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Abstract: This paper presents the Multi-Objective Ant Nesting Algorithm (MOANA), a novel extension of the Ant Nesting Algo-

rithm (ANA), specifically designed to address multi-objective optimization problems (MOPs). MOANA incorporates adaptive mech-

anisms, such as deposition weight parameters, to balance exploration and exploitation, while a polynomial mutation strategy ensures 

diverse and high-quality solutions. The algorithm is evaluated on standard benchmark datasets, including ZDT functions and the 

IEEE Congress on Evolutionary Computation (CEC) 2019 multi-modal benchmarks. Comparative analysis against state-of-the-art 

algorithms like MOPSO, MOFDO, MODA, and NSGA-III demonstrates MOANA’s superior performance in terms of convergence 

speed and Pareto front coverage. Furthermore, MOANA’s applicability to real-world engineering optimization, such as welded beam 

design, showcases its ability to generate a broad range of optimal solutions, making it a practical tool for decision-makers. MOANA 

addresses key limitations of traditional evolutionary algorithms by improving scalability and diversity in multi-objective scenarios, 

positioning it as a robust solution for complex optimization tasks. 
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1. Introduction 

In many real-world scenarios, optimization problems involve multiple conflicting objectives that must be addressed 

simultaneously. Such problems are known as multi-objective optimization problems (MOPs) and arise in various fields, 

including engineering, environmental science, logistics, and economics. [1]. The complexity of these problems lies in 

the fact that optimizing one objective often compromises another, necessitating careful trade-offs. The goal is not to find 

a single solution but rather a set of optimal solutions known as the Pareto front, where no objective can be improved 

without negatively impacting another [2]. 

 

Over the years, multi-objective evolutionary algorithms (MOEAs) have become the standard approach for addressing 

MOPs due to their ability to approximate the Pareto front while maintaining diversity among solutions. However, 

despite their success, traditional MOEAs such as Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Multi-

Objective Particle Swarm Optimization (MOPSO)[3, 4], and Differential Evolution (DE) faces significant challenges[5]. 

These challenges include slow convergence, poor scalability in high-dimensional problems, and difficulty in 

maintaining diversity across the Pareto front. 

 

In this study, ANA was rationally selected over other algorithms, such as DE and CMA-ES, due to its adaptive 

mechanisms, which allow for a more balanced exploration-exploitation trade-off. Unlike DE or CMA-ES, which depend 
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on mutation and recombination to navigate the solution space, ANA employs a deposition weight mechanism that 

dynamically adjusts the agent's behavior. This enables MOANA to achieve better coverage of the Pareto front and 

discover both global and local optima more efficiently, which is critical in engineering optimization problems like 

welded beam design. 

 

To address these limitations, this paper introduces the Multi-Objective Ant Nesting Algorithm (MOANA), a novel 

extension of the Ant Nesting Algorithm (ANA)[6]. MOANA is designed to balance exploration and exploitation 

dynamically, ensuring better coverage of the Pareto front while enhancing convergence speed. By integrating 

mechanisms such as adaptive deposition weight parameters and polynomial mutation strategies, MOANA offers a 

scalable and efficient solution to multi-objective problems. Additionally, the practical application of MOANA in real-

world engineering problems, such as the design of welded beams, highlights its effectiveness and versatility. 

 

The main contributions of this work include: 

1) The development of MOANA as a multi-objective extension of the single-objective ANA algorithm. 

1. The balance of exploration and exploitation in MOANA, achieved through the deposition weight parameter, improves 

both coverage and convergence speed. 

2. The use of an archive technique for non-dominant solutions ensures that high-quality solutions are stored effectively. 

3. A polynomial mutation strategy that guarantees diversity in solutions, with stored deposition weights (dw) for reuse in 

future iterations. 

4. The enhancement of algorithm performance through the integration of Hypercube grids, which provide a mechanism to 

select local and global guide individuals. 

5. The successful application of MOANA to practical engineering problems, such as the optimization of welded beam de-

signs, demonstrates its versatility. 

This paper evaluates MOANA on standard benchmark datasets, including the ZDT functions and the IEEE Congress 

on Evolutionary Computation (CEC) 2019 multi-modal benchmarks. Comparisons against state-of-the-art MOEAs 

show MOANA's superior performance in terms of convergence speed and coverage of the Pareto front. Additionally, 

the practical application of MOANA in real-world engineering problems, such as the design of welded beams, 

highlights its effectiveness and versatility. 

 

The organization of this paper is as follows: Section 2 begins with a comprehensive literature review, exploring existing 

multi-objective optimization algorithms such as NSGA-II, MOPSO, DE, and CMA-ES, along with their limitations. This 

section sets the context for the introduction of MOANA, highlighting the specific challenges these traditional algorithms 

face, including slow convergence and difficulty in maintaining diversity across the Pareto front. Following the review, 

the theoretical framework is detailed, including the definitions of Pareto sets and Pareto fronts. The section concludes 

with a mathematical description of the Multi-Objective Ant Nesting Algorithm (MOANA), showcasing its novel 

features like adaptive exploration-exploitation balancing and deposition weight mechanisms. 

In Section 3, the results of applying MOANA to various benchmark problems are presented and analyzed, with a 

comparison to state-of-the-art algorithms such as NSGA-II, MOPSO, and MODA. The discussion highlights the 

strengths of MOANA in terms of convergence speed, solution diversity, and Pareto front coverage. Section 4 

demonstrates the practical application of MOANA by solving a real-world engineering challenge: the optimization of a 

welded beam design. This section emphasizes how MOANA’s capabilities translate into effective decision-making for 
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complex engineering problems. Finally, Section 5 presents the concluding remarks, summarizing the main findings and 

suggesting directions for future work, including the potential for MOANA to address more diverse and high-

dimensional optimization problems in various domains. 

2. Literature Review 

The literature on multi-objective evolutionary algorithms (MOEAs) covers a wide range of approaches for solving multi-

objective optimization problems (MOPs). These algorithms are typically categorized into indicator-based evolutionary 

algorithms (IBEAs)[7], decomposition-based algorithms[8], and dominance-based algorithms[9]. Each of these 

approaches addresses MOPs by estimating Pareto-optimal solutions. For example, dominance-based algorithms such 

as NSGA-II [10]and SPEA2[11] sort populations using non-dominated sorting techniques, while decomposition-based 

algorithms[12] break down objectives by applying weights to approximate the Pareto front. Among these, NSGA-II is 

widely recognized for its ability to maintain diversity through crowding distance, and it has been extended to tackle 

problems with more complex objectives, such as in NSGA-III [13] and MOPSO[4], another popular approach, uses an 

archive grid to ensure diversity while maintaining computational efficiency. 

In the context of population-based metaheuristics[14], Differential Evolution (DE) and Covariance Matrix Adaptation 

In the context of population-based metaheuristics, Differential Evolution (DE) and Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) are well-regarded for real-parameter, single-objective optimization. While DE maintains 

diversity, CMA-ES struggles with stagnation at local optima[15]. To address this, a hybrid algorithm, IR-CMA-ES, 

combines CMA-ES with DE to enhance exploration and prevent stagnation. This hybrid approach improves 

performance across benchmarks, particularly in maintaining diversity. However, IR-CMA-ES has limitations, including 

increased computational cost and sensitivity to parameter settings. It may also face scalability issues and slower 

convergence in highly complex problems, as it may not always balance exploration and exploitation optimally[16]. Over 

the past decade, several other MOEAs have emerged, such as the Whale Optimization Algorithm[17], Ant Lion 

Optimizer[18], Grey Wolf Optimizer[19], Moth Flame Optimization[20], Multi-Objective Cat Swarm 

Optimization[21], Dragonfly algorithm[22], a multi-objective learner performance-based behavior algorithm[23], 

and multi-objective fitness-dependent optimizer[24]. These methods have introduced novel mechanisms inspired by 

biological or physical processes to address the limitations of earlier MOEAs. For example, IBEAs have gained popularity 

due to their strong theoretical foundations, automatically addressing convergence and diversity issues through the use 

of performance indicators like hypervolume and epsilon-indicator[25, 26]. However, despite the progress, MOPs still 

require algorithms that can balance two critical factors: the precision of the Pareto-optimal solutions and the diversity 

of the anticipated solutions. Most approaches rely on meta-heuristic methods, which start with random solutions and 

gradually improve them over time[27]. The challenge, however, remains in balancing exploration (searching for new 

solutions) and exploitation (refining existing ones), and several researchers have proposed techniques to address this. 

 

For instance, Mostaghim and Teich[28] introduced a sigma approach for selecting local guides, while Pulido and Coello 

[29] used clustering to enhance diversity in the Pareto front. Other researchers, such as Zitzler[30], focused on the 

importance of elitism by using crossover and mutation from both population and repository individuals[27], while 

Laumanns et al[31]. applied e-box dominance to improve convergence and diversity simultaneously. Several hybrid 

methods, such as those combining Grey Wolf Optimization for industrial systems or altered genetic algorithms for ship 

scheduling and routing[32, 33], have also shown success in specific real-world challenges[34]. Additionally, algorithms 

like Pareto Entropy MOPSO, which selects global guides based on individual density, have been applied to complex 

industrial designs, further advancing the field[35]. Several design issues, including those involving a pressure vessel, 
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speed reducer,four-bar truss, coil compression spring, and automobile side collision, were addressed using the new 

MOLPB technique[23].  

Five categories of understanding make up cultural algorithms, according to[24]: Historical knowledge, topographical, 

standard, domain, and Situational knowledge. These file types are explained briefly in the list below:  

 

1) historical knowledge: records crucial events in the investigation by tracing the historical background of important individ-

uals. Key events can encompass substantial alterations in the search environment or a notable transformation in the search 

domain. Individuals utilize historical data to select a favored course of action. 

2) Topographical knowledge: divides easily accessible search landscapes into cells. Each cell represents a distinct spatial 

characteristic and selects the best individual within its range. Simply said, geographical knowledge guides persons to the 

optimal cell. 

3) standard knowledge presents promising decision variable ranges. Individual adjusting strategies are provided. It draws 

people into a decent range. 

4) Domain knowledge refers to knowledge that is recorded and utilized to assist in the search process related to a specific 

problem domain. 

5) Situational knowledge refers to a collection of information and insights that help in understanding and making sense of the 

experiences of a certain group of individuals. Situational knowledge drives individuals towards exemplars, which can be 

either local or global authorities in their respective fields. 

In response to the limitations of traditional MOEAs, the Multi-Objective Ant Nesting Algorithm (MOANA) was 

developed as a novel approach to balance exploration and exploitation more adaptively. MOANA builds upon the Ant 

Nesting Algorithm (ANA) by incorporating deposition weight parameters to guide the search process and polynomial 

mutation strategies to maintain diversity in the population. Compared to other algorithms like NSGA-II, MOPSO, and 

MOFDO, MOANA offers faster convergence, better Pareto front coverage, and improved scalability, especially in high-

dimensional optimization tasks. Moreover, its application in real-world scenarios, such as welded beam design, 

underscores its practical utility in generating a broad range of optimal solutions for decision-makers. MOANA’s 

innovative approach to multi-objective optimization addresses key challenges faced by traditional algorithms, making 

it a valuable tool in tackling complex, multi-faceted problems across various domains. 

 

3.  Methodology  

The following section provides an overview of the preliminary concepts and fundamental definitions related to multi-

objective optimization. MOANA is comprehensively described in terms of mathematical and programmatic aspects.  

3.1 Pareto optimal solutions set 

Several real-world challenges involve multiple conflicting objectives. These types of problems require the use of opti-

mization with multiple objectives. Due to conflicting goals, a solution that is severe in one aspect must be balanced in 

another aspect. An illustrative instance of a predicament with several objectives is the task of acquiring an automobile. 

The resolution of a two-objective problem entails achieving an equilibrium between the factors of cost and comfort. The 

objective of optimization is to identify the optimal solution that achieves the most favorable trade-off among all the 

objectives[36]. From a mathematical perspective, MOPs can be accurately expressed in the following manner, without 

any reduction in ubiquity as see in equation (1). 
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Minimize : 𝐹(�⃗�) = {𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑛(�⃗�)} 

subject to:  

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … ,𝑚 

ℎ𝑖(𝑥) ≤ 0, 𝑖 = 1,2, … , p 

(1) 

h and g are the rules, m represents an inequality rule, p represents an equality rule, and n represents the number of 

objectives[37]. (MOPs) entail attempting to maximize the number of conflicting goals. Since there might not be a single 

solution that simultaneously optimizes all goals, solving MOPs could be challenging. Rather, one way to solve this 

problem is to use a set of trade-off solutions referred to as the Pareto front. Representing the optimal balance between 

goals. To improve readability, this subsection will give a brief introduction to Pareto optimality. Pareto optimality is 

the term for solutions that may be explained by applying the following definitions[38]. 

• Def. #1: for vectors (solution) �⃗⃗⃗� & �⃗⃗⃗� in optimization problem 𝑲𝒕.  

• For 𝒊 = 𝟏, 𝟐, … ,𝒎, �⃗⃗⃗� ≤ �⃗⃗⃗� if the goals of the vector 𝒂𝒂 equal to or smaller than the objectives of the vector �⃗⃗⃗� and 

at least there is 𝒂𝒊⃗⃗ ⃗⃗ < 𝒃𝒊⃗⃗ ⃗⃗ . 

• Def. #2: if �⃗⃗⃗� ≤ �⃗⃗⃗� then: �⃗⃗⃗� dominates �⃗⃗⃗�, and indicated by �⃗⃗⃗� ≺ �⃗⃗⃗�. 

• Def. #3: 2 solutions could not dominate one another if Def. #1 isn’t applied, in such case, solutions �⃗⃗⃗� and �⃗⃗⃗� are 

non-dominated concerning one another, and indicated as �⃗⃗⃗� ≮ �⃗⃗⃗� is the set of all c solution set 𝑷𝐬, and 𝑷𝐬: =

{�⃗⃗⃗�, 𝒃 ∈ 𝑨 ∣ ∃𝑭(𝒂) ≻ 𝑭(𝒃)} . 
• Def #4: The set that holds equivalent object values of the Pareto optimal solutions in Ps, is referred to as the 

Pareto optimal front 𝑷𝐟, and 𝑷𝐟: = {𝑭(�⃗⃗⃗�)|�⃗⃗⃗� ∈ |𝑷𝐬}. 

 

3.2 Multi-objective Ant Nesting Algorithm 

This algorithm is derived from a single-objective Ant Nesting Algorithm[6]. The ANA algorithm is a Leptothorax-in-

spired swarm intelligent algorithm. It optimizes real-world issues by replicating ant nesting. Each search agent repre-

sents an ant and explores and exploits the search space. Agents use Pythagorean theorem-based rules to determine 

movement direction and distance. The artificial worker ant in the ANA algorithm deposition position is updated using 

equation (2), which is also used in MOANA[6]. 

 

𝑋𝑡+1,𝑖 = 𝑋𝑡,𝑖 + Δ𝑋𝑡+1,𝑖                                       (2) 

 
In which (𝑋𝑡,𝑖 ) represent the deposition position of an artificial worker ant, ( 𝑡 ) represents current iteration, t= 

{1,2,3,4…n}, (𝑖) represent current worker ant, i= {1,2,3,4…m} and (Δ𝑋𝑡+1,𝑖) represent the change rate. The difference be-

tween the deposition position of the current worker ant (𝑋𝑡,𝑖) and the position of deposition of the local best-known 

worker ant, (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡) determines the rate of change of deposition position (Δ𝑋𝑡+1,𝑖)  simulating leaning toward the most 

dropped building material. To improve its deposition solution, each worker ant goes toward the best-known worker 

ant. The following equations (3), (4), and (5) calculate the (Δ𝑋𝑡+1,𝑖): 

Δ𝑋𝑡+1,𝑖 = 𝑑𝑤 × (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖)       (3) 

 

The next rule is followed for the calculation of the value of (Δ𝑋𝑡+1,𝑖) when the current worker ant is the best-known local 

ant. 

 

Δ𝑋𝑡+1,𝑖 = 𝑟 × 𝑋𝑡,𝑖         (4) 

 

the current deposition position equals the previous one. 

 

Δ𝑋𝑡+1,𝑖 = 𝑟 × (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖) (5) 
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The ANA algorithm's deposition weight (𝑑𝑤) is a mathematical description of a worker ant's random walk and depends 

on its prior (𝑇previous ) and current (𝑇) tendency rate to deposit grain at some certain spot. The slope sides of the difference 

between worker ants' current and previous deposition positions to best-found position in the Pythagorean theorem are 

T and T previous, with their fitness difference being the other sides as in equations (6), (7), and (8). 

 

 

 

 

 

where, 𝑟 represent a random number in a range of [−1,1], works as a factor of deposition to control 𝑑𝑤. worker ant's 

tendency rate of deposition (𝑇) is calculated as follows: 

 

𝑇 = √(𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖)
2
− (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡  fitness − 𝑋𝑡,𝑖 fitness )

2
 (7) 

 

 

The worker ant's previous tendency deposition rate (𝑇previous ) can be estimated as follows: 

 

 

 

 

 

 

 

For more detailed information about single-objective ANA, and other single-objective interested readers are directed to 

references[6]. The algorithmic structure of MOANA has some resemblance to that of a single objective ANA, it incor-

porates some supplementary enhancements as follows: 

1) An archive, often referred to as a repository, is commonly employed in optimization to save Pareto front solutions. 

This practice has been well-documented in the existing literature[39]. 

2) The MOANA method employs equation (9) and (10). 

 

 

 

 

 

  

 

 

 

 

 

 

In lieu of equation (9-10), where the 

∑ √(𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖)
2
− (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡  fitness − 𝑋𝑡,𝑖 fitness )

2𝑛
𝑜=1   

 

represent sum of global best individuals where n is denoted by number of objectives, o= [1,2,3, 4, ……n], and the  

 

∑ √(𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖previous)
2
− (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡  fitness − 𝑋𝑡,𝑖previous fitness )

2𝑛
𝑜=1   

 

𝑑𝑤 = 𝑟 × (
𝑇

𝑇previous 
) (6) 

𝑇previous      = √(𝑋𝑡, ibest − 𝑋𝑡, iprevious )
2
− (𝑋𝑡, ibest fitness − 𝑋𝑡, iprevious  fitness )

2
  (8) 

𝑇 =∑√(𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖)
2
− (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡  fitness − 𝑋𝑡,𝑖 fitness )

2
      

𝑛

𝑜=1

 (9) 

𝑇previous= ∑√(𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 − 𝑋𝑡,𝑖previous)
2
− (𝑋𝑡,𝑖𝑏𝑒𝑠𝑡  fitness − 𝑋𝑡,𝑖previous fitness )

2
     

𝑛

𝑜=1

 (10) 



 7 of 36 
 

represent the sum of previous individuals' global best individual again, n denoted by the number of objectives, o= [1,2,3, 

4……. n], due to its ability to compute all generated solutions and yield suitable solutions. The Table 1 represent all 

notation and definitions of key concepts of MOANA algorithm.  

 

 

 

Table 1. Notation and Definitions of Key Concepts of MOANA 

Notation Definitions 

𝑖 current worker ant 
𝑡 current iteration 
𝑚 No. of iterations 
𝑛 No. of an artificial worker ant 
𝑋𝑡,𝑖 The current deposition position of 

worker ant 
𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 The deposition position of the local 

best worker ant 
𝑋𝑡, iprevious  The previous deposition position of 

worker ant 
𝑋𝑡,𝑖 fitness The fitness of the current deposition 

position of worker ant 
𝑋𝑡,𝑖𝑏𝑒𝑠𝑡fitness The fitness of the best local deposi-

tion position of worker ant 
𝑋𝑡, iprevious  fitness The fitness of the previous deposition 

position of worker ant 

  

∑𝑋𝑡,𝑖 fitness

𝑜

𝑛=1

 
The summation of the fitness of the 

current deposition position of worker 

ant 

∑𝑋𝑡,𝑖𝑏𝑒𝑠𝑡 fitness

𝑜

𝑝=1

 
The summation of the fitness of the 

best local deposition position of 

a worker ant 

∑𝑋𝑡, iprevious  fitness

𝑜

𝑛=1

 
The summation of the fitness of the 

previous deposition position of 

a worker ant 
𝑇 The tendency rate of the current dep-

osition position of a worker ant 
𝑇previous  The tendency rate of the previous 

deposition position of a worker ant 
Δ𝑋𝑡+1,𝑖 the change rate of deposition position 

of a worker ant 
𝑋𝑡+1,𝑖 the new position of a worker ant 
𝑟 a random number in a range of 

[−1,1] 
𝑑𝑤 The deposition weight 

𝛽max(𝑥𝑗) the largest allowable perturbation be-

tween the modified and original so-

lution 
𝑆𝑁𝑖 new solution 

𝑆𝑖(𝑥𝑗) present solution 

𝑁𝑃 population size 
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In the context of MOPs, it is not 

feasible to select the fittest solution 

as a universal guide, as is commonly 

done in single-objective 

optimization. This is due to the 

presence of many objectives in MOPs. Typically, these aims compete with one another. Hence, the process of choosing 

a worldwide guide necessitates a more discerning and deliberate approach. To achieve this objective: 

1) A mechanism known as the controller for archives is employed to partition the repository into numerous 

squares of similar sizes. 

2) Prior to being included to the archive as a non-dominated solution, Pareto front solutions undergo a polyno-

mial mutation to ensure the diversity in the solutions. 

3) In MOEAs[40], the polynomial mutation was used as variation operator; Additional storage has been allocated 

to store the previous dw for future reuse in subsequent iterations, hence enhancing the performance of the 

process. Its definition found in [41]Equation (11). 

 
𝑆𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑛)

𝑆𝑁𝑖(𝑥𝑗) = 𝑆𝑖(𝑥𝑗) + 𝛼 ⋅ 𝛽𝑚𝑎𝑥(𝑥𝑗), 𝑖 = 1,2, … , NP,                                   (11)

𝑗 = 1,2, … 𝑛

𝛼 = {
(2𝑣)

1
(𝑞+1) − 1, 𝑣 < 0.5

1 − (2(1 − 𝑣))
1

(𝑞+1), otherwise 

}

𝛽𝑚𝑎𝑥(𝑥𝑗) = Max [𝑆𝑖(𝑥𝑗) − 𝑙𝑗 , 𝑢𝑗 − 𝑆𝑖(𝑥𝑗)]

𝑖 = 1,2, … , NP, 𝑗 = 1,2, …𝑛  
                                                                             

 

Where 𝛽max(𝑥𝑗) represent the largest allowable perturbation between the modified and original solution, 𝑆𝑁𝑖  represent 

new solutions, 𝑆𝑖(𝑥𝑗) represent the present solution, 𝑁𝑃 denotes the population size. 𝑞 denotes a positive real integer. 𝑣 

represents a random number uniformly distributed between 0 and 1. 𝑙 denotes the lower boundary of the decision var-

iable 𝑥. 𝑢 denotes the upper boundary of the decision variable 𝑥. 𝑛 denotes the number of decision variables (problem 

dimensions) as seen in the algorithm (1). 

 

Algorithm (1): Polynomial Mutation Operator 

1. Initialize  

 let 𝑆𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑛)  be the current solution, where n is the number of 

decision variables. 

 𝑆𝑁𝑖(𝑥𝑗)  is the mutated solution, and 𝑙𝑗 and 𝑢𝑗  are the lower and upper 

boundary for the decision variable 𝑥𝑗,respectively  

Define q(distribution index for mutation) and a random number v uniformly 

distributed between 0 and 1. 

2. Calculate Maximum Perturbation 

Compute 𝛽𝑚𝑎𝑥(𝑥𝑗) = Max [𝑆𝑖(𝑥𝑗) − 𝑙𝑗 , 𝑢𝑗 − 𝑆𝑖(𝑥𝑗)] 

3. Determine Mutation Step 

For each decision variable 𝑥𝑗, calculate the mutation step based on the value 

of v 

𝛼 = {
(2𝑣)

1
(𝑞+1) − 1, 𝑣 < 0.5

1 − (2(1 − 𝑣))
1

(𝑞+1), otherwise 

} 

4. Apply mutation 

Update the value of 𝑆𝑁𝑖(𝑥𝑗) 

𝑆𝑁𝑖(𝑥𝑗) = 𝑆𝑖(𝑥𝑗) + 𝛼 ⋅ 𝛽𝑚𝑎𝑥(𝑥𝑗), 𝑖 = 1,2, … , NP,   

𝑞 a positive real integer 
𝑣 a random number uniformly distrib-

uted between 0 and 1 
𝑙 the boundary of decision variable 𝑥 
𝑢 upper boundary of decision variable 

𝑥 
𝑛 the number of decision variables 

(problem dimensions) 
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5. Return Mutated Solution 

 

 

Unlike single-objective optimization, where the fittest solution can be utilized as a global guide or standard knowledge, 

multi-objective optimization problems have several objectives typically, these objectives conflict. Therefore, selecting a 

global guide necessitates further consideration. Within the framework of this investigation, the worldwide manual The 

individual is the optimal solution chosen from the least populated area using an artificial ant worker, similar to the 

approach used in MOPSO[42]. In multi-dimensional problems, the archive controller partitions the archive into grids 

of similar size, called sub-hyperspheres. The grids used in the MOANA system are known as hypercube grids and they 

symbolize the topographical utilization of knowledge. The method can identify the least populated area by counting 

the number of solutions within every grid thanks to the hypercube grid approach[43]. The area with the lowest popu-

lation density will provide the best option, as depicted in Figure 1. 

 

 
Figure 1. Pareto solution, Pareto front, and hyper-cube grids aid in picking global and local guides 

 

Figure 1. Represents the Pareto Front(PF)  and the Pareto Set (PS)in a multi-objective optimization scenario, which is 

essential for identifying trade-offs between conflicting objectives. Each point in the figure corresponds to a potential 

solution to the optimization problem, and the grid structure (Hypercube) divides the search space, helping guide the 

algorithm toward unexplored regions. 

 

The least populated area within the grid highlights a zone where fewer solutions have been identified, indicating areas 

of the search space that may still hold unexplored, potentially optimal solutions. MOANA aims to balance exploration 

and exploitation within these regions, ensuring a comprehensive search of the Pareto front while maintaining diversity 

among solutions. To sustain diversity in Pareto front solutions, the algorithm selects a global guide from the least 

populated area. This approach provides decision-makers with a wider range of options. However, due to the archive's 

size constraints, the archive controller removes the solution with the lowest quality from the grid that contains the 

greatest number of solutions when a new solution that is not dominated by others is found and the archive is already 

full. If the new solution outperforms the weakest solution in the archive, it will be accommodated. To select individual 

guides based on situational knowledge, a hypercube grid is used to partition the search space into cells of equal size. 

Within each cell, the best individual solution is chosen as a local reference. 

 

3.3 Mechanism of Multi-objective Ant Nesting Algorithm 
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The proposed approach integrates an Ant nesting algorithm, The MOANA algorithm initiates by stochastically dispers-

ing search agents throughout the designated search area. In the given algorithm (2) a hybrid grid, and polynomial 

mutation techniques to identify non-dominated solutions, also known as the Pareto front. 

 

Algorithm (2): MOANA  

1- Initialize worker ant population randomly Xi (i=1,2,3 …. N). 

2- Initialize worker ant previous position Xi previous. 

3- Creating an archive for non-dominated solutions with specific sizes. 

4- Generate Hybrid cube Grid  

5- While (t) iteration limit not reached (m) 

or solution good enough. 

6- For every one of the artificial workers ant Xt,i 

7- Find the best artificial worker ant Xt,best 

8- Generate random walk r in [-1,1] range 

9- If (Xt,i == Xt,ibest) 

10- Estimate ∆𝑿t+1,i Using Eq (4) 

11- Else if (Xt,i == Xt,i previous) 

12- Calculate ∆𝑿t+1,i using Eq (5) 

13- Else 

14- Calculate 𝑻 using Eq (9) 

15- Estimate T previous using Eq (10) 

16- Estimate dw using Eq (6) → minimization problem 

17- Calculate ∆𝑿t+1, i using Eq (3) 

18- End if 

19- Calculate ∆𝑿t+1, i Using Eq (2) 

20- If (Xi,t+1 fitness dominate on Xi,t fitnesses) 

21- Move accepted and Xti,t assigned to Xi,t previous, and saved dw 

22- Else 

Maintain current position// (do not move)  

23- EndIf  

24- Apply polynomial mutation 

25- Add non–dominated ants (solutions) to the archive. 

26- Keep only non–dominated members in the archive 

27- Update Hypercube Grid indices  

End for 

End while 

 

At the outset, a group of worker ants is created, every one of which represents one of the potential solutions to the op-

timization problem at the line (1). Create the previous locations of these insects in line (2). To keep note of unbeatable 

answers, a meticulous archive is maintained. This archive represents the non-dominate solutions with specific sizes in 

line (3). A hybrid cube grid is proposed as a method to divide the search space into distinct cells or locations, which 

would facilitate structured research in line 4. In this algorithm, the main loop starts at line (5) until iterations are not 

reached or some condition is stopped. Using an iterative approach, the program handles each artificial worker ant in-

dividually. The operation begins in lines (6-27), identifies the best ant in the current population, makes random adjust-

ments to facilitate discovery, and employs problem-specific equations to determine positional changes. When an ant 

discovers a new location that is more suitable for its requirements than its previous location, it notifies its previous 

location, and updates it, while also keeping track of its position change. If the ant's fitness level does not improve in 

response to the new circumstances, it will remain in its previous position in equations (2), (3), (4), (5), and (6) in line (9), 

to find the best individuals for search agent from the line (10-16), apply conditions to find the global best worker ant 

using equations (2,3,4, and 6), then calculate the tendency and previous tendency for dw using equations (9), and (10) 

to compute a new search agent using equation (2) at line (19). If the result of the new best worker ant fitness is dominated 

by the current result of the worker ant fitness (cost function), accept the new result and save the dw for potential reuse 
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for the next iterations. If it is not found, use the previous dw for the previous position instead of the new result and 

maintain the current result for the search agent in the hope to find better results in the next iterations this is found in 

lines (20 -23). A polynomial mutation technique is used to diversify the search procedure in line (25). Ants whose loca-

tions are non-dominated are kept in the archive, as are all non-dominated solutions in line (26). Following the preceding 

procedure, the values of the hypercube grid indices are updated in line (27). Its primary objective is to discover optimal 

solutions to problems involving multi-objective optimization. More explanations are given in Figure 2. In the section 

(Results and Discussion). 

 

3.4 Multi-objective Ant Nesting Algorithm Time and Space Complexity 

 

The computational complexity of MOANA, in both time and space, reflects its scalability and efficiency in handling 

complex multi-objective optimization tasks. MOANA’s time complexity per iteration depends on the population size 

(n), the dimensionality of the problem (d), the cost of evaluating the objective function (CF), and additional operations 

such as deposition weights (dw) and polynomial mutation (pm), which enhance exploration and exploitation. For each 

iteration, the time complexity can be expressed as O (n * d + n * CF + n * dw + n * pm), meaning the total time complexity 

is proportional to the number of iterations (T), resulting in O (T* (n * d + n * CF + n * dw + n * pm)). This ensures that 

MOANA’s time complexity grows linearly with the population size and the number of iterations, making it more scal-

able compared to algorithms like NSGA-III, which can have quadratic complexity of O(n²) in some cases. 

 

Regarding space complexity, MOANA efficiently manages memory usage by storing only the current population and 

the deposition weights that are reused in the next iteration. The space complexity can be represented as O(n*d + dw*d), 

where n*d accounts for the decision variables in the current population, and dw*d represents the space required for 

storing the deposition weights. Since the deposition weights are relatively small compared to the population size, the 

space complexity remains manageable throughout the iterations. This allows MOANA to maintain an efficient and 

scalable memory profile, ensuring that the algorithm can handle large-scale optimization problems without significant 

memory overhead.  Compared to other algorithms like MOFDO, which also has linear time complexity (O(p*n + p*CF)), 

MOANA’s complexity is slightly higher due to the additional operations for deposition weights and polynomial muta-

tion. However, it remains less complex than algorithms like MOPSO and MODA, which involve more computational 

overhead due to the need to calculate global and local bests or various weight parameters. 

 

MOFDO, for example, has a simpler calculation mechanism, requiring only the calculation of a random number and 

fitness weight for each agent. In contrast, MOPSO requires additional parameters like global best, agent best, and ran-

dom search factors (C1, C2, R1, R2). MODA involves even more complex calculations, such as attraction, distraction, 

alignment, cohesion, and separation weights, which depend on the values of other agents, leading to cumulative com-

putations. NSGA-III, with its O (ng * no * np²) complexity, is more computationally demanding than MOFDO, MOANA, 

and other linear complexity algorithms. This makes MOANA’s linear complexity in both time and space a highly scal-

able algorithm, capable of efficiently solving large-scale, real-world optimization problems without incurring excessive 

computational costs. 

 

4. The Results and Discussion  

Two discrete classes have been chosen for multi-objective test functions to assess the effectiveness of the MOANA 

algorithm. The traditional ZDT benchmarks[30], as well as the 2019 CEC Multi-modal Multi-Objective benchmarks 

[33].Results of MOANA approach put to comparison with new multi-objective dragonfly algorithms MODA [22], multi-

objective fitness-dependent optimizer MOFDO, MOPSO, and NSGA-III [24], and other contemporary approaches.  
The ZDT Benchmark Functions (ZDT1 through ZDT6) are widely recognized for evaluating multi-objective evolu-

tionary algorithms (MOEAs). These datasets present various challenges, including different Pareto front shapes convex, 

non-convex, and discontinuous. The ZDT functions primarily focus on two-objective optimization problems, enabling 

algorithms to be assessed on their ability to converge to the Pareto front while maintaining diversity in solutions. These 

benchmarks were chosen due to their simplicity, offering valuable insights into MOANA’s core behaviors, particularly 

its ability to balance exploration and exploitation in standard optimization settings. In contrast, the CEC-2019 Multi-

modal Multi-objective Benchmark represents a more complex and demanding set of multi-objective test functions. 

These benchmarks simulate real-world challenges, with multiple local Pareto fronts and varying decision spaces. Each 

function in the CEC-2019 series differs in terms of the number of objectives, constraints, and the complexity of the 
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decision space. This makes the dataset particularly suited for evaluating MOANA’s capability to handle intricate, multi-

modal landscapes. Some functions feature both global and local Pareto sets and their complexity scales with the number 

of decision variables and objectives. This makes the CEC-2019 dataset an ideal choice for testing MOANA's ability to 

navigate highly complex and multi-modal optimization tasks, further showcasing its robustness and applicability to 

real-world problems. 

 

4.1 Results of the Classical ZDT Benchmarks 

The comparison of key parameter settings across the five algorithms—MOANA, MOFDO, MOPSO, NSGA-III, and 

MODA provides insights into the distinct configurations used for each. Table 1 highlights important aspects such as 

iterations, population size, repository size, crossover rates, grids per dimension, mutation rates, inflation rates, and the 

range of search parameters. This benchmark analysis, based on the ZDT1 through ZDT6 functions (refer to "Appendix 

B") See Table 9, which displays the mathematical definition, presents a challenging multi-objective optimization 

scenario, allowing for a thorough comparison of algorithm performance as seen in Table 2. The parameter settings for 

each algorithm are aligned with their original papers to ensure fairness in performance evaluation. After 100 iterations 

for each algorithm, with 500 agents in the population and repository, the results demonstrate the effectiveness of each 

approach, with MOANA's outcomes compared to other widely recognized algorithms[39] [22, 24, 43].The Figure 8 

described  The multi-objective algorithms achieved the best Pareto optimal front across several ZDT test functions. Can see Figure 

8 in ("Appendix C") 

 

 Table 2. Parameter Settings for MOANA, MOFDO, MOPSO, NSGA-III, and MODA. 

 

Parameter 

Algorithms 

MOANA MOFDO MOPSO NSGA-III MODA 

Iterations 100 100 100 100 200 

Population Size 500 500 500 500 500 

Repository Size 500 500 500 500 500 

Crossover NaN NaN NaN 0.5 NaN 

Number of 

Grids per Di-

mension 

7 14 7 10 NaN 

    Polynomial 

Mutation Rate 

2.0 1/0.5 

 

2.0 

 

0.02 1/0.5 

Inflation rate 0.1 0.1 0.2 0.1 0.1 

Rang  [-1,1] [-1,1] [0,1] [-1,1] [-1,1] 
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Figure 2. A Flowchart shows how MOANA works programmatically. The specified parameter configurations for 

MOANA are listed below: -The polynomial mutation rate is: 0.5 -The number of grids per dimension is 7- Remove 

Element is 2. - Best Ants Choice Element is: 2. 

As evidence of performance of MOANA, the Figure 3. illustrates the solution landscape of the ZDT3 test function, 

demonstrating MOANA's effectiveness. In part (a), it can be observed that, initially, at iteration 5, only 387 Pareto front 

solutions are randomly distributed. However, as the iterations progress, as seen in parts (b), (c), and (d), MOANA 

successfully increases the number of solutions and refines their distribution towards the true Pareto front. The algo-

rithm’s progression from exploration to exploitation is evident in the increased convergence and density of solutions 

along the Pareto front. By the final iterations, the solutions effectively align with the Pareto front, confirming MOANA's 

strong performance in navigating the search space and optimizing multi-objective problems. 

 

 
(a) 

  

 
(b) 

 
(c) 

 
(d) 
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The inverse generational distance (IGD), which compares a solution set to a known Pareto front to evaluate its quality, 

is defined by the equation (12). In order to perform this comparison, the spatial separation between each component of 

the solution set and the Pareto front that the algorithm produces is quantified, as explained in the reference [44].  

 

 

 

 

The distance between ith real Pareto optimal solution in the collection of references and the nearest Pareto optimal 

solutions that have been discovered is known as the Euclidean distance, or di. The variable n denotes the aggregate 

count of genuine Pareto optimum options. When the value of IGD (Indicator for Generational Distance) is 0, It shows 

that every element that was produced is positioned exactly on the problem's actual Pareto front. The IGD was deter-

mined by collecting the results from individual runs for each method. Table 3 shows the calculated standard deviation, 

mean, worst, and best values of IGD.  

 

To show the corresponding rankings of each algorithm in this context, ranking tables are employed. Table 4 demon-

strates that MOANA achieved the top position in ZDT1, with a rank of 1. In ZDT2, MOANA also achieved a rank of 3, 

securing the third position. The cumulative total of all the ranks that a certain algorithm produces is known as the total 

rank. Making use of a ranking table is a straightforward way to demonstrate an algorithm's superiority over a set of 

rival algorithms. In addition, the Friedman test was utilized to ascertain the statistical significance of the data (refer to 

section 4.3.2). The ranking table was used for each test function. In Table4 illustrates, MOANA generally performs better 

than MOFDO, MOPSO MODA, and NSGA-III; yet it offers comparative outcomes and receives an overall ranking of 8.  

Table 3. Results of the Traditional ZDT Benchmark 

Figure 3. Demonstrate MOANA's process of solving ZDT3 test function by gradually improving an initially random solution 

until it reaches Pareto front optimality: (a)MOANA with 5 iterations, discovered 387 PFs;(b) MOANA with 20 iterations dis-

covered 500 PFs;(d) MOANA with93 iterations, found 500 PFs;(c) MOANA with 200 iterations, found 500 PFs. 

IGD =
√∑  𝑛

𝑖=1 𝑑𝑖
2

𝑛
 (12) 

Functions Algorithms IGD AVG IGD STD IGD best IGD worst 

 

ZDT1 

 

 

MOANA 0.0507 0.036041 0.023871 0.21846 

MOFDO 0.06758 0.030911 0.0018 2.61533 

MOPSO 0.56374 0.12618 0.32002 0.87601 

NSGA-III 15.0549 12.2435 0 32.3331 

 0.07653 0.012071 0.0420 0.59398 

 

ZDT2 

MOANA 0.016884 0.003756 0.009299 0.028032 

MOFDO 0.03511 0.00404 0.0207 0.0515 

 MOPSO 0.33476 0.062539 0.20151 0.41251 

 NSGA-III 0.54915 0.0548 0.0208 0.19889 

 MODA  0.00292 0.00026 0.0002 0.0116 

 

ZDT3 

 

MOANA 0.051742 0.007879 0.030235 0.084617 

MOFDO 0.06676 0.023913 0.0014 2.2206 

MOPSO 0.93728 0.10293 0.60643 1.3493 

NSGA-III 16.2445 1.3133 0.83447 6.393 

MODA  0.07653 0.014411 0.0401 0.8267 

 

ZDT4 

MOANA 0.00145 0.011514 0 0.11454 

MOFDO 0.6802 0.352945 0.2679 1.6776 

MOPSO 1.2544 0.41974 0.28887 4.0945 

NSGA-III 173.4628 2.2739 32.288 39.9264 

MODA  64.9628 2.847807 51.742 500.93 
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Table4. The rankings table displays Table 3's algorithmic performances. 

 

 

 

 

 

 

 

 

 

 

 

4.2 Results of CEC 2019 Multimodal multi-objective benchmarks 

 According to [45], the mathematical description of the twelve CEC-2019 Multi-modal Multi-objective (MMO) bench-

marks is provided in Table 10 (refer to "Appendix A"). This benchmark was selected because its test functions are more 

challenging compared to the ZDT benchmark used in MOANA. These functions present various characteristics, includ-

ing issues related to varying PS and PF forms, both local and global PSs, as well as scalability in terms of the number of 

PSs, decision variables, and objectives the Figure 9. Described the performance of MOANA across several MMF 

CEC2019 test functions is illustrated. And the Figure 10. Described how the multi-objective algorithms achieved the 

best Pareto optimal front across several MMF CEC2019 test functions. Can see Figure 9 and Figure 10 in ("Appendix 

C"). 

As evidence of performance of MOANA, the Figure 4. illustrates the MMF4 benchmark solution landscape. In part (a), 

the initial random distribution of 360 Pareto front (PF) solutions is shown. As the iterations progress, as depicted in 

parts (b), (c), and (d), the number of (PF) solutions increases and becomes more evenly dispersed across the Pareto front. 

This demonstrates MOANA's ability to effectively explore the solution space and converge toward an optimal set of 

solutions. The increasing density and even distribution of solutions across the Pareto front reflect MOANA’s adaptive 

capability in maintaining diversity while efficiently guiding the search process toward global optima. Also showcases 

MOANA's effectiveness in exploring and exploiting the search space, particularly in managing complex, multi-modal 

optimization landscapes like MMF4, where multiple local Pareto fronts exist. MOANA's adaptive strategies allow it to 

discover a diverse set of solutions and successfully converge to the global Pareto front with each iteration. The Figure 4 

also highlight how MOANA balances exploration (diversifying solutions) and exploitation (focusing on optimal re-

gions) throughout the optimization process, demonstrating its ability to efficiently handle multi-objective optimization 

challenges. This balance contributes to MOANA’s superior performance in navigating complex search spaces and find-

ing optimal solutions across multiple objectives. 

 

 

 

ZDT6 

MOANA 0.39318 0.16227 0.047704 0.90018 

MOFDO 0.35853 0.161795 0.1221 1.9125 

MOPSO 2.353 1.6138 0.49179 6.1428 

NSGA-III 6.08E+20 6.95E+18 0 6.08E+20 

 MODA   0.11349  0.018270  0.0142  2.3938 

 

Functions MOANA 

ranking 

MOFDO 

ranking 

MPOSO 

ranking 

NSGA-III 

ranking 

MODA 

ranking 

ZDT1 1 2 4 5 3 

ZDT2 2 3 5 4 1 

ZDT3 1 2 4 5 3 

ZDT4 1 2 3 4 5 

ZDT6 3 2 5 5 1 

Total sum 8 11 20 23 13 
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Table 5 provides a comparison of MOANA’s results to those of MOFDO, MOPSO, NSGA-III, and MODA. 

 MOANA, ranked first and typically producing better outcomes, is summarized in Table 6, which presents the ranking 

system used to explain the results. MOFDO, MODA, MOPSO, and NSGA-III follow in second and third place, respec-

tively. 

 

Table5. The Results of Multi-Modal, Multi-Objective CEC 2019 Benchmarks 

 
(a) 

 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 

Figure 4. Demonstrate MOANA's process of solving MMF-4 test function by iteratively improving an initially random solution 

until reaching Pareto front optimality:(a) MOANA with 4 iterations, discovered 312 PFs ;(b) MOANA with 10 iterations, dis-

covered 500 PFs ;(c) MOANA with 30 iterations, discovered 500 PFs;(d) MOANA with 167 iterations, discovered 500 PFs. 

Function Algorithm IGD AVG IGD STD IGD best 

 

MMF1 

MOANA 0.10456 0.030503 0.076809 

MOFDO 0.18401921 0.0454458 0.0882267 
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  MOPSO 0.42858 0.14264 0.28265 

NSGA-III 7.0694 1.1494 0.018821 

MODA  0.87703300 0.5302916 0.3618665 

MMF2 

  

MOANA 0.046517 0.081073 0.021128 

MOFDO 0.09108902 0.0237087 0.0377645 

MOPSO 0.47075 0.17432 0.24579 

NSGA-III 5.95E+52 3.33E+53 0 

MODA  0.41152959 0.3041183 0.0883137 

MMF3 

  

MOANA 0.051916 0.028335 0.035151 

MOFDO 0.09121177 0.0184429 0.0412612 

MOPSO 0.55775 0.098921 0.34067 

NSGA-III 1.71E+53 1.71E+54 0 

MODA  0.38999723 0.3195349 0.0720422 

MMF4 MOANA 0.025601 0.0067606 0.019853 

MOFDO 0.08195533 0.0340485 0.0453016 

MOPSO 0.54681 0.12362 0.42527 

NSGA-III 11.2789 2.2351 0.014653 

MODA  0.00781723 0.0038766 0.0003086 

MMF5 MOANA 0.046148 0.016132 0.03013 

MOFDO 0.08166825 0.0203041 0.0410373 

MOPSO 0.4227 0.10278 0.25442 

NSGA-III 7.4504 1.2148 0.028032 

MODA  0.20697935 0.1068910 0.1177007 

MMF6 

  

MOANA 0.025749 0.016851 0.015363 

MOFDO 0.06319825 0.0052717 0.0435369 

MOPSO 0.36697 0.10461 0.26926 

NSGA-III 6.3483 1.1569 0.002903 

 MODA 6.20722767  7.0529532  3.8844812  

MMF7 

  

MOANA 0.10082 0.017286 0.052247 

MOFDO 0.14853951 0.0219769 0.0870897 

MOPSO 0.26553 0.11412 0.13047 

NSGA-III 5.1419 0.87081 0.008045 

 MODA 0.36139133  0.1036987  0.1322042  

MMF8 MOANA 0.046957 0.074993 0.022752 

MOFDO 0.15550447 0.0869989 0.034329 

MOPSO 0.24122 0.056853 0.12072 

NSGA-III 0.01038634 0.0032172 0.0041821 

MODA 0.08058735  0.2652865  0.0056401  

MMF9 MOANA 0.19218 0.046339 0.13157 

MOFDO 0.47321267 0.1219659 0.3404164 

MOPSO 1.33275589 0.142753 0.7792982 

NSGA-III 1.06E+00 8.89E-02 7.68E-05 

MODA 0.05060995  0.0274896  0.0051946  

MMF10 

  

MOANA 0.36877 0.15684 0.16607 

MOFDO 0.44207841 0.1277887 0.3104489 

MOPSO 1.00054897 0.1542964 0.7005662 

NSGA-III 3.89641261 4.6634273 0.002874 

 MODA  0.09017605  0.0385574  0.0039308  

MMF11 MOANA 0.39502 0.16976 0.2534 
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Table6. The rankings table displays Table 5's algorithmic performances 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this section, expanded the discussion on why MOANA performs well on some benchmarks, such as MMF4, while 

facing challenges on others, like MMF6, supported by statistical evidence from the Wilcoxon rank-sum test. 

 

MMF4: Superior Performance of MOANA 

MOANA consistently outperforms other algorithms, including MOFDO, MOPSO, and NSGA-III, on MMF4. This strong 

performance is primarily due to MOANA's adaptive balance between exploration and exploitation. The use of the dep-

osition weight parameter allows the algorithm to effectively explore both dense and sparse regions of the search space, 

maintaining diversity while converging toward the Pareto front. Furthermore, the polynomial mutation mechanism 

plays a key role in helping MOANA escape local optima, which is particularly beneficial in multi-modal functions like 

MMF4, where multiple Pareto fronts exist. The statistical analysis confirms this advantage, with extremely low p-values 

(e.g., p = 6.654e-8), highlighting the algorithm’s significant superiority. 

 

MMF6: Identifying Areas for Improvement 

While MOANA generally shows strong results, its performance on MMF6 indicates room for improvement. MMF6 

presents a complex landscape with numerous local optima, and while MOANA competes effectively with other algo-

rithms, it doesn't dominate as clearly as it does in MMF4. The less pronounced difference in performance, especially 

compared to MODA, suggests that MOANA’s exploration strategy might not fully exploit the most promising regions 

in such rugged landscapes. Adjustments to the deposition weight and mutation strategy could enhance its ability to 

better navigate these challenging landscapes. The statistical analysis supports this observation, as the p-value (p = 

0.09609 against MOFDO) is statistically significant but not as low as in other cases, indicating that MOANA’s advantage 

is less substantial here. 

 

  MOFDO 0.09260275 0.0209854 0.0635536 

MOPSO 1.30789085 0.1622864 0.6847497 

NSGA-III 1.18058557 0.7034533 0.0034136 

 MODA 0.09291338  0.0515551  0.0042148  

MMF12 MOANA 0.034299 0.024017 0.019528 

MOFDO 0.08314653 0.0217281 0.0554114 

MOPSO 0.13651933 0.0237385 0.066709 

NSGA-III 0.35064339 0.1613096 0.3494061 

MODA 0.03661122  0.0119014  0.0035018  

Functions MOANA 

ranking 

MOFDO 

ranking 

MPOSO 

ranking 

NSGA-III 

ranking 

MODA 

ranking 

MMF1 1 2 3 5 4 

MMF2 1 2 4 5 3 

MMF3 1 2 4 5 3 

MMF4 2 3 4 5 1 

MMF5 1 3 4 5 3 

MMF6 1 2 3 4 5 

MMF7 1 2 4 5 4 

MMF8 3 4 2 1 5 

MMF9 2 3 4 5 1 

MMF10 2 3 4 5 1 

MMF11 3 1 5 4 2 

MMF12 1 3 4 5 2 

Total sum 19 30 41 54 34 
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The Wilcoxon rank-sum test (in section 4.3.1) reinforces these findings, confirming that MOANA performs significantly 

better on benchmarks like MMF4, where its adaptive mechanisms are most effective. However, in functions like MMF6, 

while MOANA still outperforms many algorithms, the statistical differences are less pronounced, pointing to areas for 

further algorithmic refinement. 

4.3 The Statistical Analysis 

In this section, we present a detailed statistical analysis to evaluate the performance of the Multi-Objective Ant Nesting 

Algorithm (MOANA) in comparison to other well-established optimization algorithms, including MOFDO, MOPSO, 

NSGA-III, and MODA. Statistical tests are essential for ensuring the robustness of the comparative results, moving 

beyond basic performance metrics to establish the significance of the differences observed between these algorithms. 

 

The analysis applies non-parametric statistical tests, such as the Mann-Whitney U test, Wilcoxon rank-sum test, and 

Friedman test, which are appropriate for comparing performance across various problem instances, especially when 

the data distribution is not normal. We compute p-values, test statistics, and confidence intervals for each comparison 

to assess whether the observed performance differences between MOANA and the competing algorithms are statisti-

cally significant. This rigorous approach validates the results, ensuring that MOANA's performance advantages are not 

due to random variations but reflect genuine improvements in algorithmic efficiency and solution quality. 

 

The following subsections provide detailed insights into the statistical results, explaining their significance and how 

they relate to MOANA's effectiveness in solving multi-objective optimization problems. 

4.3.1 The Mann-Whitney U test and the Wilcoxon rank-sum 

The Wilcoxon rank-sum test demonstrates that MOANA consistently performs well across most ZDT and MMF func-

tions, significantly outperforming traditional algorithms like MOFDO, MOPSO, and NSGA-III in terms of convergence 

and diversity. However, in some cases, such as ZDT6 and MMF7, the differences are less pronounced, as shown in Table 

7 and Table 8. 

To verify whether the results in Tables 3 and 5 are statistically significant, the Wilcoxon rank-sum test was conducted 

to calculate the p-values comparing MOANA with other algorithms. As presented in Table 7 and Table 8, the majority 

of the results in Table 3 (ZDT benchmark results) and Table 5 (CEC 2019 benchmark results) are statistically significant, 

as the p-values are smaller than 0.05. 

 

Table 7. The Wilcoxon Rank-Sum Test (P-Value) For ZDT Benchmarks 

 

 

 

 

 

 

 

 

 

 

ZDT1: MOANA consistently performs better than all other algorithms, with very low p-values, indicating a statistically 

significant improvement. 

ZDT2: MOANA shows a strong advantage over MOPSO, NSGA-III, and MODA, but the difference with MOFDO is 

not statistically significant (p = 0.09322). 

ZDT3: MOANA performs well against MOFDO and MOPSO, but the differences with NSGA-III and MODA are less 

pronounced, as indicated by higher p-values. 

ZDT4: MOANA significantly outperforms all algorithms, including MOFDO, MOPSO, NSGA-III, and MODA. 

ZDT6: While MOANA performs significantly better than MOPSO and MODA, the differences with MOFDO and 

NSGA-III are not statistically significant. 

 

 

Functions MOANA 

Vs. 

MOFDO 

MOANA 

Vs. MPOSO 

MOANA 

Vs. 

NSGA-III 

MOANA 

Vs. 

MODA 

ZDT1 0.001641 0.0001172 0.00007057 0.000003239 

ZDT2 0.09322 8.061e-10 1.075e-9 1.863e-9 

ZDT3 1.863e-9 0.0008054 0.04338 0.4771 

ZDT4 0.0002201 0.04603 0.002782 8.451e-10 

ZDT6 0.4161 0.000006918 0.166 0.0008044 
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Table 8. The Wilcoxon Rank-Sum Test (P-Value) For Multi-Modal, Multi-Objective CEC 2019 Benchmarks 

 

MOANA performs significantly better than NSGA-III and MODA in most functions. For functions like MMF1, MMF2, 

MMF4, MMF5, and MMF6, MOANA shows significant improvements over all algorithms. 

However, for some functions like MMF3, MMF7, and MMF9, the differences between MOANA and MOFDO/MOPSO 

are not statistically significant. 

4.3.2 The results of the Friedman test  

The Friedman test demonstrated that the results were statistically significant. This test determines whether three or 

more related samples have substantial differences. It serves as the non-parametric equivalent of repeated measures 

analysis of variance. The Friedman test was used to assess the statistical significance of the findings presented in Table 

3 and Table 5. There are two hypotheses in the Friedman test: the null hypothesis asserts that there are no significant 

differences between dependent groups, while the alternative hypothesis suggests that a significant difference exists 

between the groups. Rather than using actual values, the Friedman test relies on the ranks of the data. The equation is 

used to compute the Friedman test as see in equation (13). 

 

 

 

To compute a Friedman test, one must establish the state decision rule by utilizing the supplied formula. (n) is the 

multiple test function s, (k) is the number of groups (i.e., the number of the compared algorithms), (R) represents the 

square root of the overall rank of every group, and (x2r) is the Chi-square statistic. Computed by summing the rank 

values from Tables 4 and 6. To determine the degree of freedom, it is necessary to deduct 1 from the total number of 

groups, which in this particular instance is 5. This calculation yields a value of df = k - 1 = 5 - 1 = 4. To get the decision 

rule state for a given significance level alpha, we can consult the Chi-squared distribution table. In this case, the degree 

of freedom (df) is 4, and the corresponding value is 9.488 for a p-value less than 0.05 [30]. The computation of the 

Friedman test for the combined Table 4 and Table 6 will be conducted. The overall rankings for the algorithms R are as 

follows: MOANA = 27 MOFDO = 41, MODA = 47, MOPSO = 61, and NSGA-III = 77. The value of n is 17, which corre-

sponds to the number of test function results present in both Tables 2 and 4. Additionally, the value of k is: 

 

Functions MOANA 

Vs.  

MOFDO 

MOANA 

Vs. MPOSO 

MOANA 

Vs.  

NSGA-III 

MOANA 

Vs.  

MODA  

MMF1 0.006195 0.01853 1.863e-9 0.00004408 

MMF2 0.0002833 0.03655 1.365e-10 0.0002091 

MMF3 0.3494 0.144 8.986e-8 0.00003031 

MMF4 0.02963 0.01846 9.313e-10 6.654e-8 

MMF5 0.000002722 0.02304 0.01641 0.005489 

MMF6 0.09609 0.00001273 0.00154 0.0000158 

MMF7 0.3858 0.2227 0.02114 0.07135 

MMF8 0.0001987 0.0001507 0.03059 3.749e-7 

MMF9 0.09092 0.004944 0.09069 0.1125 

MMF10 0.1214 0.6552 0.001532 0.001121 

MMF11 0.06753 0.0001608 0.6168 0.4277 

MMF12 0.3265 0.418 0.01367 0.248 

𝑥𝑟
2 =

12

𝑛𝑘(𝑘 + 1)
∑𝑅2 − 3𝑛(𝑘 + 1)     (13) 

𝑥𝑟
2 =

12

17 ∗ 5(5 + 1)
∑(272 + 412 + 612 + 472 + 772) − 3 ∗ 17 ∗ (5 + 1) 
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The (𝑥𝑟
2 = 24.8.627) and p-value is(7.45 ∗ 10−205). Null hypothesis is rejected by Friedman test, indicating that the data 

are statistically significant with a p-value of (<0.5). A significantly low p-value indicates the presence of substantial 

differences between the groups. It provides strong evidence against the null hypothesis and establishes a precise statis-

tical basis for the observed effects or differences by proving that observed differences are not a result of the random 

variation. This strengthens the case for the existence of significant and genuine phenomena in the community under 

investigation. 

4.4 Engineering design application 

The application of MOANA in optimizing the design problem of a welded beam is showcased, followed by a thorough 

analysis of the problem specifications and the findings obtained. The welded beam design problem is a well-known 

engineering challenge that has been extensively studied by researchers as a benchmark for evaluating various multi-

objective algorithms[46],[47]. Figure5. illustrates this problem, which involves four real-valued variables: x = (b, t, l, h). 

In this context, b represents the horizontal dimension of the beam, t denotes the vertical dimension, l indicates the welds' 

length, and h refers to the welds' thickness. P represents the amount of load applied to the beam. This design problem 

involves a bi-objective optimization to be minimized, as shown in Equation (14). The two objectives are conflicting in 

nature: the first objective is to minimize the cost of fabrication (measured on the X-axis in currency), and the second 

objective is to reduce the end deflection of the welded beam (measured on the Y-axis in meters). The goal is to optimize 

these objectives simultaneously. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (14) shows that there are four constraints in this situation that must be taken into account. A design that is not 

satisfactory will arise from exceeding these limitations. The primary restriction is to keep the shear stress generated at 

support site of the beam below the permitted threshold of (13,600psi). The second restriction is to keep the normal stress 

generated at the support point of beam below the material's allowable yield strength of 30,000 psi. The final restriction is 

to make sure that, taking into account practical concerns, the beam's width and the weld's width match. 

 

 

 

Figure 5. The problem of designing a welded beam 
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Constraint 4 ensures that the beam's buckling load, 𝑝𝑐(�⃗�)exceeds the applied force, F, which is precisely 6000 pounds. 

The shear stress 𝑇(�⃗�) and the buckling load ɤ(�⃗�) can be estimated by using Equations (15) & (16) respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The design problem of the welded beam is optimized with the MOANA approach. The technique is utilized for solving 

such engineering design problems for a total of 100 iterations, employing 100 search agents. An achievement of size 100 

is used to store the Pareto front solutions (Pfs). As shown in Figure (6). the obtained Pfs are split equally between the 

two goals of Deflection and Cost. Furthermore, the majority of these Pfs are situated directly on or close to the genuine 

Pfs that are documented in the literature[48]. Furthermore, MOANA offers a diverse range of viable options for deci-

sion-makers to select from. The extensive selection and efficient distribution of the achieved Pfs demonstrates the ad-

vanced proficiency of MOANA in effectively addressing real-world engineering design challenges. 

 

 Minimize 𝑓1(�⃗�) = 1.10471ℎ2𝑙 + 0.04811𝑡𝑏(14.0 + 𝑙), 

 Minimize 𝑓2(�⃗�) =
2.1952

𝑡3𝑏
,

 Subject to: 

𝑔1(�⃗�) ≡ 13,600 − 𝑇(�⃗�) ≥ 0,

𝑔2(�⃗�) ≡ 13,600 − 𝜎(�⃗�) ≥ 0,

𝑔3(�⃗�) ≡ 𝑏 − ℎ ≥ 0,

𝑔4(�⃗�) ≡ 𝑃𝑐(�⃗�) − 6000 ≥ 0,
0.125 ≤ ℎ, 𝑏 ≤ 5.0
0.1 ≤ 𝑙, 𝑡 ≤ 10.0                                                          (14)

 

 

𝑇(�⃗�) = √(𝑇′)2 + (𝑇′′)2 + (𝑙𝑇′𝑇′′)/√0.25(𝑙2 + (ℎ + 𝑡)2)

𝑇′ =
6000

√2ℎ𝑙

𝑇′′ =
6000(14 + 0.5𝑙)√0.25(𝑙2 + (ℎ + 𝑡)2)

2 {0.707 ℎ𝑙 (
𝑙2

12
+ 0.25(ℎ + 𝑡)2)}

ɤ(�⃗�) =
504000

𝑡2𝑏
                                                                          (15)

Pc (�⃗�) = 64746.022(1 − 0.0282346𝑡)𝑡𝑏3                             (16)
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The Pfs are saved in archives with a capacity of 100. Figure (7). demonstrates that the acquired Pfs are split equally 

between the two goals, namely Deflection and Cost are predominantly situated. Adjacent to or close to the verified Pfs 

documented in the literature [40].Regarding the rate at which MOANA discovers Pfs, it begins with 11 Pfs in the first 

iteration and then rapidly increases to 100 Pfs by the 31 iteration, as shown in Figure (7). This demonstrates how the 

algorithm effectively enhances several initial solutions towards achieving optimality, resulting in certain Pfs becoming 

non-dominated solutions intermittently. Consequently, they are eliminated from the archive. This phenomenon is evi-

dent in iterations 31-100 depicted in Figure 6, whereby the discovery rate of Pfs initiates with a modest quantity and 

progressively escalates until it attains the maximum capacity of the archive. MOANA consistently improves all solu-

tions, whether they are dominated or non-dominated, in each iteration. By possessing this attribute, MOANA is able to 

steer clear of localized solutions and finally attain optimality[49]. 

 

 
Figure 6. Results from MOANA for problems of designed welded beams 

 

Figure 7. Shows MOANA Pfs discovering rate 
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5. Discussion on the Limitations of MOANA 

Despite the promising performance of the Multi-Objective Ant Nesting Algorithm (MOANA), there are certain limita-

tions, particularly concerning scalability, computational complexity, and convergence speed when tackling highly com-

plex problems. 

 

1. Scalability:  

One of the primary challenges for MOANA is its scalability when applied to large-scale multi-objective 

optimization problems. As the number of objectives or decision variables increases, the computational 

resources required to maintain an extensive Pareto front and effectively explore the solution space grow 

significantly. The hypercube grid-based approach used by MOANA, while beneficial for maintaining 

solution diversity, can become computationally expensive in higher dimensions, leading to slower per-

formance as the problem size increases. 

 

2. Computational Complexity:  

The algorithm's complexity is directly influenced by the need to calculate and compare solutions to 

maintain the Pareto front. MOANA’s use of deposition weights, polynomial mutation, and grid parti-

tioning strategy, while effective in maintaining diversity and improving exploration, contribute to the 

overall computational burden. The complexity of these operations can make the algorithm slower com-

pared to other, more simplified multi-objective optimization algorithms. Moreover, MOANA’s adap-

tive mechanisms, such as adjusting deposition rates based on a solution’s position within the grid, re-

quire frequent recalculations and comparisons across solutions. This increases the computational load, 

particularly for problems with a large number of local Pareto fronts or highly rugged search spaces. 

 

3. Convergence Speed 

MOANA’s convergence speed can be slower on highly complex, multi-modal landscapes with numer-

ous local optima. While MOANA’s adaptive exploration-exploitation mechanism helps avoid local op-

tima in many cases, it might not fully exploit the most promising regions efficiently, leading to slower 

convergence compared to algorithms designed specifically for faster convergence, such as differential 

evolution or covariance matrix adaptation strategies. For problems where the global Pareto front is 

difficult to identify, MOANA may require a large number of iterations to adequately explore and con-

verge on the true Pareto-optimal solutions. This could result in longer runtimes, particularly in real-

world applications with strict time or resource constraints. 

 

6. Future Research Directions: 

To address the current limitations, future research could explore hybridizing MOANA with other metaheuristic 

approaches to enhance its scalability and convergence speed. Techniques such as parallel computing, adaptive 

population sizing, or incorporating surrogate models could help reduce the computational overhead and improve 

performance on large-scale and highly complex problems. Additionally, further tuning of parameters like deposition 

weight and mutation rates for specific problem types could lead to more efficient convergence in complex multi-modal 

landscapes. While MOANA has been applied to standard benchmark functions and real-world problems like welded 

beam design, there is significant potential for extending its application to large-scale, multi-objective optimization 

problems in engineering. These could include the design of pressure vessels, speed reducers, automotive side-impact 

protection systems, coil compression springs, and four-bar truss problems. Future work should also focus on extending 

MOANA to tackle higher-dimensional problems and integrating it with other optimization techniques to further 

enhance its performance. Applying MOANA to more diverse and complex real-world problems would validate its 

versatility and effectiveness across various domains, such as logistics, healthcare,  industrial design, supply chain 

management, transportation, and energy systems, and could offer valuable insights into its performance in practical 
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settings. This could lead to further refinements and enhancements, ultimately making MOANA a more robust solution 

for real-world, multi-objective optimization challenges. 

7. Conclusion 

This study introduced MOANA, a novel multi-objective optimization algorithm inspired by the ant nesting process and 

adapted from the single-objective ANA. By integrating topographical, historical, and situational knowledge, MOANA 

provides a robust, population-based meta-heuristic approach to solving complex optimization problems. Its 

performance was evaluated using both traditional ZDT benchmarks and the more challenging CEC 2019 multi-modal 

benchmark, where it was compared against MOPSO, MODA, NSGA-III, and MOFDO. MOANA consistently 

demonstrated superior performance in most cases and matched the results of other algorithms in others. The 

performance differences between MOANA and other algorithms were confirmed through rigorous statistical analysis, 

including the Wilcoxon rank-sum test and the Friedman test. These tests provided robust evidence that the observed 

improvements in MOANA’s results were statistically significant, especially in functions like ZDT1 and MMF4, where 

MOANA significantly outperformed the competing algorithms. The p-values and rankings tables in the results section 

further highlight MOANA’s effectiveness in balancing exploration and exploitation, allowing it to efficiently converge 

to the global Pareto front while maintaining diversity in the solution set. When applied to the welded beam design 

problem, MOANA effectively delivered diverse and evenly distributed Pareto optimal solutions, offering decision-

makers a broader range of options. MOANA's adaptive mechanisms, such as its use of the deposition weight (dw) 

parameter, polynomial mutation, and Hypercube grids for guide selection, were key to achieving rapid convergence 

while maintaining diversity, especially in complex landscapes like those in the CEC 2019 benchmark. 

However, MOANA has limitations, particularly in terms of computational complexity and scalability for larger, high-

dimensional problems. These challenges present opportunities for future research, such as optimizing MOANA’s 

parameters, enhancing learning mechanisms, and hybridizing it with other algorithms to improve its convergence 

speed and efficiency in large-scale applications. 
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Appendix A 

Table 9. ZDT benchmark Mathematical definition. 

 

Functions Mathematical definition 
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ZDT1 

𝑔(𝑥) = 1 + 9(∑𝑖=2
𝑛  𝑥𝑖)/(𝑛 − 1) 

𝐹1(𝑥) = 𝑥1 

𝐹2(𝑥) = 𝑔(𝑥)[1 − √𝑥1/𝑔(𝑥)]𝑥 ∈ [0,1] 

 

ZDT2 

𝑔(𝑥) = 1 + 9(∑𝑖=2
𝑛  𝑥𝑖)/(𝑛 − 1) 

𝐹1(𝑥) = 𝑥1 

𝐹2(𝑥) = 𝑔(𝑥)[1 − (𝑥1/𝑔(𝑥))
2]𝑥 ∈ [0,1] 

 

ZDT3 

𝑔(𝑥) = 1 + 9(∑𝑖=2
𝑛  𝑥𝑖)/(𝑛 − 1) 

𝐹1(𝑥) = 𝑥1 

𝐹2(𝑥) = 𝑔(𝑥)[1 − √𝑥1/𝑔(𝑥) − 𝑥1/𝑔(𝑥)sin (10𝜋𝑥1)]𝑥 ∈ [0,1]. 

 

ZDT4 

𝑔(𝑥) = 91 + ∑𝑖=2
𝑛  [𝑥𝑖

2 − 10cos (4𝜋𝑥𝑖)] 

𝐹1(𝑥) = 𝑥1 

𝐹2(𝑥) = 𝑔(𝑥)[1 − √𝑥1/𝑔(𝑥)]𝑥1 ∈ [0,1], 𝑥𝑖 ∈ [−5,5]𝑖 = 2,⋯ ,10. 

 

ZDT6 

𝑔(𝑥) = 1 + 9[(∑𝑖=2
𝑛  𝑥𝑖)/(𝑛 − 1)]

0.25 

𝐹1(𝑥) = 1 − exp (−4𝑥1)sin
6 (6𝜋𝑥1) 

𝐹2(𝑥) = 𝑔(𝑥)[1 − (𝑓1(𝑥)/𝑔(𝑥))
2]𝑥 ∈ [0,1] 

 

 

Appendix B 

Table 10. CEC 2019 multimodal multi-objective benchmark mathematical definition [37]. 

Functions Mathematical definitions Range 

MMF1 

 

{
𝑓
1
= |𝑥1 − 2|

𝑓
2
= 1 − √𝑥1 − 2 ∣+ 2(𝑥2 − sin (6𝜋|𝑥1 − 2| + 𝜋))

2 

 

 

𝑥1
∈ [1,3],  𝑥2
∈ [−1,1] 
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MMF2 

{
 
 
 
 

 
 
 
 

𝑓
1
= 𝑥1

𝑓
2
=

{
 
 
 

 
 
 1 −√𝑥1 + 2 (4(𝑥2 −√𝑥1) −

2

2 cos(
20(𝑥2 − √𝑥1)𝜋

√2
) + 2) ,  0 ≤ 𝑥2 ≤ 1

1 −√𝑥1 + 2 (4(𝑥2 − 1 −√𝑥1) −
2

cos (
20(𝑥2 − 1 − √𝑥1)

2
𝜋

√2
) + 2) , 1 < 𝑥2 ≤ 2

 

 

 

 

 

𝑥1
∈ [0,1],  𝑥2
∈ [0,2] 

MMF3 

 

{
 
 
 
 
 

 
 
 
 
 

𝑓
1
= 𝑥1

𝑓
2
=

{
 
 
 
 

 
 
 
 1 −√𝑥1 + 2 (4(𝑥2 −√𝑥1) −

2

2 cos(
20(𝑥2 − √𝑥1)𝜋

√2
) + 2)

,  0 ≤ 𝑥2 ≤ 0.5,0.5 < 𝑥2 < 1 0.25 < 𝑥1 ≤ 1

1 − √𝑥1 + 2 (4(𝑥2 − 0.5 −√𝑥1)
2

− cos (
20(𝑥2 − 0.5 − √𝑥1)

2
𝜋

√2
) + 2)

, 1 ≤ 𝑥2 ≤ 1.5,0 ≤ 𝑥1 < 0.25  0.5 < 𝑥2 < 1

 

 

𝑥1
∈ [0,1],  𝑥2
∈ [0,1.5] 

MMF4 

 

{

𝑓
1
= 𝑥1

𝑓
2
= {{

1 − 𝑥1
2
+ 2(𝑥2 − sin(𝜋|𝑥1|))

2
0 ≤ 𝑥2 < 1

1 − 𝑥1
2
+ 2(𝑥2 − 1 − sin(𝜋|𝑥1|))

2
1 ≤ 𝑥2 ≤ 2

 

 

 

𝑥1
∈ [−1,1], 𝑥2
∈ [0,2] 
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MMF 

5 

 

 

{

𝑓
1
= |𝑥1 − 2|

𝑓
2
= {

1 −√|𝑥1 − 2| + 2(𝑥2 − sin(6𝜋|𝑥1 − 2| + 𝜋))2 − 1 ≤ 𝑥2 ≤ 1

1 − √|𝑥1 − 2| + 2(𝑥2 − 2 − sin (6𝜋|𝑥1 − 2| + 𝜋))
2

1 < 𝑥2 ≤ 3

 

 

 

𝑥1
∈ [−1,3], 𝑥2
∈ [1,3] 

MMF6 

 

{

𝑓
1
= |𝑥1 − 1|

𝑓
2
= {

1 −√|𝑥1 − 2| + 2(𝑥2 − sin(6𝜋|𝑥1 − 2| + 𝜋))2 − 1 ≤ 𝑥2 ≤ 1

1 − √|𝑥1 − 2| + 2(𝑥2 − 1 − sin (6𝜋|𝑥1 − 2| + 𝜋))
2

1 < 𝑥2 ≤ 3

 

 

𝑥1
∈ [−1,3], 𝑥2
∈ [1,2] 

MMF 7 

 

{

𝑓
1
= |𝑥1 − 2|

𝑓
2
= {

1 −√|𝑥1 − 2| + {𝑥2 − [0.3|𝑥1 − 2|2 ⋅ cos (24𝜋|𝑥1 − 2|

 + 4𝜋) + 0.6|𝑥1 − 2|] ⋅ sin (6𝜋|𝑥1 − 2| + 𝜋)}2
 

 

𝑥1
∈ [1,3], 𝑥2
∈ [−1,1] 
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Figure 8. The multi-objective algorithms achieved the best Pareto optimal front across several ZDT test functions. 
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Figure 9.The preformance of MOANA achieved the best Pareto optimal across several MMF CEC2019 test functions. 
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