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The macroscopic behaviour of active matter arises from nonequilibrium microscopic processes.
In soft materials, active stresses typically drive macroscopic shape changes, which in turn alter the
geometry constraining the microscopic dynamics, leading to complex feedback effects. Although such
mechanochemical coupling is common in living matter and associated with biological functions such
as cell migration, division, and differentiation, the underlying principles are not well understood due
to a lack of minimal models that bridge the scales from the microscopic biochemical processes to the
macroscopic shape dynamics. To address this gap, we derive tractable coarse-grained equations from
microscopic dynamics for a class of mechanochemical systems, in which biochemical signal processing
is coupled to shape dynamics. Specifically, we consider molecular interactions at the surface of
biological cells that commonly drive cell-cell signaling and adhesion, and obtain a macroscopic
description of cells as signal-processing droplets that adaptively change their interfacial tensions.
We find a rich phenomenology, including multistability, symmetry-breaking, excitability, and self-
sustained shape oscillations, with the underlying critical points revealing universal characteristics of
such systems. Our tractable framework provides a paradigm for how soft active materials respond
to shape-dependent signals, and suggests novel modes of self-organisation at the collective scale.
These are explored further in our companion manuscript [1].

I. INTRODUCTION

Active materials exhibit behaviors such as stress gen-
eration, sustained oscillations, nonequilibrium phase
transitions, and spontaneous symmetry-breaking [2–5].
These phenomena result from changes of macroscopic
system states driven by microscopic chemical activity
[6, 7]. Living materials, in particular, remain far from
equilibrium through the continuous production, degra-
dation, and active transport of molecules, leading to spa-
tially varying concentration fields and dynamically evolv-
ing material properties [8].

By controlling the concentration and spatial distribu-
tion of adhesion molecules, molecular motors, cytoskele-
tal components, and their regulators, cells adapt their
mechanical properties—such as elasticity, viscosity, and
wettability—in response to changing environmental con-
ditions [9–11].

Mechanochemical feedback arises when these coarse-
grained material properties in turn control the chemi-
cal composition or spatial distribution of molecular con-
stituents [12–14]. For instance, mechanical stresses can
affect the synthesis of new molecules in cells [15]; active
hydrodynamic flows control the transport of cytoskele-
tal components and molecular motors [14, 16–18]; active
stresses lead to the disassembly of macro-molecular com-
plexes [19]. Moreover deformations and shape changes
can directly impact the microscopic dynamics by chang-
ing the domain on which these processes evolve [20–25].

Environmental signals are often detected through bio-
chemical reactions at the cell surface, for example via
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binding of external ligand molecules to receptors, which
change the bulk concentration of proteins by regulating
their production through gene transcription and trans-
lation [26, Chap. 15]. Such signaling interactions de-
pend on the geometry and duration of cell-cell contacts
in various contexts [27–30]. For example, when signaling
molecules bind to receptors at cell-cell or cell-substrate
interfaces, the resulting response can depend on the avail-
able contact area. Indeed, the strength of Delta-Notch
signaling interactions [31], in which membrane-bound
Delta ligands bind to Notch receptors, triggering the
transcriptional regulation of various target genes, has
been shown to correlate with the area of cell-cell con-
tacts in different experiments [29, 30, 32]. Moreover,
Notch signals often trigger changes in mechanical reg-
ulators, including cell-cell adhesion molecules, leading to
mechanochemical feedback loops [27], which coordinate
fate patterning in embryonic development, regeneration,
and homeostasis [33–37], and which have been success-
fully engineered synthetically [38].

Identifying the key physical principles of
mechanochemical self-organization presents a chal-
lenge, because the relevant processes are coupled across
different temporal and spatial scales. To bridge the
gap between the microscopic molecular interactions
and the macroscopic shape and state dynamics in
signal-processing active matter, we take advantage
of the time-scale separation that arises generically
when biochemical signals trigger adaptive responses
through transcriptional regulation [26, Chap. 15]. These
responses are controlled by molecular production and
decay processes which evolve on a slow timescale (from
10min to 1 h or longer [39, 40]) compared to the typical
speed of cell-shape changes (<1min [41, 42]). Specifi-
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cally, from a detailed biophysical model of Delta-Notch
signaling and adaptive cell-cell adhesion, we derive a
minimal set of macroscopic equations, which represent
cells as signal-processing droplets with adaptive interfa-
cial tensions. We find that the coupling between active
mechanics and biochemical signaling gives rise to dy-
namical phenomena such as bistability, excitability, and
tunable oscillations of droplet shapes and internal states.
By identifying the underlying codimension-1 and -2
bifurcations, we reveal universal macroscopic character-
istics of such mechanochemical systems. Our companion
manuscript extends the macroscopic framework to
collective droplet configurations and a broader range of
signaling interactions, and contains an application to
experimental data from zebrafish embyros [1].

II. MICROSCOPIC DYNAMICS OF ADHESION
AND SIGNALING

In the following, we derive equations for the dynamics
of molecules that can mediate (i) adhesion at contact
surfaces, and (ii) the exchange of chemical signals, in the
bulk Ω and at the surface Γ of biological cells [Fig. 1],
starting from general arguments.

A. Reaction-diffusion equations with surface-bulk
coupling

We consider continuity equations for the particle den-
sities of these molecules within the bulk c and at the
surface m of the form [44]

∂tc = Dc∇2c+Rc (1)

∂tm = Dm∇2m+Rm (2)

in which we consider a diffusive flux with coefficients
Dc, Dm in three and two dimensions respectively, and re-
action terms Rc and Rm. We do not consider convective
flows or other active transport processes here. Bulk and
surface densities are coupled by the boundary condition

−Dc(n · ∇) c|Γ = j (3)

in which j is the flux between bulk and surface and n is
the normal vector to the surface pointing outwards. A
simple form of this flux is given by [30, 45]

j = konc|Γ − koffm (4)

with kon setting the rate with which molecules bind to
the surface and koff the rate with which they are released
from the surface into the bulk. Reactions in the bulk
follow [46]

Rc = kp − kdc (5)

with kp describing an active production of molecules (e.g.
due to protein translation in cells) and kd their rate of

decay (protein degradation). The bulk production of
molecules drives the system out of thermodynamic equi-
librium. For the surface reactions Rm, we consider differ-
ent molecular processes governing adhesion and contact-
based signaling, as specified in the following sections.

Averaging Eq. (1) over the bulk’s volume V and us-
ing Eq. (3) and (5) yields the dynamic equation for the
average bulk concentration ⟨c⟩

d⟨c⟩
dt

= kp − kd⟨c⟩ −
1

V

∫
Γ

jdA. (6)

We define the steady state average density in the absence
of boundary flux as the reference density c0 = kp/kd, and
defining m0 = konc

0/koff permits introducing normalized
particle densities c/c0 and m/m0.

With diffusion timescale τD = V 2/3/Dc and reaction
timescales τR = 1/kd and τon = V 1/3/kon, Eq. (1) and
Eq. (3) with time rescaled in units of τ = t/τR read

τD
τR

∂τ c

c0
= V 2/3∇2 c

c0
+

τD
τR

(
1− c

c0

)
, (7)

(n · ∇)
c

c0

∣∣∣
Γ
=

τD
τonV 1/3

( m

m0
− c

c0

)
. (8)

Inside a cell, a typical diffusion constant for a monomeric
protein is about 10µm2 s−1, i.e. it takes roughly 10 sec-
onds for a protein to traverse a eukaryotic cell [40]. Most
biochemical reactions are catalyzed by enzymes and oc-
cur within less than a second [39], however transcription
and translation, i.e. the synthesis of new proteins, and
protein degradation take minutes to hours and can vary
greatly between different proteins [39, 47]. This work
focuses on the long time scale dynamics dominated by
such production and decay processes, thus, we consider
the limit in which bulk diffusion is much faster than the
reaction kinetics, i.e. τD ≪ τR and τD ≪ τon. In this
limit, the boundary condition Eq. (8) is reflective and
Eq. (7) becomes a Laplace equation that is solved by
a uniform concentration set by the solution of Eq. (6)
(shadow limit [48]).

The surface of a cell, which is in contact with another
cell or a substrate, can be separated into the domain of
the contact interface Γc and the free surface Γf [Fig. 1(a)].
At the free surface, molecules can be exchanged with
the bulk, but interactions between adhesion or signal-
ing molecules are restricted to the contact interface. The
reaction term at the free surface is therefore Rm|Γf

= j.

We assume in the following that the contact line sep-
arating the two surfaces forms a diffusive barrier, i.e.
that no molecules can diffuse laterally between the sur-
faces. This assumption substantially simplifies our cal-
culations, and indeed diffusion barriers based on protein
structures associated with the membrane, the lipid com-
position or extreme curvatures—as given at the contact
line—have been found to impede diffusive transport on
cellular membranes [49, 50]. The boundary conditions
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FIG. 1. Microscopic interactions underlying adhesion and signaling. (a-b) Schematics of (a) a cell adhering to a substrate,
and (b) a cell pair with a shared interface, with fixed volumes V, V1,2 and uniform interfacial tensions γc, γm, γf,1,2 conjugate
to interfacial areas Ac, Am, Af,1,2. Fluorescence microscopy images show (a) a 3T3 fibroblast on a micropatterned substrate
(Appendix F) and (b) a pair of zebrafish sensory cells exchanging Notch signals across their contact surface (adapted from
[36]). Scale bars: 5 µm. (c-d) Adhesion molecules (N, blue) are exchanged between bulk and surface and form complexes
at the cell-substrate (c) or across the cell-cell interface (d), which reduce the surface energy. The rate of adhesion molecule
production due to transcriptional regulation depends on the regulator concentration cU (red); decay rates are constant. (e-f)
Contact-dependent signals are received from a ligand-coated substrate (e) or exchanged at the cell-cell contact (f). Receptor
(R, gray) and ligand (L, green) molecules bind across the interface and form receptor-ligand complexes (RL). In the single cell
(e), receptors are produced in the bulk, exchanged with the surface and bind to substrate-bound ligands, while in cell pairs (f),
both receptors and ligands bind and unbind from the cell-cell interface. Receptor-ligand complexes are cleaved irreversibly [43],
which releases a signaling molecule (S, gray) into the bulk. Regulator molecules (U, red) are produced with a rate depending on
the bulk concentration of signal molecules, and in turn determine the production rate of new ligands. Substrate-bound ligand
molecules are released upon the cleavage event and can bind a new receptor, while in cell pairs, the remaining part of the RL
complex is degraded after cleavage [43]. Here c and m denote bulk and surface concentrations respectively, and k denote the
kinetic rates of the reactions.

for the surface densities on the two domains then are

(n · ∇)m|∂Γf
= 0 (9)

(n · ∇)m|∂Γc
= 0 (10)

in which ∂Γf , ∂Γc denote the contact line. From Eqs. (2)
follows at steady state j|Γf

= 0 and the uniform steady
state bulk concentration

c =
kp
kd

− 1

kdV

∫
Γc

jdA (11)

only depends on processes in the bulk and at the contact
site Γc.

In the following sections, we introduce the reaction
terms and corresponding boundary fluxes for the adhe-
sion and signaling dynamics at the contact site and com-
pute the steady state bulk and surface densities that ful-
fill Eqs. (2), (11), and boundary condition (10). Lateral
diffusion coefficients of proteins on lipid membranes are
variable and on the order of 0.01–10 µm2 s−1 [30, 51–53],
allowing density fields to acquire their steady state within
seconds over micrometer length-scales, while equilibra-
tion takes substantially longer in larger systems, such as
synthetic biomimetic droplets [54].
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B. Modulation of interfacial tensions by adhesion

[Chap. 19] Similar problems are discussed in [55–59].

1. Tension at the contact interface of a droplet wetting a
solid substrate

We first derive the adaptive adhesion term for a contact
surface between a fluid droplet and a solid substrate, to
which adhesion molecules can bind [Fig. 1(a)]. A mass-
action based reaction term for the surface concentration
Eq. (2) of adhesion molecules reads

RmN
= kNon(m

max
N −mN)cN − kNoffmN (12)

with mmax
N the density of available binding sites at the

contact. The flux coupling bulk and contact surface is
jN = RmN

and adhesion molecules bound to the sub-
strate are fixed in place, i.e. DmN

= 0 in Eq. (2).
At steady state, it follows from Eqs. (2), (11),(12) and
boundary condition Eq. (10) that jN = 0, cN = kNp /k

N
d ,

and

mN =
kNonk

N
p

kNonk
N
p + kNoffk

N
d

mmax
N . (13)

The same expression can also be derived from the grand
canonical ensemble (Appendix A). Expansion in the di-
lute limit kNonk

N
p /k

N
d ≪ kNoff , i.e. where saturation effects

do not play a role, yields

mN =
kNonk

N
p

kNoffk
N
d

mmax
N +O

( kNonk
N
p

kNoffk
N
d

)2
 . (14)

Given that each adhesion complex reduces the surface
energy by ϵ [60], the surface tension at a contact site
[Fig. 1(a)] in this limit is

γc = γ0 − ϵ
kNonk

N
p

kNoffk
N
d

mmax
N , (15)

with γ0 a baseline tension that contains all other compo-
nents of the interfacial tension.

2. Tension at the interface between two droplets

At contact surfaces between two droplets, adhesion
molecules produced within the droplets can bind across
the interface and form adhesion complexes with surface
density mNN [Fig. 1(d)] [61]. Taking exclusion effects
into account, adhesion complexes can only form at unoc-
cupied sites on the interface. The density of unoccupied
sites is (mmax

NN −mNN) with mmax
NN the maximum possible

density of adhesion complexes. The reaction term for the
density of adhesion complexes is then

RmNN
= kNN

on (mmax
NN −mNN)cN,1cN,2 − kNN

off mNN (16)

with indices {1, 2} labeling the two droplets. The flux
coupling bulk and surface densities is jNN = RmNN

, and
the tension at the droplet-droplet interface in the dilute
limit kNN

on (kNp /k
N
d )

2 ≪ kNN
off is

γc = γ0 − ϵ
kNN
on

kNN
off

(
kNp
kNd

)2

mmax
NN . (17)

Indeed, the force necessary to separate two adhesive cells
has been shown to scale linearly with the squared total
number of adhesion molecules [60, 62]. In general, the ki-
netic rates of adhesion molecules can differ between con-
tacting cells, subject to internal regulatory mechanisms.
In Sec. III C, we analyse the case in which the production
rate of adhesion molecules kNp depends on a cell-intrinsic
signaling state.

C. Biochemical signaling interactions at contact
surfaces

assume that the concentration of signal molecules de-
termines the production rate of a regulator molecule (U)
in the bulk (e.g. a cellular transcription factor) that con-
trols in turn the production rates of adhesion and signal-
ing molecules (Sec. III).[Chap. 15])

1. Biochemical interactions between a cell and a
signal-transmitting substrate

We begin by considering a single cell in contact with
a solid substrate that is functionalized with immobile
ligands at a fixed uniform density mmax

L , similar to ex-
perimental systems developed for the Notch pathway
in in vitro assays [63] [Fig. 1(e)]. The cell contains
receptor molecules, signaling molecules, and regulator
molecules with bulk concentrations cR, cS, and cU respec-
tively, whose dynamics are coupled via the reactions at
the contact surface. We do not explicitly consider a bulk
concentration of ligands, because the substrate has no
receptor molecules to bind to—the cell is only receiving,
but not sending signals. To describe the signaling dy-
namics at the surface, we use Eq. (2) for the surface den-
sities of receptors mR, substrate-bound ligands mL and
receptor-ligand complexes mRL with the reaction terms
adapted from Khait et al. (2016) [30]

RmR
= kRoncR − (kRoff + k+mL)mR + k−mRL, (18)

RmL = (k− + ks)mRL − k+mLmR, (19)

RmRL = k+mLmR − (k− + ks)mRL, (20)

which are explained in the following [Fig. 1(e)]. Recep-
tors are recruited to the surface with a rate set by kRon
(exocytosis) and they are removed from the surface with
rate kRoff (endocytosis). Receptors at the contact sur-
face bind ligands at a rate determined by k+ to form
receptor-ligand complexes, which unbind with rate k−.
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Receptor-ligand complexes undergo an irreversible enzy-
matic cleavage with rate ks upon which a fragment of
the bound receptor molecule is released into the bulk
and acts as a signaling molecule (S), the remaining part
is degraded, and the ligand is released within the sur-
face where it can bind to a new receptor molecule. The
bulk concentration cS of signaling molecules controls the
bulk production rate kUp (cS) of the regulator U [see be-
low, Eq. (44)]. The bulk concentrations of receptors cR
and signaling molecules cS are coupled to the signaling
dynamics at the contact via Eq. (11).

We consider the ligands on the substrate to be fixed
in place, such that DmL

= 0, DmRL
= 0 in Eq. (2). The

density of unbound ligands is the difference between the
total density of ligands covering the substrate and the
density of receptor-ligand complexes mL = mmax

L −mRL.
Equations (2) and (20) together with this relation per-
mit expressing the steady state concentration of receptor-
ligand complexes in terms of the steady state receptor
concentration as

mRL =
mR

mR +
ks + k−

k+

mmax
L . (21)

Given Eqs. (2), (18) and (21), the steady state relation
for the distribution of receptors reads

0 = DmR
∇2mR+kRoncR−mR

(
kRoff +

ksk+m
max
L

k+mR + ks + k−

)
.

(22)
In the limit where the rate of receptors binding to lig-

ands on the substrate is large compared to the transport
of receptors from the surface into the bulk, i.e.

k+m
max
L ≫ kRoff , (23)

solutions of Eq. (22) are uniform and follow

mR =
kRoncR(k− + ks)

k+(ksmmax
L − kRoncR)

, (24)

under boundary condition Eq. (10). The bulk and surface
densities of receptors are coupled via the flux [Eq. (11)]

jR = kRoncR − kRoffmR. (25)

Using Eq. (24) and assuming (23), the flux can be ap-
proximated as jR = kRoncR and the steady state bulk and
surface densities of receptors that follow from Eqs. (11)
and (24) are given by

cR =
kRp V

kRd V + kRonAc
, (26)

mR =
kRonk

R
p (k− + ks)V

k+[ksmmax
L (kRonAc + kRd V )− kRonk

R
p V ]

. (27)

For Notch receptors, reported values are k+ =
0.167 µm2 s−1 and kRoff = 0.02 s−1 [30] [Tab.] and Notch

activation assays with cells on ligand-coated substrates
are performed with surface densities of up to mmax

L ≈
105 µm−2 [63], which justifies limit (23) and allows to ne-
glect the kRoff -term in Eq. (22). Importantly, mR and cR
have upper bounds: in the absence of ligands (mmax

L = 0),
the steady state receptor density is uniform at m0

R =
kRonc

0
R/k

R
off with bulk concentration c0R = kRp /k

R
d . Because

receptors are removed upon receptor-ligand binding and
subsequent cleavage, m0

R and c0R are upper bounds to the
steady state concentrations. If we estimate the term in
brackets of Eq. (22) using mR = m0

R and typical parame-
ter values as listed in Tab. II (Appendix), neglecting kRoff
is valid if mmax

L ≫ 10 µm−2.
Given Eqs. (21) and (27), the steady state density of

receptor-ligand complexes is

mRL =
kRonk

R
p V

ks(kRonAc + kRd V )
. (28)

The bulk concentration of signaling molecules follows
Eq. (11), without a bulk production term (kSp = 0)
and with flux jS = −ksmRL, arising from the cleavage
of receptor-ligand molecules at the surface. The steady
state bulk concentration is given by

cS =
kRonk

R
p Ac

kSd(k
R
onAc + kRd V )

. (29)

This relation shows how the received signal depends on
the receptor-ligand kinetics, the volume, and the geome-
try of the adherent cell.

2. Signaling interactions between contacting cells

Next, we consider receptor-ligand interactions at the
interface between two cells indexed with i, j ∈ {1, 2}
[Fig. 1(f)]. In addition to containing signaling and reg-
ulator molecules, each cell produces receptors as well
as ligands, which exchange between bulk and surface—
ligands are not substrate-bound with fixed positions as
we considered in the preceding part. The receptors on
the surface of cell i bind to the ligands on the surface
of the other cell j and vice versa, producing respectively
oriented receptor-ligand complexes. Upon cleavage they
release signal molecules into the receptor-carrying cell i.
Contrary to the way we treated substrate-bound ligands
in the preceding section, ligands at the droplet interface
are not released after cleavage of the receptor-ligand com-
plexes, but are degraded together with the remaining re-
ceptor fragment instead [64]. While some literature sug-
gests that ligands can also be recycled after a signaling
event or enter alternative signaling pathways [65, 66], we
here consider that receptors and ligands are always de-
graded after cleavage. Signaling molecules control the
production of regulator molecules as before, which feed
back onto the production terms. In line with the typical
molecular mechanisms in Notch signaling, we consider an
active regulation of ligand production [43]. As explained



6

in Sec. II A, the steady state bulk concentrations of re-
ceptor, ligand, signaling, and regulator molecules are uni-
form within each cell with a value set by the flux balance
condition [Eq. (11)]. To capture the reaction-diffusion
dynamics at the interface, we use Eq. (2) for receptors,
ligands, and complexes using the reaction terms [30]

RR = kRoncR,i − (kRoff + k+mL,j)mR,i + k−mRL,i, (30)

RL = kLoncL,j − (kLoff + k+mR,i)mL,j + k−mRL,i, (31)

RRL = k+mR,imL,j − (k− + ks)mRL,i, (32)

with rate constants as described in Sec. II C 1. Un-
der boundary condition Eq. (10), steady state solu-
tions of Eq. (2) for the densities of receptors, ligands
and receptor-ligand complexes with the reaction terms
Eqs. (30)-(32) are uniform and follow the relations

mR,i =
kRoncR,i(ks + k−)

kRoff(ks + k−) + k+ksmL,j
, (33)

mL,j =
kLoncL,j(ks + k−)

kLoff(ks + k−) + k+ksmR,i
. (34)

Ligand molecules are only produced in the bulk, but not
at the surface, thus, the steady state concentrations of
bulk and surface densities have the upper limits c0L =

kLp/k
L
d and m0

L = kLonc
0/kLoff . Together with Eqs. (33)

and (11) for the receptor bulk concentration, one can
define a lower limit for the surface density of receptors

mmin
R =

kRonk
L
off(k− + ks)k

R
p k

L
dV

kLonk+ksk
L
p (k

R
onAc + kRd V ) + kLdk

R
off(k− + ks)kRd V

.

(35)

In line with Khait et al. 2016 [30], we consider that cells
produce an excess of receptors compared to the number
of ligands, i.e. kRp ≫ kLp , and similar to limit (23) for the
single cell we assume that the endocytosis rate of ligands
is small compared to the rate of binding

k+m
min
R ≫ kLoff , (36)

allowing to neglect the kLoff -term in Eq. (31). The bulk
and surface densities of ligands are coupled in Eq. (11)
via the flux

jL,j = kLoncL,j − kLoffmL,j , (37)

which using Eq. (34) and assuming (36) can be written
as jL,j = kLoncL,j. In this limit, solving Eqs. (2) with
the reaction terms Eqs. (30)–(32) under boundary condi-
tion Eq. (10) together with Eq. (11) and boundary flux
Eq. (25) for the bulk density of receptors yields

cR,i =
kRp (k

L
onAc + kLdV )− kLpk

L
onAc

kRd (k
L
onAc + kLdV )

, (38)

cL,j =
kLpV

kLonAc + kLdV
, (39)

mR,i =
Ack

L
onk

R
on(k

R
p − kLp ) + (kLdk

R
onk

R
p − kRd k

L
onk

L
p )V

kRd k
R
off(k

L
onAc + kLdV )

, (40)

mL,j =
kLonk

L
pk

R
d k

R
off(k− + ks)V

k+ks(AckLonk
R
on(k

R
p − kLp ) + (kLdk

R
onk

R
p − kRd k

L
onk

L
p )V )

, (41)

mRL,i =
kLonk

L
pV

ks(kLonAc + kLdV )
. (42)

The steady state bulk concentration of signaling
molecules following Eq. (11) with jS = −ksmRL and
kSp = 0 as before is

cS,i =
kLonk

L
pAc

kSd(k
L
onAc + kLdV )

. (43)

As Eq. (29), this relation shows how the signal exchanged
between interacting cells depends on the receptor-ligand
kinetics and the geometry of the cells.

III. MECHANOCHEMICAL FEEDBACK
BETWEEN ADHESION AND CELL-CELL

SIGNALING

In response to external signals, cells typically change
their gene expression through transcription factors and
transcriptional regulators, thereby controlling the pro-
duction rates of diverse proteins, including adhesion and
signaling molecules [26, Chap. 7]. Responding to shape-
dependent signals, and feeding back onto both mechanics
and signaling, these internal regulatory states couple the
processes described in Sections Secs. II B and IIC.
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FIG. 2. (a) The feedback between signal processing and ac-
tive mechanics olled by the signal susceptibility parameter χ
and the adaptive adhesion coefficient γA. (b) Signals s are
processed with a sigmoidal response function Eq. (48), which
arises from the interaction between signaling molecules and
regulator molecules [Eq. (50),(55)]. In the limit h → ±∞,
the response is a step function. (c) The equilibrium contact
area of an incompressible droplet with a substrate (top) and
another droplet (bottom) is determined by the tension ratio
between contact and free surface [Eq. (63)][Fig. 1(a-b)].

In the following, we derive the macroscopic equations
that govern the evolution of such internal states, taking
into account how the received signals depend on con-
tact geometry, and how the contact geometry in turn is
set by adaptive adhesion. In particular, from the mi-
croscopic kinetics of adhesion and signaling molecules
(Secs.II B,II C) we obtain two macroscopic feedback pa-
rameters: the signal susceptibility determines how the
contact area affects the magnitude of transmitted sig-
nals, and the adaptive adhesion coefficient controls how
the received signals feed back onto the contact mechanics
[Fig. 2(a)].

A. Evolution of a macroscopic signaling state

We introduce a macroscopic internal cell state vari-
able that responds to area-dependent biochemical sig-
nals defined by the uniform bulk concentration of a reg-
ulator molecule U–representing for instance a transcrip-
tion factor. The bulk concentration cU is governed by
Eq. (6) with jU = 0, and we assume that the effective
production rate of regulator molecules depends on the
steady state concentration of signal molecules kUp (cs)—
the more signal molecules are present, the more regula-
tor molecules are produced [Fig. 2(b)]. The regulation

of genes and the synthesis of new proteins involves mul-
tiple steps and molecular intermediates, which leads to
the presence of nonlinear effects like cooperative binding
and multimerization, commonly captured using Hill func-
tions [67]. Similar to previous studies modeling canoni-
cal Notch signaling [36, 68–70], we therefore assume that
steady state concentrations of U are bounded within a
range cmin

U ≤ cU ≤ cmax
U and we consider a nonlinear

production rate with Hill coefficient h

kUp (cS) =
1

τu

cmin
U +

(cmax
U − cmin

U )

1 +
(

ccritS

cS

)h
 , (44)

in which τu = 1/kUd is the characteristic time scale on
which cU is changing, and ccritS is the critical concentra-
tion at the inflection point. The saturating response to
the received signal [Eq. (44)] permits introducing a di-
mensionless signaling state variable

u :=
cU − cmin

U

cmax
U − cmin

U

, (45)

normalized to the response range such that u ∈ [0, 1].
Eqs. (6), (44), and (45) together with the definition of a
normalized received signal

s = cS/c
crit
S (46)

lead to a dynamical equation for the evolution of the
internal state

τu
du

dt
= σ(s)− u, (47)

with sigmoidal response function [Fig. 2(b)]

σ(s) =
sh

1 + sh
. (48)

Given that the regulation of protein concentrations
through transcriptional changes requires tens of minutes
to hours and can vary greatly between different protein
species [39, 71], we assume that the timescale associated
with the regulator turnover τu dominates the dynam-
ics of the system. On this timescale, we assume that
bulk and surface concentrations relax to their steady
state solutions. In cells, concentration and shape dy-
namics are indeed typically at least an order of magni-
tude faster—set by diffusive, biochemical, and viscoelas-
tic timescales which are on the order of seconds to min-
utes [30, 39, 41, 52]. In the following sections, we discuss
how the internal state dynamics govern the production
of adhesion and ligand molecules.

B. Signal susceptibility

In general, the received signal (46) depends non-
linearly on the size of the contact area, i.e. s(Ac) ac-
cording to (29) or (43). When the number of receptors
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that are recruited to the surface and lost in the signaling
process is small compared to the turnover of molecules in
the bulk, we can expand the bulk concentration of signal
molecules [Eq. (29),(43)], and obtain a relation that is
linear in the contact area. In the limit in which receptors
interact with an excess of ligands [Eq. (23)], e.g. for the
single cell on the functionalized substrate, the expression
reads

cS =
kRp k

R
onAc

kSdk
R
d V

+O

((
kRonAc

kRd V

)2
)
. (49)

Indeed, in vitro experiments revealed a roughly linear re-
lation between the Notch signaling response and the con-
tact area, including for large contacts [30]. The received
signal [Eq. 46] can then be written as

s = χ
Ac

A0
, (50)

in which we introduced the signal susceptibility

χ =
kRp k

R
on

ccritS kSdk
R
d V

A0 (51)

using the definition of the volume-dependent reference
area A0 = (3V/2)2/3π1/3. The volume-dependence of the
susceptibility arises because the degradation of molecules
in the bulk scales with the volume, and due to the refer-
ence area A0, yielding a scaling of χ ∝ V −1/3. However,
in cells where protein degradation does not increase with
the cell volume, the signal susceptibility might increase
with volume. We can estimate the order of magnitude of
the susceptibility [eq. 51] using kRonk

R
p /k

R
d = 2µm−2 s−1

[30], V = 500 µm3, kSd = 5 × 10−3 min−1 [72, 73] and
ccritS = 1000/V [53] yielding χ ∼ 3000.

1. Signal-dependent production of ligands

Mutually inhibitory Notch signals typically lead to a
decrease in the production rate of ligands in response
to received signals [43, 74]. We therefore consider that
the production rate of ligands is a monotonously decreas-
ing function of the regulator concentration cU. We as-
sume that no ligands are produced at cU = cmax

U , i.e.
kLp (c

max
U ) = 0, and we expand kLp to first order around

cmax
U

kLp (cU) =
dkLp
dcU

∣∣∣∣∣
cmax
U

(cU − cmax
U ) +O

(
(cU − cmax

U )2
)
.

(52)

Using the definition of u [Eq. (45)] it follows that

kLp (u) =

−
dkLp
dcU

∣∣∣∣∣
cmax
U

 (cmax
U − cmin

U )(1− u). (53)

Linearizing the bulk concentration of signal molecules
[Eq. (43)] as before, we obtain

cS,i =
kLpk

L
onAc

kSdk
L
dV

+O

((
kLonAc

kLdV

)2
)
, (54)

with which the signal sij = cs,i/c
crit
s received by cell i

from cell j is

sij = χ
Ac

A0
(1− uj) (55)

with the signal susceptibility in the ligand-limited case
given by

χ =
kLonA0(c

max
U − cmin

U )

ccritS kSdk
L
dV

−
dkLp
dcU

∣∣∣∣∣
cmax
U

 (56)

The expression of the susceptibility is similar to Eq. (51),
but depends on the production, decay and transport
rates of ligands rather than receptors. While Eq. (51)
holds when receptors interact with an excess of ligands
[Eq. (23)], an excess of receptors compared to ligands
[Eq. (36)] leads to Eq. (56). In the ligand-limited case,
contributions to the susceptibility can be further distin-
guished based on properties of the signal sending cell,
specifically kLpk

L
on/kd, and properties of the signal receiv-

ing cell, including ccrits and kSd [1].
Interestingly, the signal susceptibility is independent

of the cleavage rate ks in both cases. A common exper-
imental perturbation to Notch signaling is the pharma-
cological inhibition of the enzyme cleaving the receptor-
ligand complexes (treatment of cells with γ-secretase in-
hibitors) [75]. Our result suggests that the signal suscep-
tibility and thus the steady state concentration of sig-
naling molecules is independent of ks unless cleavage is
completely prevented.

C. Signal-dependent active mechanics

In many biological systems, for instance mechanosen-
sory epithelia [33, 34, 36] or synthetically engineered sys-
tems [38], adhesion molecules are expressed downstream
of contact-based signals. Accordingly, we consider that
the production rate of adhesion molecules kNp (cU) is a
monotonously increasing function of the regulator con-
centration [Fig. 1(c)]. We assume that kNp vanishes for

cU ≤ cmin
U , i.e. no adhesion molecules are produced when

the regulator concentration drops below a concentration
cmin
U , and we linearize kNp around cmin

U

kNp (cU) =
dkNp
dcU

∣∣∣∣∣
cmin
U

(cU − cmin
U ) +O

(
(cU − cmin

U )2
)
.

(57)
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With Eq. (45), the surface tension at the contact site of
a single cell with an underlying substrate [Eq. (15)] can
then be written as

γc = γ0 − γAu (58)

where we define the adaptive adhesion coefficient

γA = ϵ
kNon(c

max
U − cmin

U )

kNoffk
N
d

dkNp
dcU

∣∣∣∣∣
cmin
U

mmax
L . (59)

tension at the interface between two contacting cells
Eq. (17) is

γc = γ0 − γAu1u2, (60)

with

γA = ϵ
kNN
on (cmax

U − cmin
U )2

kNN
off (kNd )

2

 dkNp
dcU

∣∣∣∣∣
cmax
U

2

mmax
NN . (61)

Eqs. (58) and (60) are identical except for the squared
terms arising from the production and decay of adhe-
sion molecules, because both cells need to contribute
molecules for the formation of adhesion complexes at the
interface [Fig. 1(d)].

The adaptive adhesion coefficient γA has units of en-
ergy per area. The tension at cellular surfaces is usu-
ally dominated by the active contractility of the acto-
myosin cortex and is on the order of 0.05–0.5 nNµm−1

[76–80]. The tension at a cell-cell or cell-substrate in-
terface can be inferred from the contact angle if the
tension at the free surface γf is known [81]. For in-
stance, for γf = 0.1 nNµm−1, a range of contact angles
θ =10-100◦ corresponds to interfacial tensions of approx.
0.13–0.2 nNµm−1. Combined fluorescence-based density
measurements of the adhesion molecule E-cadherin in
C.elegans embryos suggests that changes in the interfa-
cial tension γc due to expression of adhesion molecules—
as described by the adaptive adhesion term—are up to
0.41 nNµm−1 [76], demonstrating that regulation of ad-
hesion molecule expression provides access to a large
range of shape configurations. Assuming a lateral dis-
tance of ∼ 10 nm between adhesion molecules [82], i.e. a
surface density of 10.000 µm−2, the effective surface en-
ergy per adhesion molecule would be ϵ ≈ 4 × 10−17 J—
several orders larger than kBT . Indeed, adhesion com-
plexes in cells interact with different molecules and their
formation depends also on anchoring to the cytoskeleton,
which itself exhibits complex dynamics and feedback ef-
fects [9, 61, 83, 84], thus ϵ corresponds to an effective
energy per adhesion complex that captures more than
just the binding energy between two adhesion molecules.

D. Equilibrium shapes of cells with uniform
interfacial tensions

Equations (50),(55) and (58),(60) describe respectively
how transmitted signals depend on the area of the cell-
cell or cell-substrate interface, and how the interfacial

tension in turn depends on the internal states. Given
that the mechanochemical dynamics are dominated by
the slowest timescale τu, set by transcriptional regula-
tion, the contact areas across which signals are exchanged
are determined quasi-instantaneously by the conjugate
interfacial tension γc. Neglecting any non-uniform con-
tributions to the surface tensions, we assume that the cell
shapes can be approximated by minimal surface configu-
rations, i.e. that minimize the effective surface energy of
N incompressible droplets which form n contacts

E =

N∑
i=1

γfAf,i +

n∑
j=1

γcAc,j + γcAm, (62)

in which γc, γf and γm are the uniform surface tensions
of the cell-cell or cell-substrate contact interfaces Ac,i, of
the free surface areas Af,i, and of the substrate-medium
interface Am, respectively [Fig. 1(a,b)]. In the minimal
surface configuration, the droplets acquire a spherical-
cap shape with contact area

Ac

A0
=
[
1− cos (θ/2)

2
] [ 2

(2− cos (θ/2))(1 + cos (θ/2))2

]2/3
.

(63)

in which θ is the contact angle with cos(θ/2) = (γc −
γm/γf) for a single adherent droplet, and cos(θ/2) =
(γc/2γf) for a pair of droplets [Fig. 2(c,d)]. Indeed, bi-
ological cells have been found in minimal surface con-
figurations in many contexts [Fig. 1(a-b)], including
[36, 61, 76, 77, 79, 85].

IV. MACROSCOPIC DYNAMICS OF
MECHANOCHEMICAL DROPLETS

The macroscopic equations (47),(50),(55),(58),(60)
and (63) describe the mechanochemical dynamics of
shape-adaptive cells, with two feedback parameters that
couple shape changes to signaling (susceptibility χ) and
signaling to shape adaptation (adhesion coefficient γA)
[Fig. 2(a)], which we have derived from microscopic rela-
tions (Secs. II-III). Using a combination of linear stability
analysis, simulations, and numerical continuation (Ap-
pendix D for details), we analyse the dynamical states
emerging from this interplay between shape changes
and signaling. We find that positive feedback between
contact-dependent signals and area-increasing adhesion
can produce shape bistability, leading to multiple stable
wetting states for single droplets on functionalized sub-
strates [Fig. 3], and lowering the threshold susceptibility
for symmetry-breaking of internal states in interacting
pairs of cells [Figs. 4]. For large adaptive adhesion coef-
ficients moreover, we show that mechanochemical feed-
back drives excitability and self-sustained oscillations of
shapes and internal states [Fig. 5]. Finally, we discuss
how heterogeneities in mechanical and signaling proper-
ties affect these feedback dynamics [Fig. 6-7].
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FIG. 3. Adaptive adhesion leads to bistability. (a) The pa-
rameter diagram, derived via numerical continuation (Ap-
pendix D), contains a bistable regime (white) bounded
by saddle-node bifurcations (black lines) converging in a
codimension-2 cusp point, separating regimes of strong and
weak substrate wetting (b) The size of the bistable regime
increases with the tension ratio (γ0 − γm)/γf (top) and
with the Hill coefficient h of the nonlinear response function
[Eq.(48)] (bottom) (χcusp

0 : reference susceptibility at cusp for
(γ0 − γm)/γf = 0.95, h = 2). Parameter values for each dia-
gram listed in Tab. I

A. Feedback between contact-based signaling and
adaptive mechanics creates bistability

Equations (47),(50),(58), and (63) describe the dynam-
ics of the signaling state u and contact area Ac of the
single, adherent cell.

Depending on the ombination of feedback parameters
χ and γA relative to the tension ratio (γ0 − γm)/γf ,
Eq. (47) has either one or two stable steady state solu-
tions u∗ [Fig.3(a)]. Using numerical continuation, we find
a bistable regime above a critical value of the adaptive
adhesion coefficient γcusp

A where two saddle-node bifur-
cation lines (SN) emerge from a cusp bifurcation point
[Fig.3(a)]. For γA > γcusp

A and small χ, the only stable
solution is a configuration with small contact area Ac,
correspondingly weak signal transmission and a low sig-
naling state u. For values of χ above the lower SN line,
a second stable configuration appears with large contact
area Ac, which permits a stronger signaling interaction
with the substrate and a larger signaling state u [Fig.3(a),
inset]. This latter configuration is accessible only when
the positive feedback between signaling and adaptive me-
chanics is sufficiently strong. The position of the cusp
point within the feedback-parameter diagram, and the
size of the associated bistable regime depends on the ten-
sion ratio (γ0 − γm)/γf , and on the Hill coefficient h in
the response function [Eq. (48)]—increasing either of the
two parameters lowers the threshold adaptive adhesion
coefficient γcusp

A [Fig. 3(b)]. We find bistability for h ≥ 2.

In the limit h → ∞, i.e. where the internal states

respond to signals in a step-wise manner [Fig. 2(b)],
one can derive a simple relation between χ and γA for
the two saddle-node lines [Fig. 3(c)]. In this limit, the
only possible stable steady state solutions of Eq. (47) are
u∗ ∈ {0; 1} and the corresponding surface tensions at the
contact site are γc ∈ {γ0; γ0 − γA} [Eq. (58)]. For small
values of χ, signaling is weak and the only stable steady
state is u∗ = 0 with a small contact area set by γc = γ0.
The second stable steady state u∗ = 1 appears for

s(Ac|γc=γ0−γA
) ≥ 1. (64)

For

s(Ac|γc=γ0
) > 1, (65)

the configuration with small contact area and u = 0 is
no longer a steady state solution and u∗ = 1 remains
the only stable steady state. From conditions (64)–(65)
together with (50) follows that the critical susceptibilities
at the saddle-node lines delineating the bistable regime
are given by

χ1 =
A0

Ac|γc=γ0−γA

(66)

and

χ2 =
A0

Ac|γc=γ0

. (67)

for the lower and upper lines respectively [Fig. 3(c)].

B. Symmetry-breaking of internal states

Next, we study the dynamics of cell pairs exchang-
ing mutually inhibitory signals Eqs. (47),(55), (60), and
(63). Strong mutually inhibitory interactions generi-
cally lead to spontaneous symmetry-breaking, whereby
initially small differences between interacting units di-
verge to low- and high-value steady states [86], a mech-
anism relevant for the patterning of different cell types
[74]. Using numerical continuation, we find that in the
state-diagram of feedback parameters the regimes of uni-
form and symmetry-broken steady states are separated
by a line of supercritical pitchfork bifurcations (PF)
[Fig. 4(a)]. Below the critical value χPF, inhibition is
not strong enough to produce symmetry-breaking, and
the cell pair converges to identical low internal states
with a small contact area. Linear stability analysis shows
that this critical susceptibility scales approximately in-
versely with the interfacial area χPF ∼ A0/Ac (Ap-
pendix B)—indicating that the adaptive adhesion pro-
motes symmetry-breaking: starting from low, nearly
identical internal states, the active term in Eq. (17) tran-
siently expands the contact area as the trajectory ap-
proaches a saddle in the phase space of internal states
[Fig. 4(a)(inset)]. The large contact effectively lowers the
threshold susceptibility and drives the divergence of the
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FIG. 4. Adaptive adhesion promotes symmetry-breaking. (a)
Mutually inhibitory interactions between the signaling states
of contacting droplets lead to symmetry-breaking via a line
of pitchfork bifurcations (PF), separating uniform (gray) and
symmetry broken (green) steady states. Adaptive adhesion
promotes symmetry-breaking by transiently increasing the
contact area across which mutually inhibitory signals are ex-
changed (inset: filled black circle: stable steady state, filled
gray circle: saddle). (b) The relaxation time to the symmetry-
broken steady state Tsym (blue curve), is dominated by the
inverse of the maximum saddle eigenvalue (red crosses) and
decreases with increasing γA, because the larger transient in-
terface allows for the exchange of stronger signals promoting
symmetry-breaking (χ/χPF

0 = 2, T0: reference relaxation time
for γA/γ0 = 1). (c) The baseline tension ratio γ0/2γf (top)
and the Hill coefficient h of the nonlinear response function
[Eq.(48)] (bottom) determine how the critical susceptibility
changes with the adaptive adhesion coefficient (χPF

0 : refer-
ence susceptibility at PF for γA = 0, γ0/2γf = 0.7, h = 2).
Parameter values for each diagram listed in Tab. I.

internal states, which in turn reduces adhesion and the
contact area. Correspondingly, starting from nearly uni-
form conditions, the time it takes for the internal states
to diverge decreases with increasing γA and correlates
with the largest eigenvalue of the saddle [Fig.4(b)]. We
find regimes of symmetry-breaking for h ≥ 2, which in-
crease with the baseline tension ratio γ0/2γf [Fig. 4(c)],
as well as with increasing Hill coefficient h [Fig. 4(d)].
Overall, we find that shape-dependent mechanochemical
feedback increases the robustness of symmetry-breaking,
which could aid reliable fate determination in noisy bi-
ological environments [27, 33, 36]. For instance, adap-
tive contact dynamics occur between sensory cell pairs
in zebrafish embryos that exchange mutually inhibitory
signals to undergo robust symmetry breaking [36, 87].

C. Tunable self-sustained oscillations

At large values of the adaptive adhesion coefficient,
the coupling between signaling and interface geometry
can drive self-sustained oscillations of the internal states
and shape of interacting cell pairs. These oscillations
are driven by competition between the adaptive adhe-
sion and the tendency of the pair to undergo symmetry-
breaking: the product of internal states u1u2 increases
the contact area according to Eq.(17), thereby driving
their own inhibition, leading to negative feedback. The
oscillatory regime, bounded by Hopf (H) and saddle het-
eroclinic (SHET) bifurcation lines, separates the stable
symmetric and symmetry-broken states in the parameter
diagram [Fig. 5(a-b)], derived via numerical continuation
(Appendix D). These lines originate from a saddle-node
pitchfork bifurcation point (SP)—a codimension-2 bifur-
cation at which the PF line tangentially intersects with a
saddle-node (SN) bifurcation line [Fig. 5(a,c) and Fig. 11]
[88].

When γA > γSP
A and χ reaches the critical susceptibil-

ity χPF, the inhibitory signals induce symmetry-breaking
and the unstable fixed point undergoes a subcritical
pitchfork bifurcation, producing a saddle and two new
unstable fixed points [Fig. 5(b) star]. In this regime the
droplet pair is excitable: fluctuations moving the internal
states beyond the separatrices, which connect the saddle
to the unstable fixed points, trigger a large increase of
both internal states and the contact area Ac, followed by
transient symmetry-breaking [Fig. 5(b) star and Movie 1
(b)]. Increasing χ shortens the distance between the uni-
form stable fixed point and the saddle, thus lowering the
excitation threshold until the two points collide at the
SHET line and give rise to a pair of heteroclinic orbits
that connect the resulting transversely stable, nonhyper-
bolic point to the second saddle point [Fig. 5(b) cross].
This nonhyperbolic point is destroyed as the heteroclinic
orbits bifurcate into two symmetric stable limit cycles
[Fig. 5(b) pentagon and Movie 1 (f)], which remain the
only stable attractors of the system. Thus, cycles ap-
pear once transmitted signals are strong enough to induce
symmetry-breaking, which in turn lowers the adhesion—
and thereby the contact area—sufficiently to reduce sig-
nals below the symmetry-breaking threshold. In turn,
the product of states [Eq. (60)] increases again, thereby
driving adhesion, contact area, and signal amplitude back
above the threshold. ing on the two feedback parame-
ters, the mechanochemical oscillations exhibit a range of
temporal profiles. Near the SHET line the droplet pair
exhibits relaxation-type oscillations in which it spends
a large fraction of the cycle in small-area configurations
with nearly identical states, interrupted by spikes in the
contact area Ac and rapid, transient symmetry-breaking
[Fig. 5(d) and Movie 1 (c)]. The oscillation period di-
verges as χ approaches χSHET due to the ghost of the de-
stroyed saddle point that critically slows down the limit-
cycle phase when passing through its vicinity [Fig. 5(a)].
With increasing χ, the time-averaged difference between
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FIG. 5. Excitability and oscillations of mechanochemically coupled cell pairs. (a) Adaptive adhesion leads to self-sustained
oscillations of signals and cell shapes (color gradient and contour lines denote the oscillation period T ). The oscillatory regime
is surrounded by saddle-heteroclinic (SHET) and Hopf (H) bifurcation lines, which originate from a saddle-node pitchfork
codimension-2 point (SP) (PF−: supercritical pitchfork PF+: subcritical pitchfork). Bottom panel: Enlarged view of the
SP point environment shows saddle-node (SN) and cusp bifurcations that preserve stable attractor structures. The reference
susceptibility is the critical value in the absence of adaptive tension (χ0 = χPF|γA=0). (b) Phase portraits for parameter values

marked with gray symbols (filled black circles: stable steady states, filled gray circles: saddles, open circles: unstable steady
states, rose line: trajectory in the excitable regime, red lines: heteroclinics, black lines: limit cycles). (c) Stable (solid line),
unstable (dashed line) fixpoints and saddles (dotted line) computed for variation of γA/γ0 as indicated by gray dotted lines in
(a). Panels on the right show how the PF and SN interact, turning the latter into a SHET (d to e). (d) Oscillation amplitudes
decrease and the oscillation period increases with waveforms changing from relaxation-like (near the SHET line) to sinusoidal
(near the Hopf line) for increasing χ. (e,f) Maximum difference between internal states (e) and amplitude of contact area
changes (f) during oscillations (g,h) The location of the SP point and associated bifurcations in the state diagram depends on
the hill coefficient h of the response function (g) [Eq. (48)] and the baseline tension ratio γ0/2γf (h). Parameter values given
in Tab. I. Figure 5 is also shown in the companion letter with minor differences [1]

the internal states increases and the oscillation ampli-
tudes decrease, reaching near-sinusoidal waveforms in
states and contact area close to the Hopf bifurcation
line [Movie 1 (d)], where the limit cycles smoothly con-
tract into symmetry-broken fixed points [Fig. 5(b,d-e)
and Movie 1 (f)].

The position of the SP point within the feedback-
parameter diagram, and the size of the associated regimes
depend on the baseline tension ratio γ0/2γf , and on the
Hill coefficient h in the response function [Eq. (48)]. In-
creasing γ0 lowers the threshold adaptive tension for the
onset of oscillations [Fig. 5(h)], while for low γ0 the adap-
tive adhesion can push the interface into a regime where
any area increase lowers the total surface energy, lead-
ing to shape instabilities [89, 90]. Close to γA/γ0 = 1,
such instabilities may remain transient, i.e. restricted
to fractions of the oscillation phase, before restabilizing
due to the decrease of adhesion upon symmetry-breaking
of internal states, whereas at large γA/γ0, these effects
are expected to dominate the dynamics and lead to new

phenomena.

We found shape bistabilities and symmetry-breaking
for Hill coefficients h ≥ 2, and oscillations for h ≥ 3.
Strongly nonlinear response functions are commonly used
to model regulatory feedbacks in cells [69, 91, 92], and
experimental evidence has been reported for e.g. the
Nodal pathways [1, 93]. Interestingly, we observe that
strong adaptive adhesion achieves lower thresholds for
smaller Hill coefficients, i.e. that the PF bifurcation
lines for different Hill coefficients intersect in the feed-
back parameter space [Fig. 4(c), Fig. 5(g)], indicating
a non-trivial interplay between the response nonlinearity
and the geometry-dependent nonlinearity which together
drive symmetry-breaking.

Together, these results illustrate how mechanochemical
feedback can drive excitability and self-sustained oscilla-
tions.
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FIG. 6. Different cell volumes δV/V̄ = {0.25, 0.5} (blue) or
outer tensions δγf/γ̄f = {0.25, 0.5} (brown) shift the SP point
and associated bifurcation lines in the state diagram. Param-
eter values given in Tab. I.

D. Droplet heterogeneities

The SP point arises for identical droplets. While such
state-space structures have been found and experimen-
tally characterized for instance in optical cavities [88],
most physical systems exhibit non-negligible variations
in their properties. Differences in the properties of the
interacting droplets change the state diagram shown in
Fig. 5(a). For unequal droplet volumes V1,2 = V̄ ± δV ,
symmetry-breaking and oscillatory dynamics emerge at a
larger signaling susceptibility χ than in pairs of identical
droplets, whereas a difference in the outer surface ten-
sions γf,1,2 = γ̄f ± δγf promotes symmetry-breaking and
oscillations at lower susceptibilities due to partial inter-
nalization resulting in larger equilibrium contact areas
[Fig. 6].

Tension and volume asymmetry do not favour any
droplet to reach a higher or lower internal state, be-
cause the signaling properties of each droplet remain un-
affected, and thus the topology of the state space is pre-
served. In contrast, numerical continuation shows that a
difference in the signaling susceptibility χ1,2 = χ̄ ± δχ
splits the SP point into two Bogdanov-Takens (BT)
codimension-2 points, and the SHET line into two ho-
moclinics (Hom) and a saddle-node homoclinic (HSN)
bifurcation line emerging from a non-central homoclinic
to saddle-node (NCH) [Fig. 7(a)]. Accordingly, the limit
cycle and the corresponding symmetry-broken state, in
which the less susceptible droplet maintains the lower in-
ternal state, require lower values of χ and γA than the
inverse symmetry-broken states. Thus, two limit cycles
appear at different susceptibilities through a HSN and a
Hom bifurcation [Fig. 7(b)], compared to homogeneous
droplets, for which two limit cycles appear simultane-
ously in a SHET bifurcation [Fig. 5(b) cross]. This allows
for parameter regimes with single limit cycles [Fig. 7(b)
hexagon] or coexistence with stable fixed points [Fig. 7(b)
4-pointed star]—contrary to the case of identical sus-
ceptibilities. Heterogeneous material properties can thus
produce an even wider spectrum of dynamics.

FIG. 7. Heterogeneous susceptibility in interacting cell pairs.
(a) A difference in signal susceptibilities δχ/χ̄ = 0.05 (i.e.
χ1/χ2 ≈ 1.1) splits the SP point into a pair of Bogdanov-
Takens bifurcation points (BT), a non-central homoclinic to
saddle-node bifurcation (NCH) and associated bifurcation
lines. Inset shows the state diagram close to the second BT
point (γA/γ0 ∈ [0.3896, 0.403], χ/χ0 ∈ [0.5388, 0.5441]). Note
that NCH and BT are connected by a homoclinic (Hom).
(HSN: Saddle-node homoclinic). (b) Phase portraits for pa-
rameter values marked with gray symbols in (b). (filled black
circle: stable steady state, filled gray circle: saddle, open
circle: unstable steady state, rose line: trajectory in the
excitable regime, thick black line: limit cycle) (c) Wit un-
equal signaling properties (χ1 ̸= χ2), the pitchfork bifurca-
tion is replaced by a new saddle-node bifurcation (compare
to Fig. 5(c)). Parameter values given in Tab. I.

V. DISCUSSION

Motivated by mechanochemical feedback in biologi-
cal cells, we derive a tractable set of macroscopic equa-
tions from underlying microscopic dynamics of contact-
dependent biochemical signaling and adhesion [Figs. 1-
2]. Specifically, we consider cell-cell signals exchanged at
contact interfaces, whose magnitude depends on the con-



14

tact area, and which drive changes in cell-cell adhesion,
thereby feeding back onto the exchanged signals. We fo-
cus on systems in which the signals trigger an internal
response that evolves slowly compared to the cell shape
dynamics, i.e. controlled by the transcriptional regula-
tion of production and decay processes.

We find that the self-amplification of area-dependent
signals, which increase adhesion at the signaling inter-
face leads to shape bistability once the system crosses
a saddle-node bifurcation line, set by the strength of
adhesion adaptation and signal susceptibility [Fig. 3].
Moreover, in the presence of mutually inhibitory sig-
naling interactions, shape-dependent feedback gives rise
to robust symmetry-breaking [Fig. 4], excitability, and
self-sustained oscillations ranging from sinusoidal to
relaxation-like waveforms [Fig. 5]. While mutual inhi-
bition can lead to symmetry-breaking of internal states
even in the absence of shape-dependent feedback, the
adaptive tension lowers the critical susceptibility at
which the internal states diverge, i.e. where the system
crosses a line of pitchfork bifurcations [Fig. 3]. Further-
more, because mutual inhibition lowers adhesion, but
adhesion in turn increases contact area-dependent sig-
nals, the competition between signal self-amplification
and symmetry-breaking can produce oscillatory dynam-
ics for strong adaptive adhesion. In particular, these dy-
namics are possible once the adaptive adhesion coeffi-
cient exceeds a threshold value at which the saddle-node
bifurcation line associated with the shape bistability col-
lides with the pitchfork bifurcation line associated with
symmetry-breaking, giving rise to a new codimension-2
point [Fig.5(a,c)].

Oscillatory signaling dynamics arise in diverse multi-
cellular systems [94], and are important for the deter-
mination of cell fates during embryonic development or
stem cell maintenance [95–99]. While these dynamics are
primarily thought of as purely biochemical phenomena
[100, 101], our work reveals that the coupling to cellu-
lar shapes can produce such complex behaviors with a
minimal set of degrees of freedom and macroscopic con-
trol parameters. It will be interesting to investigate if
mechanochemical oscillations are more robust to pertur-
bations and noise compared to purely biochemical os-
cillations. Moreover, mechanochemical coupling allows
a self-organizing system to coordinate state transitions
(e.g. cell fate decisions) with spatial rearrangements in
noisy environments without requiring upstream control
mechanisms. For example, by creating and removing
specific contact surfaces, cells can robustly undergo a se-
quence of distinct differentiation events [33, 35–37].

Proximity to critical points allows biological systems
to undergo abrupt transitions in their macroscopic prop-
erties in response to small microscopic changes, allow-
ing for very sensitive adaptation [102]. For example,
self-amplifying mechanochemical coupling allows cells in
developing zebrafish embryos to undergo a switch-like
change from low-adhesion to high-adhesion configura-
tions in distinct tissue regions, facilitating the formation

of fate boundaries [1, 102]. Similarly, synthetic tissues
[38], biomimetic droplets [54], and materials that ex-
hibit adaptive shape responses could be engineered to
harness geometry-dependent feedback loops to achieve
self-assembling and self-healing functionalities [103–107].

Our work focuses on signaling dynamics which trigger
a slow response, set e.g. by the timescale of transcrip-
tional regulation, compared to the frictional timescales
determining the shape dynamics. Faster responses are
possible when signaling interactions drive local biochem-
ical changes (e.g. through the phosphorylation of stress
regulators in the cytoskeleton [108]). In such systems,
the shape becomes a dynamic degree of freedom, capable
of acting as a form of memory, and supporting further
dynamical regimes controlled by the combination of fric-
tional and biochemical timescales.

In conclusion, by bridging the microscopic and macro-
scopic scales, our model provides a framework for under-
standing mechanochemical feedback in soft active mate-
rials, revealing universal characteristics that could have
significant implications for both biological and synthetic
systems.
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Appendix A: Statistical physics of adhesion molecule
binding

At steady state, the flux coupling bulk and surface con-
centrations [Eq. (3)] vanishes and the surface can be con-
sidered to be in chemical and thermal equilibrium with
a constant temperature T and in contact with a bath of
constant chemical potential µ = µ(cN) set by the steady
state bulk concentration. Note that the chemical poten-
tial is kept constant through a non-equilibrium process—
the turnover of adhesion molecules. Each binding site at
the interface is a two-state system: a binding site is either
occupied or unoccupied. If n is the number of occupied
binding sites, nmax the total number of available bind-
ing sites at the surface and ϵ the binding energy, then
the grand canonical partition sum for the whole surface
reads

Ξ =

nmax∑
n=0

(
nmax

n

)
eβn(µ−ϵ) =

(
1 + eβ(µ−ϵ)

)nmax

(A1)
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with β = (kBT )
−1. The ensemble average of the number

of occupied binding sites is

⟨n⟩ = 1

β

∂ ln Ξ

∂µ
=

nmax

1 + eβ(ϵ−µ)
, (A2)

showing that the system follows Fermi-Dirac statistics.
In the chemical equilibrium, the rates of binding and un-
binding must be equal for each binding site. The binding
rate of adhesion molecules is

kbinding = kNoncNpuoc (A3)

with puoc = 1/(1+eβ(µ−ϵ)) the probability that a binding
site is not occupied, while the unbinding rate is

kunbinding = kNoffpoc (A4)

with poc = eβ(µ−ϵ)/(1 + eβ(µ−ϵ)) the probability that a
binding site is occupied. From kbinding = kunbinding and
Eqs. (A3)–(A4) follows

kNoff
kNoncN

= eβ(ϵ−µ). (A5)

From mN = ⟨n⟩/Ac and mmax
N = nmax/Ac together with

Eq. (A2) and cN = kNp /k
N
d follows then Eq. (13).

Appendix B: Symmetry-breaking of signaling states

The following Appendix is also included as supplemen-
tary material in [1].

In many biological systems, Notch signals are mutually
inhibitory, i.e. signals suppress the production of ligands
[74]. Strong mutual inhibitory interactions generically
lead to spontaneous symmetry-breaking [86], whereby
small initial differences in the signaling states are am-
plified and diverge to high- and low-value steady states.
At the onset of symmetry-breaking, the uniform steady
state solution of Eq. 47 becomes unstable. To derive an
approximation for the onset of symmetry-breaking, we
expand σ(sij) [Eq. (48)] for a general Hill coefficient h to
first order around the inflection point sij = 1

σ(sij) =
1

2
+

h

4
(sij − 1) +O((sij − 1)2) (B1)

yielding the dynamic equation

τu
dui

dt
=

1

2
+

h

4
(sji − 1)− ui (B2)

and using the definition of the signal Eq. (55) the uniform
steady state is [Fig. 9(a)]

u∗ = 1− 2 + h

4 + hχ
Ac

A0

. (B3)

Linear stability analysis reveals that this uniform steady
state looses stability for

χPF =
4A0

hAc
, (B4)

with Ac = Ac(γc) and γc = γ0 − γA(u
∗)2. Comparison

with the steady state contact area computed numerically
along the supercritical pitchfork bifurcation line that was
derived via continuation in MatCont shows good agree-
ment [Fig. 9(b)]. Figure 10 shows the normalized steady
state contact area Ac/A0 in the state space of feedback
parameters.

Appendix C: Shapes of asymmetric droplets

For pairs of droplets with unequal volumes (V1 ̸= V2)
or outer surface tensions (γf,1 ̸= γf,2), Eq. (63) does not
describe the size of the contact area. To derive the equi-
librium shape and contact size of asymmetric droplets,
we compute the minimum of the surface energy

E = γcAc + γf,1Af,1 + γf,2Af,2 (C1)

under constant volume constraint. We follow the ap-
proach and use the parameterization introduced in [79],
which is shown in Fig. 8(a). The droplet volumes can be
expressed in terms of three spherical cap volumes vi with
i ∈ {1, 2, c} [Fig. 8(b)] such that

V1 = v1 + vc (C2)

V2 = v2 − vc. (C3)

Given the radii of curvature Ri and the radius r as shown
in Fig. 8(a), we can define the length scales

ai =
√

R2
i − r2 (C4)

and surfaces

Hi(ai, r) =
1

2

(
a2i + r2 + ai

√
a2i + r2

)
, (C5)

which allows to express the spherical cap volumes as

vi(ai, r) =
π

3

(
ai +

√
a2i + r2

)2(
2
√
a2i + r2 − ai

)
(C6)

and the different droplet surfaces as

Ai(ai, r) = 4πHi(ai, r). (C7)

Using these definitions and expressing the outer surface
tensions as γf,1 = γ̄f + δγf , γf,2 = γ̄f − δγf , we can rewrite
Eq. (C1) as

E

4πγ̄f
=

(
1 +

δγf
γ̄f

)
H1(a1, r) +

(
1− δγf

γ̄f

)
H2(a2, r)

+ 2

(
γc
2γ̄f

)
Hc(ac, r) (C8)
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FIG. 8. (a) Parameterization of a pair of asymmetric droplets adapted from [79]. (b) The droplet volumes can be expressed
in terms of the three spherical cap volumes v1, v2, vc (c) Differences in droplet volumes δV/V̄ = {0.25, 0.5} (blue) or outer
interfacial tensions δγf/γ̄f = {0.25, 0.5} (brown) change how the contact area between the droplets depends on the tension ratio
γc/2γ̄f . Curves are obtained by numerically minimizing Eq. (C8) (Appendix C for details)

with γ̄f = (γf,1 + γf,2)/2. The minima in terms of the
four parameters (a1, a2, ac, r) under constant volume con-
straints V1 = V̄ − δV, V2 = V̄ + δV were computed nu-
merically, allowing to derive the size of the contact area
Ac = 4πHc(ac, r) (Appendix D).

Appendix D: Numerical methods

1. Bifurcation analysis

The state and bifurcation diagrams presented in
Fig. 5(a),(c),were computed via continuation with
the MATLAB-based software package MatCont
[109] (MatCont7p4 and MATLAB R2021a, scripts
with details and numerical settings available at
https://git.embl.de/dullwebe/dullweber2024. In gen-
eral, initial fixpoints to initialize the continuation were
computed by integration over time using the Integrator
Method ode45.

The saddle-node homoclinic (HSN) and associated
non-central homoclinic to saddle-node (NCH) bifur-
cations [Fig. 7(a)] could only be obtained using the
GUI-based version of MatCont7p4. For this, continua-
tion of limit cycles was performed for γA/γ0 = 0.95 and
decreasing continuation parameter χ until the period
reached a value close to 100 indicating the presence of
a homoclinic causing period divergence. For different
values of γA/γ0 = 0.95, this point consistently coincides
with the saddle-node bifurcation line. From the limit
cycle of largest period, continuation of a HSN was
initialized with InitStepsize 0.01, MinStepsize 0.05,
MaxStepsize 0.1, MaxNewtonIters 3, MaxCorrIters

10, MaxTestIters 10, VarTolerance 1e-6, FunTolerance
1e-6, TestTolerance 1e-5, Adapt 1, MaxNumPoints
2000, CheckClosed 50 and Jacobian Increment 1e-05.
Continuation of the HSN allows to detect the NCH
codimension 2 point.

Results of the continuation were confirmed using
simulations and analysis in Mathematica 13.0 (notebook
with a step-by-step explanation of the analysis available
at https://git.embl.de/dullwebe/dullweber2024. Specifi-
cally, we tested the number and types of stable attractors
in different parameter regimes with simulations using
NDSolve and ParametricNDSolve with the equation
simplification method Residuals. Fixpoints shown in
the phase plots Fig. 5(b) were computed numerically
in Mathematica from the intersections of nullclines.
The SHET [Fig. 5(b)], HSN and Hom [Fig. 7(b)] were
computed from simulation trajectories at parameter
values very close to the bifurcation point. The oscillation
amplitude [Fig. 5(d),(e)] and period [Fig. 5(a)] were
computed from the extrema of simulated trajectories,
and checked against the dominant Fourier components.

2. Timescale of symmetry-breaking

The time of symmetry-breaking Tsym [Fig. 2(b),blue
curve] was computed as the simulation time (Mathemat-
ica) until 99% of the steady state internal state differ-
ence |u1 − u2| is reached, starting from initial conditions
(u1, u2) = (0.01, 0.02). The saddle and its eigenvalues
[Fig. 2(b),red crosses] were found numerically in Mathe-
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Physical quantity Symbol Values
Base line interfacial tension relative to outer sur-
face tension in a single adherent droplet

(γ0 − γm)/2γf Fig. 3(a,c): 0.95

Base line interfacial tension relative to outer sur-
face tension

γ0/2γf Fig. 4(a): 0.9
Fig. 4(c): 0.7
Fig. 5-7,9,10,11: 0.98

Reference susceptibility χ0 Fig. 3: χcusp
0 = 2.8612

Fig. 4: χPF
0 = 16.629

Fig. 5-7,10: χ0 = 40.604

Adaptive adhesion coefficient relative to outer sur-
face tension

γA/2γf Fig. 3(a, inlet): 0.9
Fig. 4(a, inlet): 0.8
Fig. 5(b): {square, triangle: 0.15,
quarterfoil:0.21, star:0.23, cross:0.2352,
pentagon:0.5}

Fig. 5(d): 0.8
Fig. 5(e,f): {0.4, 0.6, 0.8} Fig. 7(b): 0.637
Fig. 7(c): {0.245, 0.637}

Relative signal susceptibility χ/χ0 Fig. 4(a, inset): 2.8
Fig. 5(b): {square:0.1, quarterfoil:0.61,
star:0.604, cross:0.6021, pentagon:0.6, tri-
angle:0.95}
Fig. 5(c): {0.62,0.665,0.68}
Fig. 5(d): {0.4704, 0.7388}
Fig. 7(c): {0.3,0.465,0.4885 0.5,0.5221 0.6,
0.74,0.9 }

Volume asymmetry δV/V̄ Fig. 6: {0.25, 0.5}
Tension asymmetry δγf/γ̄f Fig. 6: {0.25, 0.5}
Hill coefficient h Fig. 3(a,b): 2

Fig. 4(a-c): 2
Fig. 5-7: 4

TABLE I. Parameter values.

matica from the intersections of nullclines. Eigenvalues
were normalized against the maximum saddle eigenvalue
at χ/χPF

0 = 2, γA/γ0 = 1.

3. Treatment of asymmetric droplet shapes

To obtain estimates of the equilibrium shapes of
asymmetric droplets, we numerically computed the
minimum of Eq. (C8) in terms of the four parame-
ters (a1, a2, ac, r) and under the constant volume con-
straints V1 = V̄ − δV, V2 = V̄ + δV in Mathemat-
ica [110](https://git.embl.de/dullwebe/dullweber2024).
We computed the contact area Ac = 4πHc for values
of γc/2γ̄f evenly spaced on the interval [0, 1]. From these
results, we fit the contact area as a function of the tension
ratio [Fig. 8(c)], because our implementation of the nu-
merical continuation method to obtain bifurcation lines
requires an explicit expression that relates the contact
area to the interfacial tensions. For unequal volumes
(V1 ̸= V2), but identical outer surface tensions, we used a
5th order polynomial to fit a function Ac = Ac(γc/2γ̄f) on

the interval [0, 1] using Mathematica’s function Fit with
the default LevenbergMarquardt method [Fig. (8)(c)]. For
droplets with asymmetric outer tension, but equal vol-
umes, the droplet with higher outer tension is completely
internalized if γc/2γ̄f ≤ δγf [79], thus, we used a piece-
wise function to fit the contact area with Ac = 24/3A0

on the interval [0, δγf ]. The interval [δγf , 1] was fitted
with a combination of a rational function of the form
a+ b/(γc/2γf − c)d close to the threshold of internaliza-
tion with fit parameters a−d and a 5th order polynomial
[Fig. 8(c)]. Fits of the contact area were then used for
continuation in MatCont and simulations in Mathemat-
ica to derive the state diagrams shown in Fig. 6.

All codes are available at
https://git.embl.de/dullwebe/dullweber2024.

Appendix E: Literature values for reaction and
diffusion rates

Khait et al. 2016 obtained quantitative estimates for
many parameters governing the dynamics of Notch re-



18

FIG. 9. (a) Uniform fixpoints of Eq. (47) computed numer-
ically (gray) and approximation from linearization of the re-
sponse function σ(sij) around sij = 1 [Eq. (B3)], (orange),
h = 4. (b) Comparison between Eq. (B4) (orange) and the
steady state contact area computed numerically along the su-
percritical pitchfork bifurcation line derived via continuation
in MatCont (gray). This result is also presented in the sup-
plementary material of the companion letter [1, Fig. 7]

ceptors and ligands (Tab. II, [30]). The authors mea-
sured the 2D diffusion constant Dm and the endocytosis
rate koff in different cell lines and estimated the reac-
tion rates from previously reported measurements of the
binding kinetics for soluble molecules in 3D. The rate of
receptor and ligand transport from the bulk to the sur-
face kRonc

0
R and kLonc

0
L were estimated by assuming that

the steady state surface densities are m0
R = 100 µm−2

and m0
L = 10µm−2 (i.e. there is an excess of receptors)

when a cell is not in contact with another cell or ligand-
coated substrate. In that case mR = m0

R = kRonc
0
R/k

R
off

and mL = m0
L = kLonc

0
L/k

L
off . Ac gives the range of con-

tact areas for two spherical cells with radius 5 µm that
keep a normalized contact area Ac/A0 ∈ [0, 1] as assumed
in this work.

Parameter Symbol Value
Endocytosis koff 0.02 s−1

Cleavage ks 0.34 s−1

Binding k+ 0.167 µm2 s−1

Unbinding k− 0.034 s−1

Diffusion coefficients DmR , DmL 0.02–0.08µm2 s−1

Diffusion coefficient DmRL (DmR +DmL)/4
Exocytosis receptors kR

onc
0
R 2 µm−2 s−1

Exocytosis ligands kL
onc

0
L 0.2 µm−2 s−1

Contact area Ac 0–125 µm2

TABLE II. Typical parameter values for reaction and diffusion
rates of receptor and ligand molecules as reported in [30] and
estimate of common cellular length scales

Appendix F: Experimental methods (Fig. 1(a))

1. Cell culturing

NIH/3T3 fibroblasts (ATCC CRL-1658, strain:
NIH/Swiss) were cultured in 10 cm plastic petri dishes

FIG. 10. State diagram as shown in Fig. 5(a) for γ0/2γf =
0.98. The color code indicates the normalized contact area at
the fixpoint, i.e. at the uniform fixpoint state below the PF
and SHET line and at the symmetry-broken fixpoints above
the PF and Hopf line. The oscillatory regime between Hopf
and SHET line is white as it does not contain any stable
fixpoints. This result is also presented in the supplementary
material of the companion letter [1, Fig. 8].

at 37◦C and 5% CO2 in phenol-red free DMEM
medium containing 10%FCS (in the following just called
”medium”). Cells were passaged every 2-3 days at
∼ 80−90% confluency by washing with dPBS followed by
2–3min incubation with 1mL Trypsin at 37◦C. Detached
cells were resuspended in 4–5mL medium and added ei-
ther to a new 10 cm petri dish with 10mL medium for
culturing or a 6-well plate with 2mL medium per well for
experiments, yielding a final confluency of 10-20%.

2. Imaging cells on micropatterns (Fig. 1(a))

3T3 fibroblasts were seeded on Fibronectin-coated mi-
cropatterns of 10µm diameter as described in [111].
Seeded cells were washed with dPBS and then phenol-
red free DMEM medium with 10 µgmL−1 Hoechst33342
(1:1000 from 10mgmL−1 in DMSO) and 1µmol SiR-
actin added to the dish. Cells were imaged ≥ 30min
after adding the live dyes using a SP5 Confocal Micro-
scope (Leica) with a 100x oil-immersion objective (1.4
NA).
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FIG. 11. Bifurcation analysis close to the saddle-node pitchfork, Left: Enlarged view of the state diagram of the doublet in
terms of normalized feedback control parameters shown in Fig. 5(a) close to the saddle-node pitchfork (SP) codimension-2
bifurcation point. (a) - (d) show stable (solid line) and unstable (dashed line) fixpoints and saddles (dotted line) computed for
variation of one feedback parameter as indicated by dotted lines in the state diagram on the left. As the pitchfork interacts
with one of the saddle-nodes (compare (b) and (c)), it changes from supercritical (PF−) to subcritical (PF+) and the saddle
(SN) becomes a Saddle-Heteroclinic (SHET). In the parameter regime between the H and SHET bifurcation lines, the system
has no stable fixpoints, but stable limit cycles. H: Hopf bifurcation. Diagrams were computed in MatCont (Appendix D). This
result is also presented in the supplementary material of the companion letter [1, Fig. 10]
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[61] J.-L. Mâıtre, H. Berthoumieux, S. F. G. Krens, G. Sal-
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