
Harnessing Scale and Physics: A Multi-Graph Neural Operator
Framework for PDEs on Arbitrary Geometries

Zhihao Li

zli416@connect.hkust-gz.edu.cn

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, China

Haoze Song

hsong492@connect.hkust-gz.edu.cn

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, China

Di Xiao

shawd@buaa.edu.cn

Beihang University

Beijing, China

Zhilu Lai

zhilulai@ust.hk

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, China

Wei Wang
∗

weiwcs@ust.hk

The Hong Kong University of Science

and Technology (Guangzhou)

Guangzhou, China

ABSTRACT

Partial Differential Equations (PDEs) underpin many scientific phe-

nomena, yet traditional computational approaches often struggle

with complex, nonlinear systems and irregular geometries. This

paper introduces the AMG method, aMulti-Graph neural opera-

tor approach designed for efficiently solving PDEs on Arbitrary

geometries. AMG leverages advanced graph-based techniques and

dynamic attention mechanisms within a novel GraphFormer archi-

tecture, enabling precise management of diverse spatial domains

and complex data interdependencies. By constructing multi-scale

graphs to handle variable feature frequencies and a physics graph

to encapsulate inherent physical properties, AMG significantly out-

performs previous methods, which are typically limited to uniform

grids. We present a comprehensive evaluation of AMG across six

benchmarks, demonstrating its consistent superiority over existing

state-of-the-art models. Our findings highlight the transformative

potential of tailored graph neural operators in surmounting the chal-

lenges faced by conventional PDE solvers. Our code and datasets

are available on https://github.com/lizhihao2022/AMG.

CCS CONCEPTS

• Computing methodologies→ Artificial intelligence.

KEYWORDS

Partial differential equations, neural operator, geometric leaning

ACM Reference Format:

Zhihao Li, Haoze Song, Di Xiao, Zhilu Lai, and Wei Wang. 2025. Harnessing

Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs

on Arbitrary Geometries. In Proceedings of Make sure to enter the correct

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Partial Differential Equations (PDEs) underlie critical phenomena

across diverse fields, from fluid dynamics to quantum mechanics,

showcasing their ability to model complex variable relationships.

Traditional approaches, while foundational, often struggle with the

complexities and non-linearities of these systems, particularly in

irregular geometries. Operator Learning has emerged as a trans-

formative approach, leveraging deep learning architectures like

Deep Operator Networks (DeepONet) and Fourier Neural Oper-

ators (FNO) to directly map input conditions to PDE solutions

[16, 18, 25]. This method stands out for its versatility, requiring no

retraining for different conditions, thus enabling efficient model

adaptation across diverse settings.

However, applying these deep learning techniques to real-world

problems poses significant challenges, especially with irregular

geometries where traditional methods like FNO [18], using Fast

Fourier Transform, and U-Net [32], employing convolutions, are

inherently limited to uniform grids. Innovations such as Graph Neu-

ral Operators (GNO) [22], and geometric adaptations like Geo-FNO

[17], attempt to address these limitations by projecting irregular

domains into more manageable latent meshes. Moreover, GINO

combines these approaches to enhance modeling across various

scales [23]. However, the inherent limitations of Fourier bases, par-

ticularly under the periodic boundary assumption, lead to signifi-

cant performance degradation in complex geometries [9]. Similarly,

graph kernels often fail to capture global information effectively

[13, 37, 38].

The challenge extends to the domain’s frequency spectrum; high-

frequency areas require more intensive learning efforts compared

to the predominantly flat, low-frequency regions. This disparity in

learning demand across different frequencies, akin to techniques

used in computer vision for tasks such as super-resolution, un-

derscores the potential of tailoring neural network structures to

leverage these differences for enhanced performance [10, 34].

In PDE learning, multi-scale methods have shown promise; how-

ever, they are generally limited to uniform grids and often require

ar
X

iv
:2

41
1.

15
17

8v
1

 [
cs

.L
G

]
 1

8
N

ov
 2

02
4

https://github.com/lizhihao2022/AMG
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhihao et al.

Layer
Norm

Multi-Graph Processor ×	𝑳

𝑎! !"#$ 𝑢! !"#$

Physics
Graph

++

Local
Graph

Global
Graph

Local
GraphFormer

Global
GraphFormerEncoder

Physics
GraphFormer

Layer
Norm

Feed
Forward Decoder

Figure 1: Overview of the model architecture.

dimensions to be powers of two, particularly in methods utiliz-

ing wavelets [11, 19, 20]. Furthermore, transformer-based models,

which distribute sample points across equal-sized attention grids,

struggle with the highly variable frequency behaviors seen in phe-

nomena like wave propagation [4, 13, 37, 38]. Existing graph-based

methods, which often employ a 𝑘-Nearest-Neighbor approach to

construct graphs, treat all nodes equally, neglecting the diverse

learning needs inherent in PDE dynamics. This one-size-fits-all

approach to node degrees can significantly impede the efficacy of

graph-based models.

To address the challenges associated with solving PDEs on arbi-

trary geometries and capturing multi-scale features, we introduce

AMG—a method employing aMulti-scale Graph neural operator

tailored for Arbitrary geometries. AMG leverages three distinct

types of graphs, constructed from the given coordinates: two are

designed for multi-scale processing is dedicated to capturing the

underlying physical properties. At the heart of AMG is the Graph-

Former, a novel architecture equipped with dynamic graph atten-

tion mechanisms. This design allows the model to compute the

hidden representations of each node by dynamically attending

to its neighbors, effectively handling the complex interdependen-

cies within the data. Furthermore, we theoretically establish that

graph attention can be seen as a learnable integral, enhancing our

method’s ability tomodel continuous spaces. Extensive experiments

were conducted on six benchmarks, including four well-established

ones and two custom-designed to test our method’s efficacy across

diverse geometries and dynamic mesh configurations. AMG con-

sistently outperforms existing solutions, achieving a remarkable

relative gain on six benchmarks.

The contributions of this paper are summarized as follows:

• We use local sampling (Section 3.2.3) and global sampling

(Section 3.2.4) to construct multi-scale graphs for capturing

different frequencies of features and a physical graph (Sec-

tion 3.2.5) to encode inherent physical properties effectively.

• We introduce a GraphFormer (Section 3.4) architecture with

dynamic graph attention mechanisms, providing a scalable

and flexible encoder-processor-decoder framework (Section

3.1) for learning operators tailored to arbitrary geometries.

• AMG demonstrates superior performance, achieving consis-

tent state-of-the-art results with significant relative gains

across a variety of benchmarks.

2 PRELIMINARIES

2.1 Problem Formulation

We consider Partial Differential Equations (PDEs) defined over a

domain 𝐷 ⊂ R𝑑 . Define A = A(𝐷 ;R𝑑𝑎) and U = U(𝐷 ;R𝑑𝑢) as
two Sobolev spaces H𝑠,𝑝

, with parameters 𝑠 > 0 and 𝑝 ≥ 1. Our

aim is to learn an operator G : A → U, mapping from the input

function space A to the solution function space U. Specifically,

we select 𝑠 > 0 and 𝑝 = 2 to take advantage of the Hilbert space

structure, which facilitates the definition of projections.

The operator G is characterized as an integral operator with a

kernel 𝜅, where 𝜅 : 𝐷 × 𝐷 → 𝐿2, and is formalized by the integral

equation:

G𝑎(x) =
∫
𝐷

𝜅 (x, y)𝑎(y) 𝑑y, (1)

enabling G to operate within the Hilbert space framework and

leveraging the properties of 𝐿2 spaces for enhanced analytical and

computational efficiency.

2.2 Graph Neural Operators

A directed graph G = (V, E) includes nodes V = {1, ..., 𝑛} and
edges E ⊆ V ×V , with (𝑗, 𝑖) ∈ E representing an edge from node

𝑗 to node 𝑖 . Each node 𝑖 ∈ V initially possesses a representation

h(0)
𝑖
∈ R𝑑ℎ . An undirected graph is depicted using bidirectional

edges between nodes.

A Graph Neural Network (GNN) layer updates the representation

of each node by aggregating information from its neighbors. The

input to a GNN layer consists of a set of node representations

{h𝑖 ∈ R𝑑ℎ | 𝑖 ∈ V} and the set of edges E. The output is a new
set of node representations {h′

𝑖
∈ R𝑑ℎ | 𝑖 ∈ V}, where each node’s

updated state is calculated as:

h′𝑖 = 𝑓𝜃 (h𝑖 ,AGGREGATE({h𝑗 | 𝑗 ∈ N𝑖 })) (2)

The function 𝑓 and the aggregation method AGGREGATE largely

define the distinctions among various GNN architectures.

If we accurately construct the graph on the spatial domain 𝐷 of

the PDE, the kernel integration can be interpreted as an aggregation

of messages [22]. In the edge-conditioned aggregation mechanism

[8, 35] utilized at the 𝑘th layer, the output feature h𝑘
𝑖
for node 𝑖 is

calculated based on its previous feature h𝑘−1 as follows:

𝑢 (x𝑖) = h𝑘𝑖 =

∑
𝑗∈N(𝑖) exp (𝜅 (x𝑗 , x𝑖))h𝑘−1𝑗∑

𝑗∈N(𝑖) exp (𝜅 (x𝑗 , x𝑖))
, (3)

Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary Geometries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

where 𝜅 : R𝑑 × R𝑑 → R is a parameterized kernel function that

evaluates the correlation between node pairs (𝑗, 𝑖), influencing the

strength of the message passed from node 𝑗 to node 𝑖 .

3 METHODOLOGY

This section outlines the AMG method’s architecture for solv-

ing PDEs on arbitrary geometries. We start with an architecture

overview in Section 3.1, followed by the construction of multi-

graphs in Section 3.2. The processing module is detailed in Section

3.3, and the GraphFormer Block is discussed in Section 3.4.

3.1 Overview of Model Architecture

Our model architecture is designed to effectively handle the com-

plexities involved in processing partial differential equations (PDEs)

on irregular geometries using graph neural networks. The architec-

ture is illustrated in Figure 1.

Input and Encoder: The process begins with the input dataset

{𝑎𝑖 }𝑁𝑖=1, which consists of the initial conditions or parameters for

the PDEs. These inputs are first processed by an Encoder, which

transforms the raw data into a preliminary feature representation

suitable for further processing within the neural network.

Graph Construction: Two distinct types of graphs, the Physics

Graph and the Multi-Scale Graph, are constructed from the en-

coded features. The Physics Graph encapsulates the underlying

physical laws governing the phenomena being modeled, while the

Multi-Scale Graph captures interactions at various scales, crucial

for accurately modeling complex systems.

Multi-Graph Processing Layers: The core of the architecture

comprises multiple processing layers, each consisting of a Graph-

Former, Message Passing, and Layer Normalization components

followed by a Feed Forward network. The GraphFormer compo-

nent applies transformations specific to graph data, facilitating the

propagation and update of node features. Message Passing enables

the exchange of information between nodes, enhancing the model’s

ability to learn from the topology of the graph. Layer Normalization

is employed to stabilize the learning process, and the Feed Forward

networks provide additional transformation capabilities to the node

features.

Decoder and Output: Following the processing layers, a De-

coder reverts the graph-based features back into the spatial domain,

generating the output {𝑢𝑖 }𝑁𝑖=1 which represents the solution to the

PDE at the discretized points. This output effectively demonstrates

the model’s capability to predict complex phenomena governed by

the PDEs.

This architecture leverages the strengths of graph neural net-

works to process data over irregular domains, ensuring robustness

and accuracy in capturing the dynamics of the system modeled.

3.2 Graph Construction

3.2.1 High-Frequency Indicator. To efficiently and effectively pin-

point regions within feature maps that contain detail-rich infor-

mation, we introduce a high-frequency indicator. This indicator is

designed to rapidly identify high-frequency areas that are crucial

for accurate PDE solutions in complex geometries. Given a feature

map of point set 𝐹 ∈ R𝑁×𝐶 ,where 𝐶 is the number of feature

channels and a specific down-sampling ratio 𝑠 , the high frequency

indicator per node, 𝐻𝐹 ∈ R𝑁 , is computed as follows:

𝐻𝐹 =

𝐶∑︁
𝑐=1

���𝐹 (𝑐) − (𝐹 (𝑐))↓𝑠↑𝑠 ��� , (4)

where (𝐹 (𝑐))↓𝑠↑𝑠 denotes the channel 𝑐 of the feature map 𝐹 after it

has been bilinearly down-sampled and subsequently up-sampled by

a factor of 𝑠 . The choice of 𝑠 effectively balances detail preservation

with minimal information loss, optimizing the process for quick

and effective high-frequency detection.

3.2.2 Partitioning of Point Sets. To efficiently manage the chal-

lenge of generating overlapping partitions within a point set, we

define each partition as a neighborhood ball within Euclidean space,

characterized by centroid location and scale. We utilize a farthest

point sampling (FPS) algorithm [31] to select centroids in a man-

ner that ensures even coverage across the entire point set. This

method starts with an arbitrary initial point and iteratively selects

subsequent points that are the farthest in metric distance from all

previously selected points. This approach not only guarantees a

superior coverage compared to random sampling but also takes into

account the spatial distribution of the points, contrasting with meth-

ods like convolutional neural networks (CNNs), that process data

agnostically of spatial distributions. Consequently, our graph con-

struction strategy establishes receptive fields in a data-dependent

manner, significantly enhancing the model’s capability to capture

and process complex spatial relationships. Detailed description of

the FPS algorithm is provided in Appendix A.1.

3.2.3 Local Sampling. Local sampling is essential for constructing

graphs that precisely capture the immediate neighborhood dynam-

ics of a node, particularly valuable in systems characterized by com-

plex local interactions, such as in solving PDEs with intricate local

behaviors. This method selects each node 𝑣 and its neighborsN(𝑣)
based on a high-frequency indicator (Eq.(4)), identifying nodes that

reside within areas of high detail and information density.

In practice, nodes are chosen for their rich detail using the high-

frequency indicator to determine the composition of each local

graph. For every node 𝑣 , its neighbors N(𝑣) are selected to ensure

that only nodes within areas of substantial detail and information

content are included. This targeted selection strategy guarantees

that the connections within the graph are meaningful and represen-

tative of significant local interactions. By focusing on nodes with

high information content, the model can adapt more effectively to

variations in data density and local structural complexities. This ap-

proach is invaluable in scenarios demanding high precision in local

detail, enabling the model to accurately capture complex dynamics.

To maintain local coherence, we use the Euclidean distance be-

tween two nodes as the metric for establishing connections:

𝑑
local
(𝑖, 𝑗) = ∥p𝑖 − p𝑗 ∥2, (5)

where p𝑖 and p𝑗 are the position vector of nodes 𝑖 and 𝑗 , respectively.

This metric also allows for connecting nodes that belong to different

domains.

An illustrative example of this local sampling process and the

resultant graph structure is shown in Figure 2(b). This visualization

underscores how local sampling concentrates on areas rich in de-

tail, thereby substantially enhancing the model’s capacity to learn

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhihao et al.

nuanced behaviors and interactions, which are crucial for solving

complex PDEs. Detailed description of the local sampling algorithm

is provided in Appendix A.2.

3.2.4 Global Sampling. Conversely, global sampling aims to cap-

ture the broader structure of the dataset by establishing connections

across wider spatial extents. This sampling strategy selects nodes

that span the entire domain in a pattern designed to maximize

coverage and minimize redundancy, typically implemented using

a dilated sampling technique as introduced in Section 3.2.2. By

increasing the intervals between selected nodes, this method pro-

vides a comprehensive overview of global interactions essential for

understanding large-scale trends and phenomena.

Connectivity among nodes is established through a metric that

measures the similarity in node features, employing cosine similar-

ity:

𝑑
global

(𝑖, 𝑗) =
h𝑖 · h𝑗
∥h𝑖 ∥∥h𝑗 ∥

, (6)

where h𝑖 and h𝑗 are the feature vectors of nodes 𝑖 and 𝑗 , respectively.

This metric ensures that nodes with similar features are linked,

regardless of their physical placement, thus enhancing the graph’s

ability to model phenomena accurately.

An illustrative example of this global sampling process is shown

in Figure 2(b). The combination of both local and global sampling

strategies in graph construction allows the model to effectively

balance detail-oriented and holistic learning objectives.

3.2.5 Physics Graph. In our model, node attributes are embedded

into higher dimensions, allowing us to interpret them as high-

level physical attributes, which are often the solutions sought in

complex physical systems. These high-level attributes derive from

more fundamental, lower-level physical properties.

To effectively represent these relationships, we construct a phy-

sics graph where each node corresponds to a fundamental physical

attribute. In this graph, nodes from the standard operational graph

are linked to all nodes in the physics graph, emphasizing the founda-

tional contributions of these attributes to higher-level phenomena.

The edges within the physics graph symbolize the interactions

between each of these lower-level physical attributes.

In scenarios where explicit physical information about the con-

nections between attributes is available, the physics graph is con-

structed based on this empirical data. However, in cases where such

specifics are lacking, we opt for a fully-connected graph config-

uration. This approach is justified by the typically small number

of lower-level nodes and the frequent interactions among them,

ensuring comprehensive coverage of potential influences and inter-

actions within the system.

An illustration of the construction of the physics graph is shown

in Figure 2(a), and the detailed propagation mechanisms between

the physics graph and the multi-scale graph are defined in Section

3.3.2.

3.3 Multi-Graph Processor

Multi-Scale Graph Blocks integrate both local and global-scale infor-

mation crucial for effective operator learning. These blocks compute

local and global graphs per block based on the inputs, allowing for

dynamic graph updates throughout the model’s processing.

(a)

Physics Graph

Local Graph

Global Graph

(b) (c)

Figure 2: (a) Message passing from multi-scale graph to

physics graph. (b) Three types of graphs as the input of

GraphFormer. (c) Message passing from physics graph to

multi-scale graph.

The design of the Multi-Scale Graph Blocks follows the general

MetaFormer structure [42], employing GraphFormers to perform

graph aggregation acting as token mixers. Depending on the type

of graph received, a GraphFormer can process either local or global

information, enhancing its flexibility and capability to handle com-

plex data structures.

3.3.1 Cross-Scale Graph Aggregation. After constructing two
graphs at different scales, as shown in Figure 2(b), nodes are pro-

cessed through the GraphFormer Block, defining local or global

edges accordingly:

{h𝑙𝑜𝑐𝑎𝑙𝑖 }𝑁𝑖=1 = GraphFormer({h𝑥𝑖 }
𝑁
𝑖=1, E𝑙𝑜𝑐𝑎𝑙), (7)

{h𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

}𝑁𝑖=1 = GraphFormer({h𝑙𝑜𝑐𝑎𝑙𝑖 }𝑁𝑖=1, E𝑔𝑙𝑜𝑏𝑎𝑙), (8)

where h𝑥
𝑖
represents the input features for node 𝑖 , and E𝑙𝑜𝑐𝑎𝑙 and

E𝑔𝑙𝑜𝑏𝑎𝑙 are the sets of edges in the local and global graphs, respec-

tively.

3.3.2 Physics Graph Propagation. As depicted in Figure 2(a), virtual
physics nodes are initialized by aggregating information from the

original graph nodes. Specifically, the value of virtual physics nodes

{h𝑣
𝑗
}𝑀
𝑗=1

is calculated as:

h𝑣𝑗 =
𝑁∑︁
𝑖=1

e𝑣𝑖 𝑗h
𝑥
𝑖 , (9)

where h𝑥
𝑖
are the nodes from the original graph, and e𝑣

𝑖 𝑗
are the

edge weights defined by:

e𝑣𝑖 𝑗 =
W𝑣h𝑥𝑖∑
𝑖′∈N𝑣

𝑗
h𝑥
𝑖′
, (10)

with W𝑣 ∈ R𝑑ℎ×𝑑ℎ being a trainable linear layer. Subsequently,

the transformed physical nodes are processed through the Graph-

Former:

{h′𝑣𝑗 }𝑀𝑗=1 = GraphFormer({h𝑣𝑗 }
𝑀
𝑗=1, E𝑝ℎ𝑦), (11)

Finally, these physical nodes are reintegrated into the graph nodes

through a message-passing scheme, effectively blending the com-

puted physical node representations back into the global node

Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary Geometries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

features:

h′𝑥𝑖 = h𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

+
𝑀∑︁
𝑗=1

e𝑣𝑖 𝑗h
′𝑣
𝑗 , (12)

where each token h′𝑣𝑗 is broadcasted to all graph nodes during the

calculation. This method ensures that both local and global infor-

mation is incorporated into each node, facilitating a comprehensive

learning of the PDE operators across different scales and physical

interpretations.

3.4 GraphFormer Block

Inspired by the general MetaFormer architecture [42], we intro-

duce the GraphFormer block, which replaces traditional attention

mechanisms with graph attention, thereby tailoring the approach

to handle graph-based data more effectively. As depicted in Figure 3,

this block employs graph aggregation techniques as token mixers,

facilitating efficient information processing across the network.

3.4.1 Graph Attention Mechanism. A scoring function 𝑓 : R𝑑
ℎ
×

R𝑑
ℎ
→ R evaluates the importance of features from neighbor 𝑗 to

node 𝑖 in every edge (𝑗, 𝑖):
𝑓 (h𝑖 , h𝑗) = LeakyReLU

(
a⊤ ·

[
Wh𝑖 ∥Wh𝑗

])
, (13)

where a ∈ R2𝑑ℎ andW ∈ R𝑑ℎ×𝑑ℎ are trainable parameters, and ∥
denotes vector concatenation. The attention scores are then nor-

malized using a softmax function across all neighbors 𝑗 ∈ N𝑖 :

𝛼𝑖 𝑗 = softmax𝑗 (𝑓 (h𝑖 , h𝑗)) =
exp(𝑓 (h𝑖 , h𝑗))∑

𝑗 ′∈N𝑖
exp(𝑓 (h𝑖 , h𝑗 ′))

. (14)

The Graph Attention (GA) then compute the new representation

for node 𝑖 as a weighted average of transformed features of its

neighbors, applying a nonlinearity 𝜎 :

h′𝑖 = 𝜎
©­«
∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗 ·Wh𝑗
ª®¬ . (15)

Following [2], we apply the a layer after the LeakyReLU non-

linearity andW after concatenation, essentially using an MLP to

compute the score for each query-key pair.

The overall complexity is O(|V|𝑑2
ℎ
+ |E|𝑑ℎ), where |V| repre-

sents the number of nodes and |E | the number of edges in the

graphs used, either multi-scale or physics. Since |V| ≪ 𝑁 and

|E | = 𝑘 |V| ≤ |V|2 , the computational complexity remains linear

with respect to the number of mesh points 𝑁 . This ensures that the

proposed method scales efficiently even as the mesh complexity

increases.

3.4.2 Properties of GraphFormer. Prior methods have approached

PDE learning as an iterative update process, demonstrating that

canonical attention mechanisms can approximate integral opera-

tors over the input domain Ω [4, 16]. To deepen our theoretical

understanding of the GraphFormer, we propose that it similarly

acts as a learnable integral on Ω:

Theorem 1 (GraphFormer as a Learnable Integral on Ω). Given an
input function 𝑎 : Ω → R𝑑 and a mesh point x ∈ Ω, GraphFormer
seeks to approximate the integral operator G, defined by:

G𝑎(x) =
∫
Ω
𝜅 (x, 𝝃)𝑎(𝝃) 𝑑𝝃 , (16)

LayerNorm

Graph Attention
Aggregation

LayerNorm

Feed
Forward

+

+

Linear

ℎ! ℎ"

LeakyReLU

𝑎⃗

ℎ′!

𝛼⃗!"

×

Linear

𝑊

ℎ𝑒
𝑎𝑑
𝑠

Figure 3: Left: TheArchitecture of GraphFormer Block. Right:

An illustration of multi-head attention by node 𝑖 on its neigh-

borhood 𝑗 .

where 𝜅 (·, ·) denotes a kernel function over Ω × Ω.

A complete proof is available in Appendix B. This theoretical

foundation substantiates the capability of GraphFormer to effi-

ciently learn complex mappings essential for solving PDEs across

irregular domains, underscoring its utility in advanced computa-

tional mathematics.

4 EXPERIMENTS

4.1 General Setting

In practice, to learn a neural operator, we use a datasetD = {(𝑎,𝑢)},
where 𝑢 = G(𝑎). Due to challenges in directly representing func-

tions, we discretize the input and solution functions over the domain

𝐷 using an irregular mesh, as per a specified mesh generation al-

gorithm [27]. Thus, we consider a set of function pairs (𝑎𝑖 , 𝑢𝑖)𝑁𝑖=1,
where 𝑎𝑖 = 𝑎(x𝑖) and 𝑢𝑖 = 𝑢 (x𝑖) at discretized points x𝑖 within the

domain 𝐷 ⊂ R𝑑 .
Our goal is to approximate G by optimizing the network param-

eters 𝜃 , through the following optimization problem:

min

𝜃 ∈Θ
L(𝜃) := min

𝜃 ∈Θ
1

𝑁

𝑁∑︁
𝑖=1

[
∥ ˜G𝜃 (𝑎𝑖) − 𝑢𝑖 ∥2

]
. (17)

Table 1: Summary of Experiment Benchmarks.

Mesh Type Benchmarks Geometry # Dim # Mesh # TimeStep

Fixed

Navier-Stokes Structured 2 4096 10

Shape-Net Car Unstructured 3 32186 /

Poisson Unstructured 2 3242 /

Airfoil Unstructured 2 5233 10

Weather Forecast Unstructured 2 11088 30

Dynamic

Cylinder Flow Unstructured 2 7209 ∼ 7581 100

Deforming Plate Unstructured 3 672 ∼ 2189 50

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhihao et al.

Table 2: Main results on benchmarks. A smaller value indicates better performance. For clarity, the best result is in bold and

the second best is underlined.

Model NS

Shape-Net Car

Poisson

Airfoil

DP

Cylinder Flow

pressure velocity density pressure velocity x velocity y pressure velocity x velocity y

MLP 0.1607 0.2422 0.2428 0.4804 0.0963 0.0947 0.0438 0.0559 0.0856 0.0781 0.0447 0.1753

U-Net 0.0970 0.1380 0.1867 0.2699 0.0579 0.0575 0.0536 0.0523 0.0873 0.0558 0.0224 0.0562

MGN 0.1614 0.2432 0.2477 0.4428 0.0506 0.0491 0.0208 0.0258 0.0323 0.0774 0.0456 0.1715

GNO 0.1610 0.2453 0.2596 0.5167 0.0786 0.0769 0.0286 0.0406 0.0414 0.0855 0.0509 0.1835

ONO 0.0824 0.1115 0.1389 0.0199 0.0097 0.0096 0.0075 0.0088 0.0358 0.0201 0.0157 0.0263

GNOT 0.5805 0.1109 0.1206 0.4403 0.0054 0.0049 0.0044 0.0040 0.2362 0.0392 0.0272 0.0545

LSM 0.0957 0.1169 0.1487 0.2612 0.0305 0.0299 0.0525 0.0341 0.0802 0.0093 0.0065 0.0126

Transolver 0.0593 0.0993 0.1208 0.0162 0.0036 0.0032 0.0028 0.0035 0.0264 0.0092 0.0059 0.0117

AMG(Ours) 0.0476 0.0878 0.0919 0.0152 0.0021 0.0020 0.0014 0.0018 0.0257 0.0050 0.0038 0.0078

Promotion 19.70% 11.64% 23.81% 6.44% 39.97% 38.01% 51.44% 47.45% 2.35% 45.33% 35.44% 32.94%

4.1.1 Benchmarks. We conducted comprehensive analyses across

a variety of benchmark scenarios to demonstrate the superiority

of our method, as detailed in [17, 18, 29]. These benchmarks were

carefully selected to encompass a wide range of PDE problems,

from fluid dynamics to structural deformations, using both static

and dynamic conditions. Specifically, we developed datasets for the

Poisson equation and Cylinder Flow, testing our model on both

fixed and dynamic unstructured meshes, as well as standard struc-

tured meshes. We also expand our experimental scope to include

global weather forecasting, utilizing data from the European Centre

for Medium-Range Weather Forecasts (ECMWF). This new experi-

ment involves climate data from the first quarter of 2018, focusing

specifically on the atmospheric conditions at a pressure level of

50hPa. This breadth of testing highlights our model’s adaptability

and precision across various computational environments. For ease

of reference, these benchmarks are summarized in Table 1, with

visual examples provided and detailed configurations discussed in

Appendix C.

4.1.2 Baselines. We conducted a comprehensive evaluation against

a variety of established methods to validate our approach. Tradi-

tional models like MLP [33] and U-Net [32] were included for their

foundational roles in computational tasks. We also assessed against

specialized graph-based methods such as MeshGraphNets (MGN)

[29] and Graph Neural Operator (GNO) [22], which are designed for

complex spatial data. Additionally, our model was compared with

advanced transformer-based methods, including LSM [37], GNOT

[13], ONO [39] and Transolver [38], to benchmark against the latest

approaches in handling high-dimensional data complexities.

4.1.3 Implementation. To ensure fairness in performance compari-

son, all models were uniformly trained across 500 epochs using the

𝐿2 loss function [18]. We utilized the Adam [15] and AdamW [24]

optimizers, initiating with a learning rate of 10
−3

and implementing

a decay factor of 𝛾 = 0.5 to halve the rate every 100 epochs. For

handling dynamic mesh sizes, which transformer-based models

inherently struggle with, we adopted a padding strategy similar to

that used in GNOT [13] to accommodate these models. All experi-

ments were conducted using a single Nvidia A800 80GB GPU, and

unless specified, default hyperparameters were employed for the

baseline models. This setup facilitated a controlled environment to

accurately assess the comparative effectiveness of each method.

4.2 Main Results

AMG’s robustness and accuracy across diverse PDE benchmarks are

highlighted in the performance comparison (Table 2), demonstrat-

ing significant enhancements in both structured and unstructured

mesh environments.

4.2.1 Structured Mesh Performance. In the Navier-Stokes bench-

mark with structured 2D geometry, AMG achieved a notable re-

duction in errors by 19.70%. This illustrates AMG’s effectiveness in

structured environments where regular geometries predominate,

requiring high precision to accurately model dynamic interactions.

4.2.2 Fixed Unstructured Mesh Analysis. In the Poisson benchmark,

AMG improved prediction by 6.44%, demonstrating its effective-

ness in modeling static spatial variations in simpler systems. In

the Shape-Net Car benchmark involving complex 3D automobile

geometries, AMG achieved improvements of 11.64% in pressure

accuracy of surface and 23.81% in velocity accuracy of surrounding

air, showcasing its capability to handle intricate 3D shapes and

multiple attributes in a large unstructured mesh environment. For

the Airfoil benchmark, AMG excelled by enhancing velocity pre-

dictions by 51.44% for velocity X and 47.45% for velocity Y, along

with increases of 39.97% in density and 38.01% in pressure accuracy.

This demonstrates its proficiency in dynamic simulations, capturing

detailed airflow dynamics and interactions. Overall, these results

affirm AMG’s robust performance across diverse fixed unstructured

mesh scenarios, illustrating its versatility and high precision in han-

dling complex physical phenomena across different dimensions and

conditions.

4.2.3 Dynamic UnstructuredMesh Challenges. AMG’s prowess was

distinctly displayed in the Cylinder Flow and Deforming Plate

benchmarks, both demanding high adaptability in dynamic envi-

ronments. In the 2D Cylinder Flow scenario, AMG significantly

enhanced performance metrics, improving pressure accuracy by

45.33%, velocity X by 35.44%, and velocity Y by 32.94% over 100

timesteps. These enhancements confirm AMG’s exceptional ability

to handle temporal changes and adaptive mesh akin to real-world

Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary Geometries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

fluid dynamics. The 3D Deforming Plate benchmark posed addi-

tional challenges with both spatial and temporal dynamics. Here,

AMG achieved a 2.35% improvement in pressure accuracy, demon-

strating its competency in managing the intricacies of 3D dynamic

systems that necessitate synchronized predictions across varied

scales. Collectively, these benchmarks validate AMG’s effectiveness

in dynamic unstructured meshes, underlining its high precision

and versatility in complex, real-world simulation scenarios. This

robust performance underscores AMG’s sophisticated capacity to

navigate intricate interactions and continual changes.

4.2.4 Three-Dimensional Benchmark Insights. The Shape-Net Car
benchmark involves predicting two attributes across a large mesh

size of 32,186 points spread over three dimensions. The Deforming

Plate benchmark presents a dynamic three-dimensional challenge,

where the mesh evolves over time, adding another layer of complex-

ity. In addressing these challenges, AMG leverages a combination

of a graph specifically designed to handle arbitrary geometries, and

multi-scale and physics graphs that effectively manage features

across different scales. This integrated approach significantly en-

hances AMG’s performance, leading to a substantial reduction in

prediction errors by 35.44%. This improvement not only highlights

the model’s scalability but also its adeptness in processing volumet-

ric data, effectively handling the intricacies of varied spatial and

temporal scales, thereby markedly reducing prediction errors.

4.2.5 Comparison with Graph-Based Methods. Our analysis re-
veals that graph-based models such as MeshGraphNets (MGN) and

Graph Neural Operator (GNO) generally underperform in static

benchmarks like Shape-Net Car and Poisson, where the scenarios

are dominated by low-frequency features. These models are better

suited to dynamic benchmarks such as Deforming Plate, which

involve varying shapes; however, their performance still falls short

of expectations. To overcome these limitations, AMG incorporates

global and physics graphs. The global graph helps in capturing

broader spatial relationships that are crucial for static environ-

ments, while the physics graph integrates fundamental physical

laws and principles, enhancing the model’s ability to accurately pre-

dict behaviors in dynamic scenarios. This strategic use of multiple

graph types enables AMG to significantly outperform traditional

graph-based methods across a range of benchmarks, effectively

addressing both static and dynamic challenges.

4.2.6 Comparison with Transformer-Based Methods. Transformer-

based models such as Transolver and GNOT previously set the

standard for state-of-the-art performance in handling complex data

structures. Despite their strengths, AMG has demonstrated superior

performance by integrating specialized graph techniques that en-

hance feature processing capabilities across various scales. Utilizing

the graph neural operator’s ability to effectively manage local high-

frequency features, combined with the global graph and physics

graph’s adeptness at capturing global low-frequency features, AMG

has significantly outperformed these transformer-based models.

This remarkable improvement showcases AMG’s enhanced capa-

bility to address a broader range of dynamic and static phenomena

more accurately than the existing state-of-the-art models.

Table 3: Results on Weather Forecasting.

Model

𝐿2 Error

Temperature Wind U Wind V

MLP 0.0194 0.3198 0.3585

U-Net 0.0113 0.2279 0.3108

MGN 0.0186 0.3533 0.3559

GNO 0.1173 0.3405 0.3896

ONO 0.0156 0.2535 0.2914

GNOT 0.0364 0.7954 1.0206

LSM 0.0164 0.2095 0.2435

Transolver 0.0077 0.2155 0.2762

AMG (Ours) 0.0067 0.2020 0.2335

Promotion ↓13.08% ↓3.62% ↓4.11%

4.2.7 Experiment on Real-World Dataset. Our objective was to

predict the next hour’s temperature and wind components (U-

component and V-component). The data was sampled from a re-

duced grid of the original, capturing 11,088 gridpoints, to balance

computational demand with meaningful analysis. As illustrated in

Table 3, AMG outperforms other methods across all metrics, par-

ticularly excelling in dynamic conditions, such as predicting wind

directions and speeds. This success underscores AMG’s integration

of multiscale graphs and dynamic graph attention mechanisms,

enhancing its predictive accuracy in complex, variable scenarios.

These results affirm the robustness of AMG across diverse compu-

tational settings, from static and dynamicmeshes to two-dimensional

and three-dimensional spaces. The model’s adeptness at navigating

various mesh types and geometries, combined with its capability to

manage intricate local and global interactions, establishes AMG as a

powerful solution for solving PDEs in a wide range of applications.

This comprehensive performance, particularly evident in real-world

dynamic scenarios like weather forecasting, demonstrates AMG’s

potential to deliver precise, reliable predictions across different

scales and conditions.

Table 4: Ablation Study on Graphs.

Configuration
𝐿2 Error

pressure velocity x velocity y

w/o Local Graph 0.0101 0.0076 0.0136

w/o Global Graph 0.0135 0.0084 0.0149

w/o MultiScale Graph 0.0087 0.0070 0.0137

w/o Physics Graph 0.0598 0.0238 0.0622

Baseline (AMG) 0.0050 0.0038 0.0078

4.3 Model Analysis

4.3.1 Ablation Studies on Graph Configurations. We conducted ab-

lation studies to determine the contribution of different graph con-

figurations—Local, Global, Multiscale, and Physics—to our model’s

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhihao et al.

performance. These studies, summarized in Table 4, show the im-

pact of each graph type on the accuracy of predictions for pressure,

velocity X, and velocity Y.

• Without Local Graph: Removing this graph increased L2

errors, especially in velocity Y, underscoring its role in cap-

turing local interactions.

• Without Global Graph: The absence led to higher L2 er-

rors, highlighting its importance for contextual relationship

understanding.

• Without Multiscale Graph: Its removal caused minor per-

formance drops, indicating its role in linking local and global

insights.

• Without Physics Graph: This had the most significant

impact, emphasizing its necessity for incorporating physical

principles.

The baseline AMG configuration outperformed all variations,

illustrating the critical need for an integrated approach to handle

complex simulations effectively.

4.3.2 Hyperparameter Analysis. Our comprehensive hyperparame-

ter study, summarized in Table 5, identifies optimal configurations

that significantly enhance model performance across various met-

rics. The analysis revealed that simply increasing the number of

layers, node numbers, or head numbers does not consistently re-

duce 𝐿2 errors, indicating that optimal hyperparameter settings

are crucial for maximizing performance. These results demonstrate

that effective hyperparameter tuning is crucial for deploying AMG

in diverse computational environments. By strategically selecting

settings tailored to specific tasks, we can refine the model’s ar-

chitecture, thereby enhancing both performance and operational

efficiency. The insights gained from this study are instrumental

in fine-tuning the model to achieve superior performance across

different applications.

Table 5: Hyperparameter Study on Cylinder Flow.

Type Configuration
𝐿2 Error

pressure velocity x velocity y

Layer Number

layer=1 0.0148 0.0104 0.0188

layer=2 0.0106 0.0073 0.0151

layer=3 0.0050 0.0038 0.0078

layer=4 0.0096 0.0068 0.0141

Local Node Number

n=256 0.0096 0.0068 0.0141

n=512 0.0107 0.0082 0.0148

n=1024 0.0050 0.0038 0.0078

n=2048 0.0114 0.0077 0.0149

Global Sample Ratio

r=12.5% 0.0166 0.0109 0.0178

r=25% 0.0050 0.0038 0.0078

r=50% 0.0091 0.0069 0.0128

Physical Node Number

p=8 0.0171 0.0121 0.0230

p=16 0.0142 0.0104 0.0204

p=32 0.0050 0.0038 0.0078

p=64 0.0159 0.0116 0.0222

Head Number

h=1 0.0139 0.0092 0.0185

h=4 0.0096 0.0066 0.0121

h=8 0.0050 0.0038 0.0078

h=12 0.0096 0.0065 0.0122

Global Graph Degree

global k=2 0.0131 0.0095 0.0193

global k=4 0.0050 0.0038 0.0078

global k=6 0.0090 0.0065 0.0115

global k=8 0.0179 0.0113 0.0233

Local Graph Degree

local k=2 0.0152 0.0103 0.0176

local k=4 0.0138 0.0111 0.0218

local k=6 0.0050 0.0038 0.0078

local k=8 0.0101 0.0071 0.0150

4.3.3 Multi-Scale Sampling. Multi-Scale Sampling is a critical tech-

nique in our methodology, enabling the AMG model to effectively

capture and integrate diverse spatial information. This approach

involves two distinct sampling strategies: global sampling and lo-

cal sampling. Global sampling (Figure 4(a,c) focuses on capturing

broad-scale data integration across the entire domain, while lo-

cal sampling (Figure 4(b,d)) targets high-resolution detail capture

within specific regions of interest. These techniques collectively en-

hance the model’s ability to process and analyze data from complex

PDE systems with varying dynamics and geometric irregularities.

(a) (b)

(c) (d)

Figure 4: Illustration of global sampling and local sampling

in Cylinder Flow (a, b) and Deforming Plate (c, d).

5 RELATEDWORK

5.1 Neural Operators

Neural Operators utilize deep neural networks to efficiently solve

complex PDE systems by learning mappings between two func-

tional spaces [16]. Typically modeled as kernel integral operators,

various parameterization strategies have been developed, includ-

ing the widely recognized Fourier Neural Operators (FNO) which

integrate Fast Fourier Transform (FFT) [18].

5.1.1 Graph-based Neural Operators. Graph-based neural opera-

tors such as GNO [22] utilize Message Passing Graph Networks

to process data in irregular domains but face challenges like pro-

longed training and difficulty in capturing global low-frequency

features [19, 23, 36, 37, 41]. MGNO [19] attempts to overcome these

by using multi-scale graphs, yet its reliance on pre-defined matrix

decomposition restricts flexibility with dynamic meshes and com-

plex geometries. Recent models like GINO and GeoFNO [17, 23]

combine graph-based strategies with Fourier Neural Operators to

adapt irregular data into uniform grids, aiming to resolve some of

the enduring challenges of GNO. However, these advancements still

contend with foundational issues inherent in the original graph-

based methods.

5.1.2 Transformer-based Neural Operators. Transformer-based neu-

ral operators utilize attention mechanisms to encode operators

in latent spaces effectively. The Galerkin Transformer [4] uses a

Galerkin-type linear attention for operator parameterization, while

ONO [39] introduces an orthogonal attention module inspired by

Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary Geometries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Mercer’s theorem to refine the kernel integral. OFormer [21] em-

ploys a standard transformer structure with cross-attention, en-

coding both input functions and query locations into a latent ODE

representation. GNOT [13] and the state-of-the-art Transolver [38]

further enhance these concepts. GNOT employs heterogeneous

normalized cross-attention for uniform feature handling, and Tran-

solver leverages physics-aware tokens for more precise operator

learning. Despite their advantages, transformer models can struggle

with detailed point-level attention, which may result in missing

high-frequency information in complex PDE environments.

5.1.3 Multi-level Neural Operators. Multi-level neural operators

are adept at representing PDE behavior across varying scales, en-

hancing performance significantly. The Multiwavelet Transform

(MWT) [11] uses hierarchical multiwavelet projections to handle

kernel operator singularities and signal fluctuations. Advanced

multigrid techniques like MgNO [14] and M2NO [20] incorporate

the V-cycle of traditional multigrid methods into neural opera-

tor learning, with M2NO also integrating features from algebraic

multigrid and multiresolution wavelet transform for superior per-

formance. While these methods excel in managing resolution scales,

they face challenges in irregular domains and can be computation-

ally demanding. This underscores the need for further refinement

to ensure both efficiency and broad applicability in complex PDE

scenarios.

5.2 Geometric Deep Learning

Geometric Deep Learning is pivotal for managing irregular geome-

tries, leveraging advances outlined in [3]. Graph Neural Networks

(GNNs) are central to this domain, utilizing kernels on connected

graphs for effective representation learning, as demonstrated in

[7, 12, 29]. Additionally, PointNet [30, 31] and Point Transformer

[6] effectively handle scattered point clouds.

For PDE learning, theMAgNet architecture [1]merges coordinate-

based methods with GNNs, enhancing performance in irregular

meshes. Implicit neural representations for PDE dynamics fore-

casting, notably [40] and [5], enhance the modeling capabilities

in dynamic systems. The work of [28] provides a mesh-agnostic

approach to dimensionality reduction, particularly beneficial for

handling spatio-temporal data in continuous domains. The Graph

Neural Operator (GINO) [23] and Geo-FNO [17] adapt irregular

grids into more uniform latent structures, optimizing the appli-

cation of Fourier neural operators. However, transformer-based

models like LSM [37], GNOT [13], and Transolver [38] still face sig-

nificant challenges with arbitrary geometries and high-frequency

detail capture, which are crucial for accurately solving PDEs across

various scales.

6 CONCLUSION AND FUTUREWORK

This paper introduces AMG, a novel Multi-Graph neural opera-

tor method designed to efficiently solve Partial Differential Equa-

tions (PDEs) on Arbitrary geometries. AMG harnesses advanced

graph-based techniques combined with dynamic graph attention

mechanisms within an innovative GraphFormer architecture. This

approach enables the precise handling of diverse spatial domains

and intricate data interdependencies, setting it apart from previous

methods constrained to uniform grids.

Our extensive evaluations across various benchmarks confirm

AMG’s superior performance and scalability compared to exist-

ing state-of-the-art solutions. These results demonstrate AMG’s

potential to significantly advance the computational mathematics

field, especially in applications involving complex and non-linear

systems.

Looking ahead, we aim to explore the possibilities of large-scale

pre-training of AMG, similar to the development of foundation

models in other domains of AI. Such advancements could establish

a new paradigm for PDE solving, potentially leading to more gen-

eralized and robust methods capable of tackling a broader range

of scientific and engineering challenges. This direction not only

promises to enhance the model’s performance but also explores its

adaptability and applicability to increasingly complex scenarios.

REFERENCES

[1] Oussama Boussif, Dan Assouline, Loubna Benabbou, and Yoshua Bengio. 2022.

MAgNet: Mesh Agnostic Neural PDE Solver. ArXiv abs/2210.05495 (2022).

[2] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-

tion Networks?. In ICLR. OpenReview.net.
[3] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. 2016. Geometric Deep Learning: Going beyond Euclidean data. IEEE
Signal Process. Mag. 34 (2016), 18–42.

[4] Shuhao Cao. 2021. Choose a Transformer: Fourier or Galerkin. In Neural Infor-
mation Processing Systems.

[5] Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, Yue Chang, G. A. Pershing,

Henrique Teles Maia, Maurizio M. Chiaramonte, Kevin T. Carlberg, and Eitan

Grinspun. 2023. CROM: Continuous Reduced-Order Modeling of PDEs Using

Implicit Neural Representations. In ICLR. OpenReview.net.
[6] Nico Engel, Vasileios Belagiannis, and Klaus C. J. Dietmayer. 2020. Point Trans-

former. IEEE Access 9 (2020), 134826–134840.
[7] Hongyang Gao and Shuiwang Ji. 2019. Graph U-Nets. IEEE Transactions on

Pattern Analysis and Machine Intelligence 44 (2019), 4948–4960.
[8] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. NeuralMessage Passing for QuantumChemistry. In ICML (Proceedings
of Machine Learning Research, Vol. 70). PMLR, 1263–1272.

[9] David Gottlieb and Steven A. Orszag. 1977. Numerical Analysis of Spectral Meth-
ods. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.

9781611970425 arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611970425

[10] Yuanbiao Gou, Peng Hu, Jiancheng Lv, Hongyuan Zhu, and Xiaocui Peng. 2023.

Rethinking Image Super Resolution from Long-Tailed Distribution Learning

Perspective. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (2023), 14327–14336.

[11] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. 2021. Multiwavelet-based Oper-

ator Learning for Differential Equations. In NeurIPS. 24048–24062.
[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In Neural Information Processing Systems.
[13] Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Song-

ming Liu, Ze Cheng, Jun Zhu, and Jian Song. 2023. GNOT: A General Neural

Operator Transformer for Operator Learning. ArXiv abs/2302.14376 (2023).

[14] Juncai He, Xinliang Liu, and Jinchao Xu. 2024. MgNO: Efficient parameterization

of linear operators via multigrid. ArXiv abs/2310.19809 (2024).

[15] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In ICLR (Poster).
[16] Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik

Bhattacharya, AndrewM. Stuart, and AnimaAnandkumar. 2023. Neural Operator:

Learning Maps Between Function Spaces With Applications to PDEs. J. Mach.
Learn. Res. 24 (2023), 89:1–89:97.

[17] Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. 2024.

Fourier neural operator with learned deformations for PDEs on general geome-

tries. J. Mach. Learn. Res. 24, 1, Article 388 (mar 2024), 26 pages.

[18] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu,

Kaushik Bhattacharya, AndrewM. Stuart, and Anima Anandkumar. 2021. Fourier

Neural Operator for Parametric Partial Differential Equations. In ICLR. OpenRe-
view.net.

[19] Zongyi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, AndrewM.

Stuart, Kaushik Bhattacharya, and Anima Anandkumar. 2020. Multipole Graph

Neural Operator for Parametric Partial Differential Equations. In NeurIPS.
[20] Zhihao Li, Zhilu Lai, Xiaobo Wang, and Wei Wang. 2024. M2NO: Multiresolution

Operator Learning with Multiwavelet-based Algebraic Multigrid Method. ArXiv
abs/2406.04822 (2024). https://api.semanticscholar.org/CorpusID:270357841

https://doi.org/10.1137/1.9781611970425
https://doi.org/10.1137/1.9781611970425
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611970425
https://api.semanticscholar.org/CorpusID:270357841

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhihao et al.

[21] Zijie Li, Kazem Meidani, and Amir Barati Farimani. 2023. Transformer for Partial

Differential Equations’ Operator Learning. Transactions on Machine Learning
Research (2023).

[22] Zong-Yi Li, Nikola B. Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik

Bhattacharya, AndrewM. Stuart, and AnimaAnandkumar. 2020. Neural Operator:

Graph Kernel Network for Partial Differential Equations. ArXiv abs/2003.03485

(2020).

[23] Zong-Yi Li, Nikola B. Kovachki, Chris Choy, Boyi Li, Jean Kossaifi,

Shourya Prakash Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian

Hundt, Kamyar Azizzadenesheli, and Anima Anandkumar. 2023. Geometry-

Informed Neural Operator for Large-Scale 3D PDEs. ArXiv abs/2309.00583 (2023).

https://api.semanticscholar.org/CorpusID:261494027

[24] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

In ICLR (Poster). OpenReview.net.
[25] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karni-

adakis. 2021. Learning nonlinear operators via DeepONet based on the universal

approximation theorem of operators. Nat. Mach. Intell. 3, 3 (2021), 218–229.
[26] COMSOL Multiphysics. 1998. Introduction to COMSOL multiphysics®. COMSOL

Multiphysics, Burlington, MA, accessed Feb 9 (1998), 2018.
[27] Steven J. Owen. 1998. A Survey of Unstructured Mesh Generation Technology.

In International Meshing Roundtable Conference. https://api.semanticscholar.org/

CorpusID:2675840

[28] Shaowu Pan, Steven L. Brunton, and J. Nathan Kutz. 2023. Neural Implicit Flow:

a mesh-agnostic dimensionality reduction paradigm of spatio-temporal data. J.
Mach. Learn. Res. 24 (2023), 41:1–41:60.

[29] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia. 2021.

Learning Mesh-Based Simulation with Graph Networks. In International Confer-
ence on Learning Representations. https://openreview.net/forum?id=roNqYL0_XP

[30] C. Qi, Hao Su, KaichunMo, and Leonidas J. Guibas. 2016. PointNet: Deep Learning

on Point Sets for 3D Classification and Segmentation. 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016), 77–85.

[31] C. Qi, L. Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep Hierarchical

Feature Learning on Point Sets in a Metric Space. In Neural Information Processing
Systems. https://api.semanticscholar.org/CorpusID:1745976

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. In MICCAI (3) (Lecture Notes in
Computer Science, Vol. 9351). Springer, 234–241.

[33] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning

representations by back-propagating errors. Nature 323 (1986), 533–536.
[34] Jin shan Pan, Sifei Liu, Deqing Sun, Jiawei Zhang, Yang Liu, Jimmy S. J. Ren,

Zechao Li, Jinhui Tang, Huchuan Lu, Yu-Wing Tai, and Ming-Hsuan Yang. 2018.

Learning Dual Convolutional Neural Networks for Low-Level Vision. 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), 3070–

3079.

[35] Martin Simonovsky and Nikos Komodakis. 2017. Dynamic Edge-Conditioned

Filters in Convolutional Neural Networks on Graphs. In CVPR. IEEE Computer

Society, 29–38.

[36] Tapas Tripura and Souvik Chakraborty. 2023. Wavelet Neural Operator for

solving parametric partial differential equations in computational mechanics

problems. Computer Methods in Applied Mechanics and Engineering 404 (2023),

115783.

[37] Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long.

2023. Solving High-Dimensional PDEs with Latent Spectral Models. ArXiv
abs/2301.12664 (2023).

[38] Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long.

2024. Transolver: A Fast Transformer Solver for PDEs on General Geometries.

ArXiv abs/2402.02366 (2024).

[39] Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. 2024. Improved

Operator Learning by Orthogonal Attention. ArXiv abs/2310.12487 (2024).

[40] Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy,

and Patrick Gallinari. 2023. Continuous PDE Dynamics Forecasting with Implicit

Neural Representations. In ICLR. OpenReview.net.
[41] Huaiqian You, Yue Yu, Marta D’Elia, Tian Gao, and Stewart Silling. 2022. Nonlocal

kernel network (NKN): A stable and resolution-independent deep neural network.

J. Comput. Phys. 469 (2022), 111536.
[42] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi

Feng, and Shuicheng Yan. 2022. MetaFormer is Actually What You Need for

Vision. In CVPR. IEEE, 10809–10819.

A SAMPLING ALGORITHM DETAILS

A.1 Farthest Point Sampling Algorithm

Farthest Point Sampling (FPS) [6] is a technique used to select a

subset of points from a larger set in such a way that the selected

points are as far apart from each other as possible. This method

is particularly useful in scenarios where uniform coverage across

the entire dataset is crucial. As detailed in Algorithm 1, given a

set of input points {x1, x2, . . . , x𝑛}, FPS iteratively selects points

{x𝑖1 , x𝑖2 , . . . , x𝑖𝑚 }, ensuring that each new point x𝑖 𝑗 is the farthest
away from previously selected points {x𝑖1 , x𝑖2 , . . . , x𝑖 𝑗−1 }. This strat-
egy enhances coverage and is particularly advantageous over ran-

dom sampling, especially in applications where data distribution is

non-uniform.

Unlike convolutional neural networks (CNNs), which process

data without considering underlying spatial distributions, FPS takes

a data-dependent approach to create receptive fields, thus preserv-

ing important spatial hierarchies within the data. This method is

highly effective for constructing graphs or other data structures

where the geometric arrangement of the points is significant.

Algorithm 1 Farthest Point Sampling Algorithm

1: Input: Coordinates Set 𝐶 of shape (𝑁, 𝐷), where 𝑁 is the

number of nodes and𝐷 is the dimensionality and𝑛, the number

of nodes to sample.

2: Initialize:𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑁] ← {∞};
3: Initialize: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [𝑛] ← {−1};
4: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← randint(0, 𝑁 − 1); ⊲ Randomly select the first

5: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [0] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;

6: for 𝑖 ← 1 to 𝑛 − 1 do
7: for 𝑗 ← 0 to 𝑁 − 1 do
8: 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← computeDistance (𝐶 [𝑗],𝐶 [𝑐𝑢𝑟𝑟𝑒𝑛𝑡]);
9: if 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑗] then
10: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 [𝑗] ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒;

11: end if

12: end for

13: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← argmax(𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠);
14: 𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖] ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;

15: end for

16: Output: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠

A.2 Local Sampling Algorithm

Local sampling plays a pivotal role in constructing graphs that cap-

ture the immediate neighborhood dynamics around nodes, crucial

for addressing complex local interactions in PDE-solving environ-

ments. This method uses a high-frequency indicator (refer to Eq.(4))

to selectively sample nodes that are rich in detail, thereby ensur-

ing the inclusion of only the most informative nodes in each local

graph.

The sampling procedure involves computing a feature map that

highlights areas of high detail. Nodes are then selected based on

their prominence in this feature map, and the local connectivity

among these nodes is established via a nearest neighbor approach

using their positions. This ensures that each node’s local environ-

ment is effectively represented, capturing significant local interac-

tions that are essential for precise PDE solutions.

The Local Sampling Algorithm, outlined in Algorithm 2, de-

scribes the process of selecting nodes and constructing a local

graph. The algorithm takes as input the node features and their co-

ordinates, processes them in batches, and performs local sampling

and graph construction for each batch independently.

https://api.semanticscholar.org/CorpusID:261494027
https://api.semanticscholar.org/CorpusID:2675840
https://api.semanticscholar.org/CorpusID:2675840
https://openreview.net/forum?id=roNqYL0_XP
https://api.semanticscholar.org/CorpusID:1745976

Harnessing Scale and Physics: A Multi-Graph Neural Operator Framework for PDEs on Arbitrary Geometries Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

The topK function selects the 𝑛 highest values from the feature

map within each batch, ensuring that nodes with the highest detail

are chosen. The K-nearest neighbors (knn) function establishes

edges based on the proximity of these selected nodes, effectively

capturing local structural information. This targeted sampling and

graph construction are vital for adapting the learning process to

complex data variations and local interactions, thereby enhancing

the model’s ability to solve PDEs with high precision.

Algorithm 2 Local Sampling Algorithm

1: Input:

2: 𝑋 : Node Set of shape (𝑁, 𝐷𝑥), where 𝑁 is the number of

nodes and 𝐷𝑥 is the dimensionality of node features.

3: 𝐶: Coordinates Set of shape (𝑁, 𝐷𝑝𝑜𝑠), where 𝐷𝑝𝑜𝑠 is the

dimensionality of positions.

4: 𝑏𝑎𝑡𝑐ℎ: Array of batch indices corresponding to each node.

5: 𝑛: Number of nodes to sample per batch.

6: 𝑘 : Number of nearest neighbors to consider.

7: Initialize: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 ← [];
8: Initialize: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐸𝑑𝑔𝑒𝐼𝑛𝑑𝑒𝑥 ← [];
9: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝 ← computeFeatureMap(𝑋,𝐶,𝑏𝑎𝑡𝑐ℎ);
10: for 𝑖 ← 1 to 𝑏𝑎𝑡𝑐ℎ do

11: 𝑚𝑎𝑠𝑘 ← (𝑏𝑎𝑡𝑐ℎ == 𝑖);
12: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 [𝑖] ← topK(𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑀𝑎𝑝 [𝑚𝑎𝑠𝑘], 𝑛);
13: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐸𝑑𝑔𝑒𝐼𝑛𝑑𝑒𝑥 [𝑖] ← knn(𝐶 [𝑚𝑎𝑠𝑘],𝐶 [𝑚𝑎𝑠𝑘], 𝑘);
14: end for

15: Output: 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠 , 𝑠𝑎𝑚𝑝𝑙𝑒𝑑𝐸𝑑𝑔𝑒𝐼𝑛𝑑𝑒𝑥

B PROOF OF THEOREM 1

The theorem is established by demonstrating that the graph atten-

tion mechanism employed in the GraphFormer can be formalized

as a Monte-Carlo approximation of an integral operator [4, 16, 38].

Proof. Given an input function 𝑎 : Ω → R𝑑 on a domain

Ω ⊂ R𝑑 , the integral operator G can be formalized as:

G𝑎(x) =
∫
Ω
𝜅 (x, 𝝃)𝑎(𝝃) 𝑑𝝃 , (18)

where x ∈ Ω ⊂ R𝑑 and 𝜅 (·, ·) denotes the kernel function defined

on Ω. We define the kernel for the graph attention mechanism as

follows:

𝜅 (x, 𝝃) =
(∫

Ω
exp

(
a⊤

[
W𝑎(𝝃)∥W𝑎(𝝃 ′)

])
𝑑𝝃 ′

)−1
exp

(
a⊤ [W𝑎(x)∥W𝑎(𝝃)]

)
W,

(19)

where a ∈ R2𝑑 , W ∈ R𝑑×𝑑 and ∥ denotes vector concatenation. Us-
ing the softmax normalizing function across the domain Ω, assum-

ing Ω carries a uniform measure for simplicity in the Monte-Carlo

approximation.

Approximating the integrals by a finite sum over the neighbor-

hood N(x) of x in a graph:∫
Ω
exp

(
a⊤

[
W𝑎(𝝃)∥W𝑎(𝝃 ′)

])
𝑑𝝃 ′

≈ |Ω |
|N (x) |

∑︁
𝑖∈N(x)

exp

(
a⊤ [W𝑎(x𝑖)∥W𝑎(𝝃)]

)
,

(20)

we then use this to express G𝑎(x) of Eq.(18) as a weighted sum:

G𝑎(x) ≈
∑
𝑖∈N(x) exp(a⊤ [W𝑎(x)∥W𝑎(x𝑖)])W𝑎(x𝑖)∑

𝑗∈N(x) exp(a⊤
[
W𝑎(x)∥W𝑎(x𝑗)

]
)

, (21)

which is the computation for the graph attention mechanism of

GraphFormer defined in Eq.(14)-(15), showing its equivalence to a

learnable integral operator on the domain Ω. □

C DETAILS FOR BENCHMARKS

We evaluate AMG across various datasets, including those specifi-

cally generated for this study using COMSOL [26].

(a) Unstructured Mesh (b) Input: 𝑓 (c) Output: 𝑢

Figure 5: Visualization of a random sample from the Poisson

dataset, showing the unstructured mesh, the input source

term 𝑓 and the corresponding solution 𝑢.

C.1 Poisson Equation

The Poisson equation with Dirichlet boundary conditions is studied:

−Δ𝑢 = 𝑓 , in Ω = [0, 1]2, (22)

𝑢 = 0, on 𝜕Ω, (23)

where 𝑓 consists of a Gaussian superposition, with parameters

𝜇𝑥,𝑖 , 𝜇𝑦,𝑖 ∼ U(0, 1) and 𝜎𝑖 ∼ U(0.025, 0.1). The dataset includes

4000 training, 500 validation, and 500 test samples.

(a) Input: Past Fluid velocity (b) Output: Future fluid velocity

Figure 6: Visualization of the Navier-Stokes dataset for a

sample simulation.

C.2 Navier-Stokes Equation

This section explores the Navier-Stokes equations in vorticity form

on a unit torus:

𝜕𝑡𝜔 + u · ∇𝜔 − 𝜈Δ𝜔 = 𝑓 , (24)

∇ · u = 0, (25)

The dataset employs a 64 × 64 grid, with periodic boundary con-

ditions. It comprises 9600 training, 1200 validation, and 1200 test

samples.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Zhihao et al.

(a) Mesh of the sample (b) Velocity field in future

Figure 7: Visualization of a sample from the Cylinder Flow.

C.3 Cylinder Flow

This dataset captures incompressible fluid dynamics around a 2D

circular cylinder within a channel:

∇ · u = 0, (26)

𝜕𝑡u + (u · ∇)u = 𝜈∇2u − 1

𝜌
∇𝑝, (27)

with boundary conditions set for velocity and pressure. It features

100 snapshots per case, with 7600 training, 1000 validation, and

1000 test samples.

(a) Input: Fluid quantity at the cur-

rent timestep

(b) Output: Predicted fluid quantity

at the next timestep

Figure 8: Visualization of the Airfoil dataset illustrating a

typical simulation snapshot.

C.4 Airfoil

Simulating subsonic airflow over an airfoil with the 2D compressible

Euler equations:

𝜕𝑡 𝜌 + ∇ · (𝜌u) = 0, (28)

𝜕𝑡 (𝜌u) + ∇ · (𝜌u ⊗ u + 𝑝I) = 0, (29)

The simulation uses an unstructured mesh over 10 timesteps. This

dataset consists of 10,000 training, 1,000 validation and testing

samples each.

(a) Input: Initial Stress (b) Output: Predicted Stress

Figure 9: Visualization of the input and output of Von Mises

stress of a deforming plate.

C.5 Deforming Plate

A 3D dynamic simulation of a deformable plate is modeled in hy-

perelastic material properties: Data spans 50 timesteps, comprising

24,000 training samples, with 2,000 for validation and testing.

(a) Input: Fluid quantity at the cur-

rent timestep

(b) Output: Predicted fluid quantity

at the next timestep

Figure 10: Visualization of the Shape-Net Car dataset.

C.6 Shape-Net Car

Drag coefficient estimation for cars simulated at 72 km/h, with 889

total samples: 690 for training, 99 for validation, and 100 for testing.

Predicts velocity and pressure to compute drag coefficients.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Graph Neural Operators

	3 Methodology
	3.1 Overview of Model Architecture
	3.2 Graph Construction
	3.3 Multi-Graph Processor
	3.4 GraphFormer Block

	4 Experiments
	4.1 General Setting
	4.2 Main Results
	4.3 Model Analysis

	5 Related Work
	5.1 Neural Operators
	5.2 Geometric Deep Learning

	6 Conclusion and Future Work
	References
	A Sampling Algorithm Details
	A.1 Farthest Point Sampling Algorithm
	A.2 Local Sampling Algorithm

	B Proof of Theorem 1
	C Details for Benchmarks
	C.1 Poisson Equation
	C.2 Navier-Stokes Equation
	C.3 Cylinder Flow
	C.4 Airfoil
	C.5 Deforming Plate
	C.6 Shape-Net Car

