− F σ(µn)−

〈

σ∇ log
dµn+1

dΦ[µn]

(

T
µn+1

µn (x)
)

, T
µn+1

µn − Id

〉

L2
µn

(Rd)

≤ L′
FW

2
2 (µ

n+1, µn) +
〈

∇µF (µ
n)(x)−∇µF (µ

n)
(

T
µn+1

µn (x)
)

, T
µn+1

µn − Id

〉

L2
µn

(Rd)

≤ L′
FW

2
2 (µ

n+1, µn) +
∥

∥

∥
∇µF (µ

n)−∇µF (µ
n)
(

T
µn+1

µn

)
∥

∥

∥

L2
µn

(Rd)

∥

∥

∥
T

µn+1

µn − Id

∥

∥

∥

L2
µn

(Rd)

≤ L′
FW

2
2 (µ

n+1, µn) + L′
F

∥

∥

∥
T

µn+1

µn − Id

∥

∥

∥

2

L2
µn

(Rd)
= 2L′

FW
2
2 (µ

n+1, µn),

where the second, third and last inequality follows from the Cauchy-Schwarz inequality,
Assumption 2.9 and Corollary A.3, respectively.

By Lemma 6.4, the optimality condition for (1.4) reads

∇µF (µ
n)(x) + σ∇ log

dµn+1

dπ
(x) =

1

τ

(

T
µn

µn+1(x)− x
)

, for µn+1-a.e. x.

By Definition 2.5 for µ = µn and µ′ = µn+1, we obtain

(4.7) ∇ log
dµn+1

dΦ[µn]
(x) =

1

τσ

(

T
µn

µn+1(x)− x
)

, for µn+1-a.e. x.

Hence, using the fact that T µn+1

µn ◦ T µn

µn+1 = Id, µ
n+1-a.e., it follows that

(4.8) ∇ log
dµn+1

dΦ[µn]

(

T
µn+1

µn (x)
)

=
1

τσ

(

x− T
µn+1

µn (x)
)

, for µn-a.e. x.

Using (4.8) in the third term on the left-hand side of (4.6) gives

(4.9)
〈

σ∇ log
dµn+1

dΦ[µn]

(

T
µn+1

µn

)

, T
µn+1

µn − Id

〉

L2
µn

(Rd)

= −τσ2

∥

∥

∥

∥

∇ log
dµn+1

dΦ[µn]

(

T
µn+1

µn

)

∥

∥

∥

∥

2

L2
µn

(Rd)

= −τσ2I
(

µn+1
∣

∣

∣
Φ[µn]

)

.

Also, squaring both sides of (4.7) and integrating with respect to µn+1 gives

(4.10) I
(

µn+1
∣

∣

∣
Φ[µn]

)

=
1

τ 2σ2
W2

2 (µ
n+1, µn).
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Using (4.9) and (4.10) in (4.6) gives

(4.11)

F σ(µn+1) ≤ F σ(µn)− τσ2I
(

µn+1
∣

∣

∣
Φ[µn]

)

+ 2L′
FW

2
2 (µ

n+1, µn)

= F σ(µn)− τσ2I
(

µn+1
∣

∣

∣
Φ[µn]

)

+ 2τ 2σ2L′
F I
(

µn+1
∣

∣

∣
Φ[µn]

)

= F σ(µn)− τσ2 (1− 2τL′
F ) I

(

µn+1
∣

∣

∣
Φ[µn]

)

.

Now, using again (3.2) with µ′ = µ = µn+1, observe that (4.8) can be equivalently written
as

1

τ

(

x− T
µn+1

µn (x)
)

= ∇µF (µ
n)
(

T
µn+1

µn (x)
)

+ σ∇ log
dµn+1

dπ

(

T
µn+1

µn (x)
)

= ∇µF (µ
n)
(

T
µn+1

µn (x)
)

−∇µF (µ
n+1)

(

T
µn+1

µn (x)
)

+∇µF (µ
n+1)

(

T
µn+1

µn (x)
)

+ σ∇ log
dµn+1

dπ

(

T
µn+1

µn (x)
)

= ∇µF (µ
n)
(

T
µn+1

µn (x)
)

−∇µF (µ
n+1)

(

T
µn+1

µn (x)
)

+ σ∇ log
dµn+1

dΦ[µn+1]

(

T
µn+1

µn (x)
)

.

By Minkowski’s inequality, we obtain

σ2I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

= σ2

∥

∥

∥

∥

∇ log
dµn+1

dΦ[µn+1]

(

T
µn+1

µn

)

∥

∥

∥

∥

2

L2
µn

(Rd)

≤ 2

(

∥

∥

∥
∇µF (µ

n+1)
(

T
µn+1

µn (x)
)

−∇µF (µ
n)
(

T
µn+1

µn (x)
)
∥

∥

∥

2

L2
µn

(Rd)
+

1

τ 2

∥

∥

∥
Id − T

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)

)

≤ 2(L′
F )

2W2
2 (µ

n+1, µn) +
2

τ 2
W2

2 (µ
n+1, µn)

= 2

(

(L′
F )

2 +
1

τ 2

)

τ 2σ2I
(

µn+1
∣

∣

∣
Φ[µn]

)

,

where the second inequality follows from Assumption 2.9 and Corollary A.3, while the
last equality follows from (4.10). Hence,

I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

≤ 2
(

1 + τ 2(L′
F )

2
)

I
(

µn+1
∣

∣

∣
Φ[µn]

)

.

Since τ < 2
L′

F

, using this inequality in (4.11) gives

F σ(µn+1) ≤ F σ(µn)−
τσ2 (1− 2τL′

F )

2 (1 + τ 2(L′
F )

2)
I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

≤ F σ(µn)−
τσ2 (1− 2τL′

F )

2 (1 + τ 2(L′
F )

2)

2αU

e
4CF
σ

KL
(

µn+1
∣

∣

∣
Φ[µn+1]

)

≤ F σ(µn)−
τσ (1− 2τL′

F )

1 + τ 2(L′
F )

2

αU

e
4CF
σ

(

F σ(µn+1)− F σ(µ∗
σ)
)

,

where the second and third inequalities follow from (2.7) and Lemma 2.7, respectively.

Let κ := 1 +
τσαU(1−2τL′

F )

(1+τ2(L′

F )2)e
4CF
σ

> 1. Then rearranging the inequality above gives

F σ(µn+1)− F σ(µ∗
σ) ≤ κ−1 (F σ(µn)− F σ(µ∗

σ)) .

The convergence estimate follows by iterating over n ∈ N.
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4.3. Proof of (iii). First, note that by Proposition 7.4, the iterates (µn)n∈N ⊂ C, and
by Lemma 7.1 that (νn)n∈N ⊂ Pλ

2 (R
d). By Proposition 7.5, we have

σ∇ log
dµn+1

dπ
(x) =

1

τ

(

T νn+1

µn+1 (x)− x
)

, for µn+1-a.e. x.

By Corollary 7.3, exists a unique νn+1-a.e. optimal transport map T µn+1

νn+1 : Rd → R
d such

that T νn+1

µn+1 ◦ T µn+1

νn+1 = Id, ν
n+1-a.e.. We thus have

(4.12) T
µn+1

νn+1 = Id − τσ∇ log
dµn+1

dπ

(

T
µn+1

νn+1

)

, νn+1-a.e..

By convexity of KL(·|π) along generalized geodesics in the Wasserstein space [1, Theorem
9.4.10], taking µ = µn+1, π = µn and ν = νn+1 in [31, Lemma 4] gives

KL(µn+1|π) ≤ KL(µn|π)−

〈

∇ log
dµn+1

dπ

(

T
µn+1

νn+1

)

, T µn

νn+1
− T µn+1

νn+1

〉

L2

νn+1
(Rd)

.

By Corollary 7.3, we have T µn

νn+1 = (Id − τ∇µF (µ
n)(·))−1

, νn+1-a.e.. Therefore,

KL(µn+1|π) ≤ KL(µn|π)−

〈

∇ log
dµn+1

dπ

(

T
µn+1

νn+1

)

, (Id − τ∇µF (µ
n))−1 − T µn+1

νn+1

〉

L2

νn+1
(Rd)

.

Let us denote the pushforward from µn to µn+1 by P µn+1

µn := T
µn+1

νn+1 ◦T νn+1

µn . Then T µn+1

νn+1 =

P
µn+1

µn ◦ (Id − τ∇µF (µ
n))−1

, and hence by A.1, the last inequality is equivalent to

(4.13) KL(µn+1|π) ≤ KL(µn|π)−

〈

∇ log
dµn+1

dπ

(

P
µn+1

µn

)

, Id − P
µn+1

µn

〉

L2
µn

(Rd)

.

Using (4.12) and P µn+1

µn = T
µn+1

νn+1 ◦ (Id − τ∇µF (µ
n)) , we have

(4.14) P
µn+1

µn = Id − τ∇µF (µ
n)− τσ∇ log

dµn+1

dπ

(

P
µn+1

µn

)

, µn-a.e.,

Note that, for each n ∈ N, γn :=
(

Id, P
µn+1

µn

)

#
µn is a coupling between µn and µn+1.

Then, by Minkowski’s inequality, we obtain

(4.15)

σ2I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

= σ2

∥

∥

∥

∥

∇ log
dµn+1

dΦ[µn+1]

(

P
µn+1

µn

)

∥

∥

∥

∥

2

L2
µn

(Rd)

=

∥

∥

∥

∥

∇µF (µ
n+1)

(

P
µn+1

µn

)

+ σ log
dµn+1

dπ

(

P
µn+1

µn

)

∥

∥

∥

∥

2

L2
µn

(Rd)

≤ 2

(

∥

∥

∥
∇µF (µ

n+1)
(

P
µn+1

µn

)

−∇µF (µ
n)
∥

∥

∥

2

L2
µn

(Rd)
+

1

τ 2

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)

)

≤ 2

(

2(L′
F )

2W2
2 (µ

n+1, µn) + 2(L′
F )

2
∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)
+

1

τ 2

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)

)

≤ 2

(

1

τ 2
+ 4(L′

F )
2

)

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)
,

where the first equality follows from (3.2) with µ′ = µ = µn+1, first inequality follows
from (4.14) and last two inequalities follow from Assumption 2.9 and (A.2), respectively.
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Multiplying (4.13) by σ and using Lemma 6.5 gives

F σ(µn+1) ≤ F σ(µn) +

〈

∇µF (µ
n)(·) + σ∇ log

dµn+1

dπ

(

P
µn+1

µn

)

, P
µn+1

µn − Id

〉

L2
µn

(Rd)

+ L′
F

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)

= F σ(µn)−
1

τ

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)
+ L′

F

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)
,

where the equality follows from (4.14). Hence

F σ(µn+1) ≤ F σ(µn)−

(

1

τ
− L′

F

)

∥

∥

∥
Id − P

µn+1

µn

∥

∥

∥

2

L2
µn

(Rd)

≤ F σ(µn)−

(

1

τ
− L′

F

)

σ2

2
(

1
τ2

+ 4(L′
F )

2
)I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

= F σ(µn)− (1− τL′
F )

τσ2

2 (1 + 4(τL′
F )

2)
I
(

µn+1
∣

∣

∣
Φ[µn+1]

)

≤ F σ(µn)− (1− τL′
F )

ταUσ
2

e
4CF
σ (1 + 4(τL′

F )
2)

KL
(

µn+1
∣

∣

∣
Φ[µn+1]

)

,

the first inequality follows from (4.15) and the fact that τ < 1
L′

F

, whereas the last inequal-

ity follows from (2.7). Let

κ := 1 + (1− τL′
F )

ταUσ

e
4CF
σ (1 + 4(τL′

F )
2)
> 1 .

Then using Lemma 2.7 in the previous inequality gives

F σ(µn+1)− F σ(µ∗
σ) ≤ κ−1 (F σ(µn)− F σ(µ∗

σ)) .

The convergence estimate follows by iterating over n ∈ N.

5. Proximal point scheme

In this section, we present the auxiliary results needed for the proof of (i) in Theorem
3.1. We start by proving that (1.3) admits a unique minimizer.

Theorem 5.1 (Existence and uniqueness of minimizer for (1.3)). Let F ∈ C1 and As-
sumption 2.1, 2.2 hold. Given µ0 ∈ Pπ

2 (R
d), there exists a unique minimizer µ1 ∈ Pπ

2 (R
d)

of

(5.1) Pπ
2 (R

d) ∋ µ 7→ F(µ) := F σ(µ) +
1

2τ
W2

2 (µ, µ
0).

The proof is a modification of the argument in the proof of [20, Proposition 4.1], and
before we present it we give an outline of the main steps:

Step 1. Firstly, we show that F is bounded below on Pπ
2 (R

d).
Step 2. Secondly, we show that any minimizing sequence (µk)k∈N ⊂ Pπ

2 (R
d) of F

contains a weakly convergent subsequence in L1
π(R

d).
Step 3. Thirdly, we show that the weak limit of the converging subsequence is indeed

a minimizer of F .
Step 4. Finally, we deduce the uniqueness of the minimizer from the strict convexity

of KL(·|π).
14



Proof. Step 1. By Jensen’s inequality since the map z 7→ z log z is convex on [0,∞), it
follows that

(5.2) KL(µ|π) ≥ 0, for all µ ∈ Pπ
2 (R

d).

Since 1
2τ
W2

2 (·, µ
0) ≥ 0 and the fact that F is bounded below on Pπ

2 (R
d), by Assumption

2.2, it follows that F is bounded below on Pπ
2 (R

d), and thus infµ∈Pπ
2
(Rd)F(µ) > −∞.

Step 2. Let (µk)k∈N ⊂ Pπ
2 (R

d) be a minimizing sequence for F , i.e., limk→∞F(µk) =
infµ∈Pπ

2
(Rd)F(µ). Then the sequence (F(µk))k is bounded on Pπ

2 (R
d), i.e., there exists

MF > 0 such that |F(µk)| ≤MF , for all k ∈ N.

Thus, since 1
2τ
W2

2 (·, µ
0) ≥ 0, it follows that

KL(µk|π) ≤
1

σ
(MF − F (µk)) <

1

σ

(

MF − inf
µ∈Pπ

2
(Rd)

F (µ)

)

<∞,

and together with (5.2),

(5.3) (KL(µk|π))k is bounded.

From the inequality |y|2 ≤ 2|x|2 + 2|x − y|2, which holds for all x, y ∈ R
d, and (A.2), it

follows that

(5.4)

∫

Rd

|y|2µ′′(dy) ≤

∫

Rd

|x|2µ′(dx) + 2W2
2 (µ

′, µ′′), for all µ′, µ′′ ∈ Pπ
2 (R

d),

Again using (5.2) we obtain

MF ≥ F(µk) ≥ F (µk)+
1

2τ
W2

2 (µk, µ
0) ≥ F (µk)+

1

4τ

∫

Rd

|x|2µk(dx)−
1

2τ

∫

Rd

|x|2µ0(dx).

Hence, by Assumption 2.2,
∫

Rd

|x|2µk(dx) ≤ 4τ (MF − F (µk)) + 2

∫

Rd

|x|2µ0(dx)

≤ 4τ

(

MF − inf
µ∈Pπ

2
(Rd)

F (µ)

)

+ 2

∫

Rd

|x|2µ0(dx) <∞.

and hence

(5.5)

(
∫

Rd

|x|2µk(dx)

)

k

is bounded.

Note that there exists C > 0 such that

|min {z log z, 0}| ≤ C, for all z ≥ 0.

Hence, we obtain

(5.6)

∫

Rd

∣

∣

∣

∣

min

{

dµ

dπ
(x) log

dµ

dπ
(x), 0

}
∣

∣

∣

∣

π(dx) ≤ C

∫

Rd

π(dx) = C.

Furthermore, from (5.6), we obtain

(5.7)

(
∫

Rd

∣

∣

∣

∣

min

{

dµk

dπ
(x) log

dµk

dπ
(x), 0

}
∣

∣

∣

∣

π(dx)

)

k

is bounded.

Since max{z log z, 0} = z log z + |min{z log z, 0}|, for all z ≥ 0, it follows from (5.3) and
(5.7) that

(
∫

Rd

max

{

dµk

dπ
(x) log

dµk

dπ
(x), 0

}

π(dx)

)

k

is bounded.
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Since ‖dµk

dπ
‖L1

π(R
d) = 1, for all k ∈ N, we obtain that

(

dµk

dπ

)

k
is uniformly bounded in

L1
π(R

d). As [0,∞) ∋ z 7→ max{z log z, 0} is non-negative, increasing and has superlinear
growth together with (5.3) implies via [5, Theorem 4.5.9] that

(

dµk

dπ

)

k
is uniformly inte-

grable. Consequently, according to the Dunford-Pettis theorem (see [5, Corollary 4.7.19]),
there exists µ∗ ∈ Pπ

2 (R
d) such that (at least for a subsequence)

(5.8)
dµk

dπ
→

dµ∗

dπ
weakly in L1

π(R
d) as k → ∞,

i.e.,
∫

Rd

h(x)
dµk

dπ
(x)π(dx) →

∫

Rd

h(x)
dµ∗

dπ
(x)π(dx) as k → ∞,

for all h ∈ L∞
π (Rd).

Step 3. Observe that any continuous bounded function g : Rd → R is in L∞
π (Rd), and

hence, by (5.8), we obtain as k → ∞,
∫

Rd

g(x)µk(dx) =

∫

Rd

g(x)
dµk

dπ
(x)π(dx) →

∫

Rd

g(x)
dµ∗

dπ
(x)π(dx) =

∫

Rd

g(x)µ∗(dx),

i.e., µk → µ∗ weakly (with respect to the topology of probability measures convergence)
as k → ∞.

Since KL(·|π) is lower semi-continuous with respect to weak convergence of probability
measures, it follows that

KL(µ∗|π) ≤ lim inf
k→∞

KL(µk|π).

By (5.5) and continuity of W2 (see [36, Corollary 6.11]), we have

W2
2 (µ

0, µ∗) = lim
k→∞

W2
2 (µ

0, µk).

Now, we show that limk→∞ F (µk) = F (µ∗). Indeed, by Defintion B.1, we have

|F (µk)− F (µ∗)| ≤

∫ 1

0

∣

∣

∣

∣

∫

Rd

δF

δµ
(µλ,k, x) (µk − µ)(dx)

∣

∣

∣

∣

dη,

where µη,k := (1− η)µk + ηµ∗. For every η ∈ [0, 1], we have
∣

∣

∣

∣

∫

Rd

δF

δµ
(µη,k, x)(µk − µ∗)(dx)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Rd

δF

δµ
(µ∗, x)(µk − µ∗)(dx)

∣

∣

∣

∣

+

∫

Rd

∣

∣

∣

∣

δF

δµ
(µη,k, x)−

δF

δµ
(µ∗, x)

∣

∣

∣

∣

(µk + µ∗)(dx).

Since δF
δµ
(µ∗, ·) is a bounded continuous function (cf. Definition B.1 and Assumption 2.2),

the weak convergence µk → µ∗ (with respect to convergence of probability measures)
implies

lim
k→∞

∣

∣

∣

∣

∫

Rd

δF

δµ
(µ∗, x)(µk − µ∗)(dx)

∣

∣

∣

∣

= 0.

For the second term, by Assumption 2.2, we have

lim sup
k→∞

∫

Rd

∣

∣

∣

∣

δF

δµ
(µη,k, x)−

δF

δµ
(µ∗, x)

∣

∣

∣

∣

(µk + µ∗)(dx) ≤ 2LF lim sup
k→∞

W2(µη,k, µ
∗) = 0,

by (5.5) and continuity of W2 (see [36, Corollary 6.11]). Finally, using Assumption 2.2,
we have, for any η ∈ [0, 1],

∣

∣

∣

∣

∫

Rd

δF

δµ
(µη,k, x)(µk − µ∗)(dx)

∣

∣

∣

∣

≤ 2CF ,
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thus we can apply the dominated convergence theorem, and obtain that as k → ∞,
∫ 1

0

∣

∣

∣

∣

∫

Rd

δF

δµ
(µη,k, x)(µk − µ∗)(dx)

∣

∣

∣

∣

dη → 0.

Putting everything together, we obtain

F(µ∗) ≤ lim inf
k→∞

F(µk) = inf
µ∈Pπ

2
(Rd)

F(µ).

On the other hand, from the definition of infimum, we have

F(µ∗) ≥ inf
µ∈Pπ

2
(Rd)

F(µ).

Hence, F(µ∗) = infµ∈Pπ
2
(Rd)F(µ), and therefore µ∗ ∈ Pπ

2 (R
d) is a minimizer of F , which

we shall denote by µ1.

Step 4. The uniqueness of the minimizer of F follows from Assumption 2.1, convexity
of Pπ

2 (R
d) ∋ µ 7→ W2

2 (µ, µ
0), and strict convexity of Pπ

2 (R
d) ∋ µ 7→ KL(µ|π). �

From Theorem 5.1 it follows inductively that, for each n ∈ N, given µn ∈ Pπ
2 (R

d), the
scheme (1.3) admits a unique minimizer µn+1 ∈ Pπ

2 (R
d). Hence, if µ0 ∈ Pπ

2 (R
d), then

(µn)n∈N ⊂ Pπ
2 (R

d) along the scheme (1.3). Therefore, via Theorem A.2, we obtain

Corollary 5.2 (Existence of optimal transport maps along (1.3)). Let ν ∈ P2(R
d). Let

F ∈ C1 and Assumption 2.1, 2.2 hold. Given µ0 ∈ Pπ
2 (R

d), there exists a unique µn-
a.e. optimal transport map T ν

µn : Rd → R
d from µn to ν. In particular, if ν = µn+1,

there also exists a unique µn+1-a.e. optimal transport map T µn

µn+1 : Rd → R
d such that

T
µn

µn+1 ◦ T
µn+1

µn = Id, µ
n-a.e and T µn+1

µn ◦ T µn

µn+1 = Id, µ
n+1-a.e..

The following proposition together with an induction argument guarantee that KL(·|π)
admits a unique Wasserstein sub-differential given by ∇ log dµn

dπ
, where µn is the iterate

generated by (1.3) at each step n ≥ 1.

Proposition 5.3 (Wasserstein sub-differentiability class for KL(·|π) along (1.3)). Let
(2.4) in Assumption 2.3 hold. Let F ∈ C1 and Assumption 2.1, 2.2 hold. Given µ0 ∈
Pπ

2 (R
d), the unique minimizer µ1 ∈ Pπ

2 (R
d) of (5.1) belongs to C.

Proof. Since µ0 ∈ Pπ
2 (R

d), F ∈ C1, and Assumption 2.1, 2.2 hold, Theorem 5.1 guarantees
the existence and uniqueness of a minimizer µ1 ∈ Pπ

2 (R
d) for (5.1). We will now prove

that µ1 ∈ C. By [1, Definition 1.2.4], the metric slope of the relative entropy KL(·|π) at
µ ∈ Pπ

2 (R
d) is defined by

|dKL(·|π)|(µ) := lim sup
ν→µ

(KL(µ|π)−KL(ν|π))+
W2(ν, µ)

.

Since µ1 ∈ Pπ
2 (R

d) is a minimizer for (5.1), it follows that for any µ ∈ Pπ
2 (R

d),

(5.9)

KL(µ1|π)−KL(µ|π) ≤
1

σ

(

F (µ)− F (µ1)
)

+
1

2τσ

(

W2
2 (µ, µ

0)−W2
2 (µ

1, µ0)
)

=
1

σ

∫ 1

0

∫

Rd

δF

δµ
(µη, x)(µ− µ1)(dx)dη

+
1

2τσ

(

W2(µ, µ
0)−W2(µ

1, µ0)
) (

W2(µ, µ
0) +W2(µ

1, µ0)
)

≤
1

σ

∫ 1

0

∫

Rd

δF

δµ
(µη, x)(µ− µ1)(dx)dη +

1

2τσ
W2(µ, µ

1)
(

W2(µ, µ
0) +W2(µ

1, µ0)
)

,
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where the first equality follows from Definition B.1 with µη := µ+ η(µ1−µ), and the last
inequality follows from the triangle inequality applied to W2.

By Theorem A.2, there exists a unique optimal coupling γ∗ ∈ Γo(µ, µ
1), and hence

∣

∣

∣

∣

∫ 1

0

∫

Rd

δF

δµ
(µη, x)(µ− µ1)(dx)dη

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

∫

Rd×Rd

(

δF

δµ
(µη, x)−

δF

δµ
(µη, y)

)

γ∗(dx, dy)dη

∣

∣

∣

∣

≤

∫ 1

0

∫

Rd×Rd

∣

∣

∣

∣

δF

δµ
(µη, x)−

δF

δµ
(µη, y)

∣

∣

∣

∣

γ∗(dx, dy)dη

≤

(

∫ 1

0

∫

Rd×Rd

∣

∣

∣

∣

δF

δµ
(µη, x)−

δF

δµ
(µη, y)

∣

∣

∣

∣

2

γ∗(dx, dy)dη

)1/2

≤ LF

(
∫

Rd×Rd

|x− y|2γ∗(dx, dy)

)1/2

= LFW2(µ, µ
1),

where the penultimate inequality follows from the Cauchy-Schwarz inequality and the
fact that γ∗ ∈ P2(R

d ×R
d), the last inequality follows from Assumption 2.2 and the last

equality follows from optimality of γ∗.
Therefore, for any µ 6= µ1, dividing (5.9) by W2(µ, µ

1) gives

(KL(µ1|π)−KL(µ|π))+
W2(µ, µ1)

≤
LF

σ
+

1

2τσ

(

W2(µ, µ
0) +W2(µ

1, µ0)
)

.

Taking limsup as µ→ µ1 and using continuity of W2 via [36, Corollary 6.11] yields

|dKL(·|π)|(µ1) ≤
LF

σ
+

1

τσ
W2(µ

1, µ0) <∞.

Hence, using Theorem A.5, it follows that dµ1

dπ
∈ W

1,1
λ,loc(R

d),

∣

∣

∣

∣

∇ dµ1

dπ

∣

∣

∣

∣

2

dµ1

dπ

∈ L1
π(R

d), and

|dKL(·|π)|2(µ1) = I(µ1|π). Since

∣

∣

∣

∣

∇ dµ1

dπ

∣

∣

∣

∣

2

dµ1

dπ

∈ L1
π(R

d) we have∇
√

dµ1

dπ
∈ L2

π(R
d). In addition,

µ1 ∈ Pπ
2 (R

d) implies
√

dµ1

dπ
∈ L2

π(R
d), and therefore we obtain that µ1 ∈ C. �

From Proposition 5.3 it follows inductively that, for each n ∈ N, given µn ∈ Pπ
2 (R

d),
the unique minimizer µn+1 of (1.3) belongs to C. Hence, if µ0 ∈ Pπ

2 (R
d), then (µn)n∈N ⊂ C

along the scheme (1.3).
Since KL(·|π) admits a unique Wasserstein sub-differential and F is Wasserstein differ-

entiable by Assumption 2.8, [1, Lemma 10.1.2] allows us to write the following first-order
optimality condition for (1.3).

Lemma 5.4 (Optimality condition for (1.3)). Let F ∈ C1, Assumption 2.1, 2.2, 2.8 and
(2.4) in Assumption 2.3 hold. Given µ0 ∈ Pπ

2 (R
d), then, for each n ∈ N, the unique

minimizer µn+1 ∈ C of (1.3) satisfies

∇µF (µ
n+1)(x) + σ∇ log

dµn+1

dπ
(x) =

1

τ

(

T
µn

µn+1(x)− x
)

, for µn+1-a.e. x.

Proof. For each n ∈ N, let us denote

Jn(µ) := F (µ) + σKL(µ|π),

for all µ ∈ Pπ
2 (R

d). Note that Jn is lower semi-continuous and Jn < +∞. From Proposition
5.3, we have that (1.3) admits a unique minimizer µn+1 ∈ C. By Corollary 5.2, there exists
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a unique µn+1-a.e. optimal transport map T µn

µn+1 : Rd → R
d from µn+1 to µn. Hence, by

[1, Lemma 10.1.2],
1

τ

(

T
µn

µn+1 − I
)

∈ ∂−Jn(µ
n+1),

where ∂− denotes the Wasserstein sub-differential (cf. Definition B.3). By Assumption
2.8 and using the fact that µn+1 ∈ C together with Theorem A.5, we obtain

∂−Jn(µ
n+1) =

{

∇µF (µ
n+1) + σ∇ log

dµn+1

dπ

}

,

and hence the conclusion follows. �

6. Prox-linear scheme

In this section, we present the auxiliary results needed for the proof of (ii) in Theorem
3.1. We start by proving that (1.4) admits a unique minimizer.

Theorem 6.1 (Existence and uniqueness of minimizer for (1.4)). Let F ∈ C1 and (2.3) in
Assumption 2.2 hold. Given µ0 ∈ Pπ

2 (R
d), there exists a unique minimizer µ1 ∈ Pπ

2 (R
d)

of

(6.1) Pπ
2 (R

d) ∋ µ 7→ G(µ) :=

∫

Rd

δF

δµ
(µ0, x)(µ− µ0)(dx) + σKL(µ|π) +

1

2τ
W2

2 (µ, µ
0).

Proof. The proof follows the same steps as the proof of Theorem 5.1. Observe that

argmin
µ∈Pπ

2
(Rd)

G(µ) = argmin
µ∈Pπ

2
(Rd)

{
∫

Rd

δF

δµ
(µ0, x)µ(dx) + σKL(µ|π) +

1

2τ
W2

2 (µ, µ
0)

}

,

and therefore it suffices to show that µ1 ∈ Pπ
2 (R

d) is the unique minimizer of the function
on the right-hand side, which we denote Ḡ. Note that, for any µ ∈ Pπ

2 (R
d),

∫

Rd

δF

δµ
(µ0, x)µ(dx) + σKL(µ|π) = −σ

∫

Rd

log e−
1

σ
δF
δµ

(µ0,x)µ(dx) + σ

∫

Rd

log
dµ

dπ
(x)µ(dx)

= σKL
(

µ|Φ[µ0]
)

,

where the last equality follows from (2.6). Hence, using (2.3) in Assumption 2.2, the
result follows from [20, Proposition 4.1]. �

From Theorem 6.1 it follows inductively that, for each n ∈ N, given µn ∈ Pπ
2 (R

d), the
scheme (1.4) admits a unique minimizer µn+1 ∈ Pπ

2 (R
d). Hence, if µ0 ∈ Pπ

2 (R
d), then

(µn)n∈N ⊂ Pπ
2 (R

d) along the scheme (1.4). Therefore, via Theorem A.2, we obtain

Corollary 6.2 (Existence of optimal transport maps along (1.4)). Let ν ∈ P2(R
d). Let

F ∈ C1 and (2.3) in Assumption 2.2 hold. Given µ0 ∈ Pπ
2 (R

d), there exists a unique
µn-a.e. optimal transport map T ν

µn : Rd → R
d from µn to ν. In particular, if ν = µn+1,

there also exists a unique µn+1-a.e. optimal transport map T µn

µn+1 : Rd → R
d such that

T
µn

µn+1 ◦ T
µn+1

µn = Id, µ
n-a.e and T µn+1

µn ◦ T µn

µn+1 = Id, µ
n+1-a.e..

The following proposition together with an induction argument guarantee that KL(·|π)
admits a unique Wasserstein sub-differential given by ∇ log dµn

dπ
, where µn is the iterate

generated by (1.4) at each step n ≥ 1.

Proposition 6.3 (Wasserstein sub-differentiability class for KL(·|π) along (1.4)). Let
(2.4) in Assumption 2.3 hold. Let F ∈ C1 and Assumption 2.2 hold. Given µ0 ∈ Pπ

2 (R
d),

the unique minimizer µ1 ∈ Pπ
2 (R

d) of (6.1) belongs to C.
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Proof. The proof follows the same steps as the proof of Proposition 5.3. Since µ0 ∈
Pπ

2 (R
d), F ∈ C1 and (2.3) in Assumption 2.2 holds, Theorem 6.1 guarantees the existence

and uniqueness of a minimizer µ1 ∈ Pπ
2 (R

d) for (6.1). We will now prove that µ1 ∈ C.

Since µ1 ∈ Pπ
2 (R

d) is a minimizer for (6.1), it follows that for any µ ∈ Pπ
2 (R

d),

(6.2)
KL(µ1|π)−KL(µ|π) ≤

1

σ

∫

Rd

δF

δµ
(µ0, x)(µ− µ1)(dx)

+
1

2τσ
W2(µ, µ

1)
(

W2(µ, µ
0) +W2(µ

1, µ0)
)

,

By Theorem A.2, there exists a unique optimal coupling γ∗ ∈ Γo(µ, µ
1), and hence

(6.3)

∣

∣

∣

∣

∫

Rd

δF

δµ
(µ0, x)(µ− µ1)(dx)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd×Rd

(

δF

δµ
(µ0, x)−

δF

δµ
(µ0, y)

)

γ∗(dx, dy)

∣

∣

∣

∣

≤

∫

Rd×Rd

∣

∣

∣

∣

δF

δµ
(µ0, x)−

δF

δµ
(µ0, y)

∣

∣

∣

∣

γ∗(dx, dy)

≤

(

∫

Rd×Rd

∣

∣

∣

∣

δF

δµ
(µ0, x)−

δF

δµ
(µ0, y)

∣

∣

∣

∣

2

γ∗(dx, dy)

)1/2

≤ LF

(
∫

Rd×Rd

|x− y|2γ∗(dx, dy)

)1/2

= LFW2(µ, µ
1),

where the penultimate inequality follows from the Cauchy-Schwarz inequality and the
fact that γ∗ ∈ P2(R

d × R
d), the last inequality follows from (2.2) in Assumption 2.2 and

the last equality follows from optimality of γ∗. The rest of the proof if identical to the
proof of Proposition 5.3. �

From Proposition 6.3 it follows inductively that, for each n ∈ N, given µn ∈ Pπ
2 (R

d),
the unique minimizer µn+1 of (1.4) belongs to C. Hence, if µ0 ∈ Pπ

2 (R
d), then (µn)n∈N ⊂ C

along the scheme (1.4).
Since KL(·|π) admits a unique Wasserstein sub-differential and F is Wasserstein differ-

entiable by Assumption 2.8, [1, Lemma 10.1.2] allows us to write the following first-order
optimality condition for (1.4).

Lemma 6.4 (Optimality condition for (1.4)). Let F ∈ C1, Assumption 2.2, 2.8 and (2.4)
in Assumption 2.3 hold. Given µ0 ∈ Pπ

2 (R
d), then, for each n ∈ N, the unique minimizer

µn+1 ∈ C of (1.4) satisfies

∇µF (µ
n)(x) + σ∇ log

dµn+1

dπ
(x) =

1

τ

(

T
µn

µn+1(x)− x
)

, for µn+1-a.e. x.

Proof. Identical to the proof of Lemma 5.4 once we replace F by
∫

Rd
δF
δµ
(µn, x)(µ−µn)(dx)

in Jn. �

Since F is linearized in (1.4), convergence is not attainable without F being smooth. As
in Euclidean geometry, where Lipschitz continuity of the gradients implies smoothness
with respect to the squared Euclidean distance, an analogue implication holds in the
Wasserstein space. In particular, as the following result shows, Assumption 2.9 implies
that F is smooth with respect to W2

2 .

Lemma 6.5 (LF -smoothness of F relative to W2
2 ). Assume F ∈ C1 and Assumption 2.8,

2.9 hold. Then, for any µ′, µ ∈ P2(R
d), it holds

F (µ′)− F (µ)−
〈

∇µF (µ)(·), P
µ′

µ − Id

〉

L2
µ(R

d)
≤ L′

F

∥

∥

∥
Id − P µ′

µ

∥

∥

∥

2

L2
µ(R

d)
,
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where P µ′

µ : Rd → R
d is the pushforward of µ onto µ′. If P µ′

µ is in fact an optimal transport

map from µ to µ′, then
∥

∥Id − P µ′

µ

∥

∥

2

L2
µ(R

d)
= W2

2 (µ
′, µ).

Proof. Let µ′, µ ∈ P2(R
d). Then γ =

(

Id, P
µ′

µ

)

#
µ is a coupling between µ and µ′. For any

ε ∈ [0, 1], set µε = µ+ ε(µ′ − µ). Then since F ∈ C1, it follows by Remark B.2 that

F (µ′)− F (µ)−
〈

∇µF (µ)(·), T
µ′

µ − Id

〉

L2
µ(R

d)

=

∫ 1

0

∫

Rd

δF

δµ
(µε, x)(µ′ − µ)(dx)dε−

∫

Rd

∇µF (µ)(x) ·
(

P µ′

µ (x)− x
)

µ(dx)

=

∫ 1

0

∫

Rd×Rd

(

δF

δµ
(µε, y)−

δF

δµ
(µε, x)

)

γ(dx, dy)dε−

∫

Rd×Rd

∇µF (µ)(x) · (y − x) γ(dx, dy).

By Assumption 2.8, we have
∫ 1

0

∫

Rd×Rd

(

δF

δµ
(µε, y)−

δF

δµ
(µε, x)

)

γ∗(dx, dy)dε

=

∫ 1

0

∫

Rd×Rd

∫ 1

0

∇µF (µ
ε)(x+ η(y − x)) · (y − x) dηγ(dx, dy)dε.

By Assumption 2.9, the Cauchy-Schwarz inequality and convexity of W2, we obtain

F (µ′)− F (µ)−
〈

∇µF (µ)(·), P
µ′

µ − Id

〉

L2
µ(R

d)

=

∫ 1

0

∫

Rd×Rd

∫ 1

0

(∇µF (µ
ε)(x+ η(y − x))−∇µF (µ)(x)) · (y − x) dηγ(dx, dy)dε

≤ L′
F

∫ 1

0

∫

Rd×Rd

∫ 1

0

(η|y − x|+W2(µ
ε, µ)) |y − x| dηγ(dx, dy)dε

≤ L′
F

∫ 1

0

∫

Rd×Rd

∫ 1

0

(η|y − x|+ εW2(µ
′, µ)) |y − x| dηγ(dx, dy)dε

=
L′
F

2

∫

Rd×Rd

|y − x|2γ(dx, dy) +
L′
F

2
W2(µ

′, µ)

∫

Rd×Rd

|y − x| γ(dx, dy)

≤ L′
F

∥

∥

∥
Id − P µ′

µ

∥

∥

∥

2

L2
µ(R

d)
.

�

The following result is a consequence of the geodesic convexity of KL(·|π) in the Wasser-
stein space and combined with Lemma 6.5, it allows us to prove in Theorem 3.1 (ii) that
(F σ(µn))n decreases along (1.4) as long as the step-size τ is small enough. It can also be
viewed as a particular case of [31, Lemma 4]. However, our proof is slightly different.

Lemma 6.6. Let Assumption 2.3 hold. For any µ′, µ ∈ C, it holds

KL(µ′|π)−KL(µ|π)−

〈

∇ log
dµ′

dπ

(

T µ′

µ

)

, T µ′

µ − Id

〉

L2
µ(R

d)

≤ 0.

Proof. Let µ′, µ ∈ C. Then since C ⊂ Pπ
2 (R

d) and π ∈ Pλ
2 (R

d), it follows by Theorem A.2
that there exist unique µ-a.e. and µ′-a.e. optimal transport maps T µ′

µ : Rd → R
d from µ

to µ′ and T µ
µ′ : Rd → R

d from µ′ to µ such that T µ
µ′ ◦ T µ′

µ = Id, µ-a.e and T µ′

µ ◦ T µ
µ′ = Id,

µ′-a.e..
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Now we show that, for any ε ∈ (0, 1), Id + ε
(

T
µ
µ′ − Id

)

is the unique optimal transport

map from µ′ to
(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′. First, we observe that

∫

Rd

∣

∣x+ ε
(

T
µ
µ′(x)− x

)
∣

∣

2
µ′(dx) ≤ 2

∫

Rd

|x|2µ′(dx) + 2ε2W2
2 (µ

′, µ) <∞.

Hence,
(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′ ∈ P2(R

d). Therefore, by Theorem A.4, it suffices to show

that Id + ε
(

T
µ
µ′ − Id

)

is the gradient of a convex differentiable µ′-a.e. function. By

Theorem A.2, we have that T µ
µ′(x) = ∇ϕ(x) µ′-a.e. for a convex function ϕ : Rd → R.

Hence, for µ′-a.e. x,

x+ ε
(

T
µ
µ′(x)− x

)

= (1− ε)x+ εT
µ
µ′(x) = ∇

(

(1− ε)
|x|2

2
+ εϕ(x)

)

,

where the map R
d ∋ x 7→ (1 − ε) |x|

2

2
+ εϕ(x) ∈ R is convex and µ′-a.e. differentiable

for all ε ∈ (0, 1). The uniqueness of Id + ε
(

T
µ
µ′ − Id

)

follows from Theorem A.2 since

µ′ ∈ Pλ
2 (R

d) and the fact that
(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′ ∈ P2(R

d).

By Theorem A.5, since µ′ ∈ C,

∂− KL(µ′|π) =

{

∇ log
dµ′

dπ

}

.

Hence, by (B.2), we have

(6.4)

KL
(

(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′
∣

∣

∣
π
)

≥ KL (µ′|π) + ε

∫

Rd

∇ log
dµ′

dπ
(x) ·

(

T
µ
µ′(x)− x

)

µ′(dx)

+ o
(

W2

(

µ′,
(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′
))

.

Now, by Corollary A.3, we have

(6.5) W2

(

µ′,
(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′
)

= εW2(µ
′, µ).

By (2.5) in Assumption 2.3, π is log-concave, thus by [1, Theorem 9.4.10] the relative
entropy KL(·|π) is geodesically convex, and hence

(6.6) KL
(

(

Id + ε
(

T
µ
µ′ − Id

))

#
µ′
∣

∣

∣
π
)

≤ (1− ε) KL(µ′|π) + εKL(µ|π).

Combining (6.4), (6.5) and (6.6) and using (A.1) gives

KL(µ|π)−KL(µ′|π) ≥

∫

Rd

∇ log
dµ′

dπ
(x) ·

(

T
µ
µ′(x)− x

)

µ′(dx) +
o(ε)

ε

=

∫

Rd

∇ log
dµ′

dπ
(x) ·

(

T
µ
µ′(x)− x

)

(

T µ′

µ #
µ
)

(dx) +
o(ε)

ε

=

∫

Rd

∇ log
dµ′

dπ

(

T µ′

µ (x)
)

·
(

x− T µ′

µ (x)
)

µ(dx) +
o(ε)

ε
.

Sending ε→ 0 and rearranging gives the conclusion. �
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7. Proximal gradient scheme

In this section, we present the auxilliary results needed for the proof of (iii) in Theorem
3.1. Before applying the same proof of Theorem 5.1 and 6.1 to show existence and
uniqueness of a minimizer in the JKO step of (1.5), we prove that the pushforward of µn

by Id − τ∇µF (µ
n)(·) is an optimal tranport from µn to νn+1 = (Id − τ∇µF (µ

n)(·))# µ
n,

and moreover that νn+1 ∈ Pλ
2 (R

d). As we saw in the proofs of Theorem 5.1 and 6.1, the
previous step in the JKO update, in this case νn+1, needs to be absolutely continuous.
This is proved in the following lemma, which is a generalization of [31, Lemma 2].

Lemma 7.1. Let Assumption 2.8, 2.9 hold. Let µ ∈ Pλ
2 (R

d), σ > 0 and ν = (Id − τ∇µF (µ)(·))# µ.

If τ < 1
L′

F

, the optimal transport map from µ to ν is given by

T ν
µ = Id − τ∇µF (µ)(·).

Moreover, ν ∈ Pλ
2 (R

d).

Proof. Note that Assumption 2.8 together with that fact that µ ∈ Pλ
2 (R

d) imply that
∫

Rd

|x− τ∇µF (µ)(x)|
2
µ(dx) <∞,

and hence ν ∈ P2(R
d).

Since the map Id − τ∇µF (µ)(·) is a pushforward from µ to ν, by Theorem A.4, it
suffices to show that Id−τ∇µF (µ)(·) can be written as the gradient of a convex function.

Let u(x) := 1
2
|x|2 − τ δF

δµ
(µ, x). Then, for any x ∈ R

d, ∇u(x) = x − τ∇µF (µ)(x).
Moreover,

(x− y) · (∇u(x)−∇u(y)) = (x− y) · (x− y − τ (∇µF (µ)(x)−∇µF (µ)(y)))

= |x− y|2 − τ(x− y) · (∇µF (µ)(x)−∇µF (µ)(y))

≥ |x− y|2 − τ |x− y| |∇µF (µ)(x)−∇µF (µ)(y)|

≥ (1− τL′
F ) |x− y|2.

Since by assumption τ < 1
L′

F
, it follows that u is (1− τL′

F )-strongly convex and more-

over ∇u is injective. By strong convexity of u and Theorem A.4, we obtain that the
pushforward from µ to ν via ∇u is an optimal transport map, and we denote it by

T ν
µ = Id − τ∇µF (µ)(·).

By injectivity of ∇u and strong convexity of u, we obtain from [1, Lemma 5.5.3] that
ν ∈ Pλ

2 (R
d). �

Now, since νn+1 ∈ Pλ
2 (R

d) for a sufficiently small step-size τ, the existence and unique-
ness of a minimizer for (1.5) is a consequence of [20, Proposition 4.1].

Theorem 7.2 (Existence and uniqueness of minimizer for (1.5)). Let Assumption 2.8,
2.9 and (2.4) in Assumption 2.3 hold. If τ < 1

L′

F

, given µ0 ∈ Pλ
2 (R

d), there exists a

unique minimizer µ1 ∈ Pλ
2 (R

d) of

(7.1) Pλ
2 (R

d) ∋ µ 7→ H(µ) := σKL(µ|π) +
1

2τ
W2

2 (µ, ν
1).

Proof. From Lemma 7.1 it follows that given µ0 ∈ Pλ
2 (R

d), we obtain ν1 ∈ Pλ
2 (R

d). Hence,
by [20, Proposition 4.1], there exists a unique minimizer µ1 ∈ Pλ

2 (R
d) for H. �
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From Lemma 7.1 and Theorem 7.2, it follows inductively that, for each n ∈ N, given
µn ∈ Pλ

2 (R
d), we obtain νn+1 ∈ Pλ

2 (R
d), and hence µn+1 ∈ Pλ

2 (R
d). Therefore, if µ0 ∈

Pλ
2 (R

d), then (νn, µn)n∈N ⊂ Pλ
2 (R

d) × Pλ
2 (R

d) along the scheme (1.5). Therefore, via
Theorem A.2, we obtain

Corollary 7.3 (Existence of optimal transport maps along (1.5)). Let Assumption 2.8,
2.9 and (2.4) in Assumption 2.3 hold. If τ < 1

L′

F

, given µ0 ∈ Pλ
2 (R

d), there exist unique

µn-a.e. and νn+1-a.e. optimal transport maps T νn+1

µn : Rd → R
d and T µn

νn+1 : Rd → R
d

from µn to νn+1 and from νn+1 to µn, respectively, given by T νn+1

µn = Id − τ∇µF (µ
n)(·)

and T
µn

νn+1 = (Id − τ∇µF (µ
n)(·))−1

. Moreover, there also exist unique νn+1-a.e. and

µn+1-a.e. optimal transport maps T µn+1

νn+1 : R
d → R

d and T νn+1

µn+1 : R
d → R

d such that

T
µn+1

νn+1 ◦ T νn+1

µn+1 = Id, µ
n+1-a.e. and T νn+1

µn+1 ◦ T µn+1

νn+1 = Id, ν
n+1-a.e..

The following proposition is a particular case of Proposition 5.3 and 6.3 and guarantees
that H admits a unique Wasserstein sub-differential given by ∇ log dµn

dλ
, where µn is the

iterate generated by (1.5) at each step n ≥ 1.

Proposition 7.4 (Wasserstein sub-differentiability class for KL(·|π) along (1.5)). Let
Assumption 2.8, 2.9 and (2.4) in Assumption 2.3 hold. If τ < 1

L′

F

, given µ0 ∈ Pλ
2 (R

d),

the unique minimizer µ1 ∈ Pλ
2 (R

d) of (7.1) belongs to C.

Proof. Since µ0 ∈ Pλ
2 (R

d), Theorem 7.2 guarantees the existence and uniqueness of a min-
imizer µ1 ∈ Pλ

2 (R
d) for (7.1). Following either the proof of Proposition 5.3 or Proposition

6.3 will show that µ1 ∈ C. �

Lemma 7.5 (Optimality condition for (1.5)). Let Assumption 2.8, 2.9 and (2.4) in
Assumption 2.3 hold. If τ < 1

L′

F
, given µ0 ∈ Pλ

2 (R
d), then, for each n ∈ N, the unique

minimizer µn+1 ∈ C of the minimization step in (1.5) satisfies

σ∇ log
dµn+1

dπ
(x) =

1

τ

(

T νn+1

µn+1 (x)− x
)

, for µn+1-a.e. x.

Proof. The result follows from either Lemma 5.4 or Lemma 6.4 with F = 0. �

Appendix A. Optimal Transport

In this appendix, we recall the fundamental results from optimal transport that are
used throughout the paper.

Definition A.1 (Pushforward of a measure by a map). Let T : Rd → R
d be a B(Rd)-

measurable map. Then, for every µ ∈ P2(R
d), we denote by T#µ ∈ P2(R

d) the pushfor-
ward measure of µ by T, characterized by
(A.1)
∫

Rd

f(T (x))µ(dx) =

∫

Rd

f(y) (T#µ) (dy), for any measurable bounded function f.

Consider the 2-Wasserstein distance W2 : P2(R
d)× P2(R

d) → [0,∞), defined by

(A.2) W2(µ, ν) :=

(

inf
γ∈Γ(µ,ν)

∫

Rd×Rd

|x− y|2γ(dx, dy)

)
1

2

,

where Γ(µ, ν) :=
{

γ ∈ P2(R
d × R

d) : (Px)#γ = µ, (Py)#γ = ν
}

is the set of couplings be-
tween µ and ν, where Px : (x, y) 7→ x and Py : (x, y) 7→ y are the projections onto the first
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and second component, respectively. The set of optimal couplings for which the infimum is

attained in (A.2) is denoted by Γo(µ, ν) :=
{

γ̄ ∈ Γ(µ, ν) : W2
2 (µ, ν) =

∫

Rd×Rd |x− y|2γ̄(dx, dy)
}

.

Now we recall a standard result from optimal transport (see e.g. [15, Theorem 4.5] and
also [1, 33]), which shall be essential throughout the paper.

Theorem A.2. Let µ ∈ Pλ
2 (R

d) and ν ∈ P2(R
d). Then

(i) there exists a unique optimal coupling γ∗ :=
(

Id, T
ν
µ

)

#
µ which minimizes (A.2),

where T ν
µ : Rd → R

d is the unique µ-almost everywhere (a.e.) optimal transport
map from µ to ν.

(ii) Moreover, T ν
µ (x) = ∇ϕ(x) µ-a.e. for a convex function ϕ : Rd → R with ϕ(x) :=

1
2
|x|2 − ψ(x), where ψ is a c-concave function.2

(iii) If ν ∈ Pλ
2 (R

d), then γ∗ = (T µ
ν , Id)# ν, where T

µ
ν : Rd → R

d is the unique ν-a.e.
optimal transport map such that

T µ
ν ◦ T ν

µ = Id, µ-a.e. and T ν
µ ◦ T µ

ν = Id, ν-a.e.

As a consequence of Theorem A.2, we have the following

Corollary A.3. Let µ, ν ∈ Pλ
2 (R

d). Then

W2
2 (µ, ν) =

∫

Rd

∣

∣x− T ν
µ (x)

∣

∣

2
µ(dx) =

∫

Rd

|x− T µ
ν (x)|

2
ν(dx).

Theorem A.4 ([32, Theorem 1.48]). Suppose µ ∈ P2(R
d) and that u : Rd → R is a

convex and differentiable µ-a.e. Set T := ∇u and suppose
∫

Rd |T (x)|
2µ(dx) < ∞. Then

T is an optimal transport map from µ to T#µ.

Theorem A.5 (Subdifferential of KL(·|π); [1, Theorem 10.4.9]). The relative entropy
KL(·|π) has finite slope at µ ∈ Pπ

2 (R
d), i.e.,

|dKL(·|π)|(µ) := lim sup
ν→µ

(KL(µ|π)−KL(ν|π))+
W2(ν, µ)

<∞

if and only if dµ
dπ

∈ W
1,1
λ,loc(R

d) and ∇ log dµ
dπ

∈ L2
µ(R

d). In this case, I(µ|π) = |dKL(·|π)|2(µ)

and ∂− KL(µ|π) =
{

∇ log dµ
dπ

}

(cf. (B.2) in Definition B.3).

Appendix B. Differential calculus on P2(R
d)

In this appendix, we recall the notions of linear functional (flat) differentiability [6]
and Wasserstein differentiability [7] used throughout the paper.

Definition B.1 (Flat differentiability on P2(R
d)). We say a function F : P2(R

d) → R

is in C1, if there exists a continuous function δF
δµ

: P2(R
d) × R

d → R, with respect to

the product topology on P2(R
d) × R

d, called the flat derivative of F, for which there

exists κ > 0 such that for all (µ, x) ∈ P2(R
d) × R

d,
∣

∣

∣

δF
δµ
(µ, x)

∣

∣

∣
≤ κ (1 + |x|2) , and for all

µ′ ∈ P2(R
d),

(B.1) lim
εց0

F (µε)− F (µ)

ε
=

∫

Rd

δF

δµ
(µ, x)(µ′ − µ)(dx), with µε = µ+ ε(µ′ − µ) ,

and
∫

Rd
δF
δµ
(µ, x)µ(dx) = 0.

2A function ξ : Rd → R is c-concave if and only if x 7→ 1

2
|x|2−ξ(x) is convex and lower semi-continuous.
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Remark B.2. One can show that if F : P2(R
d) → R

d admits a flat derivative δF
δµ
, then for

all µ, µ′ ∈ P2(R
d), the function [0, 1] ∋ ε 7→ f(µε) is continuous on [0, 1] and differentiable

on (0, 1) with derivative d
dε
f(µε) =

∫

Rd
δF
δµ
(µε, x)(µ′ − µ)(dx) (see [21, Theorem 2.3]).

Hence, by the fundamental theorem of calculus, F (µ′) − F (µ) =
∫ 1

0

∫

Rd
δF
δµ
(µε, x)(µ′ −

µ)(dx)dε, provided that ε 7→
∫

δF
δµ
(µε, x)(µ′ − µ)(dx) is integrable.

Recall that the tangent space of P2(R
d) at µ ∈ P2(R

d) is defined as

TµP2(R
d) = {∇ψ : ψ ∈ C∞

c (Rd)} ⊂ L2
µ(R

d),

where the closure is taken in L2
µ(R

d), see [1, Definition 8.4.1], and C∞
c (Rd) denotes the

space of smooth functions with compact support in R
d.

Definition B.3 (Wasserstein sub- and super-differential on P2(R
d)). Let F : P2(R

d) → R

and let µ ∈ P2(R
d). Then

(i) a map ξ ∈ TµP2(R
d) belongs to the sub-differential ∂−F (µ) of F at µ ∈ P2(R

d) if
for all µ′ ∈ P2(R

d),

(B.2) F (µ′) ≥ F (µ) + sup
γ∈Γo(µ,µ′)

∫

Rd×Rd

〈ξ(x), y − x〉 dγ(x, y) + o (W2(µ, µ
′)) .

If ∂−F (µ) 6= ∅, we say the function F is Wasserstein sub-differentiable at µ.
(ii) A map ξ ∈ TµP2(R

d) belongs to the super-differential ∂+F (µ) of F at µ ∈ P2(R
d)

if −ξ ∈ ∂−(−F )(µ). If ∂+F (µ) 6= ∅, we say the function F is Wasserstein super-
differentiable at µ.

Then, we say that a function is Wasserstein differentiable if it admits sub- and super-
differentials which coincide.

Definition B.4 (Wasserstein differentiability on P2(R
d)). We say that a function F :

P2(R
d) → R is Wasserstein differentiable at µ ∈ P2(R

d) if ∂−F (µ) ∩ ∂+F (µ) 6= ∅.

If F : P2(R
d) → R is Wasserstein differentiable at µ ∈ P2(R

d) (cf. Definition B.4),
then by [7, Proposition 5.63], there exists a unique map ∇µF (µ) ∈ TµP2(R

d) such that
∂−F (µ) = ∂+F (µ) = {∇µF (µ)} , called the Wasserstein gradient of F at µ ∈ P2(R

d),
satisfying for any µ′ ∈ P2(R

d), and γ ∈ Γo(µ, µ
′),

F (µ′) = F (µ) +

∫

Rd×Rd

〈∇µF (µ)(x), y − x〉 dγ(x, y) + o (W2(µ, µ
′)) .

Acknowledgements

R-AL was supported by the EPSRC Centre for Doctoral Training in Mathematical
Modelling, Analysis and Computation (MAC-MIGS) funded by the UK Engineering and
Physical Sciences Research Council (grant EP/S023291/1), Heriot-Watt University and
the University of Edinburgh. LS acknowledges the support of the UKRI Prosperity
Partnership Scheme (FAIR) under EPSRC Grant EP/V056883/1 and the Alan Turing
Institute.

References

[1] L. Ambrosio, N. Gigli, and G. Savare. Gradient Flows: In Metric Spaces and in the Space of

Probability Measures. Lectures in Mathematics. ETH Zürich. Birkhäuser Basel, 2008.
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