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Externally driven dense packings of particles can exhibit nonlinear wave phenomena that are not
described by effective medium theory or linearized approximate models. Such nontrivial wave re-
sponses can be exploited to design sound-focusing/scrambling devices, acoustic filters, and analog
computational units. At high amplitude vibrations or low confinement pressures, the effect of non-
linear particle contacts becomes increasingly noticeable, and the interplay of nonlinearity, disorder,
and discreteness in the system gives rise to remarkable properties, particularly useful in designing
structures with exotic properties. In this paper, we build upon the data-driven methods in dy-
namical system analysis and show that the Koopman spectral theory can be applied to granular
crystals, enabling their phase space analysis beyond the linearizable regime and without recourse
to any approximations considered in the previous works. We show that a deep neural network can
map the dynamics to a latent space where the essential nonlinearity of the granular system unfolds
into a high-dimensional linear space. As a proof of concept, we use data from numerical simulations
of a two-particle system and evaluate the accuracy of the trajectory predictions under various ini-
tial conditions. By incorporating data from experimental measurements, our proposed framework
can directly capture the underlying dynamics without imposing any assumptions about the physics
model. Spectral analysis of the trained surrogate system can help bridge the gap between the sim-
ulation results and the physical realization of granular crystals and facilitate the inverse design of
materials with desired behaviors.

I. INTRODUCTION

Granular materials are athermal ensembles of macro-
scopic noncohesive particles in which adjacent particles
interact with elastic repulsive forces only when they come
into contact. Such particulate systems are unique in
that depending on the amount of confining pressure and
driving forces, they can exhibit characteristics of any of
the three states of matter, namely solid, liquid, and gas.
Here, we study confined 1D granular systems in a jammed
state, where the packing fraction determines the strength
of the (extrinsic) nonlinearity in the system.

Granular crystals have gained extensive attention from
a diverse range of disciplines in the last decade, resulting
in a burst of progress, both in their theoretical founda-
tions and experimental realizations [1]. They are utilized
as architectured structures in applications, including en-
ergy localization and vibration absorption layers [2, 3],
acoustic computational units like switches and logic ele-
ments [4, 5], granular actuators [6], grippers [7], acous-
tic filters [8, 9], and sound focusing/scrambling devices
[10, 11]. Beyond practical applications, granular assem-
blies are also studied as simplified test beds for investi-
gating fundamental problems in many disciplines, includ-
ing materials science and condensed matter physics and
providing insights to understand other complex nonequi-
librium systems [12, 13].
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A. Related Work

Finding coherent spatial and temporal structures in
the phase space of driven high-dimensional granular crys-
tals has been an active area of research in the past
decades [14–16]. Despite the long history of scientific re-
search devoted to the study of granular materials, there
are still no general methodologies for analyzing the rela-
tion between their constituents’ material and geometric
properties and the emergent mechanical responses. The
granular crystal is a nonlinear, non-integrable, and high-
dimensional system, and explicitly solving the differential
equations of motion to find the exact solutions is usually
not feasible. Therefore, most studies rely on numerical
simulations and computational techniques with simplify-
ing assumptions such as linearity, periodicity, and state-
space continuity.

Most computational techniques in granular systems
rely on linearizing the equations of motion around the
equilibrium state to find a closed-form dispersion rela-
tion. Dispersion relation provides valuable insight into
the time-periodic wave solutions of the unforced lattice
systems and is a central topic in the spectral analysis of
lattice dynamics [14]. Similar analyses have been adopted
in the granular crystals in the continuum limit [15].

For example, in a strongly compressed granular chain,
the equations of motion can be simplified (when Taylor
expanded) to those of a spring-mass system with non-
linear springs, resembling the well-studied Fermi-Pasta-
Ulam (FPU) lattice with polynomial potential [17]. How-
ever, there are interesting nonlinear wave phenomena
that are a direct consequence of the discrete nature of the
system and will not be captured with such continuum ap-
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FIG. 1. Overview of the proposed method. (a) A chain of elastic spherical particles is studied as a discrete-time autonomous
system. Given the structural parameters (i.e. particles’ size, mass, and stiffness) and initial conditions (positions and velocities
of the particles), the system can be numerically simulated to obtain the trajectories of particle displacements in time. (b)
The harmonic balance method predicts the particle trajectories as a superposition of the Linear Normal Modes (LNMs). Such
prediction is a good approximation only in the linear regime. (c) Our proposed data-driven framework can predict particle
trajectories in linear and nonlinear regimes by training a deep neural network using real or simulated system observations.
Instead of LNMs, an unlimited number of complex-valued Koopman modes are obtained from the trained K Network to
provide a more accurate prediction of particles’ trajectories in the strongly nonlinear regime.

proximations because the contributing spatial scales are
at the particle contact scale and below the scale of lattice
spacing [18].

For the infinite chain, the analytical dispersion relation
can be found similarly to methods used for weakly nonlin-
ear lattices, where the solution is expressed as a perturba-
tion from the linear case. In the short wavelength limit,
perturbation techniques such as the Lindstedt-Poincaré
method and the method of multiple scales have been used
to obtain dispersion curves. For systems with strong
nonlinearity, methods such as generalized harmonic bal-
ance can provide approximate wave solutions [16]. Many
of the aforementioned techniques are only applicable to
homogeneous or periodically disordered systems because
translational symmetry is essential for some mathemat-
ical constructs such as the Fourier series expansion that
are used in the method. For systems with a periodic
disorder, one needs to consider a reduced-order system
by defining a custom unit cell and extending the analysis
from the homogeneous case [19]. These methods also rely
on the infinity assumption, meaning that they assume the
waves will not reach the system’s physical boundaries and
therefore, find the non-reflecting plane wave solutions.

The above analyses do not provide insights about
the non-autonomous system, where we are interested
in finding the periodic vibrational modes that are ex-
cited under various input driving frequencies and am-
plitudes. The dispersion relation in nonlinear systems
is amplitude-dependent, and the passband and cut-off

frequency change with the magnitude of the input vi-
brations. Due to the one-sided interparticle potentials,
contact-breaking events can occur, and the system’s be-
havior can diverge significantly from the continuum limit
predictions. The dynamics can even become chaotic as
the amplitude is increased beyond the weakly nonlin-
ear regime. Most studies determine the variation of the
band structure qualitatively by performing perturbation
analysis as the wave amplitude varies. Stability analysis
of the system’s dynamic response has been investigated
through numerical studies, where time-periodic solutions
are found for various frequency and excitation amplitudes
by methods such as Newton iterations [20]. The spectral
stability of the solutions is then determined through the
computation of Floquent multipliers corresponding to the
periodic wave solution [8].

In conclusion, various dynamic phenomena in granu-
lar crystals such as solitary waves, discrete breathers,
and dispersive shock waves need a complete considera-
tion of their intrinsic characteristics including discrete-
ness, disorder, and strong one-sided nonlinearity. How-
ever, the available methods for analyzing dynamic wave
solutions usually rely on simplifying assumptions that
ignore those characteristics to provide computationally
tractable techniques. Therefore, a systematic study
of spectral (wavenumber-frequency domain) and spatial
(space-time domain) properties of granular crystals is
still missing.
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B. Contributions

The interplay of discreteness, nonlinearity, and disor-
der can give rise to fascinating phenomena in the driven
granular crystals. Acoustic metamaterials consisting of
assemblies of particles with different material properties
have tremendous potential to be used in real-life appli-
cations. Configurational and parametric freedom in con-
structing such artificial composite materials is essentially
limitless. However, traversing such a high-dimensional
non-intuitive design space is a daunting task, and devel-
oping effective methodologies capable of capturing their
nonlinear dynamics is an open research problem.

In this paper, we propose using data-driven modal
analysis methods to study the nonlinear wave propa-
gation in granular crystals. We focus on elastic wave
propagation in a Hamiltonian one-dimensional granular
crystal (granular chain) and present a data-driven frame-
work based on Koopman theory for modal analysis of
strongly nonlinear systems. We show that the model can
be trained using datasets made from measurements of
the system’s observables (in simulation or experiment).

II. GRANULAR CHAINS

A. Physics Model

The granular crystals discussed in this paper are finite-
length one-dimensional configurations of spherical par-
ticles with identical diameters and variable elasticity
placed on a horizontal flat surface (Figure 2).

FIG. 2. A granular chain that is made of two types of elastic
spherical particles. Hertz’s law [21] describes the relation be-
tween the particle’s overlap (δ = σij − rij) and applied force
(F ) as F = αδβ . Here, β is a constant that depends on the
particle geometry and determines the nonlinearity of the con-
tact forces. A commonly used value for spherical contacts is
β = 3

2
, which produces a cubic nonlinearity in the equations

of motion.

The system is a macroscopic scale granular system
(particle sizes are in the millimeter-to-centimeter range),

so the only forces acting on each particle are the finite-
range repulsive interparticle contact forces. On the scale
of particle contacts, we consider normal forces resulting
from the adjacent particles’ overlaps and ignore the tan-
gential forces and particle rotations. With these assump-
tions, the local potential Vij between each pair of parti-
cles i and j can be written as

Vij(rij) =
ϵ

α

(
1− rij

σij

)α

Θ

(
1− rij

σij

)
, (1)

where ϵ is the characteristic energy scale, α (discussed
below) parameterizes the contact force nonlinearity, rij
is the particles’ separation, and σij is the center-to-center
separation at which the particles are in contact without
any deformation (σij =

σi+σj

2 in the case of spherical
particles with diameters σi and σi), and Θ is the Heav-
iside function. The Heaviside function ensures that the
potential field is one-sided, meaning that the particles
only affect their adjacent neighbors when they overlap:

Θ

(
1− rij

σij

)
=

{
0 rij ≥ σij ,

1 rij < σij .
(2)

The separation between two spherical particles is com-
puted based on their Cartesian coordinates:

|rij | = |ri − rj | =
√

x2
ij + y2ij . (3)

This is the simplest model for a granular chain that
neglects special aspects such as particles’ rotation and
alignment, which might be more important in higher
dimensional experimental setups but are negligible in
smaller scales.
As mentioned, in Equation (1), α determines the non-

linearity of the contact force. In this paper, we consider
two cases: linear (α = 2) and Hertzian (α = 5

2 ). Interpar-
ticle forces Fij can be obtained by taking the derivative
of the potential (Vij) with respect to the displacement:

Fij = −∂Vij(rij)

∂rij

=
ϵ

σij

(
1− rij

σij

)α−1

Θ
(
1− rij

σij

) ∂rij
∂(xij or yij)

.

(4)

We assume that the particles have equal mass (m) but
can have different stiffness values. In this case, ϵ can be
calculated using the effective stiffness:

ϵij =


ki = kj if ki = kj ,

kikj
ki + kj

if ki ̸= kj .
(5)

It is worth mentioning that with this formulation, the
equations of motion for the granular crystal are reminis-
cent of the mathematical model of a Fermi-Pasta-Ulam
(FPU) oscillator [17]. Using the above notation, we can
write Newton’s equations of motion as

mr̈i = Fi =

N∑
j=1,j ̸=i

Fij + Fext, (6)
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where the first term is the total force from the neighbor-
ing particles, and the second term is the system’s external
forces, which include the interaction force from the walls
(in case of a fixed boundary condition) and the excitation
applied to the system in the form of harmonic vibrations.
Using Equation (4), we can obtain the partial forces in a
one-dimensional system in x direction:

F x(rij) =
ϵij
σij

(
1− xij

σij

)α−1

Θ

(
1− xij

σij

)
, (7)

F x
iw =

ϵ

σi/2

(
1− xi − xw

σi/2

)α−1

Θ

(
1− xi − xw

σi

)
, (8)

where F x
iw is the force between particle i and the wall

placed at xw.

B. Harmonic Approximation

The harmonic approximation is the standard treat-
ment for studying the oscillatory motion of many-body
systems such as granular crystals. Despite its simplic-
ity, this method provides an accurate prediction of fu-
ture system states in the linear regime and is the basis of
more advanced nonlinear methods of trajectory predic-
tion and analysis. This section provides an overview of
harmonic approximation in a granular chain described in
Section IIA.

For a chain of N particles, the total potential energy
of the system (Ut) at time t can be written in terms of
the pairwise particle potentials (Equation (1)) as1

Ut(r) =

N−1∑
i=1

N∑
j=i

Vij(rij). (9)

As the particles start to vibrate from their equilibrium
position (δ0,i), the difference in the total potential energy
due to a displacement u in particle positions (r = δ0+u)
can be written as

∆U = Ut(r)− U0(δ0), (10)

where U0 is the total energy at equilibrium on account
of the static precompression. We can Taylor expand
the above equation around the equilibrium, and, because
∇U0 = 0, we will have:

∆U = Ut(r)− U0(δ0)

=
∂U

∂r

∣∣∣∣∣
δ0

(r− δ0) +
1

2
(r− δ0)

∂2U

∂r2

∣∣∣∣∣
δ0

(r− δ0)

+O(r− δ0)
3.

(11)

1 The mathematical notation in this section has been adapted from
[22–28].

Ignoring the higher-order (O(r− δ0)
3) terms and not-

ing that the net force at equilibrium is zero will give the
energy difference in terms of the displacement (u) and
the Dynamical Matrix (D):

U − U0 ≈ 1

2
uTD0u =

N∑
ij

D0
ijuiuj , (12)

where

D0
ij =

∂2U

∂ri∂rj

∣∣∣∣∣
δ0

(13)

is the Dynamical Matrix (or Hessian) at equilibrium and
depends on the intrinsic material properties and arrange-
ments of the particles. The elements of D for the one-
dimensional chain can be obtained using the pairwise po-
tentials (Equation (1)) as follows:

i ̸= j : Dij = −ϵ(α− 1)

σ2
ij

(
1− rij

σij

)α−2 (
x

rij

)
+

ϵ

rij σij

(
1− rij

σij

)α−1 (
1− x

rij

)
;

i = j : Dij = −
∑
i ̸=j

Dij .

(14)

For a system with d dimensions and N particles, D will
be a dN -dimensional matrix. So, for the granular chains
in this paper, D is an N ×N symmetric matrix.
If the harmonic approximation holds (for small ampli-

tude dynamic displacements), the equations of motion
of the unforced (Fext = 0) Hamiltonian system are ob-
tained by differentiating Equation (12) with respect to
time:

∂U

∂r

du

dt
=

1

2

duT

dt
D0u+

1

2
uTD0 du

dt
, (15)

and noting that D0 is symmetric and

−∂U

∂r
= M

d2u

dt2
, (16)

where M is the mass matrix in which the diagonal ele-
ments are the mass of the corresponding particle (Mii =
m), we arrive at the equations of motion,

M
d2u

dt2
+D0u = 0. (17)

Equation (17) is a system of N homogeneous second-
order differential equations and can be solved by
finding the eigenvalues (ωk) and eigenvectors (ek =
[ek1 , e

k
2 , ..., e

k
N ]) of the Dynamical Matrix. The eigenval-

ues are the Linear Normal Modes of the system, and pro-
vide the periodic vibrational response of the form ui(t) =∑N

k αk
i ê

k
i e

iωkt+ϕk , where êk is the normalized eigenvec-
tor (shape of the mode), and αk = [αk

1 , α
k
2 , ..., α

k
N ] (am-

plitude of the mode) and ϕk are determined by the 2N
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initial positions and velocities when the system is dis-
turbed from the equilibrium position. Assuming the ini-
tial velocities are zero (vi(0) = 0), we have ϕk = 0 and

u(0) =
∑N

k αkêk, and the positions and velocities are

ui(t) =

N∑
k

αk
i cos (ωkt+ ϕk)ê

k
i , (18)

vi(t) =−
N∑
k

αk
i ωk sin (ωkt+ ϕk)ê

k
i . (19)

The approach outlined here is similar to the spectral
analysis of lattice dynamics with the harmonic balance
method to obtain a numerical estimate of the periodic
solutions to the nonlinear equations of motion [29].

C. Numerical Simulation

In this paper, we use the Discrete Element Method
(DEM) [30] to simulate the motion of the interacting par-
ticles in a granular crystal. The main steps of DEM are
presented in Algorithm 1 in Appendix 2; the simula-
tion starts with the initial configuration and updates the
positions and velocities by numerically integrating the
equations of motion (Equation (6)).

Since our granular packings are made of particles with
various material properties and are initially compressed
with a uniform force, we need to ensure that the ini-
tial configuration is statically stable (the ground state
u = 0 and u̇ = 0 is the minimum of energy). Here, we
adopt a packing generation protocol that applies succes-
sive compression/decompression by changing the particle
sizes [32, 33]. An energy minimization technique, Fast
Inertial Relaxation Engine (FIRE) [34], is used to relax
the interparticle forces and reach an equilibrium state
by repetitive particle deformations. With this method,
we can find the particles’ initial positions for a mechan-
ically stable configuration with a given boundary condi-
tion [35].

To integrate the equations of motion, we use a Velocity-
Verlet time integration scheme ([36]) similar to the time-
synchronized Leapfrog method. This method which is
based on computing the half-step velocity (v(t + ∆t

2 ) =

ṙ(t)+ 1
2 r̈(t)∆t) is presented in Algorithm 2 in Appendix .

III. KOOPMAN THEORY AND DATA-DRIVEN
KOOPMAN

Aside from the limitations mentioned in Section IA,
the classic dynamical analysis methods are also highly
dependent on the accuracy of the underlying mathemati-
cal model, limiting their applications in many real-world

2 Modified from [31].

systems. Aspects of the physical system that are not
captured by the derived dynamical equations, such as
dissipation effects and discrepancies in the fabrication of
components, can lead to significant deviation from the
predicted behavior. Therefore, despite all the studies
mentioned at the start of this paper, we still lack a fun-
damental understanding of the role of distinct sources of
nonlinearity and disorder in the anharmonic response of
granular media [10].
Among the data-driven methods for the analysis and

modeling of underlying nonlinear systems, operator-
theoretic frameworks provide interpretable and yet ac-
curate descriptions of the global dynamics of nonlin-
ear systems [37]. Unlike the geometric approaches (in
state space) discussed in the previous section, operator-
theoretic analysis is done in the function space and can
(in the case of the Koopman operator) globally linearize
the nonlinear dynamics, thus making it possible to ap-
ply linear analysis and control methods to the nonlinear
system.

A. Koopman Theory

The key idea in the Koopman operator theory Here we
discuss the modern framework. The original Koopman
theory was introduced in 1931 [38]. It was then extended
to systems with continuous eigenvalue spectrum [39], and
dissipative systems [40, 41]. is the usage of special ba-
sis functions to lift the dynamics of a finite-dimensional
nonlinear system and map it to an infinite-dimensional
Hilbert space where the original system becomes linear
[42]. Consequently, since linear systems are completely
characterized by their spectral decomposition, a modal
decomposition in this linear functional space can extract
the global characteristics of the nonlinear system without
requiring local linearizations.
In this paper3, we consider a discrete-time autonomous

system xt+1 = F (xt), where x is the system’s state vari-
able and F is the dynamics that governs the evolution
of the state in time. While F is a nonlinear function,
the Koopman operator K is defined as a linear operator
that acts on the observable functions4 (y = g(x)) of the
state such that Kg(xt) = g ◦ F (xt) = g(xt+1)

5, where ◦
denotes the composition operation. Since K is assumed
to be linear, it can be decomposed to a set of eigen-
functions {φ1, φ2, ...} and eigenvalues {λ1, λ2, ...} such
that Kφi = λiφi. The superposition principle is valid
in this linear functional space, so the observable g can be
written as a linear combination of the eigenfunctions, i.e.

3 The mathematical notation in this section is adapted from [42–
47].

4 Or measurement functions.
5 While F governs state x in time, Koopman operator governs the
evolution of function g in the infinite-dimensional Hilbert space.
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g(x) =
∑∞

i=1 ciφi(x) where {c1, c2, ...} is an infinite set
of coefficients.

If we start from g(x0) and apply the Koopman operator
to each side of the equation we will obtain

Kg(x0) = g(x1) = K

∞∑
i=1

ciφi(x0) =

∞∑
i=1

ciλiφi(x0).

(20)
Repeating this procedure will result in the modal decom-
position of the observable function at time t:

g(xt) = Ktg(x0) =

∞∑
i=1

ciλ
t
iφi(x0), (21)

where ci is known as the ith Koopman mode (or dy-
namic mode) corresponding to ith Koopman eigenfunc-
tion φi (or intrinsic coordinates) and ith Koopman eigen-
value λi

6. The sequence of {(λi, φi, ci)}∞i=1 is called the
Koopman mode decomposition [41]. In this context, the
Koopman operator transforms the system’s coordinates
in space and time to linear space, enabling the character-
ization of the observables through the spectral properties
of the dominant Koopman modes7.
According to the Koopman theory, K is infinite-

dimensional, but one can obtain a finite-dimensional rep-
resentation by restrictingK to a Koopman-invariant sub-
space spanned by a finite set of (nonlinear) observable
functions [48]. Dynamic Mode Decomposition (DMD) is
the leading data-driven method that approximates the
Koopman operator by assuming g(x) = x [44]. Using
DMD for analyzing complex systems from direct mea-
surements has attracted a lot of interest over the past
decade and many improvements and extensions have
been proposed such as extended DMD (EDMD) [49],
DMD with control (DMDc) [50], and physics-informed
DMD (piDMD) [51].

Representing the nonlinear dynamics in a linear frame-
work provides the opportunity to apply numerous tools
and concepts developed for linear systems analysis.
Koopman eigenfunctions represent the global phase por-
trait of the nonlinear system and Koopman modes can
be used to identify different dynamical regimes in a sys-
tem. In the case of direct measurement of the system
(g(x) = x), the Koopman modes can also have a physical
interpretation [37]. For example, with spatial measure-
ments of the system, Koopman modes are spatial modes
that have the same temporal dynamics, meaning that
the system components oscillate together. Aside from
the characterization of complex dynamics, Koopman op-
erator theory can be used for making predictions about
future system states. Moreover, the linear Koopman em-
bedding of a nonlinear system makes it possible to apply
linear control methods to nonlinear dynamical systems.

6 λi = µi + jωi is a complex number, ∠λi and |λi| determine the
frequency and decay/growth rate of a given mode.

7 Koopman eigenfunctions are intrinsic coordinates, along which
the dynamics are linear.

B. Data-driven framework

Defining an adequate set of observable functions
({g(x)}) that can form a Koopman invariant subspace
is a challenging task, requiring expert knowledge of the
underlying system. Simple function dictionaries (such as
identity, polynomials, etc.) may necessitate higher di-
mensional Koopman subspace, and more complex func-
tions (e.g. using kernel methods) may make the Koop-
man embedding less interpretable. An alternate method
is to find the Koopman eigenfunctions directly from the
state measurements. An emerging research direction is
the usage of Deep Neural Network architectures to repre-
sent the eigenfunctions [46]. With this direct approach,
we’ll replace g(xt) = xt in the equations from the previ-
ous section, and so the Koopman eigenfunctions (φi) will
satisfy

φ(xt+1) = Kφ(xt) = λφ(xt). (22)

Figure 3 shows the common Deep Neural Network
architecture for learning the Koopman eigenfunctions8

from measurements of a system. Here, the system is
a granular crystal and the system state is the displace-
ments of the particles during the simulation time (Xt =
[r0, r1, ..., rN ]). The encoder network maps the system
state to intrinsic coordinates (yt = φ(xt)), the K net-
work (Koopman operator) advances the coordinates to
the next time step (yt+1 = Kyt), and the decoder net-
work maps yt+1 back to the system state xt+1. To enforce
the linearity of the Koopman operator, the K network
has linear layers with no bias terms. The dimension of
the embeddings (y) and the number of layers in each net-
work are hyperparameters that have to be determined by
the knowledge of the system.

In this paper, we utilize the method presented in [46]
where three loss functions are defined to enforce the phys-
ical constraints of the system and the assumptions made
by the Koopman theory:

1. Reconstruction:

Lrecon =
∥∥∥xt − φ−1(φ(xt))

∥∥∥
MSE

2. Linearity (over T time steps):

Llin = 1
T

∑T
t=0

∥∥∥φ(xt)−Ktφ(x0)
∥∥∥
MSE

3. Prediction (over P time steps):

Lpred = 1
P

∑P
t=0

∥∥∥xt − φ−1(Ktφ(x0))
∥∥∥
MSE

Here T is the length of the training trajectories, and P
is a hyperparameter indicating the number of time steps
for the state prediction. So the total loss is

L = α1Lrecon + α2Lpred + α3Llin. (23)

8 φ network will represent the Koopman eigenfunctions if we as-
sume K is diagonalized.
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FIG. 3. Deep neural network architecture for approximating the Koopman operator. The encoder network learns the Koopman
embedding (Yt) from the measurements of the system’s states (Xt). The K Network predicts the latent state in the next time
step (Yt+1). The loss function (Equation (23)) is designed to ensure that the physical constraints of the dynamical system
(prediction loss over the input trajectories) and mathematical assumptions of the Koopman theory (reconstruction loss in the
encoder/decoder networks and linearity of K network) are met.

For the results presented in the next section, we used
an open-source package called NeuroMANCER [52] that
provides PyTorch implementations of the Deep Koopman
operator with and without control. The details of the
architecture and simulation parameters are presented in
Section IV.

IV. MODELING THE UNFORCED GRANULAR
CHAIN

A. Implementation Details

In this section, we consider a two-particle granular
chain with the simulation parameters presented in Ta-
ble II. The goal is to apply the deep Koopman framework
described in Section III to this system and analyze the
intrinsic nonlinear dynamics of the system. Table I in-
cludes the parameter values of the encoder/decoder and
Koopman network. We generate a dataset with the parti-
cles’ trajectories in an unforced system to train the net-
works. The system is simulated with the Discrete Ele-
ment Method described in Section IIC. To capture the
full dynamics of the system, we need to have a sufficiently
large dataset with trajectories that cover the full phase

TABLE I. Deep Koopman Network Parameters.

Parameter Encoder/Decoder K Network

Input Size ny = 4 50
Hidden Layer 6× [200] None
Output Size 50 50
Nonlinearity ELU None
Bias True False

space. Therefore, we randomly set the particles’ initial
displacements within a given range (see Table II) and
generate 103 trajectories by recording the particle dis-
placements and velocities in time. It is worth mention-
ing that in this experiment, we assume the particles have
zero initial velocity. In the DEM simulations, we need
a small time step to ensure the numerical integration is
converging to its true value. Therefore, the number of
data points in each trajectory is large and the training
will be time-consuming. We resample the trajectories
with a predefined sampling rate to reduce the training
load. The dataset is then split into training, validation,
and test sets, and the network is trained with the setup
presented in Table III.
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TABLE II. Simulation Setup for Koopman Analysis.

Parameter Value

Simulation Time (T ) 1e3
Time Step (∆t) 5e− 3
Sampling Rate 500
Damping (B,Bpp, Bpw) 0
Stiffness Ratio 2.3
Particle Mass (m) 1
Particle Diameter (σ0) 1e− 1
Particle Contacts Hertzian
Packing Fraction (ϕ) 1e− 1
Relaxation Time (FIRE) 1e6
Initial Displacement (x0) ∈ [−1e− 2, 1e− 2]
Initial Velocity (v0) 0
Number of Trajectories 10e3

TABLE III. Training Setup for Koopman Analysis.

Parameter Value

Training Set 500 samples
Validation Set 500 samples
Test Set 100 samples
Prediction Window (P ) 500 steps
Optimizer Adam
Learning Rate 1e-4
Epochs 2e4

B. Results

As noted in Section III B, the loss function has three
terms including reconstruction Lrecon, prediction Lpred

and linearity Llin which are defined in Equation (23).
We set the coefficients as α1, α2, α3 = 1. Figure 4 shows
the training and validation loss during the training.

FIG. 4. Value of the loss function Equation (23) over the
training and validation datasets. The deep Koopman net-
work is trained on the displacement and velocity trajectories
obtained from a numerically simulated two-particle system.
The particles’ initial positions are selected randomly from a
predefined range indicated in Table II.

After training the network, we can derive the Koop-
man mode decomposition including eigenvalues, eigen-
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FIG. 5. Koopman eigenvalues for the unforced two-
particle system. The eigenvalues determine the frequency of
the Koopman modes (Im(λ)) and their decay/growth rate
(Re(λ)). The blue outline shows the unit circle, and the color
of each mode indicates its dominance (∥ ci ∥).

functions, and dynamic modes. The Koopman eigenval-
ues (λ) are shown in the complex plane in Figure 5 with
the colors indicating the value of ci, which quantifies the
dominance of each mode in the observed data. Figure 6
shows each mode’s decay/growth rate with the frequen-
cies indicated on the horizontal axis.
Since symmetry in the dynamics can give rise to back-

ground modes with an eigenvalue of zero, as we see in
Figure 5 there are four zero modes in our system. The
top six nonzero dominant modes (excluding the complex
conjugates) are shown in Figure 7.
To evaluate the network performance, we selected five

sample trajectories from the test set and assigned the
initial particle positions and velocities to the encoder
network. Using the trained Koopman network, we can
predict the particle positions and velocities in the subse-
quent time steps and compare them to the reference tra-
jectory obtained from the numerical simulation. Figure 8
presents reference and predicted trajectories for these five
test samples.
To compare the accuracy of the Koopman network’s

predictions and harmonic approximation, we also calcu-
lated the Root Mean Squared Error (RMSE) of each case
using the following formula:

RMSE (X, X̂) =

√∑N
i=1 (Xi − X̂i)

2

N
, (24)

whereX indicates the real trajectory, X̂ is the prediction,
and N indicates the number of particles in the granular
chain, which is considered two in our experiments. As we
can see in Figure 9, for small particle displacements, the
system is weakly nonlinear, and harmonic approximation
predicts particles’ displacements with high accuracy.
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FIG. 7. The top six nonzero dominant Koopman modes for the two-particle system. In each panel, the blue graph shows the
mode in the complex plane, where the real and imaginary parts of the mode are projected onto each face of the 3D plot.

V. DISCUSSION

After obtaining the Koopman mode decomposition, we
can analyze the system’s dynamical regimes and their
stability by examining the real and imaginary compo-
nents of the eigenfunctions. To visualize these global dy-
namics, we produced 900 initial conditions from equally-
placed points in [−1e − 2, 1e − 2] as the initial displace-

ments of the first and second particles. The real and
imaginary components of the eigenfunction evaluated at
each initial condition (φi(X

0)) provide an overview of the
phase space which can later be used to identify the dy-
namical regimes in the system. Figure 10 and Figure 11
present these components.

Inspecting these plots can provide information about
the stability of each trajectory (starting from each initial
condition) and the existing harmonic components. Fur-
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FIG. 8. Desired and predicted trajectories of the particles for five different initial conditions. Each panel shows one sample
from the test dataset with the initial conditions (particle displacements X0 = [x0

1, x
0
2]) indicated above it. The plots in each

panel show the displacement of the first (left) and second (right) particles in time. Solid lines (red) show the true trajectories
obtained from the numerical simulations. The dashed lines (blue) show the predictions from the Koopman framework. The
dot-dashed lines (green) show the results of harmonic approximation. The RMSE (Equation (24)) is printed on top of each
panel.

ther, we can identify various dynamical regimes, fixed
points, and bifurcations in the system.

The deep Koopman framework presented here maps
the system dynamics to a linear space characterized by
the Koopman modes. This enables us to compare dif-
ferent systems at the level of their dynamics by probing
their Koopman modes. Here, we considered four two-
particle systems with distinct configurations of soft and

stiff particles (see Figure 12). Investigating the Koopman
modes in each case might provide information about how
structural properties affect the system dynamics in terms
of the frequencies of the dominant modes present in the
linear latent space.



11

FIG. 9. Accuracy of Koopman network predictions versus harmonic approximation. The horizontal and vertical axes in each
panel represent the displacement of the first (X0

1 ) and second (X0
2 ) particles in a two-particle system. Root Mean Squared Error

(Equation (24)) between the desired and predicted trajectory is calculated for equally placed data points on the horizontal and
vertical axes. The panel on the left shows that the Koopman framework provides high prediction accuracy for a wider range of
particle displacements, whereas harmonic approximation (the right panel) can only predict the particles’ displacement in the
(weakly) nonlinear regime when the initial displacement of the particles is small. The panel in the middle shows the difference
between the two prediction errors.

VI. CONCLUSIONS

This paper started with an overview of the static and
dynamic characteristics of granular crystals, highlighting
the nontrivial nonlinear wave responses that can emerge
in such systems. Then, we provided an overview of a
data-driven method based on the Koopman theory that
can capture the global dynamics of the system without
resorting to any simplifying assumptions on the physics
model or any approximations of the nonlinear dynam-
ics. Such a data-driven framework can provide several
advantages, including:

• Capturing the system’s dynamics without relying on
the physics model: since the network is trained on
system observations, one can incorporate the mea-
surements from the hardware setup instead of nu-
merical simulations and thus extract the dynamics
without any particular assumptions on the system
parameters or the physics model.

• Maintaining the full dynamics: unlike dimension-
ality reduction methods, here the embedding has a
higher dimension than the original system.

• Scalability: the deep Koopman framework de-
scribed in this paper can be trained on a higher
dimensional system with more training data, with-
out any modifications.

• Simplified linear analysis: the deep Koopman
framework facilitates the analysis of a nonlinear
system by mapping it to a linear latent space where

any linear analysis and control methodology can be
applied to the system.

• Global interpretation: unlike the classic method for
dynamical analysis, this framework is not limited to
local dynamics around equilibrium points or slow
manifolds. Instead, it can characterize the global
dynamics and make predictions about the future
states of the system.

It is worth mentioning that adding physics-based con-
straints to the networks representing eigenfunctions and
eigenvalues can result in a more physically interpretable
analysis. For example, in [46], the authors designed the
Koopman network to ensure purely oscillatory motion.
Such analysis might provide insights into micro-macro
relations in granular configurations. For instance, we ex-
pect certain properties of the granular configuration to be
more relevant in achieving a desired wave response, and
the above analysis can clarify this and provide guidelines
to decide on certain aspects of parameter space.
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FIG. 10. The real component of the Koopman eigenfunctions for the two-particle system. Each panel corresponds to one of
the Koopman modes extracted from the trained network. The axes in each panel represent the initial conditions (particles’
initial displacements) X1

0 and X2
0 . The color indicates the contribution of each mode to the system’s dynamics at the selected

initial condition.
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FIG. 11. The imaginary component of the Koopman eigenfunctions for the two-particle system. Each panel corresponds
to one of the Koopman modes extracted from the trained network. The axes in each panel represent the initial conditions
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FIG. 12. Koopman modes in four distinct particle configurations. The light/dark grey indicates the soft/stiff particles in each
of the four panels. For each configuration, Koopman modes are plotted in the complex plane, where the color of each point
quantifies the dominance of the mode(∥ ci ∥).
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Appendix: Details of Numerical Simulations

Algorithm 1 Discrete Element Method

Require: Initial positions (δ0,i, ui = 0) and velocities (u̇i =
0), duration of the simulation (T ), system’s parameters (di-
ameters, masses, stiffnesses, etc.)
Initialize particle positions, velocities, accelerations, and
forces
t← 0
while t < T do

for all particles (N) do
Compute total forces from the neighboring particles,

walls, and external excitation;
Integrate the equations of motion;
Update accelerations, velocities, and positions;

end for
t← t+∆t

end while

Algorithm 2 Velocity Verlet

Require: Particle positions r(t), velocities ṙ(t) and acceler-
ations r̈(t) from the previous time step
r(t + ∆t) ← r(t) + [ṙ(t) + 1

2
r̈(t)∆t]∆t = r(t) + ṙ(t)∆t +

1
2
r̈(t)∆t2

r̈(t+∆t)← 1
mi

F (r(t+∆t))

ṙ(t+∆t)← 1
2
[ṙ(t− ∆t

2
)+ ṙ(t+ ∆t

2
)] = ṙ(t)+ ∆t

2
[r̈(t)+ r̈(t+

∆t)]

https://www.uvm.edu/vacc
https://www.uvm.edu/vacc
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[41] Igor Mezić. Spectral Properties of Dynamical Systems,
Model Reduction and Decompositions. Nonlinear Dy-
namics, 41(1):309–325, August 2005.

[42] Steven L. Brunton, Marko Budǐsić, Eurika Kaiser, and
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