
Chapter 16

Memory-Driven Metaheuristics: Improving
Optimization Performance

Salar Farahmand-Tabar

Department of Civil Engineering Eng., Faculty of Engineering, University

of Zanjan, Zanjan, Iran,

Abstract. Metaheuristics are stochastic optimization algorithms that

mimic natural processes to find optimal solutions to complex prob-

lems. The success of metaheuristics largely depends on the ability to

effectively explore and exploit the search space. Memory mecha-

nisms have been introduced in several popular metaheuristic algo-

rithms to enhance their performance. This chapter explores the sig-

nificance of memory in metaheuristic algorithms and provides

insights from well-known algorithms. The chapter begins by intro-

ducing the concept of memory, and its role in metaheuristic algo-

rithms. The key factors influencing the effectiveness of memory

mechanisms are discussed, such as the size of the memory, the in-

formation stored in memory, and the rate of information decay. A

comprehensive analysis of how memory mechanisms are incorpo-

rated into popular metaheuristic algorithms is presented, and con-

cludes by highlighting the importance of memory in metaheuristic

performance and providing future research directions for improving

memory mechanisms. The key takeaways are that memory mecha-

nisms can significantly enhance the performance of metaheuristics

by enabling them to explore and exploit the search space effectively

and efficiently, and that the choice of memory mechanism should be

tailored to the problem domain and the characteristics of the search

space.

Keywords. Metaheuristics, Memory Mechanisms, Elite Selection,

Global Best.

1. Introduction

Optimization is a fundamental tool used in various fields to find the

best solution to a problem given a set of constraints. An optimization prob-

lem involves minimizing or maximizing an objective function subject to

2 Memory-Driven Metaheuristics: Improving Optimization Performance

constraints. For example, in a manufacturing process, optimization can be

used to minimize the production cost or maximize the production output

while satisfying the production constraints. Optimization problems can be

complex and difficult to solve, especially when the search space is large or

there are many constraints. In such cases, traditional optimization methods

such as mathematical programming may not be able to find the optimal so-

lution within a reasonable time. Metaheuristics are a class of algorithms

that are designed to overcome these challenges.

Metaheuristics are general problem-solving techniques that can be ap-

plied to a wide range of optimization problems. Unlike mathematical pro-

gramming, which requires a specific model and constraints, metaheuristics

do not rely on a specific problem structure. Instead, they use iterative

search procedures to explore the solution space and find the best solution.

The search process of metaheuristics involves generating a set of candidate

solutions, evaluating the solutions based on the objective function, and

then modifying the solutions to generate a new set of candidates. This pro-

cess is repeated until the algorithm converges to the best solution or a

stopping criterion is met.

There are several types of metaheuristics, each with its own unique

approach and characteristics. For example, evolutionary metaheuristics are

based on the principles of natural selection such as Genetic Algorithm [1].

Swarm Intelligence are inspired by the social behavior of swarming insects

and animals such as Particle swarm optimization [2]. Physic-based me-

taheuristics are another type of metaheuristics, which are based on physical

principles such as energy, forces, and vibrations such as Thermal Ex-

change [3]. Human-inspired metaheuristics are inspired by human behav-

ior and problem-solving approaches such as Neural Network [4].

Metaheuristics are powerful optimization algorithms that are used to

solve complex problems, but they can sometimes get stuck in local optima

or fail to converge to the global optima. To overcome these limitations,

several techniques have been developed to enhance the performance of

metaheuristics. One of the most commonly used techniques is parameter

tuning, which involves optimizing the values of the metaheuristic's param-

eters to improve its performance. Another technique is hybridization,

which involves combining two or more metaheuristics to create a more

powerful algorithm. This technique can combine the strengths of different

metaheuristics to overcome their weaknesses and improve their overall

performance.

There are numerous improving features to enhance the performance of

the optimization algorithms such as levy flight or chaotic maps [4]. Anoth-

er feature used in enhanced metaheuristics is memory-based improvement.

Memory-based improvement involves storing and reusing the information

Error! Use the Home tab to apply title to the text that you want to appear
here. 3

of previous solutions to improve the performance of the metaheuristic al-

gorithm. This approach is commonly used in metaheuristics that rely on a

population-based search, such as genetic algorithms and particle swarm

optimization. By storing and reusing the information of previous solutions,

memory-based improvement can help the algorithm avoid local optima and

improve convergence speed. One example of memory-based improvement

is the use of adaptive memory, which involves storing the best solutions

found so far and adjusting the search process based on the historical in-

formation.

As evident from the literature review, many basic optimization algo-

rithms have several limitations that hinder their ability to solve complex

problems efficiently. Some of the common issues include slow conver-

gence speed and the tendency to get trapped in local optima. To overcome

these issues, researchers have proposed various mechanisms to enhance

the performance of these algorithms. In this chapter, we propose the use of

memory-assisted optimization algorithms as an improvement feature. The

memory-assisted version of well-known optimization algorithms such as

Multi-Verse Optimizer (MVO), Vibrating Particle Search (VPS), Thermal

Exchange Optimization (TEO), and Ray optimization (RO) is implemented

as an optimization method, with a separate memory component for storing

and exchanging the best solutions found so far. The efficiency of utilizing

memory in these algorithms is investigated through various benchmark en-

gineering examples, and its effectiveness is compared with that of

memory-less versions of the algorithms.

2. Background Studies on Memory-Enhanced
Metaheuristics

Memory-enhanced metaheuristics have gained increasing attention in

recent years due to their ability to improve the performance of optimiza-

tion algorithms. These methods are designed to incorporate memory

mechanisms into conventional metaheuristics, such as Differential Evolu-

tion (DE), Genetic Algorithms (GA), Particle Swarm Optimization (PSO),

Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Ant Colony

Optimization (ACO), and Whale Optimization Algorithm (WOA), etc. The

use of memory mechanisms can enhance the search process by storing and

utilizing information about previously visited solutions, enabling the algo-

rithm to explore the search space more effectively and converge to better

solutions faster. In this section, a comprehensive overview of the back-

ground studies on memory-enhanced metaheuristics is provided, covering

4 Memory-Driven Metaheuristics: Improving Optimization Performance

a range of optimization methods and their applications in various fields.

Table 1 summarizes the methods and their applications discussed in this

section.

Table 1. Background studies on memory-assisted metaheuristics

Method Application Ref. Method Application Ref.
GA Laminate composites [5] SAGA Multimodal optimization [6]

GA Power Generation [7] GA Vehicular Communication [8,9]

NSGA II Dynamic Problems [10] EA Job Shop Scheduling [11]

DE Global optimization [12,13] HDE Continuous problems [14]

MODE Multiobjective Optimization [15,19] PSO Dynamic optimization [20]

QPSO Large scale problems [21] PSO Feature Selection [22]

BBPSO No-Linear Functions [23] IPSO Training MLP [24]

BPSO Discrete benchmark func. [25] ACO Numerical Optimization [26,27]

IACO Traveling Salesman [28] ACO Dynamic vehicle routing [29]

DA Engineering problems [30,31] FFOA Image Segmentation [32,33]

IFFOA Time series forecasting [34] ABC Dynamic optimization [35,36]

GWO Global optimization [37] NFGWO Optimal load balancing [38]

AFSA Multi-extreme value func. [39] SCA Global optimization [40]

HS, TS Global optimization [41,42] MVO Structural optimization [43]

WOA Smooth path planning [44] KMTOA Global optimization [45]

MMGSO Benchmark functions [46] OWMA Global optimization [47]

CFA Global optimization [48,49] SLH Large-Scale p-Median Prob. [50]

BBBC Data clustering [51] GD Global optimization [52]

HMBOA Dynamic environments [53] P-PDA Image processing [54]

CSA Global optimization [55] TRA Unconstrained optimization [56]

CA Combinatorial optimization [57] AIS Dynamic optimization [58]

The applications range from global and engineering optimization to ma-

chine learning related applications. The incorporation of memory mecha-

nisms into these metaheuristics has been found to improve the perfor-

mance of the algorithms, allowing for more effective exploration of the

search space and faster convergence to better solutions. Overall, the use of

memory-enhanced metaheuristics is a promising area of research with the

potential to enhance optimization performance across a wide range of ap-

plications.

3. Memory assignment (multi-elite strategy)

To enhance the performance of an algorithm without introducing addi-

tional computational costs, an approach called the multi-elite strategy can

be employed, which involves utilizing a separate memory to store histori-

cal best solutions and their corresponding fitness values. This strategy dif-

fers from the elitist strategy typically utilized by standard algorithms like

Error! Use the Home tab to apply title to the text that you want to appear
here. 5

GA [59, 60], which rely on a single elite strategy. In the multi-elite strate-

gy, a certain number of the best solutions found so far (based on the desig-

nated memory size) are preserved in a dedicated memory. In each iteration,

these elite solutions are exchanged with an equal number of the worst solu-

tions. In this study, the memory size, which represents the number of elite

solutions stored, is set as 1/5 of the total number of universes. By incorpo-

rating this memory into each iteration (Algorithm 1), undesirable and poor-

performing solutions can be replaced with the desired elite solutions. The

memory is continuously updated with new solutions, and if the fitness of

the new solutions surpasses that of the stored elite solutions, they are ex-

changed, along with their corresponding fitness values. This modification

enables the algorithm to avoid suboptimal solutions and achieve faster and

more efficient convergence.

Algorithm 1. Pseudocode of Assigning Memory

Start

% Saving more than one global best and related solutions

for 𝑖 = 1: 𝑁𝑈

 for 𝑗 = 1: 𝑁𝑈/5 % Memory size:20 percent of search agents

 if 𝐹𝑖𝑡(𝑖) < 𝐹𝑖𝑡_𝑀(𝑗)

 𝑈_𝑀(𝑗, :) = 𝑈(𝑖, :); % Best solutions of the memory

 𝐹𝑖𝑡_𝑀(𝑗) = 𝐹𝑖𝑡(𝑖); % Best fitness values of the memory

 end

 end

end
%Worst 20% of search agents are changed in the main loop of the algorithm

4. Memory-Enhanced Metaheuristics

In this section, the metaheuristics utilized in the study are introduced to

demonstrate the effectiveness of memory-enhanced optimization. The cho-

sen algorithms are well-known and widely used in the optimization litera-

ture, including the Biogeography-Based Optimization (BBO), Krill Herd

Algorithm (KHA), and Thermal Exchange Optimization (TEO). These al-

gorithms are categorized under swarm intelligence and physics-based me-

taheuristics and have been successfully applied in various optimization

problems, including engineering, computer science, and other fields. In

this study, it is aimed to enhance these algorithms by incorporating a

memory mechanism that stores historical best solutions to improve their

overall performance in terms of convergence speed, quality of solution,

and reliability. These algorithms are applied to optimize the problems to be

evaluated their performance with and without memory enhancement.

6 Memory-Driven Metaheuristics: Improving Optimization Performance

4.1. Biogeography-Based Optimization

BBO primarily employs species migration and mutation models in the

field of biogeography to address optimization issues. In BBO [61], indi-

vidual solutions are referred to as "habitats", and their quality is evaluated

using a Habitat Suitability Index (HSI). The Suitability Index Variables

(SIVs) represent the factors that define the habitability of a habitat. BBO

primarily relies on migration and mutation processes to explore and dis-

cover the most optimal solution.

4.1.1. Migration Operator

In the BBO (Biogeography-Based Optimization) algorithm, a high HSI

(Habitat Suitability Index) indicates a good solution, analogous to a habitat

with abundant species. Such habitats exhibit high emigration rates (species

leaving the habitat) and low immigration rates (species entering the habi-

tat), and vice versa. The migration operator in the algorithm aims to facili-

tate the exchange of information among different solutions. In this context,

good solutions tend to share their favorable characteristics with poor solu-

tions, while poor solutions are more receptive to adopting beneficial fea-

tures from good solutions. Each habitat within the algorithm has its specif-

ic emigration rate (𝜇), and immigration rate (𝜆) which are computed as

follows:

𝜆𝑘 = 𝐼 (1 −
𝑁𝑘

𝑁
), 𝜇𝑘 = 𝐸(

𝑁𝑘

𝑁
) (1)

In these equations, 𝐼 represents the maximum immigration rate, 𝐸 de-

notes the maximum emigration rate, 𝑁𝑘 corresponds the number of species

of the habitat 𝐻𝑘, and 𝑁 represents the maximum number of species. It's

worth noting that while the given equations present a simple linear model

for migration, in practice, more complex and nonlinear models are often

utilized in the BBO algorithm. The migration operator in the BBO algo-

rithm modifies the SIVs of a habitat by incorporating features from other

advantageous habitats. This process can be expressed as follows:

𝐻𝑖(𝑆𝐼𝑉) ← 𝐻𝑘(𝑆𝐼𝑉) (2)

In the given expression, 𝐻𝑖 represents the immigration habitat, while

𝐻𝑘 denotes the emigration habitat. The emigration habitat 𝐻𝑘 is chosen us-

ing the roulette wheel selection method.

Error! Use the Home tab to apply title to the text that you want to appear
here. 7

4.1.2. Mutation Operator

In BBO, sudden events can lead to significant changes in the character-

istics of a habitat, resulting in alterations to its HSI and the number of spe-

cies present. The probability of species number in BBO is directly related

to the mutation rate of a habitat. More specifically, the mutation rate (𝑚𝑖) is

determined by the probability (𝑝𝑖) of the species number, and it can be

mathematically expressed as follows:

𝑚𝑖 = 𝑚𝑚𝑎𝑥(1 −
𝑝𝑖

𝑝𝑚𝑎𝑥
) (3)

In the provided equation, 𝑚𝑚𝑎𝑥 represents the maximum mutation rate,

which is a parameter defined by the user. The calculation of 𝑝𝑖 follows a

specific computation method, and 𝑝𝑚𝑎𝑥 corresponds to the maximum val-

ue among all 𝑝𝑖 probabilities. The mutation process can be performed as

follows:

𝐻𝑖(𝑆𝐼𝑉𝑗) ← 𝐼𝑏𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑏𝑗 − 𝐼𝑏𝑗) (4)

Here, 𝐻𝑖 represents the mutation habitat. For each SIV in 𝐻𝑖, denoted

by 𝑗 ranging from 1 to 𝐷 (where 𝐷 is the number of decision variables),

the mutation operation is conducted. The lower and upper boundary values

of the 𝑗th SIV in 𝐻𝑖 are represented by 𝐼𝑏𝑗 and 𝑢𝑏𝑗, respectively. The mu-

tation process involves modifying the SIV by adding a uniformly distrib-

uted random real number, rand, between 0 and 1.

In order to maintain the most optimal solutions throughout the search

process, BBO utilizes the strategy of elitism. This approach involves sev-

eral steps: during each iteration, after executing operations such as migra-

tion and mutation, the population is sorted. Following this, a number of the

least favorable habitats are replaced with some of the top-performing solu-

tions that were preserved from previous iterations. Once this replacement

is completed, the population is sorted once more. To summarize, the BBO

algorithm follows the following steps: 

Step 1: set the parameters and initialize the random population  

Step 2: compute each habitat and sort the population considering their

𝐻𝑆𝐼𝑠 in descending order

Step 3: evaluate the immigration, emigration, and mutation rates and

keep the elitists 

Step 4: perform the migration and mutation operator by Eq. (2 and 4) 

Step 5: restrict the boundary of each new solution 

Step 6: compute HSI of each habitat’s and sort the population in de-

scending order  

8 Memory-Driven Metaheuristics: Improving Optimization Performance

Step 7: replace several worst habitats with elitists ones and sort the

population in descending order

Step 8: if the termination criterion is satisfied, output the optimum so-

lution; otherwise, return to Step 3

4.2. Krill Herd Algorithm

Krill swarms, a marine species studied by humans, exhibit a tendency

to form clusters. When these krill swarms encounter natural predators or

disturbances, some individuals may be lost or displaced, leading to a re-

duction in population density. To restore the original state, krill swarms

exhibit two main behaviors: increasing population density and searching

for food. Inspired by these behaviors, researchers have proposed a novel

heuristic algorithm called the Krill Herd Algorithm (KHA). The KHA al-

gorithm aims to solve global optimization problems by simulating the clus-

tering and foraging behaviors observed in krill swarms.

In the Krill Herd Algorithm (KHA) [62], every individual krill repre-

sents a potential solution for the optimization problem at hand. The two

goals of increasing population density and finding food are considered as

the driving forces for the optimization problem. The process of re-

aggregating individual krill represents the algorithm's search for the opti-

mal solution. The location of each krill evolves over time, primarily influ-

enced by the following three factors:

• Movement induced by other krill individuals

• Foraging motion

• Random diffusion

In KHA, the Lagrangian model is applied to tackle decision problems

that involve multiple dimensions:

𝑑𝑋𝑖

𝑑𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖 (5)

where 𝑁𝑖 represents the induced motion of other krill individuals; 𝐹𝑖

denotes the Foraging activity and 𝐷𝑖 corresponds the physical diffusion.

Error! Use the Home tab to apply title to the text that you want to appear
here. 9

4.2.1. Movement Induced by Other Krill Individuals

To facilitate the collective migration of the population, every krill indi-

vidual in the KHA algorithm interacts with one another, fostering a high

population density. The direction of movement (denoted as 𝛼𝑖) for each

krill is influenced by three factors: the influence of neighboring individuals

(local effect), the impact of the optimal individual (target effect), and the

repulsion effect from the population as a whole (repulsive effect). The

movement induced by other krill individuals (𝑁𝑖) for a given krill can be

expressed as follows:

𝑁𝑖 = 𝑁
𝑚𝑎𝑥𝛼𝑖 + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑 (6)

𝛼𝑖 = 𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
 (7)

In the equation, 𝑁
𝑚𝑎𝑥 represents the maximum induced speed, and

𝑁𝑖
𝑜𝑙𝑑 denotes the previously induced motion for the krill individual. The

inertia weight of the motion, 𝜔𝑛, takes a value between 0 and 1 and repre-

sents the influence of the krill's previous motion on the current movement.

𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 and 𝛼𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
 represent the local effect and target effect, respectively.

The local effect, induced by neighboring krill individuals, can be interpret-

ed as an attractive or repulsive tendency. It is determined by the following

expression:

𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 = ∑ �̂�𝑖,𝑗�̂�𝑖,𝑗

𝑁𝑁

𝑗=1

 (8)

�̂�𝑖,𝑗 =
𝑋𝑗 − 𝑋𝑖

‖𝑋𝑗 − 𝑋𝑖‖ + 𝜀
 , �̂�𝑖,𝑗 =

𝐾𝑖 − 𝐾𝑗

𝐾
𝑤𝑜𝑟𝑠𝑡 − 𝐾

𝑏𝑒𝑠𝑡
 (9)

where 𝑁𝑁 is the number of neighbors, 𝑋 represents the related position,

and K represents the fitness value of the krill individual. 𝐾
𝑤𝑜𝑟𝑠𝑡 and 𝐾

𝑏𝑒𝑠𝑡

represent the worst and best fitness values observed among the krill herds

thus far. Additionally, 𝜀 is a small positive value introduced to avoid sin-

gularities and ensure stability in the calculations. The calculation of the lo-

cal effect in the KHA algorithm involves determining the neighbors of a

krill individual based on their sensing distance. The sensing distance de-

termines which other krill individuals are considered as neighbors. It is de-

fined using the following formula:

10 Memory-Driven Metaheuristics: Improving Optimization Performance

𝑑𝑖 =
1

5𝑁𝑃
 ∑‖𝑋𝑖 − 𝑋𝑗‖

𝑁𝑃

𝑗=1

 (10)

where NP denotes the size of the population. The movement of each

krill is influenced by the global optimal solution, which serves as the target

direction. This influence on movement can be described as follows:

𝛼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

= 𝐶
𝑏𝑒𝑠𝑡�̂�𝑖,𝑏𝑒𝑠𝑡�̂�𝑖,𝑏𝑒𝑠𝑡 , 𝐶

𝑏𝑒𝑠𝑡 = 2 (𝑟𝑎𝑛𝑑1 +
𝑔

𝑔𝑚𝑎𝑥
) (11)

In the equation, 𝑟𝑎𝑛𝑑1 represents a random variable uniformly distrib-

uted between 0 and 1. The variables 𝑔 and 𝑔𝑚𝑎𝑥 correspond to the number

of current iteration and the maximum iterations, respectively.

4.2.2. Foraging Motion

The population's search for food in the foraging process involves esti-

mating the desired resource based on the fitness distribution of the krill in-

dividuals. The location of the resource is determined using the concept of

the "center of mass" from physics:

𝑋
𝑓𝑜𝑜𝑑 =

∑
1
𝐾𝑖

𝑋𝑖
𝑁𝑃
𝑖=1

∑
1
𝐾𝑖

𝑁𝑃
𝑖=1

 (12)

Two primary factors influence the foraging behavior of krill: the cur-

rent location of the food source and its previous location. This relationship

can be expressed as follows:

𝐹𝑖 = 𝑉𝑓𝛽𝑖 + 𝜔𝑓𝐹𝑖
𝑜𝑙𝑑 , 𝛽𝑖 = 𝛽𝑖

𝑓𝑜𝑜𝑑
+ 𝛽𝑖

𝑖,𝑏𝑒𝑠𝑡
 (13)

Where the variables are the foraging speed (𝑉𝑓), the inertia weight

(𝜔𝑓 ∈ [0 1]), previous foraging motion (𝐹𝑖
𝑜𝑙𝑑), the food attraction and the

effect of the best fitness of the 𝑖th krill so far (𝛽𝑖
𝑓𝑜𝑜𝑑

, 𝛽𝑖
𝑖,𝑏𝑒𝑠𝑡

) which are

defined as:

𝛽𝑖
𝑓𝑜𝑜𝑑

= 𝐶
𝑓𝑜𝑜𝑑�̂�𝑖,𝑓𝑜𝑜𝑑�̂�𝑖,𝑓𝑜𝑜𝑑 , 𝛽𝑖

𝑖,𝑓𝑜𝑜𝑑
= 𝐶

𝑓𝑜𝑜𝑑�̂�𝑖,𝑖 𝑏𝑒𝑠𝑡�̂�𝑖,𝑖 𝑏𝑒𝑠𝑡 (14)

Error! Use the Home tab to apply title to the text that you want to appear
here. 11

The food coefficient, denoted as 𝐶
𝑓𝑜𝑜𝑑, is a variable that changes dur-

ing the iteration process using a uniformly distributed random variable

(𝑟𝑎𝑛𝑑 ∈ [0 1]).

 𝐶
𝑓𝑜𝑜𝑑 = 2 (𝑟𝑎𝑛𝑑 +

𝑔

𝑔𝑚𝑎𝑥
) (15)

4.2.3. Random Diffusion

The dispersion of krill individuals in their physical environment can be

explained by the maximum speed of diffusion, combined with a randomly

determined directional vector.

 𝐷𝑖 = 𝐷
𝑚𝑎𝑥 (1 −

𝑔

𝑔𝑚𝑎𝑥
) 𝛿 (16)

where 𝐷
𝑚𝑎𝑥 denotes the maximum diffusion speed and 𝛿 represents

uniformly distributed random vector between −1 and 1.

4.2.4. Updating Position

The three factors mentioned earlier prompt each krill individual to

modify its position in alignment with the optimal direction. The adjustment

of an individual's position during the time interval 𝑡 + ∆𝑡 can be represent-

ed by the following expression:

 𝑋𝑖(𝑡 + ∆𝑡) = 𝑋𝑖(𝑡)∆𝑡
𝑑𝑋𝑖

𝑑𝑡
 (17)

The ∆𝑡 is crucial and its value entirely relies on the characteristics of

the search space. It can be represented as:

 ∆𝑡 = 𝐶𝑡 ∑ (𝑈𝐵𝑖 − 𝐿𝐵𝑖)𝑁𝑉
𝑖=1 (18)

The equation is determined by the constant 𝐶𝑡, which is a number be-

tween 0 and 2. 𝑁𝑉 denotes the overall count of control variables, whereas

𝑈𝐵𝑖 and 𝐿𝐵𝑖 represent the upper and lower boundaries of the jth variable,

respectively.

12 Memory-Driven Metaheuristics: Improving Optimization Performance

4.2.5. Genetic Operators

To enhance the performance of the KH algorithm, the crossover and

mutation strategies of the Genetic Algorithm are integrated. The crossover

operation is formulated as follows:

 𝑋𝑖,𝑗 = {
𝑋𝑟1,𝑗 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝐶𝑅

𝑋𝑖,𝑗 𝑒𝑙𝑠𝑒
, 𝑗 = 1, … , 𝐷 𝐼 = 1, … , 𝑁𝑃 (19)

 𝐶𝑅 = 0.05/�̂�𝑖,𝑏𝑒𝑠𝑡
(20)

where 𝐷 represents the dimension of the optimal problem, 𝑋𝑟1 (𝑟1 ≠ 𝑖)
is randomly selected from the current population, 𝐶𝑅 denotes the probabil-

ity of crossover. For the global best solution, 𝐶𝑅 is set to zero. The muta-

tion is applied as follows:

 𝑋𝑖,𝑗 = {
𝑋𝑏𝑒𝑠𝑡,𝑗 + 𝜇(𝑋𝑟2,𝑗 − 𝑋𝑟3,𝑗) 𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑀𝑢

𝑋𝑖,𝑗 𝑒𝑙𝑠𝑒
,

 𝑗 = 1, … , 𝐷 𝑖 = 1, … , 𝑁𝑃

(21)

 𝑀𝑢 = 0.05/�̂�𝑖,𝑏𝑒𝑠𝑡
(22)

In this context, 𝑋𝑏𝑒𝑠𝑡 refers to the overall best position within the entire

swarm, while 𝜇 represents the mutant factor that spans a range of values

from 0 to 1. Additionally, factor, 𝑋𝑟2, and 𝑋𝑟3 (where 𝑟2 ≠ 𝑟3 ≠ 𝑖) are

selected randomly from the present population. The mutant probability,

denoted as 𝑀𝑢, is set to zero for the global best solution as well.

4.2.6. The Procedure of KHA

The KHA (Krill Herd Algorithm) can generally be defined by the fol-

lowing steps:

Step 1. Initialization: Set the randomly generated initial population of

krill individuals, define the search space boundaries (𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥), and

initialize the algorithm's parameters. Random values are assigned to each

𝐷-dimensional individual according to:

 𝑋𝑗,𝑖|𝑔=0 = 𝑋𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑋𝑗,𝑚𝑎𝑥 − 𝑋𝑗,𝑚𝑖𝑛), 𝑗 = 1, . . , 𝐷; 𝑖 = 1, . . , 𝑁𝑃 (23)

 where NP represents the population size.

Error! Use the Home tab to apply title to the text that you want to appear
here. 13

Step 2. Fitness evaluation: Assess the fitness of each krill individual in

the population based on the objective function and save the global best so-

lution.

Step 3. Motion calculation:

 Movement induced by other krill individuals

 Foraging motion

 Random diffusion

Step 4. Crossover and Mutation: Incorporate the crossover and mutation

strategies from Genetic Algorithms to further improve the algorithm's per-

formance.

Step 5. Update the position of each krill individual and repeat the Step 2.

Step 6. Check if the termination criteria have been met considering the

termination criteria. If not, return to step 3.

4.3. Thermal Exchange Optimizer

In the Thermodynamics-Inspired Optimization (TEO) algorithm [63], a

subset of agents is designated as cooling objects, while the remaining

agents represent the environment. Interestingly, in TEO, this assignment is

done contrariwise compared to traditional approaches. The algorithm fol-

lows the steps outlined below:

Step 1. Initialization: In an m-dimensional search space, the initial

temperature of all the objects is established.

 𝑇𝑖
0 = 𝑇𝑚𝑖𝑛

 + 𝑟𝑎𝑛𝑑(𝑇𝑚𝑎𝑥
 − 𝑇𝑚𝑖𝑛

) (24)

𝑇𝑖
0 represents the initial solution vector of the 𝑖th object. 𝑇𝑚𝑖𝑛

 and 𝑇𝑚𝑎𝑥

are the lower and upper bounds of the design variables, respectively, and 𝑛

denotes the total number of objects.

Step 2. Evaluation: The objective function computes the cost value for

each object.

Step 3. Saving: In order to enhance the algorithm's performance without

significantly increasing computational cost, a memory component is intro-

duced to store historically best 𝑇 vectors along with their corresponding

objective function values. This memory, referred to as the Thermal

Memory (𝑇𝑀), is utilized in this step. The saved solution vectors in 𝑇𝑀

14 Memory-Driven Metaheuristics: Improving Optimization Performance

are added to the population, while an equal number of the current worst

objects are removed. Subsequently, the objects are sorted based on their

objective function values in ascending order. This process helps incorpo-

rate valuable historical information into the population and maintain a di-

verse set of solutions.

Step 4. Creating groups: The agents in the population are divided into

two equal groups. The pairs of agents are defined [63]. For example, 𝑇1

serves as an environment object for 𝑇2𝑛+1
 , which acts as a cooling object,

and vice versa. This pairing scheme ensures the interaction and exchange

of heat between the environment and cooling objects in a structured man-

ner.

Step 5. Defining 𝛽: In nature, when an object has a lower 𝛽 value, it

tends to undergo only minor temperature exchanges. Drawing inspiration

from this characteristic, a similar formulation is proposed in the algorithm.

The value of 𝛽 for each object is evaluated using Eq. (25). In this equation,

objects with lower cost values have lower 𝛽 values, indicating that they

undergo smaller changes in position. This approach allows objects with

better fitness (lower cost) to make gradual adjustments while exploring the

search space.

 𝛽 =
𝐶𝑜𝑠𝑡(𝑜𝑏𝑗𝑒𝑐𝑡)

𝐶𝑜𝑠𝑡(𝑤𝑜𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡)
 (25)

Step 6. Defining 𝒕: The value of time, denoted as 𝑡, is associated with

the iteration number in the formulation. The calculation of 𝑡 for each agent

is determined using Eq. (226), which is given as:

 𝑡 =
𝑖𝑡𝑒𝑟.

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
 (26)

Step 7. Escaping from local optima (𝒊): Metaheuristic algorithms

should possess the capability to escape from traps encountered when

agents approach local optima. Step 7 and Step 9 are employed specifically

for this purpose. In these steps, the environmental temperature is adjusted

using Eq. (27):

 𝑇𝑖
𝑒𝑛𝑣. = (1 − (𝑐1 + 𝑐2 × (1 − 𝑡)) × 𝑟𝑎𝑛𝑑) × 𝑇′𝑖

𝑒𝑛𝑣. (27)

The previous temperature of the object, denoted as 𝑇𝑖
𝑒𝑛𝑣., is adjusted to

a new temperature, 𝑇′𝑖
𝑒𝑛𝑣.. The parameter (1 − 𝑡) is employed to reduce

randomness as the iterations advance. As 𝑡 increases towards the end of

the process, randomness decreases linearly, promoting exploitation. 𝑐2

controls the factor (1 − 𝑡). For example, when decreasing is not required,

Error! Use the Home tab to apply title to the text that you want to appear
here. 15

𝑐2 can be set to zero. 𝑐1 controls the magnitude of random steps. Addition-

ally, when a decreasing process is not employed (𝑐2 = 0, as mentioned

earlier), 𝑐1 introduces randomness.

When 𝐶 = 0 (when 𝑐1 = 𝑐2 = 0), none of the mechanisms mentioned

above are applied, and the previous temperature is multiplied by 1. In this

chapter, 𝑐1 and 𝑐2 are selected from the set {0 or 1}.

Step 8. Updating the agents: Based on the previous steps, the new

temperature of each object is updated using the following equation:

 𝑇𝑖
𝑒𝑛𝑣. = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑜𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.)exp (−𝛽𝑡) (28)

Step 9. Escaping from local optima (ii): The parameter Pro, which

takes a value within the range of (0, 1), is introduced to determine whether

a component of each cooling object should be changed or not. For each

agent, Pro is compared with 𝑅𝑎𝑛𝑑(𝑖), where 𝑖 ranges from 1 to 𝑛 and

𝑅𝑎𝑛(𝑖) is a random number uniformly distributed within the interval (0,

1). If 𝑅𝑎𝑛𝑑(𝑖) is less than Pro, indicating a successful comparison, one

dimension of the 𝑖th agent is randomly selected, and its value is regenerat-

ed using the following process:

 𝑇𝑖,𝑗
 = 𝑇𝑗,𝑚𝑖𝑛

 + 𝑟𝑎𝑛𝑑(𝑇𝑗,𝑚𝑎𝑥
 − 𝑇𝑗,𝑚𝑖𝑛

) (29)

The equation includes 𝑇𝑖,𝑗
 , which represents the jth variable of the 𝑖th

agent. 𝑇𝑗,𝑚𝑖𝑛
 and 𝑇𝑗,𝑚𝑎𝑥

 indicate the lower and upper limits, respectively,

of the jth variable. To maintain the integrity of the agents' structures, only

one dimension is modified in this process. By employing this mechanism,

the agents are able to explore the entire search space, facilitating improved

diversity and enhancing the likelihood of discovering optimal solutions.

Step 10. Checking terminating conditions: The optimization process

is concluded after a predetermined number of iterations. If the termination

criterion is not met, the algorithm returns to step 2 to initiate a new round

of iterations. However, if the termination criterion is satisfied, the process

is stopped, and the best solution found throughout the optimization process

is reported as the final result.

16 Memory-Driven Metaheuristics: Improving Optimization Performance

5. Results and Discussion on Case Studies: Truss
Bridges

Truss bridges are a specific type of trusses that are suitable for shape and

size optimization. These trusses are utilized in various bridge compo-

nents, including the deck [64] and arch [65-68]. Topology or shape opti-

mization plays a significant role in enhancing the structural form of truss

bridges. By optimizing the shape, material usage can be significantly re-

duced while improving overall performance. Therefore, truss bridges are

classified as the third category among the truss benchmark examples,

which include the Michell arch, forth bridge model, and the 37-bar truss

bridge. The design data pertaining to the optimization problems for these

examples can be found in Table 2.

Table 2. Design data for truss bridges.
 Michell Arch Forth bridge model 37-bar truss bridge

Variables

(Size/shape)

𝐴1 = 𝐴8; 𝐴2 = 𝐴7;
𝐴3 = 𝐴6; 𝐴4 = 𝐴5;
𝐴9 = 𝐴13; 𝐴10 = 𝐴12; 𝐴11;

𝐴1, 𝐴2. . . , 𝐴16 𝐴1, 𝐴2. . . , 𝐴14

𝑥3 = −𝑥7; 𝑦4 = 𝑦6; 𝑦5; 𝑦𝑖 𝑦𝑢𝑝𝑝𝑒𝑟 𝑐ℎ𝑜𝑟𝑑

Constraint

(Stress,

disp., freq.,

shape)

|(𝜎)𝑖=1~13|≤240 MPa;
Δ𝑦(1) ≤3.8 mm

|(𝜎)𝑖| ≤ 25 𝑘𝑁/𝑐𝑚2; 𝑓1=20, 𝑓2=40, 𝑓3=60 (Hz)

0 ≤ 𝑥3 ≤1 m;
0 ≤ 𝑦4, 𝑦5 ≤1 m;

-1.4 ≤ Δ𝑦(𝑖)≤ 1.4 m; -1 ≤ Δ𝑦(𝑡𝑜𝑝 𝑐ℎ𝑜𝑟𝑑)≤ 2.5 m;

Cross-

sections
𝐴𝑖 ={1.01, 1.02, …,5}𝑐𝑚2

i = 1, 2, . .. , 13
0.5 ≤ 𝐴𝑖 ≤ 100𝑐𝑚2

i = 1, 2, . . . , 16

𝐴𝑡𝑜𝑝 𝑐ℎ𝑜𝑟𝑑 =4×10-3 m2

10-4 ≤ 𝐴𝑜𝑡ℎ𝑒𝑟𝑠≤ 3.5×10-4 m2

Load case
(𝐹𝑦)

P=-200 kN (Node 1) P=20 ton
𝑀𝑎𝑠𝑠𝑖=10 kg

i = nodes on lower chord

Young's

modulus
210 GPa 2.1×108 𝑘𝑁/𝑚2 2.1×1011 𝑁/𝑚2

Material’s

density
7800 kg/m3 7800 𝑘𝑔/𝑚3 7800 𝑘𝑔/𝑚3

3.3.1 The Michell Arch

The Michell arch, as shown in Figure 1, is recognized as the initial in-

stance of its kind. This optimization problem has an available analytical

solution that takes into account equal allowable stresses in both tension

and compression (Wang et al., 2002):

Error! Use the Home tab to apply title to the text that you want to appear
here. 17

𝑊 =
12

𝜎+
𝐿𝑃𝜌 tan

𝜋

12

In the equation, the parameter L represents half of the span length, specif-

ically set to 1m, while 𝜎+ denotes the allowable tension stress. Table 3

presents the optimal outcome obtained from the memory-assisted meth-

ods, along with a comparative analysis against other approaches. Consid-

ering the results of the memory-less version of algorithms (21.91, 22.2,

and 23.88 kg), it is apparent that memory-assisted versions (21.21, 20.96,

and 22.03 kg) performed better and found minimal weight while satisfy-

ing all the constraints. Figure 1 visually displays the optimal arrangement

of the structure's components. Additionally, Fig. 2 showcases the best

convergence of the memory-assisted methods, among 20 individual runs

for the Michell arch. Considering results, the memory-assisted algorithms

are considerably reliable and efficient with fast convergence. The average

improvement of 5.5% (max 7.7%) is shown in the achieved weights.

Fig. 1 The Michell arch

18 Memory-Driven Metaheuristics: Improving Optimization Performance

Fig. 2. Results of the Michell arch

Table 3. Results comparison of the standard and memory-based methods for

Michell arch problem.

Variables BBO KHA TEO

 Standard Memory Standard Memory Standard Memory

 Sizing Variables (m2)

𝐴1 23.1535 14.1476 1.03960 14.7664 66.9590 62.6198

𝐴2 339.7858 335.4370 383.5986 333.5205 373.4588 366.8499

𝐴3 361.0238 339.1281 331.4342 330.6981 368.7377 343.6751

𝐴4 336.0014 339.5899 360.4571 327.9014 356.3795 342.0028

𝐴9 153.0759 120.4642 144.4969 106.923 168.5932 47.2726

𝐴10 118.2371 144.2717 165.5149 161.0867 186.3108 257.6826

𝐴11 129.7560 103.8559 83.3975 76.1589 147.8932 24.8989

 Layout Variables (m)

𝑌5 1.0000 1.0000 0.9907 0.9996 0.9513 0.9534

𝑌6 0.8680 0.8795 0.8916 0.8951 0.8345 0.8863

𝑋3 0.8862 0.8665 0.8820 0.8648 0.8548 0.8141

 Statistical results (kg)

Best 21.91 21.21 22.2 20.96 23.88 22.03

Mean 22.23 21.66 23.21 22.16 1971.54 1949.11

Worst 22.58 22.28 25.01 24.67 16533.85 33298.82

Std 0.18 0.27 0.7 1.08 4208.62 7403.29

NFEs 3200 3750 3900 3900 4000 4000

Runs 20 20 20 20 20 20

3.3.2 The Forth bridge model

Gil and Andreu (2001) initially analyzed the Forth bridge model to de-

termine the optimal configuration and sizing variables. Each span in the

bridge has a length of 16m and a height of 1m (adjusted to 3m to control

shape variables). The structure can be represented according to Figure 3,

which depicts half of the infinite symmetric span. The circled numbers in

Error! Use the Home tab to apply title to the text that you want to appear
here. 19

Figure 3(b) indicate 16 groups of sizing variables. By employing a

memory-assisted optimization process, the best structural weight

achieved was found to be significantly lower than that obtained using

memory-less algorithms. Specifically, the weights were 11978.62 kg,

10349.48 kg, and 15270.36 kg, compared to 13585.99 kg, 11775.9 kg,

and 21629.57 kg for memory-less algorithms. Table 4 provides the rele-

vant coordinates and cross-sections for the optimized structure.

It is crucial to emphasize the importance of increasing the overall mo-

ment of inertia at the support positions of the bridge to withstand the high

internal moments experienced during its operational lifespan. Therefore,

a meticulous analysis and optimization of the support positions are essen-

tial to ensure the structural integrity and capacity to withstand anticipated

loads and stresses. The optimal shape, as depicted in Fig. 4(a), satisfies

this requirement and bears resemblance to the well-known "Forth

Bridge." The best convergence histories of 20 individual runs are shown

in Fig. 4(b). The memory-assisted algorithms have demonstrated signifi-

cant performance improvements compared to the memory-less algo-

rithms. On average, the optimization results have improved by 17.7%,

with a maximum improvement of 29.4%. Additionally, the convergence

behavior has been found to be superior in the memory-assisted algo-

rithms.

Table 4. Results comparison of the standard and memory-based methods for the

Forth bridge model

Variables BBO KHA TEO

 Standard Memory Standard Memory Standard Memory

 Sizing Variables (cm2)

1 16.4456 25.1129 14.836 10.538 37.3404 18.7656

2 94.254 38.4602 47.9999 41.0708 42.049 38.6652

3 15.8908 7.4326 9.0737 9.9726 46.0009 14.7888

4 39.2538 46.8004 55.3138 57.9283 28.0406 44.4536

5 56.6392 37.434 34.6687 26.8824 31.8419 36.5998

6 22.0073 26.2891 24.3291 16.7202 24.5844 24.6589

7 0.5 34.3952 33.3137 40.5562 11.5118 17.4166

8 14.8243 0.5 8.7103 0.5289 17.1568 2.7853

9 25.5838 30.9563 28.1914 31.3519 20.5659 24.8771

10 40.2238 0.5 1.6936 0.6179 11.8985 10.1461

11 7.0234 31.5138 24.2553 32.994 10.4383 18.0454

12 14.209 13.8402 16.0194 12.6324 13.7095 15.9911

13 23.8645 27.8096 33.2668 34.5302 20.149 34.7149

14 9.0283 4.9822 10.9916 3.5478 22.1609 12.8686

15 47.5124 12.1978 13.6822 12.4636 25.4358 13.1036

16 4.9522 13.9933 9.6314 0.5187 35.8006 11.8662

20 Memory-Driven Metaheuristics: Improving Optimization Performance

 Layout Variables (cm)

1 -57.2705 73.6468 0.1716 36.1304 -12.6051 30.6401

2 37.5484 66.0000 65.6483 101.3377 3.4807 52.8938

3 -102.441 -13.2346 -54.181 -29.985 -1.7244 -22.3989

4 90.7979 140.000 128.5676 139.9841 42.6357 109.1288

5 -109.620 -54.6006 -72.3198 -98.6304 -41.0543 -61.3265

6 140.000 89.2177 58.9762 90.7673 24.2037 42.0780

7 -50.5744 -140.00 -73.9872 -140.000 -16.0522 -0.1548

8 33.6759 21.9731 27.5776 32.5376 -0.0001 12.5168

9 -12.7194 -81.1674 -41.4697 -71.1337 -24.7971 -8.1538

10 44.6205 5.2223 37.6646 20.2854 25.8910 25.9354

 Statistical results (kg)

Best 13585.99 11978.62 11775.9 10349.48 21629.57 15270.36

Mean 15021.67 14695.9 13867.89 12082.04 24069.96 18888.7

Worst 17233.06 16705.82 16946.59 13544.55 27361.33 21795.11

Std 1026.5 1167.75 1286.29 786.42 1562.61 1646.89

NFEs 3800 3200 4000 4000 1950 2300

Runs 20 20 20 20 20 20

Fig. 3 The Forth bridge model (a) Problem diagram. (b) Analytical model.

Error! Use the Home tab to apply title to the text that you want to appear
here. 21

a) Optimum and real shape

b) Convergence history of methods

Fig. 4. Results of the Forth bridge model

3.3.3 The 37-bar truss bridge

The simply supported Pratt-Type 37-bar truss (depicted in Figure 5(a))

has been investigated by Lingyun et al. (2005) using the NHGA algo-

rithm and by Wang et al. (2004) employing the method of evolutionary

node shift. This truss presents an optimization problem with 14 sizing

22 Memory-Driven Metaheuristics: Improving Optimization Performance

variables, five shape variables, and three frequency constraints. Table 5

provides a comparison between the optimal results obtained using the

memory-assisted methods and their standard versions. The memory-

assisted algorithms have yielded diverse levels of performance in opti-

mizing the design, with the best results achieved being 357.81 kg, 356.05

kg, and 367.19 kg, in contrast to the values of 361.1 kg, 359.04 kg, and

378.21 kg obtained by memory-less algorithms. On average, the utiliza-

tion of memory has improved performance by 1.5%, with a maximum

improvement of 2.9%. This improvement can be attributed to the incor-

poration of elite population memory, allowing the enhanced algorithms to

explore the search space more effectively and converge to superior solu-

tions at a faster pace. Figure 5(b) showcases the final optimal shape of the

truss, while Figure 5(c) illustrates the weight convergence of the 37-bar

truss for the MAMVO method, which exhibits better performance when

compared to MVO.

Table 5. Results comparison of the standard and memory-based methods for the

37-bar truss problem.

Variables BBO KHA TEO

 Standard Memory Standard Memory Standard Memory

 Sizing Variables (m2)

𝑌3, 𝑌19 1.1204 1.0335 1.0135 1.0719 1.1572 1.0000

𝑌5, 𝑌17 1.6069 1.3060 1.4347 1.4280 1.9219 1.3569

𝑌7, 𝑌15 1.7317 1.7173 1.8022 1.6202 1.9554 1.5958

𝑌9, 𝑌13 1.8849 1.9628 1.9338 1.7794 2.0202 1.6577

𝑌11 2.0734 1.9995 2.1250 1.8409 1.9787 1.7288

 Layout Variables (cm)

𝐴1, 𝐴27 2.1053 1.8660 2.3616 2.5027 2.4087 2.0580

𝐴2, 𝐴26 1.4703 1.1156 1.0303 1.0003 1.8259 1.3164

𝐴3, 𝐴24 1.0000 1.0000 1.1233 1.1655 1.3396 1.8695

𝐴4, 𝐴25 2.1949 2.5251 2.7226 2.1397 2.1313 2.7549

𝐴5, 𝐴23 1.0000 1.0161 1.0889 1.0234 1.9914 1.5808

𝐴6, 𝐴21 1.0000 1.2085 1.2246 1.0692 2.7621 1.4882

𝐴7, 𝐴22 2.3970 2.1943 1.3502 1.8263 1.8349 3.4876

𝐴8, 𝐴20 1.2092 1.0000 1.0365 1.005 1.9548 1.3113

𝐴9, 𝐴18 1.1588 1.0000 1.3631 1.0055 1.8608 1.6453

𝐴10, 𝐴17 2.4954 2.7481 2.3905 2.1666 1.4984 2.1387

𝐴11, 𝐴19 1.5297 1.0248 1.4385 1.1465 1.5211 1.8052

𝐴12, 𝐴15 1.4765 1.15 1.1589 1.0457 1.2811 1.3022

𝐴13, 𝐴16 2.2398 2.0232 2.1901 3.4073 2.6857 2.7191

𝐴14 1.4364 1.0000 1.0122 1.0000 2.2287 2.0468

 Statistical results (kg)

Best 361.1 357.81 359.04 356.05 378.21 367.19

Error! Use the Home tab to apply title to the text that you want to appear
here. 23

Mean 363.24 361.64 362.79 359.38 443.14 387.61

Worst 366.18 365.53 365.97 363 608.5 652.68

Std 1.14 2 1.98 1.87 81.64 62.67

NFEs 3400 3950 3750 3600 3500 2600

Runs 20 20 20 20 20 20

a) The 37-bar truss

b) The optimum 37-bar truss

24 Memory-Driven Metaheuristics: Improving Optimization Performance

b) Convergence history of methods

Fig. 5. Results of the 37-bar truss

4. Conclusions

In this chapter, the effectiveness of utilizing memory-based techniques in

enhancing the performance of various metaheuristic algorithms has been

investigated. By adding a memory component to the basic optimization al-

gorithm, several best solutions from previous iterations are saved to be ex-

changed with several worst solutions in the next iterations. This strategy is

called a multi-elite strategy and has been applied to a number of well-

known optimization algorithms such as the Biogeography-Based Optimi-

zation (BBO), Krill Herd Algorithm (KHA), and Thermal Exchange Opti-

mization (TEO). The proposed memory implementation allowed the algo-

rithm to avoid the worst solutions by exchanging them (20% of the

population size) with the global best ones from the memory. In this chap-

ter, the proposed memory-assisted versions of these algorithms have been

implemented to optimize benchmark engineering examples, such as size

and shape optimization of truss bridges. The results show that the memory-

assisted optimization algorithms outperform the memory-less ones in

terms of convergence speed, solution quality, and reliability. The case

study examples of truss bridges demonstrated that the proposed method

can effectively optimize problems with both continuous and discrete varia-

bles. Therefore, utilizing memory-based techniques can be a promising ap-

proach to improve the performance of various optimization algorithms and

to solve complex engineering problems.

Error! Use the Home tab to apply title to the text that you want to appear
here. 25

References

1. Gandomi AH, Abualigah L (Ed.) (2022) Evolutionary process for engineering

optimization, MDPI. https://doi.org/10.3390/books978-3-0365-4772-5

2. Yang XS et al (Ed.) (2013) Swarm Intelligence and Bio-Inspired Computa-

tion: Theory and Applications, Elsevier Inc. https://doi.org/10.1016/C2012-0-

02754-8

3. Kaveh A (2021) Advances in metaheuristic algorithms for optimal design of

structures, Springer. https://doi.org/10.1007/978-3-030-59392-6

4. Mirjalili S, Gandomi AH (Ed.) (2023) Comprehensive Metaheuristics: Algo-

rithms and Applications, Academic Press.

5. Rocha I. Parente E. Melo A. (2014). A hybrid shared/distributed memory par-

allel genetic algorithm for optimization of laminate composites. Composite

Structures, 107(0): 288-297.

http://dx.doi.org/10.1016/j.compstruct.2013.07.049

6. Kamyab S. Eftekhari M. (2013). Using a self-adaptive neighborhood

scheme with crowding replacement memory in genetic algorithm for multi-

modal optimization. Swarm and Evolutionary Computation, 12(0): 1-17.

http://dx.doi.org/10.1016/j.swevo.2013.05.002

7. Askarzadeh A. (2018). A Memory-Based Genetic Algorithm for Optimiza-

tion of Power Generation in a Microgrid. IEEE Transactions on Sustainable

Energy, 9(3): 1081-1089. http://dx.doi.org/10.1109/tste.2017.2765483

8. Riaz F. Shafi I. Jabbar S. et al. Rho S. (2015). A Novel White Space Opti-

mization Scheme Using Memory Enabled Genetic Algorithm in Cognitive

Vehicular Communication. Wireless Personal Communications, 93(2): 287-

309. http://dx.doi.org/10.1007/s11277-015-3117-4

9. Carrano E.G. Moreira L.A. C. Takahashi R. (2011). A New Memory Based

Variable-Length Encoding Genetic Algorithm for Multiobjective Optimiza-

tion. Lecture Notes in Computer Science, 0(0): 328-342.

http://dx.doi.org/10.1007/978-3-642-19893-9_23

10. Sahmoud S. Rahmi Topcuoglu H. (2016). A Memory-Based NSGA-II Al-

gorithm for Dynamic Multi-objective Optimization Problems. Applications of

Evolutionary Computation, 0(0): 296-310. http://dx.doi.org/10.1007/978-3-

319-31153-1_20

11. XIA Z. LIU F. GONG M. et al. (2011). Memory Based Lamarckian Evolu-

tionary Algorithm for Job Shop Scheduling Problem. Journal of Software,

21(12): 3082-3093. http://dx.doi.org/10.3724/sp.j.1001.2010.03687

12. Prasad Parouha R. Nath Das K. (2016). A memory based differential evolu-

tion algorithm for unconstrained optimization. Applied Soft Computing,

38(0): 501-517. http://dx.doi.org/10.1016/j.asoc.2015.10.022

13. Cui C. Feng T. Yang N. et al. (2015). Memory Based Differential Evolution

Algorithms for Dynamic Constrained Optimization Problems. 2015 11th In-

ternational Conference on Computational Intelligence and Security (CIS),

0(0): 0-0. http://dx.doi.org/10.1109/cis.2015.16

https://doi.org/10.3390/books978-3-0365-4772-5
https://doi.org/10.1016/C2012-0-02754-8
https://doi.org/10.1016/C2012-0-02754-8
https://doi.org/10.1007/978-3-030-59392-6
http://dx.doi.org/10.1016/j.compstruct.2013.07.049
http://dx.doi.org/10.1016/j.swevo.2013.05.002
http://dx.doi.org/10.1109/tste.2017.2765483
http://dx.doi.org/10.1007/s11277-015-3117-4
http://dx.doi.org/10.1007/978-3-642-19893-9_23
http://dx.doi.org/10.1007/978-3-319-31153-1_20
http://dx.doi.org/10.1007/978-3-319-31153-1_20
http://dx.doi.org/10.3724/sp.j.1001.2010.03687
http://dx.doi.org/10.1016/j.asoc.2015.10.022
http://dx.doi.org/10.1109/cis.2015.16

26 Memory-Driven Metaheuristics: Improving Optimization Performance

14. Prasad Parouha R. Nath Das K. (2016). A robust memory based hybrid dif-

ferential evolution for continuous optimization problem. Knowledge-Based

Systems, 103(0): 118-131. http://dx.doi.org/10.1016/j.knosys.2016.04.004

15. Li S. Wang Y. Yue W. (2020). A Regional Local Search and Memory based

Evolutionary Algorithm for Dynamic Multi-objective Optimization. 2020

39th Chinese Control Conference (CCC), 0(0): 0-0.

http://dx.doi.org/10.23919/ccc50068.2020.9189176

16. Li K. Tian H. (2019). Adaptive Differential Evolution With Evolution

Memory for Multiobjective Optimization. IEEE Access, 7(0): 866-876.

http://dx.doi.org/10.1109/access.2018.2885947

17. Rakshit P. (2020). Memory based self-adaptive sampling for noisy multi-

objective optimization. Information Sciences, 511(0): 243-264.

http://dx.doi.org/10.1016/j.ins.2019.09.060

18. LIU M. ZENG W. (2014). Memory Enhanced Dynamic Multi-Objective

Evolutionary Algorithm Based on Decomposition. Journal of Software, 24(7):

1571-1588. http://dx.doi.org/10.3724/sp.j.1001.2013.04311

19. Park S. Ko K. Park J. et al. (2011). Game model-based co-evolutionary al-

gorithm with non-dominated memory and Euclidean distance selection mech-

anisms for multi-objective optimization. International Journal of Control, Au-

tomation and Systems, 9(5): 924-932. http://dx.doi.org/10.1007/s12555-011-

0513-8

20. Luo W. Sun J. Bu C. et al. (2016). Species-based Particle Swarm Optimizer

enhanced by memory for dynamic optimization. Applied Soft Computing,

47(0): 130-140. http://dx.doi.org/10.1016/j.asoc.2016.05.032

21. Tang D. Cai Y. Zhao J. et al. (2014). A quantum-behaved particle swarm

optimization with memetic algorithm and memory for continuous non-linear

large scale problems. Information Sciences, 289(0): 162-189.

http://dx.doi.org/10.1016/j.ins.2014.08.030

22. Wei B. Zhang W. Xia X. et al. Yu F. Zhu Z. (2019). Efficient Feature Selec-

tion Algorithm Based on Particle Swarm Optimization With Learning

Memory. IEEE Access, 7(0): 166066-166078.

http://dx.doi.org/10.1109/access.2019.2953298

23. Xiao H. Guo J. Shi B. et al. Pan C. Yan K. Sato Y. (2023). A Twinning

Memory Bare-Bones Particle Swarm Optimization Algorithm for No-Linear

Functions. IEEE Access, 11(0): 25768-25785.

http://dx.doi.org/10.1109/access.2022.3222530

24. Li W. (2018). Improving Particle Swarm Optimization Based on Neighbor-

hood and Historical Memory for Training Multi-Layer Perceptron. Infor-

mation, 9(1): 16-16. http://dx.doi.org/10.3390/info9010016

25. Ji Z. Tian T. He S. et al. (2012). A memory binary particle swarm optimiza-

tion. 2012 IEEE Congress on Evolutionary Computation, 0(0): 0-0.

http://dx.doi.org/10.1109/cec.2012.6256150

26. Korosec P. Š ilc J. Vajtersic M. et al. (2011). A Shared-Memory ACO-

Based Algorithm for Numerical Optimization. 2011 IEEE International Sym-

posium on Parallel and Distributed Processing Workshops and Phd Forum,

0(0): 0-0. http://dx.doi.org/10.1109/ipdps.2011.176

http://dx.doi.org/10.1016/j.knosys.2016.04.004
http://dx.doi.org/10.23919/ccc50068.2020.9189176
http://dx.doi.org/10.1109/access.2018.2885947
http://dx.doi.org/10.1016/j.ins.2019.09.060
http://dx.doi.org/10.3724/sp.j.1001.2013.04311
http://dx.doi.org/10.1007/s12555-011-0513-8
http://dx.doi.org/10.1007/s12555-011-0513-8
http://dx.doi.org/10.1016/j.asoc.2016.05.032
http://dx.doi.org/10.1016/j.ins.2014.08.030
http://dx.doi.org/10.1109/access.2019.2953298
http://dx.doi.org/10.1109/access.2022.3222530
http://dx.doi.org/10.3390/info9010016
http://dx.doi.org/10.1109/cec.2012.6256150
http://dx.doi.org/10.1109/ipdps.2011.176

Error! Use the Home tab to apply title to the text that you want to appear
here. 27

27. GUO H. CHENG T. CHEN X. et al. (2011). Visual Feedback and Behavior

Memory Based Ant Colony Optimization Algorithm. Journal of Software,

22(9): 1994-2005. http://dx.doi.org/10.3724/sp.j.1001.2011.03949

28. Gong X. Rong Z. Gao T. et al. Wang J. (2019). An Improved Ant Colony

Optimization Algorithm Based on Fractional Order Memory for Traveling

Salesman Problems. 2019 IEEE Symposium Series on Computational Intelli-

gence (SSCI), 0(0): 0-0. http://dx.doi.org/10.1109/ssci44817.2019.9003009

29. Mavrovouniotis M. Yang S. (2012). Ant colony optimization with memory-

based immigrants for the dynamic vehicle routing problem. 2012 IEEE Con-

gress on Evolutionary Computation, 0(0): 0-0.

http://dx.doi.org/10.1109/cec.2012.6252885

30. Ranjini K.S. S. Murugan S. (2017). Memory based Hybrid Dragonfly Algo-

rithm for numerical optimization problems. Expert Systems with Applica-

tions, 83(0): 63-78. http://dx.doi.org/10.1016/j.eswa.2017.04.033

31. Debnath S. Singh Kurmvanshi R. Arif W. (2022). Performance Analysis of

Hybrid Memory Based Dragonfly Algorithm in Engineering Problems. Stud-

ies in Computational Intelligence, 0(0): 89-106.

http://dx.doi.org/10.1007/978-3-031-09835-2_5

32. Chai R. (2021). Otsu’s Image Segmentation Algorithm with Memory-Based

Fruit Fly Optimization Algorithm. Complexity, 2021(0): 1-11.

http://dx.doi.org/10.1155/2021/5564690

33. Peng L. Zhu Q. Lv S. et al. (2020). Effective long short-term memory with

fruit fly optimization algorithm for time series forecasting. Soft Computing,

24(19): 15059-15079. http://dx.doi.org/10.1007/s00500-020-04855-2

34. Han X. Liu Q. Wang L. et al. Zhou L. Wang J. (2018). An improved fruit

fly optimization algorithm based on knowledge memory. International Journal

of Computers and Applications, 42(6): 558-568.

http://dx.doi.org/10.1080/1206212x.2018.1479349

35. Nakano H. Kojima M. Miyauchi A. (2015). An artificial bee colony algo-

rithm with a memory scheme for dynamic optimization problems. 2015 IEEE

Congress on Evolutionary Computation (CEC), 0(0): 0-0.

http://dx.doi.org/10.1109/cec.2015.7257217

36. Moradi M. Nejatian S. Parvin H. et al. (2018). CMCABC: Clustering and

Memory-Based Chaotic Artificial Bee Colony Dynamic Optimization Algo-

rithm. International Journal of Information Technology & Decision Mak-

ing, 17(4): 1007-1046. http://dx.doi.org/10.1142/s0219622018500153

37. Gupta S. Deep K. (2020). A memory-based Grey Wolf Optimizer for global

optimization tasks. Applied Soft Computing, 93(0): 106367-106367.

http://dx.doi.org/10.1016/j.asoc.2020.106367

38. Chourasia U. Silakari S. (2021). Adaptive Neuro Fuzzy Interference and

PNN Memory Based Grey Wolf Optimization Algorithm for Optimal Load

Balancing. Wireless Personal Communications, 119(4): 3293-3318.

http://dx.doi.org/10.1007/s11277-021-08400-8

39. Duan Q. Mao M. Duan P. et al. (2016). An improved artificial fish swarm

algorithm optimized by particle swarm optimization algorithm with extended

http://dx.doi.org/10.3724/sp.j.1001.2011.03949
http://dx.doi.org/10.1109/ssci44817.2019.9003009
http://dx.doi.org/10.1109/cec.2012.6252885
http://dx.doi.org/10.1016/j.eswa.2017.04.033
http://dx.doi.org/10.1007/978-3-031-09835-2_5
http://dx.doi.org/10.1155/2021/5564690
http://dx.doi.org/10.1007/s00500-020-04855-2
http://dx.doi.org/10.1080/1206212x.2018.1479349
http://dx.doi.org/10.1109/cec.2015.7257217
http://dx.doi.org/10.1142/s0219622018500153
http://dx.doi.org/10.1016/j.asoc.2020.106367
http://dx.doi.org/10.1007/s11277-021-08400-8

28 Memory-Driven Metaheuristics: Improving Optimization Performance

memory. Kybernetes, 45(2): 210-222. http://dx.doi.org/10.1108/k-09-2014-

0198

40. Gupta S. Deep K. Engelbrecht A.P. (2020). A memory guided sine cosine

algorithm for global optimization. Engineering Applications of Artificial In-

telligence, 93(0): 103718-103718.

http://dx.doi.org/10.1016/j.engappai.2020.103718

41. Woo Geem Z. (2012). Effects of initial memory and identical harmony in

global optimization using harmony search algorithm. Applied Mathematics

and Computation, 218(22): 11337-11343.

http://dx.doi.org/10.1016/j.amc.2012.04.070

42. Bentsen H. Hoff A. Magnus Hvattum L. (2022). Exponential extrapolation

memory for tabu search. EURO Journal on Computational Optimization,

10(0): 100028-100028. http://dx.doi.org/10.1016/j.ejco.2022.100028

43. Farahmand-Tabar S, Babaei M (2023) Memory-assisted adaptive multi-verse

optimizer and its application in structural shape and size optimization. Soft

Comput. https://doi.org/10.1007/s00500-023-08349-9

44. Zong X. Liu J. Ye Z. et al. (2022). Whale optimization algorithm based on

Levy flight and memory for static smooth path planning. International Journal

of Modern Physics C, 33(10): 0-0.

http://dx.doi.org/10.1142/s0129183122501388

45. Li J. Fan C. Yi L. et al. Qi H. (2018). Multi-objective optimization algo-

rithm based on kinetic-molecular theory with memory global optimization.

2018 13th World Congress on Intelligent Control and Automation (WCICA),

0(0): 0-0. http://dx.doi.org/10.1109/wcica.2018.8630566

46. Bassel A. Jan Nordin M. (2017). Mutation and memory mechanism for im-

proving Glowworm Swarm Optimization algorithm. 2017 IEEE 7th Annual

Computing and Communication Workshop and Conference (CCWC), 0(0): 0-

0. http://dx.doi.org/10.1109/ccwc.2017.7868403

47. Karimzadeh Parizi M. Keynia F. Khatibi bardsiri A. (2021). OWMA: An

improved self-regulatory woodpecker mating algorithm using opposition-

based learning and allocation of local memory for solving optimization prob-

lems. Journal of Intelligent & Fuzzy Systems, 40(1): 919-946.

http://dx.doi.org/10.3233/jifs-201075

48. Salam Al M. Abdullah S. Zainol Ariffin K. (2020). A Migration-Based Cut-

tlefish Algorithm With Short-Term Memory for Optimization Problems.

IEEE Access, 8(0): 70270-70292.

http://dx.doi.org/10.1109/access.2020.2986509

49. Yin P. Chen P. Wei Y. et al. (2020). Cyber Firefly Algorithm Based on

Adaptive Memory Programming for Global Optimization. Applied Sciences,

10(24): 8961-8961. http://dx.doi.org/10.3390/app10248961

50. Vasilyev I. Ushakov A. (2017). A Shared Memory Parallel heuristicHeuris-

tic Algorithm for the Large-Scale p-Median Problem. Springer Proceedings in

Mathematics & Statistics, 0(0): 295-302. http://dx.doi.org/10.1007/978-

3-319-67308-0_30

http://dx.doi.org/10.1108/k-09-2014-0198
http://dx.doi.org/10.1108/k-09-2014-0198
http://dx.doi.org/10.1016/j.engappai.2020.103718
http://dx.doi.org/10.1016/j.amc.2012.04.070
http://dx.doi.org/10.1016/j.ejco.2022.100028
https://doi.org/10.1007/s00500-023-08349-9
http://dx.doi.org/10.1142/s0129183122501388
http://dx.doi.org/10.1109/wcica.2018.8630566
http://dx.doi.org/10.1109/ccwc.2017.7868403
http://dx.doi.org/10.3233/jifs-201075
http://dx.doi.org/10.1109/access.2020.2986509
http://dx.doi.org/10.3390/app10248961
http://dx.doi.org/10.1007/978-3-319-67308-0_30
http://dx.doi.org/10.1007/978-3-319-67308-0_30

Error! Use the Home tab to apply title to the text that you want to appear
here. 29

51. Bijari K. Zare H. Veisi H. et al. (2016). Memory-enriched big bang–big

crunch optimization algorithm for data clustering. Neural Computing and Ap-

plications, 29(6): 111-121. http://dx.doi.org/10.1007/s00521-016-2528-9

52. Acan A. Ünveren A. (2014). A two-stage memory powered Great Deluge

algorithm for global optimization. Soft Computing, 19(9): 2565-2585.

http://dx.doi.org/10.1007/s00500-014-1423-5

53. Kaedi M. Ghasem-Aghaee N. Wook Ahn C. (2013). Holographic memory-

based Bayesian optimization algorithm (HM-BOA) in dynamic environments.

Science China Information Sciences, 56(9): 1-17.

http://dx.doi.org/10.1007/s11432-013-4829-2

54. Bednarczuk E.M. Jezierska A. Rutkowski K.E. (2018). Proximal primal–

dual best approximation algorithm with memory. Computational Optimiza-

tion and Applications, 71(3): 767-794. http://dx.doi.org/10.1007/s10589-018-

0031-1

55. Braik M. Al-Zoubi H. Ryalat M. et al. Alzubi O. (2022). Memory based hy-

brid crow search algorithm for solving numerical and constrained global op-

timization problems. Artificial Intelligence Review, 56(1): 27-99.

http://dx.doi.org/10.1007/s10462-022-10164-x

56. Yu Z. Wang A. (2010). Global Convergence of a Nonmonotone Trust Re-

gion Algorithm with Memory for Unconstrained Optimization. Journal of

Mathematical Modelling and Algorithms, 10(2): 109-118.

http://dx.doi.org/10.1007/s10852-010-9143-z

57. Liu R. Jiao L. Li Y. et al. (2010). An immune memory clonal algorithm for

numerical and combinatorial optimization. Frontiers of Computer Science in

China, 4(4): 536-559. http://dx.doi.org/10.1007/s11704-010-0573-6

58. Etaati B. Ghorrati Z. Mehdi Ebadzadeh M. (2022). A full-featured coopera-

tive coevolutionary memory-based artificial immune system for dynamic op-

timization. Applied Soft Computing, 117(0): 108389-108389.

http://dx.doi.org/10.1016/j.asoc.2021.108389

59. Farahmand‐Tabar S, Ashtari P (2020) Simultaneous size and topology opti-

mization of 3D outrigger‐braced tall buildings with inclined belt truss using

genetic algorithm, Structural design of tall and special buildings 29(13):

e1776. https://doi.org/10.1002/tal.1776

60. Ashtari P, Karami R, Farahmand-Tabar S (2021) Optimum geometrical pat-

tern and design of real-size diagrid structures using accelerated fuzzy-genetic

algorithm with bilinear membership function, Applied soft computing 110:

107646. https://doi.org/10.1016/j.asoc.2021.107646

61. Simon D (2008) Biogeography-based optimization. IEEE Transactions on

Evolutionary Computation 12(6): 702–713.

62. Gandomi AH, Alavi AH (2012) Krill herd: A new bio-inspired optimization

algorithm. Commun. Nonlinear Sci. Numer. Simul. 12: 4831–4845.

63. Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algorithm:

thermal exchange optimization. Adv Eng Softw 110:69–68.

64. Farahmand-Tabar S, Barghian M, Vahabzadeh M (2019) Investigation of the

Progressive Collapse in a Suspension Bridge Under the Explosive Load. In-

http://dx.doi.org/10.1007/s00521-016-2528-9
http://dx.doi.org/10.1007/s00500-014-1423-5
http://dx.doi.org/10.1007/s11432-013-4829-2
http://dx.doi.org/10.1007/s10589-018-0031-1
http://dx.doi.org/10.1007/s10589-018-0031-1
http://dx.doi.org/10.1007/s10462-022-10164-x
http://dx.doi.org/10.1007/s10852-010-9143-z
http://dx.doi.org/10.1007/s11704-010-0573-6
http://dx.doi.org/10.1016/j.asoc.2021.108389
https://doi.org/10.1002/tal.1776
https://doi.org/10.1016/j.asoc.2021.107646

30 Memory-Driven Metaheuristics: Improving Optimization Performance

ternational Journal of Steel Structures 19 (6), 2039–2050.

https://doi.org/10.1007/s13296-019-00263-x

65. Farahmand-Tabar S, Barghian M (2020) Formulating the optimum parameters

of modified hanger system in the cable-arch bridge to restrain force fluctua-

tion and overstressing problems. J Braz. Soc. Mech. Sci. Eng. 42, 453.

https://doi.org/10.1007/s40430-020-02513-0

66. Farahmand-Tabar S, Barghian M (2020) Response control of cable-stayed

arch bridge using modified hanger system. Journal of Vibration and Control

26 (23-24), 2316-2328. https://doi.org/10.1177/1077546320921635

67. Farahmand-Tabar S, Barghian M (2021) Seismic assessment of a cable-stayed

arch bridge under three-component orthotropic earthquake excitation. Ad-

vances in Structural Engineering 24 (2), 227–242.

https://doi.org/10.1177/1369433220948756

68. Farahmand-Tabar S, Barghian M (2023) Seismic evaluation of the bridge with

a hybrid system of cable and arch: Simultaneous effect of seismic hazard

probabilities and vertical excitations. Mech. Based Des. Struct. Mach.

https://doi.org/10.1080/15397734.2023.2172029

https://doi.org/10.1007/s13296-019-00263-x
https://doi.org/10.1007/s40430-020-02513-0
https://doi.org/10.1177/1077546320921635
https://doi.org/10.1177/1369433220948756
https://doi.org/10.1080/15397734.2023.2172029

