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Abstract. Metaheuristics are stochastic optimization algorithms that 

mimic natural processes to find optimal solutions to complex prob-

lems. The success of metaheuristics largely depends on the ability to 

effectively explore and exploit the search space. Memory mecha-

nisms have been introduced in several popular metaheuristic algo-

rithms to enhance their performance. This chapter explores the sig-

nificance of memory in metaheuristic algorithms and provides 

insights from well-known algorithms. The chapter begins by intro-

ducing the concept of memory, and its role in metaheuristic algo-

rithms. The key factors influencing the effectiveness of memory 

mechanisms are discussed, such as the size of the memory, the in-

formation stored in memory, and the rate of information decay. A 

comprehensive analysis of how memory mechanisms are incorpo-

rated into popular metaheuristic algorithms is presented, and con-

cludes by highlighting the importance of memory in metaheuristic 

performance and providing future research directions for improving 

memory mechanisms. The key takeaways are that memory mecha-

nisms can significantly enhance the performance of metaheuristics 

by enabling them to explore and exploit the search space effectively 

and efficiently, and that the choice of memory mechanism should be 

tailored to the problem domain and the characteristics of the search 

space. 

Keywords. Metaheuristics, Memory Mechanisms, Elite Selection, 

Global Best. 

1. Introduction 

Optimization is a fundamental tool used in various fields to find the 

best solution to a problem given a set of constraints. An optimization prob-

lem involves minimizing or maximizing an objective function subject to 
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constraints. For example, in a manufacturing process, optimization can be 

used to minimize the production cost or maximize the production output 

while satisfying the production constraints. Optimization problems can be 

complex and difficult to solve, especially when the search space is large or 

there are many constraints. In such cases, traditional optimization methods 

such as mathematical programming may not be able to find the optimal so-

lution within a reasonable time. Metaheuristics are a class of algorithms 

that are designed to overcome these challenges. 

Metaheuristics are general problem-solving techniques that can be ap-

plied to a wide range of optimization problems. Unlike mathematical pro-

gramming, which requires a specific model and constraints, metaheuristics 

do not rely on a specific problem structure. Instead, they use iterative 

search procedures to explore the solution space and find the best solution. 

The search process of metaheuristics involves generating a set of candidate 

solutions, evaluating the solutions based on the objective function, and 

then modifying the solutions to generate a new set of candidates. This pro-

cess is repeated until the algorithm converges to the best solution or a 

stopping criterion is met. 

There are several types of metaheuristics, each with its own unique 

approach and characteristics. For example, evolutionary metaheuristics are 

based on the principles of natural selection such as Genetic Algorithm [1]. 

Swarm Intelligence are inspired by the social behavior of swarming insects 

and animals such as Particle swarm optimization [2]. Physic-based me-

taheuristics are another type of metaheuristics, which are based on physical 

principles such as energy, forces, and vibrations such as Thermal Ex-

change [3]. Human-inspired metaheuristics are inspired by human behav-

ior and problem-solving approaches such as Neural Network [4].  

Metaheuristics are powerful optimization algorithms that are used to 

solve complex problems, but they can sometimes get stuck in local optima 

or fail to converge to the global optima. To overcome these limitations, 

several techniques have been developed to enhance the performance of 

metaheuristics. One of the most commonly used techniques is parameter 

tuning, which involves optimizing the values of the metaheuristic's param-

eters to improve its performance. Another technique is hybridization, 

which involves combining two or more metaheuristics to create a more 

powerful algorithm. This technique can combine the strengths of different 

metaheuristics to overcome their weaknesses and improve their overall 

performance.  

There are numerous improving features to enhance the performance of 

the optimization algorithms such as levy flight or chaotic maps [4]. Anoth-

er feature used in enhanced metaheuristics is memory-based improvement. 

Memory-based improvement involves storing and reusing the information 
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of previous solutions to improve the performance of the metaheuristic al-

gorithm. This approach is commonly used in metaheuristics that rely on a 

population-based search, such as genetic algorithms and particle swarm 

optimization. By storing and reusing the information of previous solutions, 

memory-based improvement can help the algorithm avoid local optima and 

improve convergence speed. One example of memory-based improvement 

is the use of adaptive memory, which involves storing the best solutions 

found so far and adjusting the search process based on the historical in-

formation. 

As evident from the literature review, many basic optimization algo-

rithms have several limitations that hinder their ability to solve complex 

problems efficiently. Some of the common issues include slow conver-

gence speed and the tendency to get trapped in local optima. To overcome 

these issues, researchers have proposed various mechanisms to enhance 

the performance of these algorithms. In this chapter, we propose the use of 

memory-assisted optimization algorithms as an improvement feature. The 

memory-assisted version of well-known optimization algorithms such as 

Multi-Verse Optimizer (MVO), Vibrating Particle Search (VPS), Thermal 

Exchange Optimization (TEO), and Ray optimization (RO) is implemented 

as an optimization method, with a separate memory component for storing 

and exchanging the best solutions found so far. The efficiency of utilizing 

memory in these algorithms is investigated through various benchmark en-

gineering examples, and its effectiveness is compared with that of 

memory-less versions of the algorithms. 

2. Background Studies on Memory-Enhanced 
Metaheuristics 

Memory-enhanced metaheuristics have gained increasing attention in 

recent years due to their ability to improve the performance of optimiza-

tion algorithms. These methods are designed to incorporate memory 

mechanisms into conventional metaheuristics, such as Differential Evolu-

tion (DE), Genetic Algorithms (GA), Particle Swarm Optimization (PSO), 

Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO), Ant Colony 

Optimization (ACO), and Whale Optimization Algorithm (WOA), etc. The 

use of memory mechanisms can enhance the search process by storing and 

utilizing information about previously visited solutions, enabling the algo-

rithm to explore the search space more effectively and converge to better 

solutions faster. In this section, a comprehensive overview of the back-

ground studies on memory-enhanced metaheuristics is provided, covering 
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a range of optimization methods and their applications in various fields. 

Table 1 summarizes the methods and their applications discussed in this 

section. 

Table 1. Background studies on memory-assisted metaheuristics 

Method Application Ref. Method Application Ref. 
GA Laminate composites [5] SAGA Multimodal optimization [6] 

GA Power Generation [7] GA Vehicular Communication [8,9] 

NSGA II Dynamic Problems [10] EA Job Shop Scheduling [11] 

DE Global optimization [12,13] HDE Continuous problems [14] 

MODE Multiobjective Optimization [15,19] PSO Dynamic optimization [20] 

QPSO Large scale problems [21] PSO Feature Selection [22] 

BBPSO No-Linear Functions [23] IPSO Training MLP [24] 

BPSO Discrete benchmark func. [25] ACO Numerical Optimization [26,27] 

IACO Traveling Salesman  [28] ACO Dynamic vehicle routing  [29] 

DA Engineering problems [30,31] FFOA Image Segmentation [32,33] 

IFFOA Time series forecasting [34] ABC Dynamic optimization [35,36] 

GWO Global optimization [37] NFGWO Optimal load balancing [38] 

AFSA Multi-extreme value func. [39] SCA Global optimization [40] 

HS, TS Global optimization [41,42] MVO Structural optimization [43] 

WOA Smooth path planning [44] KMTOA Global optimization [45] 

MMGSO Benchmark functions [46] OWMA Global optimization [47] 

CFA Global optimization [48,49] SLH Large-Scale p-Median Prob. [50] 

BBBC Data clustering [51] GD Global optimization [52] 

HMBOA Dynamic environments [53] P-PDA Image processing [54] 

CSA Global optimization [55] TRA Unconstrained optimization [56] 

CA Combinatorial optimization [57] AIS Dynamic optimization [58] 

 

The applications range from global and engineering optimization to ma-

chine learning related applications. The incorporation of memory mecha-

nisms into these metaheuristics has been found to improve the perfor-

mance of the algorithms, allowing for more effective exploration of the 

search space and faster convergence to better solutions. Overall, the use of 

memory-enhanced metaheuristics is a promising area of research with the 

potential to enhance optimization performance across a wide range of ap-

plications. 

3. Memory assignment (multi-elite strategy) 

To enhance the performance of an algorithm without introducing addi-

tional computational costs, an approach called the multi-elite strategy can 

be employed, which involves utilizing a separate memory to store histori-

cal best solutions and their corresponding fitness values. This strategy dif-

fers from the elitist strategy typically utilized by standard algorithms like 
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GA [59, 60], which rely on a single elite strategy. In the multi-elite strate-

gy, a certain number of the best solutions found so far (based on the desig-

nated memory size) are preserved in a dedicated memory. In each iteration, 

these elite solutions are exchanged with an equal number of the worst solu-

tions. In this study, the memory size, which represents the number of elite 

solutions stored, is set as 1/5 of the total number of universes. By incorpo-

rating this memory into each iteration (Algorithm 1), undesirable and poor-

performing solutions can be replaced with the desired elite solutions. The 

memory is continuously updated with new solutions, and if the fitness of 

the new solutions surpasses that of the stored elite solutions, they are ex-

changed, along with their corresponding fitness values. This modification 

enables the algorithm to avoid suboptimal solutions and achieve faster and 

more efficient convergence. 

 
Algorithm 1. Pseudocode of Assigning Memory 

Start 

% Saving more than one global best and related solutions 

for 𝑖 = 1: 𝑁𝑈 

   for 𝑗 = 1: 𝑁𝑈/5                    % Memory size:20 percent of search agents 

        if 𝐹𝑖𝑡(𝑖) < 𝐹𝑖𝑡_𝑀(𝑗) 

           𝑈_𝑀(𝑗, : ) = 𝑈(𝑖, : );      % Best solutions of the memory   

           𝐹𝑖𝑡_𝑀(𝑗) = 𝐹𝑖𝑡(𝑖);       % Best fitness values of the memory 

        end 

    end 

end 
%Worst 20% of search agents are changed in the main loop of the algorithm  

4. Memory-Enhanced Metaheuristics 

In this section, the metaheuristics utilized in the study are introduced to 

demonstrate the effectiveness of memory-enhanced optimization. The cho-

sen algorithms are well-known and widely used in the optimization litera-

ture, including the Biogeography-Based Optimization (BBO), Krill Herd 

Algorithm (KHA), and Thermal Exchange Optimization (TEO). These al-

gorithms are categorized under swarm intelligence and physics-based me-

taheuristics and have been successfully applied in various optimization 

problems, including engineering, computer science, and other fields. In 

this study, it is aimed to enhance these algorithms by incorporating a 

memory mechanism that stores historical best solutions to improve their 

overall performance in terms of convergence speed, quality of solution, 

and reliability. These algorithms are applied to optimize the problems to be 

evaluated their performance with and without memory enhancement. 
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4.1. Biogeography-Based Optimization  

BBO primarily employs species migration and mutation models in the 

field of biogeography to address optimization issues. In BBO [61], indi-

vidual solutions are referred to as "habitats", and their quality is evaluated 

using a Habitat Suitability Index (HSI). The Suitability Index Variables 

(SIVs) represent the factors that define the habitability of a habitat. BBO 

primarily relies on migration and mutation processes to explore and dis-

cover the most optimal solution. 

4.1.1. Migration Operator 

In the BBO (Biogeography-Based Optimization) algorithm, a high HSI 

(Habitat Suitability Index) indicates a good solution, analogous to a habitat 

with abundant species. Such habitats exhibit high emigration rates (species 

leaving the habitat) and low immigration rates (species entering the habi-

tat), and vice versa. The migration operator in the algorithm aims to facili-

tate the exchange of information among different solutions. In this context, 

good solutions tend to share their favorable characteristics with poor solu-

tions, while poor solutions are more receptive to adopting beneficial fea-

tures from good solutions. Each habitat within the algorithm has its specif-

ic emigration rate (𝜇), and immigration rate (𝜆) which are computed as 

follows: 

𝜆𝑘 = 𝐼 (1 −
𝑁𝑘

𝑁
),    𝜇𝑘 = 𝐸(

𝑁𝑘

𝑁
)           (1) 

In these equations, 𝐼 represents the maximum immigration rate, 𝐸 de-

notes the maximum emigration rate, 𝑁𝑘 corresponds the number of species 

of the habitat 𝐻𝑘, and 𝑁 represents the maximum number of species. It's 

worth noting that while the given equations present a simple linear model 

for migration, in practice, more complex and nonlinear models are often 

utilized in the BBO algorithm. The migration operator in the BBO algo-

rithm modifies the SIVs of a habitat by incorporating features from other 

advantageous habitats. This process can be expressed as follows: 

𝐻𝑖(𝑆𝐼𝑉) ←  𝐻𝑘(𝑆𝐼𝑉)     (2) 

In the given expression, 𝐻𝑖 represents the immigration habitat, while 

𝐻𝑘 denotes the emigration habitat. The emigration habitat 𝐻𝑘 is chosen us-

ing the roulette wheel selection method. 
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4.1.2. Mutation Operator 

In BBO, sudden events can lead to significant changes in the character-

istics of a habitat, resulting in alterations to its HSI and the number of spe-

cies present. The probability of species number in BBO is directly related 

to the mutation rate of a habitat. More specifically, the mutation rate (𝑚𝑖) is 

determined by the probability (𝑝𝑖) of the species number, and it can be 

mathematically expressed as follows: 

𝑚𝑖 = 𝑚𝑚𝑎𝑥(1 −
𝑝𝑖

𝑝𝑚𝑎𝑥
)     (3) 

In the provided equation, 𝑚𝑚𝑎𝑥 represents the maximum mutation rate, 

which is a parameter defined by the user. The calculation of 𝑝𝑖 follows a 

specific computation method, and 𝑝𝑚𝑎𝑥 corresponds to the maximum val-

ue among all 𝑝𝑖 probabilities. The mutation process can be performed as 

follows: 

𝐻𝑖(𝑆𝐼𝑉𝑗) ←  𝐼𝑏𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑏𝑗 − 𝐼𝑏𝑗)          (4) 

Here, 𝐻𝑖 represents the mutation habitat. For each SIV in 𝐻𝑖, denoted 

by 𝑗 ranging from 1 to 𝐷 (where 𝐷 is the number of decision variables), 

the mutation operation is conducted. The lower and upper boundary values 

of the 𝑗th SIV in 𝐻𝑖 are represented by 𝐼𝑏𝑗 and 𝑢𝑏𝑗, respectively. The mu-

tation process involves modifying the SIV by adding a uniformly distrib-

uted random real number, rand, between 0 and 1. 

In order to maintain the most optimal solutions throughout the search 

process, BBO utilizes the strategy of elitism. This approach involves sev-

eral steps: during each iteration, after executing operations such as migra-

tion and mutation, the population is sorted. Following this, a number of the 

least favorable habitats are replaced with some of the top-performing solu-

tions that were preserved from previous iterations. Once this replacement 

is completed, the population is sorted once more. To summarize, the BBO 

algorithm follows the following steps:  

Step 1: set the parameters and initialize the random population   

Step 2: compute each habitat and sort the population considering their 

𝐻𝑆𝐼𝑠 in descending order  

Step 3: evaluate the immigration, emigration, and mutation rates and 

keep the elitists  

Step 4: perform the migration and mutation operator by Eq. (2 and 4)  

Step 5: restrict the boundary of each new solution  

Step 6: compute HSI of each habitat’s and sort the population in de-

scending order   
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Step 7: replace several worst habitats with elitists ones and sort the 

population in descending order 

Step 8: if the termination criterion is satisfied, output the optimum so-

lution; otherwise, return to Step 3 

4.2. Krill Herd Algorithm 

Krill swarms, a marine species studied by humans, exhibit a tendency 

to form clusters. When these krill swarms encounter natural predators or 

disturbances, some individuals may be lost or displaced, leading to a re-

duction in population density. To restore the original state, krill swarms 

exhibit two main behaviors: increasing population density and searching 

for food. Inspired by these behaviors, researchers have proposed a novel 

heuristic algorithm called the Krill Herd Algorithm (KHA). The KHA al-

gorithm aims to solve global optimization problems by simulating the clus-

tering and foraging behaviors observed in krill swarms. 

In the Krill Herd Algorithm (KHA) [62], every individual krill repre-

sents a potential solution for the optimization problem at hand. The two 

goals of increasing population density and finding food are considered as 

the driving forces for the optimization problem. The process of re-

aggregating individual krill represents the algorithm's search for the opti-

mal solution. The location of each krill evolves over time, primarily influ-

enced by the following three factors: 

• Movement induced by other krill individuals 

• Foraging motion 

• Random diffusion 

In KHA, the Lagrangian model is applied to tackle decision problems 

that involve multiple dimensions: 

𝑑𝑋𝑖

𝑑𝑡
=  𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖 (5) 

where 𝑁𝑖 represents the induced motion of other krill individuals; 𝐹𝑖 

denotes the Foraging activity and 𝐷𝑖 corresponds the physical diffusion. 
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4.2.1. Movement Induced by Other Krill Individuals 

To facilitate the collective migration of the population, every krill indi-

vidual in the KHA algorithm interacts with one another, fostering a high 

population density. The direction of movement (denoted as 𝛼𝑖) for each 

krill is influenced by three factors: the influence of neighboring individuals 

(local effect), the impact of the optimal individual (target effect), and the 

repulsion effect from the population as a whole (repulsive effect). The 

movement induced by other krill individuals (𝑁𝑖) for a given krill can be 

expressed as follows: 

𝑁𝑖  =  𝑁 
𝑚𝑎𝑥𝛼𝑖 + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑 (6) 

𝛼𝑖 =  𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 + 𝛼𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
 (7) 

In the equation, 𝑁 
𝑚𝑎𝑥 represents the maximum induced speed, and 

𝑁𝑖
𝑜𝑙𝑑 denotes the previously induced motion for the krill individual. The 

inertia weight of the motion, 𝜔𝑛, takes a value between 0 and 1 and repre-

sents the influence of the krill's previous motion on the current movement. 

𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 and 𝛼𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
 represent the local effect and target effect, respectively. 

The local effect, induced by neighboring krill individuals, can be interpret-

ed as an attractive or repulsive tendency. It is determined by the following 

expression: 

𝛼𝑖
𝑙𝑜𝑐𝑎𝑙  =  ∑ �̂�𝑖,𝑗�̂�𝑖,𝑗

𝑁𝑁

𝑗=1

 (8) 

�̂�𝑖,𝑗 =
𝑋𝑗 − 𝑋𝑖

‖𝑋𝑗 − 𝑋𝑖‖ + 𝜀
 , �̂�𝑖,𝑗 =

𝐾𝑖 − 𝐾𝑗

𝐾 
𝑤𝑜𝑟𝑠𝑡 − 𝐾 

𝑏𝑒𝑠𝑡
  (9) 

where 𝑁𝑁 is the number of neighbors, 𝑋 represents the related position, 

and K represents the fitness value of the krill individual. 𝐾 
𝑤𝑜𝑟𝑠𝑡 and 𝐾 

𝑏𝑒𝑠𝑡 

represent the worst and best fitness values observed among the krill herds 

thus far. Additionally, 𝜀 is a small positive value introduced to avoid sin-

gularities and ensure stability in the calculations. The calculation of the lo-

cal effect in the KHA algorithm involves determining the neighbors of a 

krill individual based on their sensing distance. The sensing distance de-

termines which other krill individuals are considered as neighbors. It is de-

fined using the following formula: 
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𝑑𝑖 =
1

5𝑁𝑃
 ∑‖𝑋𝑖 − 𝑋𝑗‖

𝑁𝑃

𝑗=1

 (10) 

where NP denotes the size of the population. The movement of each 

krill is influenced by the global optimal solution, which serves as the target 

direction. This influence on movement can be described as follows: 

𝛼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

=  𝐶 
𝑏𝑒𝑠𝑡�̂�𝑖,𝑏𝑒𝑠𝑡�̂�𝑖,𝑏𝑒𝑠𝑡 ,   𝐶 

𝑏𝑒𝑠𝑡 = 2 (𝑟𝑎𝑛𝑑1 +
𝑔

𝑔𝑚𝑎𝑥
) (11) 

In the equation, 𝑟𝑎𝑛𝑑1 represents a random variable uniformly distrib-

uted between 0 and 1. The variables 𝑔 and 𝑔𝑚𝑎𝑥 correspond to the number 

of current iteration and the maximum iterations, respectively. 

4.2.2. Foraging Motion 

The population's search for food in the foraging process involves esti-

mating the desired resource based on the fitness distribution of the krill in-

dividuals. The location of the resource is determined using the concept of 

the "center of mass" from physics: 

𝑋 
𝑓𝑜𝑜𝑑 =  

∑
1
𝐾𝑖

𝑋𝑖
𝑁𝑃
𝑖=1

∑
1
𝐾𝑖

𝑁𝑃
𝑖=1

 (12) 

Two primary factors influence the foraging behavior of krill: the cur-

rent location of the food source and its previous location. This relationship 

can be expressed as follows: 

𝐹𝑖 =  𝑉𝑓𝛽𝑖 + 𝜔𝑓𝐹𝑖
𝑜𝑙𝑑 ,   𝛽𝑖 = 𝛽𝑖

𝑓𝑜𝑜𝑑
+ 𝛽𝑖

𝑖,𝑏𝑒𝑠𝑡
 (13) 

Where the variables are the foraging speed (𝑉𝑓), the inertia weight 

(𝜔𝑓 ∈ [0 1]), previous foraging motion (𝐹𝑖
𝑜𝑙𝑑), the food attraction and the 

effect of the best fitness of the 𝑖th krill so far (𝛽𝑖
𝑓𝑜𝑜𝑑

, 𝛽𝑖
𝑖,𝑏𝑒𝑠𝑡

) which are 

defined as: 

𝛽𝑖
𝑓𝑜𝑜𝑑

= 𝐶 
𝑓𝑜𝑜𝑑�̂�𝑖,𝑓𝑜𝑜𝑑�̂�𝑖,𝑓𝑜𝑜𝑑  ,  𝛽𝑖

𝑖,𝑓𝑜𝑜𝑑
= 𝐶 

𝑓𝑜𝑜𝑑�̂�𝑖,𝑖 𝑏𝑒𝑠𝑡�̂�𝑖,𝑖 𝑏𝑒𝑠𝑡  (14) 
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The food coefficient, denoted as 𝐶 
𝑓𝑜𝑜𝑑, is a variable that changes dur-

ing the iteration process using a uniformly distributed random variable 

(𝑟𝑎𝑛𝑑 ∈ [0 1] ). 

  𝐶 
𝑓𝑜𝑜𝑑 = 2 (𝑟𝑎𝑛𝑑 +

𝑔

𝑔𝑚𝑎𝑥
) (15) 

4.2.3. Random Diffusion 

The dispersion of krill individuals in their physical environment can be 

explained by the maximum speed of diffusion, combined with a randomly 

determined directional vector. 

  𝐷𝑖 = 𝐷 
𝑚𝑎𝑥 (1 −

𝑔

𝑔𝑚𝑎𝑥
) 𝛿 (16) 

where 𝐷 
𝑚𝑎𝑥 denotes the maximum diffusion speed and 𝛿 represents 

uniformly distributed random vector between −1 and 1. 

4.2.4. Updating Position  

The three factors mentioned earlier prompt each krill individual to 

modify its position in alignment with the optimal direction. The adjustment 

of an individual's position during the time interval 𝑡 + ∆𝑡 can be represent-

ed by the following expression: 

  𝑋𝑖(𝑡 + ∆𝑡) = 𝑋𝑖(𝑡)∆𝑡
𝑑𝑋𝑖

𝑑𝑡
 (17) 

The ∆𝑡 is crucial and its value entirely relies on the characteristics of 

the search space. It can be represented as: 

  ∆𝑡 = 𝐶𝑡 ∑ (𝑈𝐵𝑖 − 𝐿𝐵𝑖)𝑁𝑉
𝑖=1  (18) 

The equation is determined by the constant 𝐶𝑡, which is a number be-

tween 0 and 2. 𝑁𝑉 denotes the overall count of control variables, whereas 

𝑈𝐵𝑖 and 𝐿𝐵𝑖 represent the upper and lower boundaries of the jth variable, 

respectively. 
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4.2.5. Genetic Operators 

To enhance the performance of the KH algorithm, the crossover and 

mutation strategies of the Genetic Algorithm are integrated. The crossover 

operation is formulated as follows: 

  𝑋𝑖,𝑗 = {
𝑋𝑟1,𝑗     𝑖𝑓    𝑟𝑎𝑛𝑑 < 𝐶𝑅

𝑋𝑖,𝑗      𝑒𝑙𝑠𝑒                        
,   𝑗 = 1, … , 𝐷     𝐼 = 1, … , 𝑁𝑃 (19) 

  𝐶𝑅 = 0.05/�̂�𝑖,𝑏𝑒𝑠𝑡 
(20) 

where 𝐷 represents the dimension of the optimal problem, 𝑋𝑟1 (𝑟1 ≠ 𝑖) 
is randomly selected from the current population, 𝐶𝑅 denotes the probabil-

ity of crossover. For the global best solution, 𝐶𝑅 is set to zero. The muta-

tion is applied as follows: 

  𝑋𝑖,𝑗 = {
𝑋𝑏𝑒𝑠𝑡,𝑗 + 𝜇(𝑋𝑟2,𝑗 − 𝑋𝑟3,𝑗)    𝑖𝑓    𝑟𝑎𝑛𝑑 < 𝑀𝑢

𝑋𝑖,𝑗                                            𝑒𝑙𝑠𝑒                        
,   

         𝑗 = 1, … , 𝐷     𝑖 = 1, … , 𝑁𝑃     

(21) 

  𝑀𝑢 = 0.05/�̂�𝑖,𝑏𝑒𝑠𝑡 
(22) 

In this context, 𝑋𝑏𝑒𝑠𝑡 refers to the overall best position within the entire 

swarm, while 𝜇 represents the mutant factor that spans a range of values 

from 0 to 1. Additionally, factor, 𝑋𝑟2, and 𝑋𝑟3  (where 𝑟2 ≠  𝑟3 ≠  𝑖) are 

selected randomly from the present population. The mutant probability, 

denoted as 𝑀𝑢, is set to zero for the global best solution as well. 

4.2.6. The Procedure of KHA 

The KHA (Krill Herd Algorithm) can generally be defined by the fol-

lowing steps: 

Step 1. Initialization: Set the randomly generated initial population of 

krill individuals, define the search space boundaries (𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥), and 

initialize the algorithm's parameters. Random values are assigned to each 

𝐷-dimensional individual according to: 

  𝑋𝑗,𝑖|𝑔=0 = 𝑋𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 × (𝑋𝑗,𝑚𝑎𝑥 − 𝑋𝑗,𝑚𝑖𝑛),   𝑗 = 1, . . , 𝐷;  𝑖 = 1, . . , 𝑁𝑃 (23) 

    where NP represents the population size.  
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Step 2. Fitness evaluation: Assess the fitness of each krill individual in 

the population based on the objective function and save the global best so-

lution. 

Step 3. Motion calculation: 

        Movement induced by other krill individuals 

        Foraging motion 

        Random diffusion 

Step 4. Crossover and Mutation: Incorporate the crossover and mutation 

strategies from Genetic Algorithms to further improve the algorithm's per-

formance. 

Step 5. Update the position of each krill individual and repeat the Step 2. 

Step 6. Check if the termination criteria have been met considering the 

termination criteria. If not, return to step 3. 

4.3. Thermal Exchange Optimizer 

In the Thermodynamics-Inspired Optimization (TEO) algorithm [63], a 

subset of agents is designated as cooling objects, while the remaining 

agents represent the environment. Interestingly, in TEO, this assignment is 

done contrariwise compared to traditional approaches. The algorithm fol-

lows the steps outlined below: 

Step 1. Initialization: In an m-dimensional search space, the initial 

temperature of all the objects is established. 

  𝑇𝑖
0 = 𝑇𝑚𝑖𝑛

 + 𝑟𝑎𝑛𝑑(𝑇𝑚𝑎𝑥
 − 𝑇𝑚𝑖𝑛

 ) (24) 

𝑇𝑖
0 represents the initial solution vector of the 𝑖th object. 𝑇𝑚𝑖𝑛

  and 𝑇𝑚𝑎𝑥
   

are the lower and upper bounds of the design variables, respectively, and 𝑛 

denotes the total number of objects. 

Step 2. Evaluation: The objective function computes the cost value for 

each object. 

Step 3. Saving: In order to enhance the algorithm's performance without 

significantly increasing computational cost, a memory component is intro-

duced to store historically best 𝑇 vectors along with their corresponding 

objective function values. This memory, referred to as the Thermal 

Memory (𝑇𝑀), is utilized in this step. The saved solution vectors in 𝑇𝑀 
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are added to the population, while an equal number of the current worst 

objects are removed. Subsequently, the objects are sorted based on their 

objective function values in ascending order. This process helps incorpo-

rate valuable historical information into the population and maintain a di-

verse set of solutions. 

Step 4. Creating groups: The agents in the population are divided into 

two equal groups. The pairs of agents are defined [63]. For example, 𝑇1
  

serves as an environment object for 𝑇2𝑛+1
 , which acts as a cooling object, 

and vice versa. This pairing scheme ensures the interaction and exchange 

of heat between the environment and cooling objects in a structured man-

ner. 

Step 5. Defining 𝛽: In nature, when an object has a lower 𝛽 value, it 

tends to undergo only minor temperature exchanges. Drawing inspiration 

from this characteristic, a similar formulation is proposed in the algorithm. 

The value of 𝛽 for each object is evaluated using Eq. (25). In this equation, 

objects with lower cost values have lower 𝛽 values, indicating that they 

undergo smaller changes in position. This approach allows objects with 

better fitness (lower cost) to make gradual adjustments while exploring the 

search space. 

  𝛽 =
𝐶𝑜𝑠𝑡(𝑜𝑏𝑗𝑒𝑐𝑡)

𝐶𝑜𝑠𝑡(𝑤𝑜𝑟𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡)
 (25) 

Step 6. Defining 𝒕: The value of time, denoted as 𝑡, is associated with 

the iteration number in the formulation. The calculation of 𝑡 for each agent 

is determined using Eq. (226), which is given as: 

  𝑡 =
𝑖𝑡𝑒𝑟.

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟
 (26) 

Step 7. Escaping from local optima (𝒊): Metaheuristic algorithms 

should possess the capability to escape from traps encountered when 

agents approach local optima. Step 7 and Step 9 are employed specifically 

for this purpose. In these steps, the environmental temperature is adjusted 

using Eq. (27): 

  𝑇𝑖
𝑒𝑛𝑣. = (1 − (𝑐1 + 𝑐2 × (1 − 𝑡)) × 𝑟𝑎𝑛𝑑) × 𝑇′𝑖

𝑒𝑛𝑣. (27) 

The previous temperature of the object, denoted as 𝑇𝑖
𝑒𝑛𝑣., is adjusted to 

a new temperature, 𝑇′𝑖
𝑒𝑛𝑣.. The parameter (1 − 𝑡) is employed to reduce 

randomness as the iterations advance. As 𝑡 increases towards the end of 

the process, randomness decreases linearly, promoting exploitation. 𝑐2 

controls the factor (1 − 𝑡). For example, when decreasing is not required, 
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𝑐2 can be set to zero. 𝑐1 controls the magnitude of random steps. Addition-

ally, when a decreasing process is not employed (𝑐2 = 0, as mentioned 

earlier), 𝑐1 introduces randomness. 

When 𝐶 = 0 (when 𝑐1 = 𝑐2 = 0), none of the mechanisms mentioned 

above are applied, and the previous temperature is multiplied by 1. In this 

chapter, 𝑐1 and 𝑐2 are selected from the set {0 or 1}. 

Step 8. Updating the agents: Based on the previous steps, the new 

temperature of each object is updated using the following equation: 

  𝑇𝑖
𝑒𝑛𝑣. = 𝑇𝑖

𝑒𝑛𝑣. + (𝑇𝑖
𝑜𝑙𝑑 − 𝑇𝑖

𝑒𝑛𝑣.)exp (−𝛽𝑡) (28) 

Step 9. Escaping from local optima (ii): The parameter Pro, which 

takes a value within the range of (0, 1), is introduced to determine whether 

a component of each cooling object should be changed or not. For each 

agent, Pro is compared with 𝑅𝑎𝑛𝑑(𝑖), where 𝑖 ranges from 1 to 𝑛 and 

𝑅𝑎𝑛(𝑖) is a random number uniformly distributed within the interval (0, 

1). If 𝑅𝑎𝑛𝑑(𝑖) is less than Pro, indicating a successful comparison, one 

dimension of the 𝑖th agent is randomly selected, and its value is regenerat-

ed using the following process: 

  𝑇𝑖,𝑗
 = 𝑇𝑗,𝑚𝑖𝑛

 + 𝑟𝑎𝑛𝑑(𝑇𝑗,𝑚𝑎𝑥
 − 𝑇𝑗,𝑚𝑖𝑛

 ) (29) 

The equation includes 𝑇𝑖,𝑗
 , which represents the jth variable of the 𝑖th 

agent. 𝑇𝑗,𝑚𝑖𝑛
  and 𝑇𝑗,𝑚𝑎𝑥

  indicate the lower and upper limits, respectively, 

of the jth variable. To maintain the integrity of the agents' structures, only 

one dimension is modified in this process. By employing this mechanism, 

the agents are able to explore the entire search space, facilitating improved 

diversity and enhancing the likelihood of discovering optimal solutions. 

Step 10. Checking terminating conditions: The optimization process 

is concluded after a predetermined number of iterations. If the termination 

criterion is not met, the algorithm returns to step 2 to initiate a new round 

of iterations. However, if the termination criterion is satisfied, the process 

is stopped, and the best solution found throughout the optimization process 

is reported as the final result. 
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5. Results and Discussion on Case Studies: Truss 
Bridges 

Truss bridges are a specific type of trusses that are suitable for shape and 

size optimization. These trusses are utilized in various bridge compo-

nents, including the deck [64] and arch [65-68]. Topology or shape opti-

mization plays a significant role in enhancing the structural form of truss 

bridges. By optimizing the shape, material usage can be significantly re-

duced while improving overall performance. Therefore, truss bridges are 

classified as the third category among the truss benchmark examples, 

which include the Michell arch, forth bridge model, and the 37-bar truss 

bridge. The design data pertaining to the optimization problems for these 

examples can be found in Table 2. 

Table 2. Design data for truss bridges. 
  Michell Arch Forth bridge model 37-bar truss bridge 

Variables 

(Size/shape) 

𝐴1 = 𝐴8; 𝐴2 = 𝐴7;  
𝐴3 = 𝐴6;  𝐴4 = 𝐴5;  
𝐴9 = 𝐴13; 𝐴10 = 𝐴12; 𝐴11;  

𝐴1, 𝐴2. . . , 𝐴16  𝐴1, 𝐴2. . . , 𝐴14  

𝑥3 = −𝑥7; 𝑦4 = 𝑦6; 𝑦5;  𝑦𝑖    𝑦𝑢𝑝𝑝𝑒𝑟 𝑐ℎ𝑜𝑟𝑑    

   

Constraint 

(Stress,  

disp., freq., 

shape) 

|(𝜎)𝑖=1~13|≤240 MPa;  
Δ𝑦(1) ≤3.8 mm  

|(𝜎)𝑖| ≤ 25 𝑘𝑁/𝑐𝑚2;  𝑓1=20, 𝑓2=40, 𝑓3=60 (Hz) 

0 ≤ 𝑥3 ≤1 m;     
0 ≤ 𝑦4, 𝑦5 ≤1 m;    

-1.4 ≤ Δ𝑦(𝑖)≤ 1.4 m;  -1 ≤ Δ𝑦(𝑡𝑜𝑝 𝑐ℎ𝑜𝑟𝑑)≤ 2.5 m;  

    

Cross-

sections 
𝐴𝑖 ={1.01, 1.02, …,5}𝑐𝑚2  

i = 1, 2, . .. , 13  
0.5 ≤ 𝐴𝑖 ≤ 100𝑐𝑚2  

i = 1, 2, . . . , 16  

𝐴𝑡𝑜𝑝 𝑐ℎ𝑜𝑟𝑑 =4×10-3 m2 

10-4 ≤ 𝐴𝑜𝑡ℎ𝑒𝑟𝑠≤ 3.5×10-4 m2 

    

Load case 
(𝐹𝑦)  

P=-200 kN (Node 1) P=20 ton 
𝑀𝑎𝑠𝑠𝑖=10 kg  

i = nodes on lower chord 

    

Young's 

modulus 
210 GPa  2.1×108 𝑘𝑁/𝑚2 2.1×1011 𝑁/𝑚2 

Material’s 

density  
7800 kg/m3 7800 𝑘𝑔/𝑚3 7800 𝑘𝑔/𝑚3 

3.3.1 The Michell Arch  

The Michell arch, as shown in Figure 1, is recognized as the initial in-

stance of its kind. This optimization problem has an available analytical 

solution that takes into account equal allowable stresses in both tension 

and compression (Wang et al., 2002): 
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𝑊 =
12

𝜎+
𝐿𝑃𝜌 tan

𝜋

12
  

In the equation, the parameter L represents half of the span length, specif-

ically set to 1m, while 𝜎+ denotes the allowable tension stress. Table 3 

presents the optimal outcome obtained from the memory-assisted meth-

ods, along with a comparative analysis against other approaches. Consid-

ering the results of the memory-less version of algorithms (21.91, 22.2, 

and 23.88 kg), it is apparent that memory-assisted versions (21.21, 20.96, 

and 22.03 kg) performed better and found minimal weight while satisfy-

ing all the constraints. Figure 1 visually displays the optimal arrangement 

of the structure's components. Additionally, Fig. 2 showcases the best 

convergence of the memory-assisted methods, among 20 individual runs 

for the Michell arch. Considering results, the memory-assisted algorithms 

are considerably reliable and efficient with fast convergence. The average 

improvement of 5.5% (max 7.7%) is shown in the achieved weights. 

 
 

Fig. 1 The Michell arch 
 

  



18      Memory-Driven Metaheuristics: Improving Optimization Performance 

  
Fig. 2. Results of the Michell arch 
 

 

Table 3. Results comparison of the standard and memory-based methods for 

Michell arch problem. 

Variables BBO KHA TEO 

 Standard Memory Standard Memory Standard Memory 

 Sizing Variables (m2) 

𝐴1  23.1535 14.1476 1.03960 14.7664 66.9590 62.6198 

𝐴2  339.7858 335.4370 383.5986 333.5205 373.4588 366.8499 

𝐴3  361.0238 339.1281 331.4342 330.6981 368.7377 343.6751 

𝐴4  336.0014 339.5899 360.4571 327.9014 356.3795 342.0028 

𝐴9  153.0759 120.4642 144.4969 106.923 168.5932 47.2726 

𝐴10  118.2371 144.2717 165.5149 161.0867 186.3108 257.6826 

𝐴11  129.7560 103.8559 83.3975 76.1589 147.8932 24.8989 

 Layout Variables (m) 

𝑌5  1.0000 1.0000 0.9907 0.9996 0.9513 0.9534 

𝑌6  0.8680 0.8795 0.8916 0.8951 0.8345 0.8863 

𝑋3  0.8862 0.8665 0.8820 0.8648 0.8548 0.8141 

 Statistical results (kg) 

Best  21.91 21.21 22.2 20.96 23.88 22.03 

Mean  22.23 21.66 23.21 22.16 1971.54 1949.11 

Worst 22.58 22.28 25.01 24.67 16533.85 33298.82 

Std  0.18 0.27 0.7 1.08 4208.62 7403.29 

NFEs 3200 3750 3900 3900 4000 4000 

Runs 20 20 20 20 20 20 
 

3.3.2 The Forth bridge model 

Gil and Andreu (2001) initially analyzed the Forth bridge model to de-

termine the optimal configuration and sizing variables. Each span in the 

bridge has a length of 16m and a height of 1m (adjusted to 3m to control 

shape variables). The structure can be represented according to Figure 3, 

which depicts half of the infinite symmetric span. The circled numbers in 
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Figure 3(b) indicate 16 groups of sizing variables. By employing a 

memory-assisted optimization process, the best structural weight 

achieved was found to be significantly lower than that obtained using 

memory-less algorithms. Specifically, the weights were 11978.62 kg, 

10349.48 kg, and 15270.36 kg, compared to 13585.99 kg, 11775.9 kg, 

and 21629.57 kg for memory-less algorithms. Table 4 provides the rele-

vant coordinates and cross-sections for the optimized structure. 

It is crucial to emphasize the importance of increasing the overall mo-

ment of inertia at the support positions of the bridge to withstand the high 

internal moments experienced during its operational lifespan. Therefore, 

a meticulous analysis and optimization of the support positions are essen-

tial to ensure the structural integrity and capacity to withstand anticipated 

loads and stresses. The optimal shape, as depicted in Fig. 4(a), satisfies 

this requirement and bears resemblance to the well-known "Forth 

Bridge." The best convergence histories of 20 individual runs are shown 

in Fig. 4(b). The memory-assisted algorithms have demonstrated signifi-

cant performance improvements compared to the memory-less algo-

rithms. On average, the optimization results have improved by 17.7%, 

with a maximum improvement of 29.4%. Additionally, the convergence 

behavior has been found to be superior in the memory-assisted algo-

rithms. 

Table 4. Results comparison of the standard and memory-based methods for the 

Forth bridge model 

Variables BBO KHA TEO 

 Standard Memory Standard Memory Standard Memory 

 Sizing Variables (cm2) 

1 16.4456 25.1129 14.836 10.538 37.3404 18.7656 

2 94.254 38.4602 47.9999 41.0708 42.049 38.6652 

3 15.8908 7.4326 9.0737 9.9726 46.0009 14.7888 

4 39.2538 46.8004 55.3138 57.9283 28.0406 44.4536 

5 56.6392 37.434 34.6687 26.8824 31.8419 36.5998 

6 22.0073 26.2891 24.3291 16.7202 24.5844 24.6589 

7 0.5 34.3952 33.3137 40.5562 11.5118 17.4166 

8 14.8243 0.5 8.7103 0.5289 17.1568 2.7853 

9 25.5838 30.9563 28.1914 31.3519 20.5659 24.8771 

10 40.2238 0.5 1.6936 0.6179 11.8985 10.1461 

11 7.0234 31.5138 24.2553 32.994 10.4383 18.0454 

12 14.209 13.8402 16.0194 12.6324 13.7095 15.9911 

13 23.8645 27.8096 33.2668 34.5302 20.149 34.7149 

14 9.0283 4.9822 10.9916 3.5478 22.1609 12.8686 

15 47.5124 12.1978 13.6822 12.4636 25.4358 13.1036 

16 4.9522 13.9933 9.6314 0.5187 35.8006 11.8662 
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 Layout Variables (cm) 

1 -57.2705 73.6468 0.1716 36.1304 -12.6051 30.6401 

2 37.5484 66.0000 65.6483 101.3377 3.4807 52.8938 

3 -102.441 -13.2346 -54.181 -29.985 -1.7244 -22.3989 

4 90.7979 140.000 128.5676 139.9841 42.6357 109.1288 

5 -109.620 -54.6006 -72.3198 -98.6304 -41.0543 -61.3265 

6 140.000 89.2177 58.9762 90.7673 24.2037 42.0780 

7 -50.5744 -140.00 -73.9872 -140.000 -16.0522 -0.1548 

8 33.6759 21.9731 27.5776 32.5376 -0.0001 12.5168 

9 -12.7194 -81.1674 -41.4697 -71.1337 -24.7971 -8.1538 

10 44.6205 5.2223 37.6646 20.2854 25.8910 25.9354 

 Statistical results (kg) 

Best  13585.99 11978.62 11775.9 10349.48 21629.57 15270.36 

Mean  15021.67 14695.9 13867.89 12082.04 24069.96 18888.7 

Worst 17233.06 16705.82 16946.59 13544.55 27361.33 21795.11 

Std  1026.5 1167.75 1286.29 786.42 1562.61 1646.89 

NFEs 3800 3200 4000 4000 1950 2300 

Runs 20 20 20 20 20 20 

 

 
 

Fig. 3 The Forth bridge model (a) Problem diagram. (b) Analytical model. 
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a) Optimum and real shape 

  

  
b) Convergence history of methods 

Fig. 4. Results of the Forth bridge model 

3.3.3 The 37-bar truss bridge 

The simply supported Pratt-Type 37-bar truss (depicted in Figure 5(a)) 

has been investigated by Lingyun et al. (2005) using the NHGA algo-

rithm and by Wang et al. (2004) employing the method of evolutionary 

node shift. This truss presents an optimization problem with 14 sizing 
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variables, five shape variables, and three frequency constraints. Table 5 

provides a comparison between the optimal results obtained using the 

memory-assisted methods and their standard versions. The memory-

assisted algorithms have yielded diverse levels of performance in opti-

mizing the design, with the best results achieved being 357.81 kg, 356.05 

kg, and 367.19 kg, in contrast to the values of 361.1 kg, 359.04 kg, and 

378.21 kg obtained by memory-less algorithms. On average, the utiliza-

tion of memory has improved performance by 1.5%, with a maximum 

improvement of 2.9%. This improvement can be attributed to the incor-

poration of elite population memory, allowing the enhanced algorithms to 

explore the search space more effectively and converge to superior solu-

tions at a faster pace. Figure 5(b) showcases the final optimal shape of the 

truss, while Figure 5(c) illustrates the weight convergence of the 37-bar 

truss for the MAMVO method, which exhibits better performance when 

compared to MVO.  

Table 5. Results comparison of the standard and memory-based methods for the 

37-bar truss problem. 

Variables BBO KHA TEO 

 Standard Memory Standard Memory Standard Memory 

 Sizing Variables (m2) 

𝑌3, 𝑌19 1.1204 1.0335 1.0135 1.0719 1.1572 1.0000 

𝑌5, 𝑌17 1.6069 1.3060 1.4347 1.4280 1.9219 1.3569 

𝑌7, 𝑌15 1.7317 1.7173 1.8022 1.6202 1.9554 1.5958 

𝑌9, 𝑌13 1.8849 1.9628 1.9338 1.7794 2.0202 1.6577 

𝑌11  2.0734 1.9995 2.1250 1.8409 1.9787 1.7288 

 Layout Variables (cm) 

𝐴1, 𝐴27 2.1053 1.8660 2.3616 2.5027 2.4087 2.0580 

𝐴2, 𝐴26 1.4703 1.1156 1.0303 1.0003 1.8259 1.3164 

𝐴3, 𝐴24 1.0000 1.0000 1.1233 1.1655 1.3396 1.8695 

𝐴4, 𝐴25 2.1949 2.5251 2.7226 2.1397 2.1313 2.7549 

𝐴5, 𝐴23 1.0000 1.0161 1.0889 1.0234 1.9914 1.5808 

𝐴6, 𝐴21 1.0000 1.2085 1.2246 1.0692 2.7621 1.4882 

𝐴7, 𝐴22 2.3970 2.1943 1.3502 1.8263 1.8349 3.4876 

𝐴8, 𝐴20 1.2092 1.0000 1.0365 1.005 1.9548 1.3113 

𝐴9, 𝐴18 1.1588 1.0000 1.3631 1.0055 1.8608 1.6453 

𝐴10, 𝐴17 2.4954 2.7481 2.3905 2.1666 1.4984 2.1387 

𝐴11, 𝐴19 1.5297 1.0248 1.4385 1.1465 1.5211 1.8052 

𝐴12, 𝐴15 1.4765 1.15 1.1589 1.0457 1.2811 1.3022 

𝐴13, 𝐴16 2.2398 2.0232 2.1901 3.4073 2.6857 2.7191 

𝐴14  1.4364 1.0000 1.0122 1.0000 2.2287 2.0468 

 Statistical results (kg) 

Best  361.1 357.81 359.04 356.05 378.21 367.19 
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Mean  363.24 361.64 362.79 359.38 443.14 387.61 

Worst 366.18 365.53 365.97 363 608.5 652.68 

Std  1.14 2 1.98 1.87 81.64 62.67 

NFEs 3400 3950 3750 3600 3500 2600 

Runs 20 20 20 20 20 20 

 

 
a) The 37-bar truss  

 
b) The optimum 37-bar truss 
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b) Convergence history of methods 

Fig. 5. Results of the 37-bar truss 

4. Conclusions 

In this chapter, the effectiveness of utilizing memory-based techniques in 

enhancing the performance of various metaheuristic algorithms has been 

investigated. By adding a memory component to the basic optimization al-

gorithm, several best solutions from previous iterations are saved to be ex-

changed with several worst solutions in the next iterations. This strategy is 

called a multi-elite strategy and has been applied to a number of well-

known optimization algorithms such as the Biogeography-Based Optimi-

zation (BBO), Krill Herd Algorithm (KHA), and Thermal Exchange Opti-

mization (TEO). The proposed memory implementation allowed the algo-

rithm to avoid the worst solutions by exchanging them (20% of the 

population size) with the global best ones from the memory. In this chap-

ter, the proposed memory-assisted versions of these algorithms have been 

implemented to optimize benchmark engineering examples, such as size 

and shape optimization of truss bridges. The results show that the memory-

assisted optimization algorithms outperform the memory-less ones in 

terms of convergence speed, solution quality, and reliability. The case 

study examples of truss bridges demonstrated that the proposed method 

can effectively optimize problems with both continuous and discrete varia-

bles. Therefore, utilizing memory-based techniques can be a promising ap-

proach to improve the performance of various optimization algorithms and 

to solve complex engineering problems. 
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