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4 BENJAMIN-FEIR INSTABILITY OF WAVE PACKETS AT

INTERFACE OF LIQUID HALF-SPACE AND LAYER

OLGA AVRAMENKO, VOLODYMYR NARADOVYI

Abstract. The propagation of internal waves in a hydrodynamic system
comprising a solid bottom and an upper half-space is investigated. The study
is conducted within the framework of a nonlinear low-dimensional model in-
corporating surface tension on an interface using the method of multi-scale ex-
pansions. The evolution equation of the envelope of the wave packet takes the
form of the Schrödinger equation. Conditions for the Benjamin-Feir stability
of the solution of the evolution equation are identified for various physical
and geometrical characteristics of the system. An estimation of the param-
eter range in which the instability occurs is performed. Significant influence
on the modulational stability of the geometrical characteristics of the system
and surface tension is observed in each system for relatively small liquid layer
thicknesses and waves with a wavelength comparable to the layer thickness.

1. Introduction

The study focuses on examining the modulational instability or Benjamin-Feir
instability of wave packets along the interface of liquid layer and half-space above
it, considering surface tension. For the first time, modulational instability was
presented by Benjamin and Feir [4]. Zakharov continued to investigate this phe-
nomenon and derived the evolution equation for the envelope of the wave packet
in the form of a nonlinear Schrödinger equation (NLS) [21]. In subsequent re-
search, more intricate models have been developed. For example, a higher-order
NLS equation featuring fifth-order nonlinearity for wave envelopes on a finite-
depth fluid surface was derived in [16]. Additionally, the six-wave interaction and
classical three-wave equations were formulated from the free surface gravity wave
equation incorporating surface tension in [1]. Furthermore, noteworthy contribu-
tions include the studies [11] and [7], which provide analytical insights into the
role of surface tension in wave propagation on free surfaces and at fluid interfaces.

Here, we review several studies on the propagation of nonlinear waves in layered
fluids examined through the framework of multiple-scale expansions. Hasimoto
and Ono [10] employed this method to describe a weakly nonlinear solution as a
modulated wave packet propagating along a water layer, with its envelope governed
by the NLS equation.
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In [13], a detailed analysis of wave packet propagation along the interface of
two semi-infinite fluids with surface tension is presented, where the evolution of
the envelope is derived as an NLS equation. Grimshaw and Pullin [9] further
discussed the stability of finite-amplitude interfacial progressive waves in a two-
layer fluid against small perturbations, where an NLS equation is obtained to
describe slowly modulated waves using the multiscale expansion. The nonlinear
problem of wave-packet propagation along the interface of two semi-infinite fluids
is addressed by Selezov et al. [18] using a fourth-order multiple-scale method.
We also highlight several studies where the multiscale expansion method has been
applied to explore nonlinear wave phenomena in two-component hydrodynamic
systems with flows [2, 12, 15]. It is worth noting that the multiple-scale expansion
method involves complex transformations, posing challenges as model complexity
grows; however, modern computer algebra systems have made it feasible to handle
these complexities, which is a central reason for applying this method in the present
study.

The following studies investigate the role of the Benjamin-Feir instability within
hydrodynamic settings, with a particular focus on its stabilization through dissi-
pation and its impact on extreme wave formation. In [17], it was demonstrated
that for waves with a narrow spectral bandwidth and moderate amplitude, specific
types of dissipation can stabilize the instability, a finding that was experimentally
validated. Direct numerical simulations in [19] further support these results, em-
phasizing the importance of incorporating dissipation models. Onorato et al. [14]
reveal that the Benjamin-Feir index is closely related to modulational instability
and the probability of extreme wave events, while [20] and [8] discuss the emergence
of nonlinear processes and dispersive shock waves driven by modulation instabil-
ity. Specifically, Zakharov and Ostrovsky [20] examine nonlinear dynamics arising
from modulation instability, whereas El and Hoefer [8] provide a comprehensive
review of dispersive hydrodynamics, with a focus on dispersive shock waves. In
[3], regimes balancing wind and viscosity effects in wave propagation are identified
and validated through experiments. Additionally, spectral methods presented in
[6, 5] offer new perspectives on the eigenvalues associated with the Benjamin-Feir
instability, detailing stability characteristics in the vicinity of the Stokes wave.

As noted above, although there has been substantial interest in the phenome-
non of modulational stability, there remains a lack of comprehensive research on
its application to internal wave packets at an interface with surface tension effects.

This article addresses the modulational stability of a two-layer hydrodynamic
system, specifically the ‘layer with a solid bottom – half-space’ (La-HS) configura-
tion, incorporating surface tension through the method of multiscale expansions,
carried out using symbolic computation. The accuracy of the results is validated
by examining the limiting cases where the layer thickness becomes infinitely large,
effectively transitioning to the ‘half-space – half-space’ (HS-HS) system.
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Figure 1. Statement of the problem.

2. Problem Statement and Research Method

We examine the propagation of wave packets along the interface z = η(x, t)
between two incompressible fluid media, Ω1 and Ω2, with densities ρ1 and ρ2,
respectively, taking into account the surface tension T acting on the interface
η(x, t) (see figure 1). The regions in an undisturbed state have the following form:
Ω1 = {(x, z) : |x| < +∞,−h1 < z < 0} and Ω2 = {(x, z) : |x| < +∞, 0 < z <
+∞} where the thickness of the layer is h1.

The mathematical formulation is provided in a dimensionless form, with scaling
based on gravitational acceleration g, the density of the lower fluid ρ1, and a
characteristic surface tension T0. From these parameters, the characteristic length

is defined as L =
(

T0ρ
−1
1 g−1

)1/2
, the characteristic time as t0 =

(

Lg−1
)1/2

, and

the characteristic mass as m0 = ρ1L
3. Dimensionless quantities, indicated by an

asterisk, are defined as follows

L(x∗, z∗, h∗

1) = (x, z, h1), ρ1(ρ
∗

1, ρ
∗

2) = (ρ1, ρ2), t0t
∗ = t,

T0T
∗ = T, αLη∗ = η, αL2t−1

0 (φ∗

1, φ
∗

2) = (φ1, φ2).(2.1)

where α = a/l is a small dimensionless parameter representing the wave steep-
ness, with a being the maximum displacement of the interface η(x, t) and l the
wavelength. It is worth noting that this nondimensionalization approach allows
for the exploration of surface tension effects, denoted by T , by setting a fixed
characteristic value T0, in contrast to the method introduced by Nayfeh in [13].

The propagation velocities of the wave packets in the regions Ωj are defined
in terms of the gradients of the potentials φj(x, z, t) for j = 1, 2. Consequently,
the mathematical formulation of the wave packet propagation problem within this
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model takes the form

∆φj = 0 in Ωj ,

η,t − φj,z = −αη,xφj,x at z = αη(x, t),(2.2)

φ1,t − ρφ2,t + (1− ρ)η + 0.5α (∇φ1)
2
− 0.5αρ (∇φ2)

2

−T
(

1 + (αη,x)
2
)

−1.5

η,xx = 0 at z = αη(x, t)

φ1,z = 0 at z = −h1, |∇φ2| → 0 at z → +∞.

The surface elevation and velocity potentials in the domains Ωj(j = 1, 2) are
represented according to the method of multiple scales

η(x, t) =
∑3

n=1
αn−1ηn(x0, x1, x2, t0, t1, t2) + O(α3),(2.3)

φj(x, z, t) =
∑3

n=1
αn−1φjn(x0, x1, x2, z, t0, t1, t2) + O(α3),

where xn = αnx, tn = αnt are the spatial and temporal scaling variables.
The substitution (2.3) into the problem (2.2) leads to the first three linear

approximations with respect to the unknown functions, which are coefficients in
the expansion (2.3). Here are the solutions for the first approximation

η1 = A exp(iθ) +A exp(−iθ),(2.4)

φ11 = − iω
k sinh(kh1)

(

A exp(iθ)−A exp(−iθ)
)

cosh(k(h1 + z)),(2.5)

φ21 = iω
k

(

A exp(iθ − kz)−A exp(−iθ − kz)
)

,(2.6)

where A = A(x1, x2, t1, t2) is the envelope of the wave packet, A is the complex
conjugate of A, k is the wave number, ω is the frequency of the wave packet center,
θ = kx0 − ωt0. The dispersion relation is given by

(2.7) ω2 =
k − ρk + Tk3

coth(kh1) + ρ
.

Based on these solutions of the first approximation (2.4)-(2.6) and the disper-
sion relation (2.7), conditions of solvability and solutions of the second approxi-
mation are obtained. Below is the analytical expression for η2(x, t)

(2.8) η2 = b0AA+ ΛA2 exp(2iθ) + c.c.

where the coefficients b0 and Λ have the form

b0 = − ω2

2(1−ρ) sinh2(kh1)
,

Λ =
kω2 coth(kh1)(2 sinh2(kh1)(1−ρ)+3)

2 cosh(2kh1)ω2
−(4Tk3+k−ρ−2ω2ρ) sinh(2kh1)

.

The solvability conditions for the second approximation is in the form

(2.9) W11A,t1 +W12A,x1
= 0,
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where the coefficients W11 and W12 depend only on the geometric and physical
parameters of the system T, ρ, k, and h2. After transformations, the condition
(2.9) can be rewritten as

(2.10) A,t1 + ω′A,x1
= 0,

where ω′ = dω/dk is the group velocity.
For the problem of the third approximation, the solvability condition was found

to be

(2.11) W21A,t2 +W22A,x2
+W23A,x1x1

+W24A
2A = 0,

where the coefficients W21, W22, W23, and W24 depend only on T, ρ, k, h2. Af-
ter analytical transformations, considering the dispersion relation (2.7), equations
(2.10) and (2.11), and transitioning from the scaling variables t0, t1, t2, x0, x1, x2

to variables x and t, the evolution equation for the envelope of wave packets on
the contact surface can be written as

(2.12) iA,t + iω′A,x + 0.5ω′′A,xx = −αω−1JA2A,

here ω′′ = d2ω/dk2 and

J =
W1ω

6 +W2ω
4 +W3ω

2 +W4

W5ω2 +W6
k,

where W1 = cosh(2kh1)csch
3(kh1) + 2ρcsch(kh1) coth(kh1),

W2 = 6kρ3 sinh2(kh1) cosh(kh1)− 2kρ2
[

cosh(2kh1)csch(kh1)

+ 2 cosh(2kh1) cosh(kh1)− 6 sinh(kh1) cosh
2(kh1) + cosh3(kh1)

+ cosh(2kh1) cosh(kh1) coth(kh1)
]

+ kρ
[

2 cosh(2kh1)csch(kh1)

+ 6 cosh(2kh1) cosh(kh1) + 1.5 coth(kh1)csch(kh1)

− 2 sinh2(kh1) cosh(kh1) + 2 cosh(2kh1) coth(kh1)csch(kh1)

− 12 sinh(kh1) cosh
2(kh1) + 2 cosh(2kh1) cosh(kh1) coth(kh1)

]

− k
[

5.5 coth(kh1)csch(kh1) + 2 cosh(2kh1) cosh(kh1) coth
2(kh1)

− 6 cosh2(kh1) coth(kh1)csch(kh1) + 2 coth(kh1)csch(kh1) cosh
4(kh1)

]

− 4Tk3csch(kh1) coth(kh1),

W3 = k2
(

1− ρ
)

[

(

1− ρ
)

{2ρ cosh(kh1) sinh
2(kh1)

+ 6 sinh(kh1) cosh
2(kh1)− 2 cosh(kh1) cosh(2kh1) coth(kh1)}

− 1.5Tk2csch(kh1) cosh(2kh1) + 11Tk2ρ cosh(kh1) sinh
2(kh1)

+ 24Tk2 sinh(kh1) cosh
2(kh1)− 6.5Tk2csch(kh1) cosh(2kh1) cosh

2(kh1)

]

,
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W4 = Tk5
(

1− ρ
)[

1.5ρ− 1.5− 6Tk2
]

cosh(kh1) sinh
2(kh1),

W5 = 2
(

1− ρ
)(

ρ sinh(kh1) + cosh(kh1)
)(

ρ sinh(2kh1) + cosh(2kh1)
)

,

W6 = k
(

1− ρ
)(

ρ− 1− 4Tk2
)(

cosh(kh1) + ρ sinh(kh1)
)

sinh(2kh1).

Transitioning to a moving frame with the group velocity by substituting ξ =
x− ω′t and ζ = t, let’s rewrite the envelope equation (2.12) in the form of a NLS

(2.13) iA,ζ + 0.5ω′′A,ξξ = −αω−1JA2A.

To derive the modulation stability condition of wave packets, let’s consider one
of the solutions of the equation (2.13) which depends only on time

(2.14) A = a exp(iαa2ω−1Jζ),

where a is a constant. Substituting (2.14) into (2.4) and (2.8), taking into account
the expansion (2.3), and transitioning from variables (ξ, ζ) to (x, t), we obtain

(2.15) η(x, t) = 2a cos(kx− ω̂t) + 2α (b0 + Λcos(2kx− 2ω̂t)) + O(α2),

where ω̂ = ω − αa2ω−1J . Utilizing the methodology described in [13], based on
(2.13), (2.14), and (2.15), we obtain the modulation or Benjamin-Feir stability
condition for wave packets in the HS-La model in the form of

(2.16) Jω′′ < 0.

It’s worth noting that condition (2.16) coincides with the condition obtained
for the HS-HS model of wave propagation at the interface between two semi-infinite
regions, as described in [13]. To confirm the correctness of the analytical results
for the La-HS system, a limiting transition to the HS-HS system was performed
as h1 → −∞. All equations and expressions for Λ and J degenerate into the
corresponding equations and expressions previously derived in [13] for the HS-HS
system. This confirms the correctness of the obtained analytical results.

3. Modulational stability analysis

In this section, a description and analysis of stability diagrams on the (ρ, k)
plane for La-HS system is presented. Each stability diagram is divided into re-
gions of linear instability (dark shading) and linear stability. The region of linear
stability, in turn, consists of areas of nonlinear stability (unshaded) and nonlinear
instability, or in other words - instability of the envelope of the wave packet, or
modulational instability, or Benjamin-Feir instability (light shading).

The condition for linear stability is determined by the same relationship,
namely, when the wave numbers are greater than a critical value, k > kc =
√

(ρ− 1)/T , therefore, in all the stability diagrams presented below, the (ρ, k)
plane is divided by the curve k = kc (black curve) into a region of linear instability
located below this curve, and a region of linear stability located above and to the
left of it.

As previously indicated in (2.16), the sign of the expression Jω′′ determines
whether the envelope of the wave packet is stable or not, i.e., whether modulational
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a) h1 = 0.5 b) h1 = 1 c) h1 = 1.5

d) h1 = 2 e) h1 = 3 f) h1 = 20

Figure 2. Modulational stability diagram for T = 1.

stability exists or not. Thus, the region of linear stability is divided into regions
of nonlinear stability and instability by curves along which J = 0 (red curves),

J → ∞ (blue curves), and ω
′′

= 0 (green curves).
Below is a description of the regions of modulational stability and instability,

which will be referred to as ‘stability’ and ‘instability’ regions for brevity in the
following discussion.

The stability diagrams at different layer thicknesses and T = 1 are presented
in figure 2. For all investigated parameter values, there exists a certain similarity
in the diagrams in the right part, where the density ratio ρ > 1. In this region,
the linear instability region lies below the curve k = kc (black curve), while above
it, three alternating regions of nonlinear stability and instability are situated. The
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Figure 3. The vicinity of the asymptote for T = 1

vertical line ρ = 1, along which J → ∞, separates the region of nonlinear stability
to the right from the region of nonlinear instability to the left.

We can also mention the presence of a region of nonlinear stability with asymp-
totes ρ = 1 and ρ ≃ 0.1716 for capillary waves when ρ < 1. We will refer to this
region as the ‘upper’ region. For a layer thickness of h1 = 0.5, the ‘upper’ region
of nonlinear stability begins at k > 2, which is why it is not visible in figure 2 a.
As the layer thickness increases to h1 = 1, 1.5, 2, 3, 20 (see figures 2 b, c, d, e, f ),
the ‘upper’ region descends, and its lower point tends towards (1, 0) as h1 → ∞.

On figure 3, the region around the asymptote ρ ≃ 0.1716 is presented for
different values of layer thickness h1 = 0.5, 1, 1.5, 2, 3, 20 at T = 1. It’s worth
noting that we observe the following dependence: the thinner the layer, the further
to the right the curve separating the instability region from the ‘upper’ stability
region. The limiting position of these curves as the layer thickness increases h1 →
∞ remains the same, corresponding to the case of two half-spaces system [13],
which is evident at h1 = 20.

In the lower part of the diagram, there is an ’elongated’ region, bounded above
by a blue curve J → ∞ and below by a green curve ω

′′

= 0. For small layer
thicknesses h1, it essentially degenerates into a ’cut’ on the (ρ, k) plane, which
is clearly visible for h1 = 0.5, 1, 1.5 (figures 2 a, b, c). For these values of layer

thickness, the blue curve along which J → ∞ and the green curve where ω
′′

= 0
almost coincide creating a ”cut” on the plane (ρ, k) which starts from the origin
and ends at the point (1, 0). As the layer thickness increases, both curves rise above
the origin, still not diverging far from each other, having a point of intersection, as
seen for h1 = 2 (figure 2 d). For even larger thicknesses, the ‘elongated’ region of
nonlinear stability expands, as evident for h1 = 3, 20 (figures 2 e, f ). As h1 → ∞,
this region completely coincides with the corresponding region of the two liquid
half-spaces system [13], and as h1 → ∞ and ρ = 0, it corresponds to [21].

We now present an analysis of the dependence of modulational stability on
surface tension. Figures 4 a, b, c depict stability diagrams for a layer thick-
ness of h1 = 1.5 with surface tension coefficient values of T = 0.75, 1.25, 1.75,
while figures 4 d, e, f represent diagrams for h1 = 1.5 with the same values of
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a) h1 = 1.5, T = 0.75 b) h1 = 1.5, T = 1.25 c) h1 = 1.5, T = 1.75

d) h1 = 3, T = 0.75 e) h1 = 3, T = 1.25 f) h1 = 3, T = 1.75

Figure 4. Modulational stability diagram of wave packets.

T = 0.75, 1.25, 1.75. It can be observed that as the surface tension increases, all
regions of the stability diagram undergo significant deformation. As the surface
tension increases (T = 0.75, 1.25, 1.75) with a layer thickness of h1 = 1.5, the ‘cut’,
which is a degeneration of the ‘elongated’ region, in the long-wave region dimin-
ishes and approaches the horizontal axis, while the ‘upper’ stability region slightly
shifts upward and widens. Furthermore, when the layer thickness is h1 = 3, the
‘elongated’ stability region significantly narrows as the surface tension increases
T = 0.75, 1.25, almost turning into a ‘cut’ in the instability region at T = 1.75.
Meanwhile, the lower point of the ‘upper’ stability region slightly rises upward,
and the region itself becomes substantially wider.

As noted above in subsection ??, the low-dimensional models HS-La and La-
HS considered in this study can be interpreted as 3D models of wave propagation
in two-layer liquid media within a channel.

4. Estimation of the parameter range

Let us now move from the dimensionless variables to the evaluation of actual
dimensional quantities. Let the nondimensionalization (2.1) be carried out based
on the following values: gravitational acceleration g = 9.80665 m/s2, density of
the lower fluid ρ1 = 103 kg/m3, and a characteristic surface tension, for instance,
the surface tension on the free surface of water T0 = 0.07286 N/m.
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Let us consider the case when the nondimensional thickness of the layer h1
∗ =

1. Upon conversion to dimensional quantities, we have h1 = 0.00273 m. Thus,
we have a case of a relatively thin liquid layer, which may occur in laboratory
experiments and some technological installations, but is not applicable to the
study of waves in the ocean. It is evident that the range of waves, whose lengths
are comparable to the thickness of the layer, corresponds to the range of wave
numbers from 0.5 to 1.0. In this range, the wave amplitudes do not exceed 15%
of the layer thickness. As the wave numbers increase, the wave lengths decrease
and become significantly smaller than the layer thickness.

With the considered layer thickness h∗

1 = 1 and for T ∗ = 1, the ‘upper’ region
of modulational stability arises at ρ ≃ 0.75 and k ≃ 1.41, corresponding to short
waves. As k increases, the ‘upper’ stability region expands (see figure 2 b). During
the study, various thicknesses of the layer were also considered at different values
of surface tension. In each case, a significant influence of the geometric parameters
of the system and the magnitude of the surface tension was noted, particularly for
relatively small thicknesses of the liquid layers and waves, as well as for wavelengths
comparable to them.

Conclusions

We summarize the key features of modulational stability regions in 2D hydro-
dynamic system a hydrodynamic system consisting of a solid bottom and an upper
half-space on the (ρ, k) plane, examining various layer thicknesses and surface ten-
sion values. For cases where ρ < 1, two main stability regions are identified: the
‘upper’ region and the ‘elongated’ region. Specifically, (i) the ‘upper’ region occurs
at high wavenumbers, spanning a wide range of density ratios, with boundaries
at approximately ρ ≃ 0.1716 and ρ = 1; (ii) the ‘elongated’ region, under certain
parameter conditions, reduces to a narrow ‘cut’ in the lower part of the stability
diagram, nearly vanishing, where wave packet envelopes are unstable across most
parameter values for long wavelengths. Our findings highlight the substantial im-
pact of both layer thickness and surface tension on the stability characteristics,
especially in the case where the wavelengths are comparable to the layer thickness.

Acknowledgement Dr. Olga Avramenko expresses gratitude to the Research
Council of Lithuania for the support in preparing this article.
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