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Abstract. Recently, big data techniques such as machine learning and topo-
logical data analysis have made their way to theoretical mathematics. Moti-

vated by the recent work with polynomial invariants for knots, we use manifold
learning and topological data analysis techniques to explore the structure and

properties of the point cloud consisting of the chromatic polynomials of graphs

up to 10 crossings. Although chromatic, as well as the Tutte polynomial fail
to distinguish graphs, according to a conjecture by Bollobás, Pebody and Ri-

ordan they approximate the space of random graphs. In this work we compare

structures in the chromatic data revealed using filtered PCA and Ball Mapper
techniques, and relate them with a range of numerical invariants for graphs.

1. Introduction

Graph invariants are properties of graphs that are invariant under graph iso-
morphism. Their definition implies they can be used to distinguish graphs: if values
of the invariant are different the graphs are non-isomorphic, but it is possible to have
non-isomorphic graphs with the same invariant. Invariants are abundant in graph
theory, as well as in other areas of mathematics such as low-dimensional topology.
They may be numerical, polynomials, or more involved algebraic constructions such
as homology theories. Examples of such invariants for graphs include numbers of
vertices, edges, and cycles, connectivity, vertex degrees, and chromatic number,
the chromatic, Tutte and magnitude polynomials, the Stanley chromatic function
[56, 54, 35, 51], and the corresponding homology theories categorifying these
polynomial invariants [24, 21, 25, 49].

Recent years have brought significant advances of artificial intelligence and
machine learning methods in graph theory, which have proven challenging partially
due to the heterogeneity of graphs and the wide range of their applications. In
this paper we take a different approach motivated by the conjecture of Bollobás,
Pebody and Riordan stating that almost every pair of independently chosen random
graphs are distinguished by their Tutte and chromatic polynomials. Hence, instead
of studying graphs directly, we examine the data derived from their chromatic
polynomials. This idea of using invariants instead of objects has successfully been
implemented in knot theory [28, 26, 36, 16, 43]. More precisely, we use ideas
introduced in the work of D lotko, Gurnari, Hajij, Levitt, and the first author,
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applying manifold learning and topological data analysis, and compare the results
of these two approaches [36, 43].

In this paper, Principal Component Analysis (PCA), a widely used dimension
reduction technique, filtered PCA introduced in [36], and TDA’s Ball Mapper al-
gorithm are applied to chromatic polynomial data for graphs with a fixed number
of vertices. The dimensionality of chromatic data for graphs of all orders up to
10 appears to be one, with the first principal component influenced by all non-
trivial chromatic coefficients. The corresponding Ball Mapper graph (BMGraph)
has remarkable and intriguing resemblance with the PCA structure. Though the
evidence is only empirical, the first principal component (PC1) corresponds to the
elongated, linear structure of the Ball Mapper graph, and the second principal
component (PC2) corresponds, informally, to its “width”.

The structure of the chromatic data is further explored with respect to various
graph invariants using Ball Mapper as a tool for visualizing functions between
high dimensional spaces. The linear structure of the Ball Mapper, analogous to
the first Principal component, is determined by the number of edges in a graph,
which is consistent with the prominence of edges E in coefficient formulas and the
PCA observations. When colored by the corresponding values of PC2, the linear
structure of the BMGraph corresponding to PC1 splits into concurrent/parallel
strands determined by increasing values of PC2. Similarly, for a fixed number of
edges and vertices, the collection of clusters in the Ball Mapper graph corresponds
to a slice of points in the 2-dimensional PCA projection. Clusters on both ends
of each slice in the PCA projection are graphs whose chromatic coefficients are
extremal in the Rodriguez/Satyanarayana poset [46].

Our analysis facilitates the study of numerical graph invariants through dimen-
sionality reduction and clustering. Recent work on graph compression summarized
in Section 2.3 suggests a correlation between the chromatic polynomial and var-
ious measures of graph irregularity. While these measures are incomparable, our
two-dimension projection of chromatic data, combined with Ball Mapper, reveals
clusters of graphs which tend to maximize or minimize these invariants among all
graphs with the same numbers of vertices and edges, see Section 4.4.

For example, on one end of the spectrum defined by our second principal com-
ponent PC2, we find clusters of graphs with smallest chromatic coefficients and
maximum irregularity scores, which tend to have more triangles, more cliques (com-
plete subgraphs), and higher differences between vertex degrees; e.g., a complete
graph with one pendant edge. The other end of the spectrum features graphs with
largest chromatic coefficients and minimum irregularity scores; which tend to have a
more regular structure, greater numbers of large cycles, and generally avoid cliques;
e.g., Turan graphs as typical examples.

This work leaves a number of natural questions unanswered and raises more.
Some of the questions to be addressed in the upcoming work are the following:
Question 1 One of the main requirements in this approach is that the results
are stable with respect to the filtration of our data, in this case by the number of
vertices. It is quite remarkable that both dimensionality and Ball Mapper structure
were stable, in addition to being consistent across methods. While filtered PCA
[36] provides a reliable way of dimensionality reduction for data where finding a
representative sample is a challenge, the next natural step is to apply these methods
to a set of random graphs.
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Question 2 Big data techniques, such as machine learning and topological data
analysis have only recently been applied to data arising from theoretical mathemat-
ics where they could provide valuable insights and conjectures. This was achieved
in knot theory [16] where the relation between knot invariants was discovered by AI
and later proven [15]. In this paper we provide insights into the missing theoretical
characterization of chromatically maximal graphs, or the features corresponding to
graph irregularity, which is quite elusive as the most prominent irregularity mea-
sures seem to be mutually incomparable [2]. The scope and types of results in
graph or knot theory that can be obtained using these approaches is an interesting
open question.
Question 3 Methods used in this paper can be readily extended to other graph
polynomials. The Tutte polynomial is particularly interesting as it specializes both
to the chromatic and the Jones polynomial for knots. Determining the dimensional-
ity of Tutte data is an exciting open problem since it should be at least 3, since that
is the dimensionality of the Jones polynomial data [36]. Furthermore, Relational
Ball Mapper or Mapper-on-Ball Mapper [43] constructions can be used to explore
relations between the Tutte and chromatic, or Tutte and Jones polynomial.

To summarize, this approach provides a new way of vectorizing graphs, and
opens up another area of theoretical mathematics to big data techniques. In addi-
tion to immediate extensions of this work to other polynomials such as Tutte there
are exciting but less clear goals to determining statistical nature of polynomial and
other graph invariants and relations between them, as well as potential applications
to other sciences.
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2. Background

In this section we provide necessary background in graph theory, focusing on
the chromatic polynomial and irregularity measures.

Let G = (V,E) be a graph, with vertex set V and edge multiset E. If G has
an edge between vertices vi, vj ∈ V , we write the corresponding element in E as
{vi, vj}.

Definition 2.1. The order of a graph G is the number of vertices n = |V |. A
loop in graph G is an edge of the form {x, x} for some x ∈ V . A multiple edge is
an element that occurs multiple times in the multiset E. We say that G is a simple
graph if it has no loops or multiple edges.

Definition 2.2. Let v be a vertex of a simple graph G. The degree of vertex
v, denoted deg(v), is the number of edges incident to v.

Definition 2.3. A path in graph G is a finite sequence of vertices v1, v2, . . . , vn
such that {vi, vi+1} is an edge of G for i = 1, 2, . . . , n− 1 and all vi are distinct.

Definition 2.4. A graph G = (V,E) is connected if any two vertices in G are
joined by a path along edges of G. A bridge in a connected graph G is an edge
e ∈ E such that the graph (V,E −{e}) is disconnected. A pendant edge is an edge
incident to a vertex of degree one.
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Definition 2.5. The girth of graph G is the length of the shortest cycle in G.

Definition 2.6. Let H = (VH , EH) be a subgraph of graph G = (V,E). We
say H is an induced subgraph if for every {vi, vj} ∈ E with vi, vj ∈ VH , the edge
{vi, vj} is in EH .

Definition 2.7. The complete graph Kn is the graph which consists of n
vertices and

(
n
2

)
edges connecting each distinct pair of vertices. A clique of size

m is a subset of vertices of G whose induced subgraph is isomorphic to Km. The
clique number ω(G) is the maximum size over all cliques in G.

2.1. The chromatic polynomial.

Definition 2.8 ([56, 45, 20]). Let G = (V,E) be a graph. A mapping
f : V → {1, 2, . . . , λ} is called a λ-coloring of G if for any pair of vertices x, y ∈ V
such that {x, y} ∈ E, f(x) ̸= f(y). Two λ-colorings f, g are distinct if f(x) ̸= g(x)
for some vertex x ∈ V . The chromatic polynomial of the graph G, denoted PG(λ),
is equal to the number of distinct λ-colorings of G.

The degree of the chromatic polynomial is equal to the order of G, and thus
we write the polynomial with coefficients cn−i as follows:

PG(λ) = cnλ
n + cn−1λ

n−1 + cn−2λ
n−2 + . . . + c1λ + c0

Since no graph has a 0-coloring, the roots of PG(λ) include zero, which forces the
free term to be zero c0 = 0 for all graphs.

The chromatic polynomial of a disjoint union of graphs is the product of chro-
matic polynomials of its components. Additionally, adding multiple edges does
not change the chromatic polynomial, while the existence of a loop trivializes it.
Therefore, in this paper we consider only simple connected graphs.

Theorem 2.9. [38] If G is a graph with m edges, girth g > 2, and ng cycles
of length g, then the first g coefficients of the chromatic polynomial are:

cn−i =


(−1)i

(
m

i

)
0 ≤ i < g − 1

(−1)g−1

((
m

g − 1

)
− ng

)
i = g − 1

For a detailed summary of graph invariants which are determined by the chro-
matic polynomial see [40].

Proposition 2.10 ([40]). For a connected graph G, the chromatic polynomial
PG(λ) determines the numbers of vertices, edges, triangles, and blocks in G, as well
as the girth g and the number of cycles of length g.

It was long conjectured [45] that the coefficients of PG(λ) are unimodal in the
following sense: if hi = |cn−i|, there exists some j with 2 ≤ j ≤ n− 1 such that

hn ≤ hn−1 ≤ . . . ≤ hj−1 ≤ hj ≥ hj+1 ≥ . . . ≥ h0.

This result has since been proven [27] by showing that the stronger property of
log-concavity holds for this sequence: hi−1hi+1 ≤ h2

i for all 0 < i < n.

Definition 2.11. A graph is chromatically unique if no non-isomorphic graph
has the same chromatic polynomial.
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Cycle graphs, θ-graphs [10] and graphs which consist of wheel graphs with all
but three or four adjacent spokes removed [11] are families of chromatically unique
graphs.

There are also infinitely many graphs which are not chromatically unique; i.e.,
non-isomorphic graphs which share a chromatic polynomial. Examples include
trees with n vertices, whose chromatic polynomials all have the form λ(λ − 1)n−1

regardless of structure [45, Theorem 13].
For any connected graph G, the first six coefficients of the chromatic polynomial

have known formulas computed by counting subgraphs of G.

Theorem 2.12. [22, 6] The first four coefficients of the chromatic polynomial

PG(λ) are given by the following formulas: cn = 1, cn−1 = −m, cn−2 =

(
m

2

)
− t1,

and cn−3 = −
(
m

3

)
+ (m− 2)t1 + t2 − 2t3, where m is the number of edges in G, t1

is the number of triangles, t2 is the number of induced 4-cycles (pure squares with
no diagonal present), and t3 is the number of complete subgraphs on 4 vertices.

The 5th and 6th coefficients are given by the following formulas, where the tis
count induced subgraphs of G on 5 and 6 vertices specified in [6]. For example, t4
is the number of induced 5-cycles (pure pentagons) and t8 is the number of induced
graphs isomorphic to K5.

cn−4 =

(
m

4

)
−
(
m− 2

2

)
t1 +

(
t1
2

)
− (m− 3)t2 − (2m− 9)t3 − t4 + t5 + 2t6 +

3t7 − 6t8

cn−5 = −
(
m

5

)
+

(
m− 2

3

)
t1 − (m− 4)

(
t1
2

)
+

(
m− 3

2

)
t2 − (t2 − 2t3)t1 + t4

− (m2 − 10m + 30)t3 − (m− 3)t5 − 2(m− 5)t6 − 3(m− 6)t7 + 6(m− 8)t8

+ t9 − t10 − 2t11 − 2t12 − t13 + t14 − t15 − 3t16 − 4t17 − 4t18 + 2t19 − 4t20

− t21 + 4t22 + 3t23 + 4t24 + 5t25 + 4t26 + 6t27 + 8t28 + 16t29 + 12t30 − 24t31

Note that Whitney’s original paper introducing the chromatic polynomial gives
an interpretation of each cn−i in terms of spanning subgraphs of G [56]. Gian-Carlo
Rota showed that each coefficient can be expressed as a Möbius function on a poset
whose elements are subsets of E, and that the sum of the coefficients of PG(λ) is
zero [47]. Moreover, Meredith showed that the size of every coefficient is bounded
by |cn−i| ≤

(
m
i

)
[38]. These upper bounds are achieved for the first g coefficients

of the chromatic polynomial when all cycles of G have length at least g.
In [31] the author defines a Tutte polynomial poset and characterizes the min-

imal graphs in this poset. With a similar motivation, we define a chromatic poly-
nomial poset as follows.

Definition 2.13. Let G(n,m) denote the set of simple connected graphs with
n vertices and m edges. The chromatic polynomial poset is defined on G(n,m) by
H ≤ G if and only if PG(λ) − PH(λ) = r(x) for some polynomial r(x) with non-
negative coefficients. In other words, if we denote chromatic polynomial coefficients
by ci, then H ≤ G if and only if |ci(H)| ≤ |ci(G)| for all 1 ≤ i ≤ n.

Rodriguez and Satyanarayana [46] give a complete characterization of the
graphs which are minimal in the chromatic polynomial poset.
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Definition 2.14 ([20]). Let J(n,m) be the family of graphs G ∈ G(n,m) such
that all blocks of G are complete graphs, including possibly triangles K3 and double
edges K2. Let L(n,m) be the family of graphs G ∈ G(n,m) such that one block B
of G has clique number ω(B) ≥ |V (B)| − 1 and all other blocks are K2s.

Note that B is a complete graph or contains a complete subgraph containing
all but one of the vertices of B, while all other blocks are bridges or pendant edges.

Proposition 2.15 ([46]). Any pair of graphs G,H ∈ L(n,m) ∪ J(n,m), have
the same chromatic polynomials PG(λ) = PH(λ).

Theorem 2.16 ([46]). Any graph H ∈ L(n,m)∪J(n,m) is a minimal element
of the poset G(n,m).

In Section 4.4, we describe extremal graphs in our data set using the following
definition based on the chromatic polynomial poset.

Definition 2.17. A chromatically minimal (resp., chromatically maximal)
graph with n vertices and m edges is one which is a minimal (resp. maximal)
element of the poset G(n,m).

2.2. Irregularity measures for graphs. A graph G is k-regular if deg(v) =
k for each vertex v ∈ V (G). Numerous invariants have been proposed to describe
how far a given graph is from being regular, i.e., how irregular it is. A generally
accepted criterion for an irregularity measure is that it should return a value of
zero if and only if a graph is regular. The difference between the maximum and
minimum vertex degrees in a graph is one example of an irregularity measure. Two
other commonly cited measures are spectral irregularity and variance irregularity
of a graph.

Definition 2.18 (Spectral irregularity [55]). Let λ1(G) be the largest eigen-
value of the adjacency matrix of graph G and let d(G) be the average degree of
the vertices of G. The spectral irregularity measure of G is ϵ(G) = λ1(G) − d(G),
which is zero if G is regular and positive otherwise.

Definition 2.19 (Variance irregularity [5]). Suppose G has order n and the
vertices are labeled, with di = deg(vi). The variance irregularity measure of G is

σ(G) =
1

n

n∑
i=1

d2i −
1

n2

(
n∑

i=1

di

)2

.

For other proposed irregularity measures see [4, 39, 1] or a survey [41, 17]
that also talks about their comparative strengths.

The following classes of graphs are the most irregular under spectral and vari-
ance irregularity.

Definition 2.20 ([3, 41]). Let G be a connected graph with n vertices and
m edges. Let d, t be the unique integer values with 2 ≤ d and 0 ≤ t < d such that
m =

(
d
2

)
+t. Then G is the quasi-complete graph QC(n,m) if it is the unique graph

such that:

(1) G has a clique C of size n− 1;
(2) The single vertex v′ not included in C is adjacent to exactly t of the other

vertices.
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Definition 2.21 ([3, 41]). Let G be a connected graph with n vertices and
m edges. Let d, t be the unique integer values with 2 ≤ d and 0 ≤ t < d such that
m =

(
n
2

)
−
(
d
2

)
− t. Then G is the quasi-star graph QS(n,m) if it is the unique

graph that:

(1) contains a set S of n−d−1 vertices, each of which is adjacent to all other
vertices of G;

(2) contains one vertex adjacent to exactly n− t vertices of S;
(3) the only edges of G are the ones already specified.

Proposition 2.22 (Proposition 1, [5]). Among all graphs in G(n,m), the max-
imum spectral irregularity is achieved by quasi-complete QC(n,m), and the max-
imum variance irregularity is achieved by QC(n,m) for m > 1

2

(
n
2

)
+ n

2 and by

quasi-star fraphs QS(n,m) such that m < 1
2

(
n
2

)
− n

2 .

On the other hand, we have graphs which are as close to regular as possible,
such as Turan graphs.

Definition 2.23. A Turan graph T (n, r) is the graph formed by partitioning
a set of n vertices into r groups, with sizes as equal as possible, and connecting
two vertices by an edge if and only if the vertices belong to separate groups. If we
let t, p ∈ Z such that n = tr + p, each vertex of T (n, r) has degree either n − t or
n− t− 1.

Turan graphs are a family of extremal graphs whose degree sequences are con-
stant or nearly constant and they are characterized by the following theorem.

Theorem 2.24 (Turan’s Theorem, [53]). Turan graph on n vertices with r
groups T (n, r) has the maximal number of edges among all order n graphs that
contain no (r + 1)-clique.

2.3. Threshold graphs and compression. Compression of a graph is an
operation first introduced in [32] and known by a variety of names, including the
Kelmans transformation [13] and swing surgery [48]. See the introduction of [31]
for details.

Definition 2.25. The neighborhood of vertex v in graph G, denoted NG(v),
is the set of all vertices which are connected to v by an edge. We say that vertex v
dominates vertex u if NG(u) ⊂ NG[v], where NG[v] = NG(v) ∪ {v}.

Definition 2.26. A graph G is threshold if for all vertices u, v ∈ V (G), either
u dominates v or v dominates u.

For other characterizations of threshold graphs, see [13, 33].

Definition 2.27. Let G = (V,E) be a graph and let u, v ∈ V . The compression
of G from vertex u to vertex v is an operation defined as follows: for each vertex
x ∈ NG(u)−NG(v)−{v} we delete all edges of the form {x, u} from G and replace
them with corresponding edges of the form {x, v}. The new graph produced by the
compression of G from u to vertex v is denoted Gu→v.

Compression preserves the number of vertices and edges of a graph, and the
result is independent of the order of in which vertices u and v are used, up to
isomorphism (i.e., Gu→v and Gv→u are isomorphic graphs). Compression of a graph
monotonically increases a number of graph invariants, such as the spectral radius
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and the number of independent sets of order k, while decreasing other invariants
such as the number of spanning trees and the vertex connectivity [13, 30, 31].

Any connected graph can be transformed into a connected threshold graph by
repeated applications of graph compression [7, 48]. Thus, threshold graphs are
often extremal with respect to these types of invariants.

3. Methods and data

3.1. Principal component analysis. Principal component analysis (PCA)
is a common technique for exploring multivariate data. The algorithm finds a set of
directions within the feature space which explain most of the variance in the data.
The number of these directions is often far smaller than the number of original
features, and so PCA can be used as a method of dimensionality reduction when
visualizing and interpreting a high-dimensional data set.

Let X ∈ Rn×p be a matrix representing a data set of n individuals, each
with p features. PCA takes the sample covariance matrix S for the data set and
finds an orthonormal eigensystem {(λj , aj)}pj=1 for S with eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λp. The eigenvector a1 is the unit vector in Rp such that the entries of
Xa1 have maximal variance (up to an overall sign change for a1). The second
eigenvector a2 maximizes variance subject to the constraint that a2 is orthogonal
to a1, and all successive vectors aj maximize variance among directions orthogonal
to {a1, . . . , aj−1}.

Definition 3.1. [29] Given a data set X ⊂ Rn×p and PCA eigensystem
{(λj , aj)}pj=1, the jth principal component of X is the product Xaj . For the jth
principal component of X, the p elements of the vector aj are called the PC load-
ings for the jth principal component, and the n elements of Xaj are called the PC
scores.

Note that if aj is an eigenvector of S with eigenvalue λj , then so is its opposite
−aj . Thus the signs of PC loadings and PC scores are arbitrary and may be
reversed depending on the implementation of PCA in a given instance.

Definition 3.2. [29] The explained variance associated with the jth principal
component of the data set X is the eigenvalue λj , and the normalized explained

variance λj is defined by λj =
1∑p

i=1 λi
λj .

The proportion of variance explained by the first j principal components of X

will be denoted Sj =
∑j

i λi.

The eigenvector a1 is a unit vector that determines a line in the feature space
Rp. This line indicates the axis in Rp along which the data set represented by X
has the greatest variation. Similarly, a2 gives the direction orthogonal to a1 for
which the data set has the second-greatest variation, and so on for 2 < j ≤ p.

Suppose that x ∈ Rp is a column of X representing one individual in the data
set. The PC score for the jth principal component represents the length of the
projection of x onto the line corresponding to eigenvector aj . The implementation
of PCA in the Python scikit-learn package [44] centers the data by moving the
mean to the origin. Thus a PC score of zero in the jth component would indicate
that x lies at the center of the distribution with respect to the jth direction of
variation. A positive or negative score indicates that x lies further from the center
on either side along this direction.
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(a)
(b) (c) (d)

Figure 1. Ball Mapper construction: Illustration. The input
point cloud is shown in (A), ϵ–net (B), Ball Mapper cover (C),
corresponding Ball Mapper graph (D).

3.2. Ball Mapper. Ball Mapper [19, 42] is a recent Mapper-type algorithm
for visualizing and analyzing the local and global structure of a data set. Like
the widely-used Mapper algorithm [50], Ball Mapper takes a data set in Rn as an
input and returns a graph which describes the proximity of points within the data.
While Mapper is highly dependent on a choice of filter function for the data set
and a choice of clustering method, Ball Mapper’s approach to obtaining the cover
is simpler and requires only one input parameter, a radius ϵ.

Given a set of points X ⊂ Rd and ϵ > 0, see Figure 1(A), Ball Mapper finds
a collection C ⊂ X, called an ϵ–net Figure 1(B), such that no point in X is lo-
cated further than distance ϵ from an element of C. This collection determines an
overlapping cover B(X, ϵ) = {B1, B2, . . . , Bi, . . .}: a set of d-dimensional balls with
radius ϵ that contain all of X, Figure 1(C). The algorithm then constructs the nerve
of B(X, ϵ), called Ball Mapper graph (BMGraph) Figure 1(D). In a Ball Mapper
graph, vertices vi correspond to the balls Bi in the cover, and two vertices vi, vj
are connected by an edge if and only if Bi and Bj contain shared points in X.

The Ball Mapper parameter ϵ determines the scale of the features highlighted
in the output. By varying ϵ, we create a linear sequence of images which highlight
structures at successive scales, inspired by the filtration in persistent homology (but
in this case we do not have the stability result). Additionally, we can choose to
filter our data according to a range of values of a given criterion and obtain an
output that can be displayed as a sequence of graphs, see Figure 4.

Results in this paper are obtained using the R implementation of Ball Mapper
[18]. This version of Ball Mapper supports additional visualization features; e.g.
the disks corresponding to vertices of the Ball Mapper graph are scaled according to
the number of points they contain. Thus larger disks in the visualization correspond
to larger clusters of points within radius ϵ of each other. Another useful feature is
coloring the Ball Mapper graph using values of some function f : X → R defined
on the input data. The color of each Ball Mapper disc is the average value of
the functions f on the points of X in that cluster. For convenience, we include
the colored vertical bar on the right of each image which describes a uniform scale
illustrating the distribution of colors from the minimum to maximum values of f
within the data set.

3.3. Graph data. The focus of this paper is on the chromatic polynomials
and our data contains chromatic polynomials for all simple connected graphs up to
ten vertices for a total of 11,716,571 graphs. Our database contains many additional
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G Chromatic polynomial PG(λ) Vector Q(G)

C3 λ3 − 3λ2 + 2λ (1, 3, 2, 0, 0, 0, 0, 0, 0, 0)

K5 λ5 − 10λ4 + 35λ3 − 50λ2 + 24λ (1, 10, 35, 50, 24, 0, 0, 0, 0, 0)

C10 λ10 − 10λ9 + 45λ8 − 120λ7 + 210λ6 − 252λ5

+ 210λ4 − 120λ3 + 45λ2 − 9λ
(1, 10, 45, 120, 210, 252, 210, 120, 45, 9)

Table 1. Chromatic point cloud examples: chromatic coefficient
vectors (absolute values) for the triangle, complete graph on 5 ver-
tices, the cycle graph with all ten non-zero entries.

properties including numbers of vertices and edges, spectral irregularity, variance
irregularity, numbers of subgraphs including cycles and K4s, maximal and minimal
vertex degrees, and identifications of all graphs which belong to classes including
trees, Turan graphs, or bipartite graphs.

Chromatic polynomials are computed using the Sage GraphGenerators class
implemented in Python 3 [52, 23]. The point cloud consists of the set of all
chromatic polynomial coefficients obtained in the following way. Given graph G
with chromatic polynomial PG(λ) = cnλ

n + cn−1λ
n−1 + . . . + c1λ, we represent

PG(λ) by its coefficient vector Q(G) = (|cn|, |cn−1|, . . . , |c1|, 0, . . . , 0). For simplicity
and computational efficiency, we take absolute values of each coefficient, since the
sign is given by (−1)k for each coefficient cn−k and thus remains constant within
each feature of our data set. Our data set consists of coefficient vectors with at
most 10 non-zero entries, so we standardize length by adding zero entries for graphs
with less than 10 vertices. Table 1 contains sample vectors for the triangle C3, the
complete graph K5, and the cycle C10 with 10 edges.
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Figure 2. A PCA projection of the chromatic polynomial data
to 2 dimensions determined by the first two principal components
and colored by number of edges for graphs with eight (A) and nine
vertices (B).

In the sections that follow, we visualize data sets corresponding to graphs with
a fixed number of vertices. Within each data set, the varying sizes of chromatic
coefficients make it difficult to see important features during visualization. We
apply a log transformation f(x) = ln(1 + x) to the data set derived from graphs
with n vertices and then separately normalize each feature to the range [0, 1] with
min-max scaling over this particular data set.
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D
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Figure 3. The PCA projection from Figure 2(B) with clusters
containing some well known graphs circled and labeled. In addition
to multiple non-isomorphic graphs the following clusters contain
A: all 9-vertex trees, B: complete graph K5 with 4 pendant edges,
C: complete graph K6 with 3 pendant edges, D: complete graph
K7 with 2 pendant edges, E: complete graph K8 with 1 pendant
edge, F: complete graph K8 with triangle attached along 1 edge,
G: complete graph K9, and K9 with 1 edge removed.

4. Chromatic polynomial data: structure and dimensionality

The main results of this paper rely on introducing big data analysis to graph
theory in a novel way inspired by applications to knot theory [43, 36]. In these
approaches a graph is represented by a unique vector, consisting of coefficients of
the chromatic polynomial. In this paper we focus on filtered PCA and Ball Mapper,
but this graph representation lends itself to any of the big data techniques, including
machine learning and other artificial intelligence tools.

Input data consists of chromatic polynomials for graphs up to ten crossings as
described in Section 3.3. This point cloud naturally embeds in R9 and we are using
Euclidean distance as our metric for this initial analysis.

Note that Theorem 2.12 provides an interpretation of the first few chromatic
coefficients in terms of number of vertices and edges, as well as the number of
special subgraphs such as cycles, complete graphs, and many others. Moreover,
Bollobás, Pebody and Riordan conjecture that almost every pair of independently
chosen random graphs are distinguished by their Tutte and chromatic polynomials.

Conjecture 4.1 ([8]). Let G(n, 1/2) be the space of random graphs on a fixed
set of n vertices in which each pair of vertices is joined independently with probability
1/2. Let T (G), p(G) denote the Tutte polynomial and chromatic polynomial of G
respectively. Then almost every graph G ∈ G(n, 1/2) is such that T (G′) = T (G)
implies G′ is isomorphic to G. In addition, almost every graph G ∈ G(n, 1/2) is
such that p(G′) = p(G) implies G′ is isomorphic to G.

While the conjecture remains open, it has been shown that the probability
that two independently chosen random graphs have the same Tutte polynomial is
of order O(1/ log n) [37].

4.1. Dimension of the chromatic data. Inspired by the big data approach
to the Jones polynomial, a polynomial invariant for knots [36], we apply Princi-
pal Component Analysis (PCA) to the chromatic data for graphs with increasing
number of vertices, up to ten maximum. The dimension of the Jones polynomial
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is defined to be the smallest value d for which the normalized explained variance
of the first d principal components sums to more than 95% across all considered
orders [36].

According to this definition and PCA computations, chromatic polynomial data
is essentially one-dimensional, and this dimensionality is stable with respect to
increasing the order of a graphs, see Table 2. This table presents a snapshot of
PCA computations for chromatic polynomial data for graphs of orders n = 8, 9, 10
and the first three principal components for each data set. In particular the last two
rows in Table 2 contain the normalized (NEV) and cumulative explained variance
(CEV) for n = 8, 9, 10 indicating that almost all variation is explained by the first
principal component. More precisely, the cumulative explained variance of PC1, S1,
is greater than 0.99 for all orders up to 10. In Section 4.3 we revisit this question
since the structure of the Ball Mapper graph is linear, see comparison with the
PCA in Figure 6.

n = 8 n = 9 n = 10
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

NEV 0.99188 0.00792 0.00018 0.99178 0.00806 0.00015 0.99189 0.00796 0.00015
CEV 0.99188 0.99980 0.99998 0.99178 0.99984 0.99999 0.99189 0.99985 0.99999

Table 2. The normalized explained variance λj(n) (NEV) and
cumulative normalized explained variance Sj(n) (CEV) for the first
three principal components of the chromatic polynomial data of
graphs with orders 8, 9, and 10 respectively.

4.2. Graph-theoretic interpretation of the principal components. To
get an insight into the graph-theoretic relevance of the principal components and the
dimension reduction of our data from 10 to one (or two), we provide visualisations
of the first two principal directions and further insights obtained using Ball Mapper;
see Figure 6.

Focusing on the two most significant principal components on chromatic poly-
nomials of graphs with fixed order, we visualize the structure of each data set by
plotting each graph as a coordinate pair (x1, x2) pair where xi represents the ith
PC score of that graph, see Figure 2. This figure illustrates the persistent structure
found for graphs with eight and nine vertices and the stability of the dimension
reduction with respect to the number of vertices of a graph. The first principal
component corresponds to the horizontal axis in Figure 2, which appears to be
roughly correlated with an increase in the number of edges. Graphs with a fixed
number of edges are found in clusters separated by thin regions of empty space in
this projection. Figure 3 identifies the location of certain well-known graphs, such
as trees and complete graphs, at the boundary of the projection. This boundary
also contains maximum coefficient graphs; see Figure 12.

The data set of chromatic polynomials for graphs of 9 vertices has 8 dimensions,
corresponding to the eight coefficients which are not trivially equal to 0 or 1. The
loadings for PC1 and PC2 in Table 3 are the entries of the eigenvectors that give
the directions of greatest variation in this eight-dimensional data set. We observe
that all loadings for PC1 are positive, so that movement along this axis corresponds
to an overall increase or decrease in coefficient size. This agrees with our previous
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observation that PC1 is correlated with the number of edges in a graph. For PC2,
the loadings for the last four coefficients have the opposite sign from the first four,
indicating that an increase in PC2 score correlates with an decrease in relative size
of the last few coefficients.

c8 c7 c6 c5 c4 c3 c2 c1

PC1 0.34694 0.34683 0.34761 0.34876 0.35005 0.35172 0.35579 0.379545

PC2 0.54568 0.39243 0.24013 0.08614 −0.06850 −0.22145 −0.37150 −0.53983

Table 3. PC loadings for two most significant principal compo-
nents, PC1 and PC2, for the chromatic polynomial data for all
graphs of order 9, with chromatic polynomial determined by eight
coefficients PG(λ) = λ9 + c8λ

8 + . . . + c1λ

PC loadings provide a way to think about principal components in terms of
the coefficients of the chromatic polynomial, and in turn, based on the formulas in
Theorem 2.12, features of a graph. We hypothesize that PC1 measures the average
size of the coefficient vector as a whole, and that PC2 detects the relative difference
between the first and last coefficients.
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Figure 4. Stability of BMGraphs for chromatic data with respect
to the number of vertices with graphs of order at most 8 (A), nine
(B) and ten (C) with the Ball Mapper parameter ϵ = 0.1, colored
by the number of vertices.

4.3. Chromatic data: Ball Mapper structure. In this section we apply
Ball Mapper to the chromatic point cloud consisting of coefficient vectors of all
graphs up to n = 10 vertices.

First, we provide the evidence for the stability of the Ball Mapper approach
to the chromatic polynomial data with respect to the order of a graph. In Figures
4 and 5 we provide evidence for a persistent structure across data sets of graphs
with order equal to eight, nine, and ten respectively. Graphs of each given order
are clustered in long branch-like features, with neighboring branches of adjacent
orders across all three BMGraphs. These branch-like features are also reflected in
the two-dimensional PCA plot for all graphs up to 10 vertices combined, see Figure
5. This structure invites and justifies exploring the data corresponding to graphs
of a given order.
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Figure 5. A two-dimensional PCA projection of the chromatic
polynomial data for all graphs with 3-10 vertices. The projection
is based on the first two principal components for normalized data,
colored by number of vertices.

Figure 7 and Figure 8 provide a detailed structure of branches consisting only
of graphs with exactly 8 and 9 vertices respectively. Both Ball Mapper graphs have
linear structure consistent with the PCA analysis in Section 4.1. To confirm the
informal correspondence between the 1-dimensionality of the data obtained by the
PCA approach and the “linear” structure of the BMGraph, we color each cluster
in the BMGraph by the average PC scores of the graphs it contains, Figure 6. The
remarkable agreement between the two methods suggests that the first principal
direction corresponds to the linear feature of the Ball Mapper structure.
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Figure 6. Clusters 9-12 in BMGraph of the Chromatic polyno-
mial data shown in Figure 8 at radius ϵ = 0.06 colored by the
average PC1 score (A), and the average PC2 score (B) of graphs
contained in each cluster.

The linear direction within BMGraphs corresponds to the number of edges in a
graph, see Figures 7(B) and 8(B), as well as the L2 norm of the chromatic coefficient
vectors, see Figure 7(C), 8(C). This result can be explained by the fact that the
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Figure 7. BMGraph of the chromatic polynomial data of all
graphs with exactly 8 vertices and the Ball Mapper parameter
ϵ = 0.22 colored by cluster size (A), number of edges (B), and the
norm of the chromatic polynomial (C).
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Figure 8. BMGraph of the chromatic polynomial data of all
graphs with exactly 9 vertices and the Ball Mapper parameter
ϵ = 0.15 colored by cluster size (A), number of edges (B), and the
norm of the chromatic polynomial (C).

number of edges E contributes to the largest terms of each formula in Theorem
2.12.

Based on the BMGraph in Figure 8(A) and associated data, four largest clusters
contain more than 50,000 out of total of 261079 points/graphs: cluster 9 (64442),
cluster 10 (80017), cluster 11 (90054), and cluster 12 (78878). Therefore, we analyze
the collection of these 4 clusters using a smaller value of radius ϵ, see BMGraphs on
Figure 9. As expected, the major PC1 direction of this particular embedding on the
BMGraph is correlated with the number of edges Figure 9(A), and the PC2 direction
is roughly consistent with the L2 norm of the chromatic coefficients, Figure 9(B).
The average number of triangles in a graph contained in any given cluster, as well as
the average degree distance seem to be varying in the PC2 direction, complementary
to the main linear structure, from north-west to south-east in Figures 9(C-D).

4.4. Extremal chromatic polynomials and irregularity. Section 2.2 pro-
vides a few details on regular graphs and irregularity measures, but is by no means
comprehensive. Note that there is a lot of ambiguity when it comes to irregularity
measures. It was recently shown that no two of the following irregularity measures
are mutually comparable: spectral irregularity, variance irregularity, Albertson in-
dex, and total irregularity [2].
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Figure 9. Clusters 9-12 in BMGraph of the chromatic polynomial
data shown in Figure 8 at radius ϵ = 0.06 colored by: number of
edges (A) and by L2 norm of chromatic coefficients (B), average
number of triangles in a graph (C), average difference between the
maximal and minimal degree (D).

Section 2.3 offers a brief survey of results on graph compression, which uni-
formly increases or decreases values of a number of graph invariants related to the
chromatic and Tutte polynomials.

Proposition 4.2. Suppose that G′ is obtained from G by compression. Then

(1) The coefficients of the chromatic polynomial of G′ are smaller than those
of G: |ci(G′)| ≤ |ci(G)| for all 1 ≤ i ≤ n.

(2) Graph G′ has greater variance irregularity than G: σ(G′) ≥ σ(G).
(3) Graph G′ has greater spectral irregularity than G: ϵ(G′) ≥ ϵ(G).

Proof. Part (1) is a restatement of Theorem 6.3 of [13]. Part (2) derived from
Lemma 2.3 of [14] with Definition 2.19 in mind. Part (3) follows from Theorem 2.1
of [12] with respect to Definition 2.18. □

As a consequence, if we consider graphs with a fixed number of vertices and
edges, then part (1) claims that threshold graphs and their co-chromatic graphs are
among the chromatically minimal and part (2) says that threshold graphs maximize
variance irregularity.

The rest of this section provides visualizations of these observations and a large-
scale comparison between the spectral and variance irregularity measures, high-
lighting the relation between threshold graphs (the extremal graphs with respect
to compression) and the coefficients of the chromatic polynomial. For example, the
graphs with extremal PCA2 scores and minimal coefficient graphs, as in Figure
12(C), are either threshold or co-chromatic with threshold graphs, see Figure 10.

The BMGraph 11(A) is colored by spectral irregularity and (B) by variance ir-
regularity emphasizing that, in these particular embeddings of BMGraphs, clusters
on the left- and right-hand sides contain graphs with extreme irregularity measures,
with the average irregularity monotonically increasing from left to right. The same
phenomenon appears in Figure 9(D) when the coloring function is the difference
between maximal and minimal vertex degrees.

These observations based on Ball Mapper graphs are matched by visualizations
of the chromatic data in the 2-dimensional PCA projection, see Figure 12. In both
projections, higher PC2 score corresponds to higher values of graph irregularity
measures within the subset consisting of graphs with equal number of edges. How-
ever, the overall distributions of spectral Figures 12(A), and variance irregularity
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Figure 10. A PCA projection of the chromatic polynomial data
for all graphs of order 9 into 2-dimensions determined by the two
most significant principal directions, PC1 and PC2, colored by
presence of threshold graphs denoted by blue color.
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Figure 11. Clusters 9-12 in GMGraph of the Chromatic polyno-
mial data shown in Figure 8 at radius ϵ = 0.06 colored by average
measure of spectral irregularity in each cluster (A), variance irreg-
ularity (B), presence of chromatically minimal (purple color) (C)
and presence of chromatically maximal graphs (D)

.

Figures 12(B) are different, with the variance regularity being lower on the middle
left section.

The location of chromatically minimal and maximal graphs of order 9 (see
Definition 2.17) in the BMGraph and 2-dimensional PCA projection is shown on
Figures 11(C), 11(D) and 12(C), 12(D), respectively. Both methods show that
chromatically minimal graphs are found in regions of highest irregularity. This
is expected since the families of minimal graphs characterized by Definition 2.14
include members of the high-irregularity connected quasi-complete graphs and con-
nected quasi-stars (Section 2.2). For example, it follows from Definition 2.20 that
the connected quasi-complete graph QC(n,m) is an element of the family L(n,m).

While, to the best of our knowledge, there exists no similar characterization
for chromatically maximal graphs, their location among the most regular graphs
is supported by results from extremal graph theory. Lazebnik and others prove
partial characterizations for graphs which maximize evaluations of the chromatic
polynomial PG(λ) at given values of λ [34]. These classes of graphs include Turan
graphs (Definition 2.23) and are generally similar to Turan graphs in structure.
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Figure 12. A PCA projection of the chromatic polynomial data
for all graphs of order 9 into 2-dimensions determined by two most
significant principal directions, PC1 and PC2, colored by spec-
tral (A) and variance irregularity measure (B), the presence of
minimum-coefficient (C) and maximum-coefficient graphs (D) de-
noted by red color.

(a)
(b)

Figure 13. Extremal graphs in G(9, 11) with coefficient vectors
equal to: (1, 11, 51, 131, 205, 201, 121, 41, 6) (A), and (1, 11, 55,
165, 328, 446, 406, 224, 56) (B).

Turan graphs are extremal graphs which are chromatically unique [9] and close
to regular, see Section 2.2. The location of all Turan graphs of order 9 within
the 2-dimensional PCA projection, among other chromatically maximal graphs, is
highlighted in red in 12(D).

Computations for graphs up to nine vertices imply that:

• The minimal and maximal elements of the chromatic polynomial poset
G(n,m) achieve the extremal PC2 scores among all graphs with n vertices
and m edges when the principal components are computed over the data
set of all n-vertex graphs.

• The Turan graph T (n,m) is maximal in the poset G(n,m).

Further investigation of chromatically maximal graphs in our data suggests that
there is a relationship between the “tail” of the polynomial (the last few coefficients)
and graph irregularity. For example, consider the graphs in Figure 13 with n = 9
vertices and E = 11 edges. The graph on the left is one of three co-chromatic non-
isomorphic graphs which are minimal in G(9, 11), with higher irregularity measures
and significantly smaller tail than the graph in Figure 13(B), which is maximal in
G(9, 11).
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8. Béla Bollobás, Luke Pebody, and Oliver Riordan, Contraction–deletion invariants for graphs,

Journal of Combinatorial Theory, Series B 80 (2000), no. 2, 320–345.
9. Chong-Yun Chao and George A Novacky Jr, On maximally saturated graphs, Discrete Math-

ematics 41 (1982), no. 2, 139–143.

10. Chong-Yun Chao and Earl Whitehead Jr., On chromatic equivalence of graphs, Theory and
Applications of Graphs (Yousef Alavi and Don Lick, eds.), Lecture Notes in Mathematics,

Springer, 1976, pp. 121–131.

11. , Chromatically unique graphs, Discrete Mathematics 27 (1979), no. 2, 171–177.
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