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Abstract— Bird-sized flapping-wing robots offer significant
potential for agile flight in complex environments, but achieving
agile and robust trajectory tracking remains a challenge due
to the complex aerodynamics and highly nonlinear dynamics
inherent in flapping-wing flight. In this work, a learning-
based control approach is introduced to unlock the versatil-
ity and adaptiveness of flapping-wing flight. We propose a
model-free reinforcement learning (RL)-based framework for
a high degree-of-freedom (DoF) bird-inspired flapping-wing
robot that allows for multimodal flight and agile trajectory
tracking. Stability analysis was performed on the closed-loop
system comprising of the flapping-wing system and the RL
policy. Additionally, simulation results demonstrate that the RL-
based controller can successfully learn complex wing trajectory
patterns, achieve stable flight, switch between flight modes
spontaneously, and track different trajectories under various
aerodynamic conditions.

I. INTRODUCTION

Flapping-wing Micro Aerial Vehicles (FMAVs) offer
tremendous potential to achieve efficient and agile flight
in complex, cluttered environments by mimicking the ca-
pabilities of their biological counterparts. These vehicles,
capable of simultaneously generating lift, propulsion, and
control forces, can perform maneuvers beyond the reach
of conventional fixed-wing or rotary-wing aircrafts [1]–[3].
Compared to insect-inspired FMAVs, which excel in agility
and hovering, bird-inspired FMAVs (commonly referred to
as ornithopters) offer superior efficiency and robustness for
sustained, long-distance flights. However, achieving robust,
agile, and precise trajectory tracking control for bird-inspired
FMAVs poses significant challenges. In particular, several
key obstacles across various aspects of bird-inspired FMAVs
design and operation hinder the development and perfor-
mance of effective control systems for these vehicles.

A. Challenges for Control of Bird-inspired FMAVs

Modeling. The bird-inspired FMAVs exhibit highly non-
linear aerodynamics [2]. Birds and bird-inspired FMAVs
typically operate within a Reynolds number range of 103

to 106, where the boundary layer is prone to laminar-
turbulent transitions, significantly affecting the aerodynamic
characteristics of flapping flight. These flow transitions are
difficult to model accurately [4]. Additionally, unlike insect-
scale or hummingbird-scale hoverable FMAVs (where wing
inertia is often negligible), the larger wings of bird-inspired
FMAVs introduce significant inertia effects. This necessitates
the application of a multi-body dynamics model to capture
the full complexity of the system’s movements and inter-
actions [5]. Furthermore, many of the current bird-inspired
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Fig. 1: The layout of the flapping-wing robot. In simulation,
the flapping wing robot is modeled as 4 rigid ellipsoid bodies
(yellow ellipses) with 5 joints (blue cylinders). The bold red,
green, and blue arrows represent the local xyz-frame of the
vehicle.

FMAVs feature flexible wings that couple with the aerody-
namic forces acting on them [6]. The deformation of these
wings during flight plays a critical role in determining their
aerodynamic properties. This aeroelastic coupling, where
aerodynamic forces and structural deformation interact, fur-
ther complicates the modeling of FMAVs and presents a
substantial challenge to the development of effective control
strategies [4].

Simulation. Given the current limitation on existing mod-
els in flapping-wing flight dynamics, aerodynamics, and
aeroelastics, simulating the full flight dynamics is challeng-
ing. High-fidelity simulations are computationally intensive.
For instance, Computational Fluid Dynamics - Computa-
tional Structure Dynamics (CFD-CSD) simulations usually
take days to run. While the dynamics simulations for lower-
fidelity models including Unsteady Vortex Latex Method
(UVLM) and Unsteady Lifting Line Method are computa-
tionally feasible, they fail to account for viscous flow effects
like leading-edge-vortex (LEV) and have a limited applica-
tion range including the requirement of large wing aspect
ratio and relatively small angle of attack for accurate results
[7]–[10]. The lack of high-accuracy and low-computing-cost
dynamical simulation environments for FMAVs is another
challenge impeding the development of effective controllers
for bird-inspired FMAVs.

Design. From the perspective of design, the limited weight
budget arising from the nature of an aerial vehicle constrains
the in-flight onboard computational power. This, in turn,
limits the complexity of the controller despite the complex
dynamics of the vehicle. In addition, the weight constraint
also restricts the number of effective actuators in the design.
Most of the recent bird-inspired FMAVs are driven by a link
mechanism with a single motor with gearbox for flapping,
and controlling the vehicle by changing the motor speed and
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Fig. 2: The flapping-wing robot follows a loop trajectory generated from simulation. The robot performs an Immelmann
turn (pitch up and roll back level), a half-loop maneuver (pitch down and roll back level), and a rejoin to the trajectory. The
dark green points represent the reference points of the trajectory over time.

the angle of an actuated tail [11]. The limited control inputs
restrict the agility and possible maneuvers of the FMAVs.

B. Related Work

FMAVs can be broadly categorized into two types: insect-
or hummingbird-inspired FMAVs, which are optimized for
near-hover flight, and bird-inspired FMAVs, which are pri-
marily designed for forward flight [12]. Insect-sized FMAVs,
due to their small size and lightweight structures, are typi-
cally more focused on hovering capabilities and agile maneu-
vers, often controlled with high-frequency wing flapping. In
contrast, bird-inspired FMAVs are larger and more suitable
for efficient forward flight, with the added complexity of
managing the transition between various flight modes [13].

Traditional control approaches for these bird-inspired
flapping-wing robots often rely on model-based methods
with single-rigid-body dynamics, which are generally suc-
cessful in limited environments but struggle with the non-
linear, highly dynamic aerodynamic forces and complex
multi-degree-of-freedom movements inherent to flapping-
wing flight [6]. These approaches include low-level at-
titude control systems designed for ornithopters, where
proportional-integral-derivative (PID) techniques, and state
feedback linearization are used to manage basic flight stabi-
lization and orientation [6], [14].

Some progress has been made in optimization-based ap-
proaches for flight control of bird-sized FMAVs, as demon-
strated in several studies [15]–[18]. Researchers have also
explored model-based methods for trajectory tracking and
generation, particularly in forward flight [19]–[23]. However,
these systems usually result in limited accuracy due to the
simplifications required to handle the complex dynamics of
flapping-wing flight. Furthermore, the control mechanisms in
such systems typically involve a small number of actuators,
primarily focusing on the flapping frequency and the tail’s
pitch or yaw angles, which results in limited agility and
maneuverability during flight.

In contrast, learning-based approaches have recently
emerged to overcome the limitations of traditional control
methods. Reinforcement learning (RL) has been success-
fully applied to various motile platforms, including ground

vehicles, drones, and legged robots, enabling robust and
agile locomotion in highly dynamic environments [24]–[28].
However, its application in flapping-wing robots remains
relatively underexplored. Some early studies have applied
RL for specific tasks such as improving lift generation in
butterfly-like MAVs or suppressing wing vibrations during
wing trajectory tracking [29], [30]. Experimental work has
also demonstrated the potential for RL in enhancing effi-
ciency in lift generation and in modeling dynamic behavior in
traditional control frameworks [31], [32]. RL-based control
has particularly shown promise in enabling agile maneuvers,
such as back-flips and escape behaviors, in insect-sized
hoverable FMAVs [33]–[37]. Despite these advances, the use
of RL in bird-sized FMAVs for forward flight remains an
open area of research, with significant potential to unlock
new levels of agility and performance.

C. Contribution

This paper presents a learning-based approach for trajec-
tory tracking in flapping-wing robots using reinforcement
learning. Our method leverages a simulation environment
built in MuJoCo (Multi-Joint dynamics with Contact) [38]
to model the robot’s dynamics and aerodynamics, enabling
us to train the RL policy under various conditions. We
focus on developing a control framework that not only tracks
predefined trajectories with high precision but also handles
challenging maneuvers such as loops and Immelmann turns,
as shown in Fig. 2. Furthermore, we explore the robustness
of the proposed method in the presence of wind disturbances
and varying aerodynamic conditions, demonstrating its ver-
satility in real-world scenarios. In addition to introducing
a novel control strategy, we demonstrate the stability of
the controlled system. A phase study of the system is also
conducted to reveal the periodicity of the controlled system.

II. PROBLEM DESCRIPTION

A. Platform Overview

In this paper, we use a flapping-wing robot with a
wingspan of 0.995m, a standard mean chord of 0.17m, and
a weight of 0.31kg, as shown in Fig.1 (a). A simplified
model of the flapping-wing robot showing the joint and



rigid bodies is shown in Fig. 1. Unlike many existing bird-
inspired FMAVs, this robot features nj = 5 controllable
joints (qj ∈ R5) that independently actuate the wing and
tail. Each wing is equipped with a flap joint (q1 for the left,
q3 for the right) to control the flap angle, and a feathering
joint (q2 for the left, q4 for the right) to control the wing
pitch. Additionally, there is a dedicated joint q5 to control the
tail pitch. In total, the robot possesses 5 actuated DoFs. The
robot also has a floating base qb with 6 DoFs comprising
translational positions [qx, qy, qz]

T and rotational positions
[qϕ, qθ, qψ]

T , which result in a total of n = 11 DoFs. Thus,
the system has n − nj = 6 degrees of underactuation. The
full system’s generalized coordinates q can be represented
as q = [qb,qj ]

T ∈ Rn.

B. Dynamical Model

Although the wings of a flapping-wing robot can be
flexible, in this work, we assume all bodies in the robot are
rigid for simplicity. The aerodynamic effect caused by the
deformation of wings is handled by domain randomization
mentioned in Table III. The full-order dynamical model of
the flapping-wing robot system is derived with the Newton-
Euler formulation:

M(q)q̈+C(q, q̇)q̇+G(q) =

[
06

τ

]
+ uaero(q, q̇) (1)

where M(q) ∈ Rn×n is the mass matrix, C(q, q̇) ∈
Rn×n represents the Coriolis and centrifugal forces, and
G(q) ∈ Rn denotes the gravitational forces, τ ∈ Rnj is
the input joint torque, while uaero(q, q̇) ∈ Rn represents the
generalized aerodynamic forces. Note that the generalized
aerodynamic force, uaero, can be calculated as

uaero(q, q̇) =

m∑
i=1

JTi (q)Faero,i(q, q̇), (2)

where JTi (q) ∈ Rn×6 is the Jacobian transpose that maps
Cartesian aerodynamics wrench Faero,i(q, q̇) ∈ R6 acting on
each body, i, to the generalized coordinates, and m is the
number of bodies considered in the fluid.

C. Simulation

MuJoCo is used as the physics simulator in this work.
In MuJoCo, the multi-body dynamics model mentioned in
section II-B is computed. MuJoCo also provides state-less
fluid force models (i.e., the fluid force computation does
not have its own dynamics and fluid states but rather is
only dependent on the state of the robot - a simplifying
approximation that is made), which is used to model the
Cartesian aerodynamic wrench Faero = [fTaero τTaero]

T acting
on each body i of the robot. There are two different models
provided by MuJoCo that were both used in this work: (1)
a simplified inertia model that estimates the aerodynamic
wrench based on its equivalent inertia box, and (2) a more
elaborate ellipsoid model that accounts for the aerodynamic
force and moment from 5 different aerodynamic effects on
a projected ellipsoid [36]. For a single rigid body in the

TABLE I: Definition of Variables Used in the Aerodynamics
Equations

Variable Definition
v Velocity (vector) relative to airflow
v∥ Component of velocity parallel to surface
ω Angular velocity (vector)
ρ Fluid density
ν Kinematic viscosity of the fluid

mA Added mass (vector)
IA Added moment of inertia (vector)

CD, blunt Drag coefficient for blunt body
CD, slender Drag coefficient for slender body
CD, angular Angular drag coefficient

CK Kutta lift coefficient
CM Magnus force coefficient
A

proj
v Projected area in the direction of velocity

Amax Maximum reference area
V Volume of the body

Amax Maximum reference area
ID Reference moment of inertia for drag
rV Effective radius for viscous drag

fluid, the total aerodynamic force, faero, and moment τaero are
calculated as follows for each model: For ellipsoid model,

faero = fA + fD + fM + fK + fV (3)
τaero = τA + τD + τV (4)

and for inertia model,

faero = fA + fV (5)
τaero = τA + τV (6)

where subscripts A, D, M , K, and V represent added
mass, viscous drag, Magnus lift, Kutta lift, and viscous
resistance, respectively. The computation of each term is
summarized as follows based on [36],

fA = −mA ◦ v̇ + (mA ◦ v)× ω

τA = −IA ◦ ω̇ + (mA ◦ v)× v + (IA ◦ ω)× ω

fD = −ρ
[
CD,bluntA

v
proj + CD,slender(Amax −Av

proj)
]
∥v∥v

τD = −ρ [CD,angularID + CD,slender(Imax − ID)]ω

fM = CMρV ω × v

fK = CKρAv
proj∥v∥(v × v∥)× v

fV = −6πrV νv

τV = −8πr3V νω
(7)

where ◦ is defined as element-wise multiplication, and
each of the terms used is defined in Table I. Note that in
this work, the fluid coefficients CD,blunt, CD,slender, CD,angular,
CK , and CM are manually tuned to match the designed
lift-to-drag ratio of the FMAV at gliding, given that the
horizontal-to-vertical distance covered by the FMAV is equal
to the lift-to-drag ratio when gliding in steady state. The
resultant coefficients are provided in Table II. For higher
simulation accuracy, we model all the lifting bodies including
wings and tail with the more elaborate ellipsoid model and
model the remaining bodies, i.e., the main body, with inertia



TABLE II: Aerodynamic coefficients used in this work.

Coefficient CD, blunt CD, slender CD, angular CK CM

Value 0.2 0.12 1.5 3.14 1

Policy

LPF Joint PD 
Control ler

Fig. 3: The control diagram for flapping-wing robot trajec-
tory tracking control. The variables used here are covered in
Sec III-C

.

model in considering the relatively small aerodynamic effect
from the body compared to the lifting bodies. This enables
us to capture the most significant aerodynamic properties of
the robot in MuJoCo with a relatively simple model.

III. RL-BASED TRAJECTORY TRACKING CONTROL

A. Control Framework

Our goal is to develop an RL controller framework for
a bird-inspired FMAV that can track target trajectories and
achieve bird-like maneuverability. As seen in Figure 3,
we use an RL-trained policy that outputs actions that are
scaled and smoothed via a low-pass filter into target joint
positions. These are then used by the low-level PD controller
to compute motor torques. The policy operates at 50Hz,
while the low-level joint PD controller runs at the simulation
frequency of 250Hz.
One important aspect of our framework was ensuring energy-
efficient behavior, since policies tend to prefer unrealistically
high flapping frequencies when left unconstrained. Aside
from the enforced energy penalties during training, the low-
pass filter was given a 7Hz cutoff frequency to limit the
viable flapping frequencies to 4-6Hz.
Due to the difficulty of adapting to a variety of arbitrary ma-
neuvers as well as lack of a “safe state” in our state space, we
found it difficult to train such a policy from scratch. There-
fore, we use a curriculum-based training scheme involving
3 stages of increasing difficulty to train a controller: (1)
constant forward flight, (2) climbing and diving at variable
speeds, (3) turning and arbitrary maneuvers. Following this,
Dynamics randomization was an additional stage to improve
the robustness and adaptability of trained controllers, where
we randomized rigid body, motor-level characteristics, the
aerodynamics and wind condition of the system.

B. Target Trajectories

We procedurally generate 3D position trajectories Qd
xyz(t)

that are defined by simple linear and circular paths. The
policy is provided with a look-ahead buffer of the upcoming
trajectory and is rewarded based on its position error to
the current target position along it. These simple trajectories
were chosen over trajectories obtained through model-based
optimization and Bézier curves [39] due to uncertainty in
aerodynamic feasibility. The robot’s flight path is not tightly

constrained to this target trajectory to allow the policy to
optimize its movement according to the aerodynamics of the
system. Hence, this ensures that the learning is unconstrained
and natural, with the resulting emergent behavior dictating
its own orientation to fit the desired movement. With the
parameters of forward speed, Z-axis velocity, and global
angular yaw rate, we can specify commands that combine
the four basic flying skills: flying straight, diving, climbing,
and turning. The duration of each command is fixed at 3
seconds, enabling the policy to follow arbitrary paths and
become robust to skill transitions. Vertical loops were also
modeled to simulate aerobatic maneuvers like back-flips and
Immelmann turns.

C. State and Action Spaces

The actions at ∈ Rnq that are output from the controller
specify the target actuated joint positions qdj , which are used
by the low-level joint PD controller to compute the motor
torque. The action space is centered in the nominal pose
(wings and tail flat at 0 degrees) and is normalized to the
respective joint limits.

The observation space of the policy consists of sensor-
related observations and trajectory information. The sensor
observations for each time frame include the orientation
quaternion η, local angular velocity p, q, r, joint motor posi-
tions qj , and a local x-velocity measurement relative to the
wind vx,air. The latter sensor is modeled after a pitot tube and
acts as the most plausible form for a physical flapping robot
to receive onboard velocity readings. The policy receives a
history of sensor readings and past action outputs for the past
25 steps, corresponding to a window of 0.5s. This history
allows the policy to infer the dynamics of the system.

The policy also receives 30 steps of the upcoming trajec-
tory Qd

xyz(t) in local-frame relative coordinates ∆qdxyz . This
corresponds to 0.6s of the future trajectory information. Al-
though shorter trajectory windows of 0.2s have also resulted
in well-performing policies, larger windows are included to
allow for smooth flapping behavior.

D. Rewards

The heuristics for our reward r for the policy are kept con-
stant across all stages of training: to minimize position error
relative to the target trajectory while preserving balance. The
reward function has four parts

r = 0.5rpos + 0.1rΩ + 0.2rϕ,θ + 0.05renergy (8)

where rpos is the position tracking term that minimizes body
position error to the current desired position on the target
trajectory. rΩ attempts to minimize the main body angular
rates p, q, r to ensure smoother and stable behavior. rϕ,θ
rewards a lower roll and pitch, motivating the robot to stay
leveled. Although a bird’s pitch and roll are involved in
its flight movements, this reward ensures that the learned
behavior varies its orientation only when needed. This is
because a bird receives maximal horizontal thrust when
oriented horizontally, and hence this reward encourages the
policy to maximize its time in this orientation. renergy is the



energy term [40] that motivates energy-efficient behavior,
i.e., gliding instead of flapping when possible, mimicking
physical birds. This term also serves the purpose of discour-
aging high flapping frequencies so that the learned frequency
resembles those of physical birds of the same wing area.

E. Dynamics and Aerodynamic Force Randomization

We have incorporated the randomization of dynamic pa-
rameters in our training framework in order to better prepare
policies for the sim-to-real gap. Similar to previous work
[39], randomization was applied to rigid body mass, inertia,
and center of mass.

Although the Mujoco Fluid model is capable of capturing
salient aerodynamic effects using ellipsoids, it still has lim-
ited accuracy to simulate the real physics of the flapping-
wing robot. This is due to three major reasons: (1) the
hand-tuned fluid coefficients may not match the physical
model, (2) it’s difficult for the state-less characteristic of
MoJoCo aerodynamic model to capture the state-dependent
unsteady aerodynamic force in highly dynamical motions,
and (3) the deformation on the physical wing can cause
variations in the resultant aerodynamic forces. To overcome
this deviation between the simulation and the real world,
a randomization on the aerodynamics is incorporated. This
includes randomizing the 5 different fluid coefficients, the
added mass mA, and the added inertia IA mentioned in
Table I on each body. Additional wind disturbances with
randomized direction and magnitude were also implemented
to improve the robustness and adaptability of the policy. The
detailed range of dynamics randomization is shown in Table
III. The initial position and velocity are also randomized
to ensure that the policy can robustly recover and rejoin
trajectories.

TABLE III: The range of dynamics randomization.

Parameters Range

Joint Damping Ratio [0.9, 1.1] Nms/rad
Link Mass & Link Inertia [0.9, 1.1] × default
Link CoM Position [-0.05, 0.05] m + default
Aerodynamic Coefficients [0.7, 1.3] × default
Aerodynamic Added Mass & Inertia [0.9, 1.1] × default
Wind x,y,z Velocity [±2], [±2], [±1.5] m/s

F. Episode Design

Each episode lasts a maximum of 30 s, corresponding to
1,500 control steps. A position error termination condition
is enforced throughout all stages of control, terminating
episodes if the robot deviates more than 3 meters from the
target position. This condition accelerates early training and
improves the precision of trajectory tracking while allowing
the policy to optimize its own flight path. Additionally, an
orientation termination condition is also applied during the
first two stages of training to ensure that the robot’s absolute
roll |qϕ| and pitch |qθ| never exceeded 90◦ when learning
basic flight. This constraint is removed when training later
stages that involve arbitrary paths and extreme maneuvers.
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Fig. 4: Forward flapping behavior of the controller shown
through time series of the wing pitch angle, wing pitch
angle, and tail angle in 1 second. The dashed lines are target
joint positions while the solid lines indicate the actual joint
positions.

We trained our policy with a multilayer perceptron (MLP)
actor-critic architecture with Proximal Policy Optimization
(PPO) [41] employing 256 parallel environments. Each train-
ing stage required approximately 8 million steps, with a full
controller trained in about 30 million steps. The training was
conducted in CPU with an Intel Core i7-11800H and took
around 5 hours to train the full controller.

IV. RESULTS

We now validate the performance of policies trained for
our control framework. Fig. 4 displays 1 second of flapping
at a speed of 3.8m/s. The wing flapping, wing pitch, and tail
angles were found to have a fundamental frequency of 5.3Hz
with energies of 38.65%, 36.81%, and 38.24% respectively,
indicating reasonable fit to a single frequency mode.

A. Stability Analysis of the Flight Controller

1) System Identification: To analyze the dynamics of
the RL-based controller and validate the stability of the
control system, a model derived from system identification
using input-output pairs is introduced, as shown in Fig. 5.
Following a method similar to [42], a low-dimensional linear
system is extracted from the flapping-wing robot under the
control of the RL-based controller, which is then employed
to demonstrate its stability. The input u of the closed-loop
system is the desired position [qdx, q

d
y , q

d
z ]
T ∈ R3 while the

output of the system is y = [q̂x, q̂y, q̂z]
T . We develop a

linear model that approximates the behavior of the closed-
loop system governed by the model-free RL-based policy.
The LTI system is obtained by fitting the input-output pairs,
where the input of the closed system is determined by the
input of the policy network. The fitted input-output dynamics
of position is given by:

Yx(s) =
49.89s2 + 164.9s+ 26.27

s3 + 3.554s2 + 6.438s+ 2.809
(9)

Yy(s) =
−0.09798s2 − 10.07s− 24.67

s3 + 3.554s2 + 6.438s+ 2.809
(10)

Yz(s) =
1.006s2 + 1.020s+ 3.836

s3 + 3.554s2 + 6.438s+ 2.809
(11)

Note that the derived linear model predicted result with a
Mean Squared Error (MSE) as low as 5.629× 10−5.



Fig. 5: System identification is performed on the closed-loop
system. A low-dimensional system is derived from the high-
dimensional, nonlinear dynamics of the flapping-wing robot,
which is controlled by its RL policy. The input, u, of this
simplified system is the desired global position, while the
output, y, represents the robot’s measured response, driven
by the low-level RL policy.

(a) Pole-zero of qx (b) Pole-zero of qy (c) Pole-zero of qz

Fig. 6: Pole-zero plots for the closed-loop system’s linear
dynamics in three dimensions. In all three plots, the poles
are located in the LHP, indicating that the system exhibits
bounded input bounded output (BIBO) stability across all
dimensions. Additionally, the zeros are also located in the
LHP, confirming that the system is minimum phase in each
dimension.

2) Stability: We assess the stability of the closed-loop
system’s linear dynamics by examining the pole positions of
the above transfer functions. The plots of poles and zeros
for all three dimensions are presented in Fig. 6. Based on
the analysis, all identified linear systems exhibit Bounded
Input Bounded Output (BIBO) stability, as all poles are
located in the left-half plane (LHP). This shows that the
input-output dynamics of the closed-loop system comprised
of the nonlinear FMAV controlled by the RL policy is
locally input-output stable. Additionally, all zeros are located
in the LHP, confirming that the system is minimum phase
in all dimensions. The result implies that the input-output
relationship of our system does not exhibit non-minimum
phase behavior, which can often be found in conventional
fixed-wing aircraft, where tail-down effects precede tail-
up behavior. Therefore, the choice of input-output plays a
critical role in achieving a minimum phase, making the
closed-loop system more controllable and stabilizable.

B. Phase portraits of Flying Tasks

To illustrate the system’s periodicity under different tasks,
we present phase portraits of the wing flap and wing pitch
joints when undergoing forward flight, climbing, and turning.
These portraits exhibit closed, consistent periodic orbits,
indicating that the robot’s flapping and pitching are stable
and periodic throughout flight. Fig. 7 shows wing’s pitch
and flap angles when flying forward and climbing at 3m/s
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Fig. 7: Comparing phase portraits between cruising and
climbing
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Fig. 8: Comparing left and right wing phase portraits when
turning left

forward velocity. We plot the phase of only the right wing
as the robot’s symmetry ensures identical behavior on the
left. As shown in Fig. 7 (a), climbing flight tends to have a
larger range of motion for flap joint position and velocity,
which is consistent with the fact that robot consumes more
energy when climbing up. On the other hand, the average
pitch joint angles in Fig.7 (b) shift to negative values while
retaining the same periodic motion. Note that the negative
pitch angle is consistent with the body frame, where pitching
up corresponds to more negative values. This implies that the
policy tends to acquire a higher angle of attack to gather more
lift for climbing. We then compare the flap and pitch joints
between the left and right wings while gradually turning left,
as seen in Fig. 8. The right wing is raised (higher flap joint
position) and pitches up (more negative pitch joint position)
to generate more lift on the right. This results in higher lift
and thrust generation on the right wing, thereby turning left.

C. Trajectory Tracking Performance

A series of trajectories were generated to validate the per-
formance of the trained policies. Simple trajectories demon-
strating fundamental flight skills like cruising, climbing,
gliding, diving, and turning are shown in Fig. 9. The target
lookahead buffer from Section III-B allows the policies to
anticipate command changes and accordingly optimize its
flight path. We designed an aerobatic trajectory to demon-
strate the versatility of the closed-loop RL controller on the
FMAV, shown in Fig. 13. The corresponding snapshots of
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Fig. 9: Example longitudinal and lateral trajectories to dis-
play the controller’s tracking performance. (a) A series of
cruising (blue), climbing (orange), gliding (green), diving
(yellow) in 24 seconds with a 3.8m/s follow velocity. (b)
A series of gradual and quick turns in 18 seconds with a
5.3m/s follow velocity.
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Fig. 10: Effect of randomization on trajectory following.
The legend shows the 2D wind vectors in m/s in the
corresponding plane for each respective trajectory. These
vectors are also visualized in the plot.

each maneuver in the same trajectory are shown in Fig. 12.
These results show the RL controller’s capability to track
highly dynamic trajectories by utilizing various combinations
of control inputs to manipulate its attitude. A few other
examples of flapping-wing robot tracking trajectories are
also shown in Fig. 2 and posted at https://youtu.
be/54Gcbvgfz7Q. Note that there is a noticeable tracking
error when we provide a potentially dynamically infeasible
target trajectory, but the FMAV is capable of rejoining the
trajectory to some extent. Fig. 10 shows the controller’s
robustness to wind and aerodynamics randomization, illus-
trating each wind vector and fluid coefficient’s influence
on the flight path. This demonstrates that the FMAV is
most sensitive to CK , the Kutta lift coefficient, while still
achieving a relatively high success rate even with other fluid
coefficients randomized by up to a factor of 0.5. The high
sensitivity to CK can be caused by its dominant role in
generating lift for bird-scale flapping flight.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a novel reinforcement learn-
ing (RL)-based framework for trajectory tracking in bird-
inspired flapping-wing robots. This developed control system
demonstrates the ability to track complex 3D trajectories,
perform agile maneuvers, and adapt to varying aerodynamic
conditions in simulation. By leveraging MuJoCo’s multi-
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Fig. 11: Randomizes specific fluid coefficients while others
remain at the nominal values in Table II. The success rate is
the fraction of 100 randomly sampled episodes that were
within 3m at the end of the Fig. 10 (a) trajectory. All
coefficients are uniformly randomized in the blue curve.

Fig. 12: Snapshots of three difference aerobatic maneuvers:
(a) A sharp 180◦ turn maneuver in 1.2 s. (b) A loop maneuver
(back-flip) over 3 s. (c) A roll-off-the-bottom maneuver (half
loop pitching down followed by a roll back to level) in 1.8 s.

body dynamic modeling and aerodynamic randomization, we
ensured that the RL policy generalized well to diverse flight
scenarios, including wind disturbances and different aero-
dynamics. Our stability analysis validated that the closed-
loop system was both asymptotically stable and capable of
maintaining stable, periodic joint action patterns.

It is worthwhile mentioning that the hardware platform of
the flapping-wing robot is in the process of design. Our future
work will involve experimental validation of the proposed RL
policy once we design and build a flapping-wing robot.
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