
Tailoring the Hyperparameters of a Wide-Kernel

Convolutional Neural Network to Fit Different Bearing

Fault Vibration Datasets

Dan Hudsona, Jurgen van den Hoogena, Martin Atzmuellera,b

aSemantic Information Systems Group, Osnabrück University, Wachsbleiche
27, 49069, Osnabrück, Lower Saxony, Germany

bGerman Research Center for Artificial Intelligence (DFKI), Hamburger Straße 24
49084, Osnabrück, Lower Saxony, Germany

Abstract

State-of-the-art algorithms are reported to be almost perfect at distin-
guishing the vibrations arising from healthy and damaged machine bearings,
according to benchmark datasets at least. However, what about their ap-
plication to new data? In this paper, we are able to confirm that neural
networks for bearing fault detection can be crippled by incorrect hyperparam-
eterisation, and also that the correct hyperparameter settings can actually
change when transitioning to new data. The paper weaves together multiple
methods to explain the behaviour of the hyperparameters of a wide-kernel
convolutional neural network and how to set them. Since guidance already
exists for generic hyperparameters like minibatch size, we focus on how to set
architecture-specific hyperparameters such as the width of the convolutional
kernels, a topic which might otherwise be obscure. We reflect different data
properties by fusing information from seven different benchmark datasets,
and our results show that the kernel size in the first layer in particular is
sensitive to changes in the data. Looking deeper, we use manipulated copies
of one dataset in an attempt to spot why the kernel size sometimes needs to
change. The relevance of sampling rate is studied by using different levels of
resampling, and spectral content is studied by increasingly filtering out high
frequencies. At the end of our paper we conclude by stating clear guidance
on how to set the hyperparameters of our neural network architecture.

Keywords: Deep Learning, CNN, Hyperparameter Analysis, Time Series
Classification, Industrial Fault Detection, Bearing Fault Detection

Preprint submitted to the arXiv preprint server November 26, 2024

ar
X

iv
:2

41
1.

15
19

1v
1

 [
cs

.L
G

]
 1

9
N

ov
 2

02
4

1. Introduction

Machines are full of bearings, the components that make rotation possible.
They are small metal balls usually arranged in a circular casing and by rolling,
these spheres allow one piece of a machine to move around relative to another
piece of the machine. Wear and tear unfortunately can accumulate over time
into damage that causes the bearing element to ultimately break down, taking
the entire machine offline with it. For example, one way this can happen is
if small scratches develop in the casing that holds the bearings in place. As
the ball bearings roll over that scratch again and again (perhaps hundreds of
times per minute for days, weeks and months), it can grow into a structural
weakness. One day, the casing can crack due to this weakness, breaking
the rotating element and putting the entire machine out of commission until
repairs are made. Therefore, methods for detecting such faults are crucial.

In this paper – a significantly extended and adapted revision of [1] build-
ing on our work presented in [2] – we tackle the question of how to configure
neural networks so that they can effectively identify different types of dam-
aged bearings. Thus, in this paper we do not start from scratch but instead
our work takes place after and continues from research we published earlier.
In particular, this paper presents a series of new experiments that address
questions raised and left unresolved by our earlier work in [1] and [2]. Two
new neural network architectures are studied in order to show how important
hyperparameter configuration is to a wider range of networks. We present
a novel experimentation methodology, extending the methodology presented
in [2], for assessing the impact of hyperparameters in the context of wide-
kernel approaches for bearing fault detection. Doing that, we run new ex-
periments on manipulated subsets of the data to see how dataset properties
affect the key question of how to configure hyperparameters. Specifically, we
present more datasets, more neural network architectures and more extensive
results compared to [2].

1.1. Finding Faults and Beating Benchmarks

From outside of the machine, the damage that develops in a bearing ele-
ment cannot be seen. Bearings are encased within the machine and hidden
from view. This creates obvious problems for monitoring the accumulation
of damage within a bearing element and deciding when a replacement is
needed. However, using vibrations which spread through the machine, we
can try to look inside at what is happening: sensors placed on the outside of

2

the machine can pick up vibrations that originate from deep inside. This is
an approach that gives some hope of detecting when replacements are needed
before a machine has an unexpected breakdown. Unfortunately, vibrations
bring their own problems since reading these signals is not like looking at a
photograph, and instead a lot of work is needed to interpret the vibrations
that are being gathered by the sensors. This is in particular relevant to ini-
tiatives such as Industry 4.0 [3, 4], e. g., for enabling predictive maintenance
applications [5], for which also explainable and interpretable approaches are
usually beneficial [6].

One way to interpret vibration data and figure out how to distinguish
healthy and damaged bearings is to learn from experience, by applying ma-
chine learning methods. Neural networks in particular are machine learning
methods that can be very successfully trained by exposing them to a dataset
of examples. As summarised in [7], various types of neural networks have
been reported to achieve 97%+ accuracy on fault detection tasks, in papers
such as [8, 9, 10, 11]. Furthermore, we also developed various deep learning
algorithms to improve performance in fault detection, as described in [12, 13].

In the pursuit of effective algorithms to recognise when damage has oc-
curred to a bearing element, researchers have settled on a series of ‘bench-
mark’ datasets, used to train and test different approaches. The obvious
benefit of these openly-available datasets is that it is like having a fair race:
everyone is starting at the same place and running the same route, so we can
compare algorithms fairly based on their performance on these benchmark
datasets. In our work, we make use of seven datasets originating from dif-
ferent organisations: Case Western Reserve University (CWRU), Paderborn
University, the so-called ‘Gearbox’ dataset, the Society for Machine Failure
Prevention Technology (MFPT), University of Conneticut (UoC), Southeast
University (SEU) and the Xi’an Jiaotong University (XJTU).

Looking at past results on benchmark datasets, it has become obvious
that multiple successful deep learning approaches exist. A recent review of
the literature on the topic [7] indicates that at least 25 different deep learning
algorithms have achieved over 95% accuracy (often 99% or 100%) on one or
more of the benchmark datasets mentioned above. Such consistently high
levels of performance imply that the difference between two state-of-the-art
algorithms is now predestined to be small and there is little room left to
improve beyond previous results. Therefore, comparing one state-of-the-art
option to another is becoming less interesting and important than before.

3

Previous research in bearing fault detection has focused almost exclusively
on finding algorithmic innovations with the hope of achieving higher scores
during testing; however, since there is little room to improve, we now propose
that the salient question is not whether new algorithms can be found, but
whether the existing algorithms will continue to perform well when applied
to new, unseen data. This is the question of whether they will still achieve
near-perfect results when someone applies them in a real-life setting, when
the sensors and machines are different from what the benchmarks used.

1.2. Limits of What the Benchmarks Can Tell Us

Benchmarks are very useful when comparing algorithms but they can
only give an indication about how successful a method will be when applied
to new data in the real world. The belief that an algorithm will perform
well when it analyses a new set of machine vibrations, in a previously-unseen
context, is simply an assumption and an assumption that can be challenged.
For example, the types of damage that build up when a machine is really used
in a factory might go beyond what is seen amongst the artificially-created
damage recorded in benchmark datasets. Who can say that the types of
damage found in the real factory will not be more subtle and hard to detect,
or more diverse and thus requiring an algorithm with increased flexibility?
Such questions start to introduce uncertainty. Differences in the properties
of the recorded data might mean that an algorithmic approach does not
generalise perfectly, leading to inferior performance when it is applied to a
new dataset.

Speaking more generally about neural networks, when a practitioner takes
an existing algorithm and tries using it on their own data, there is a risk that
it does not work. Imagine that the practitioner is left with an algorithm that
does not work. What can they do? One of the first things they can try is to
modify the hyperparameters of the algorithm. In order to control the training
of a neural network, the user must specify some so-called ‘hyperparameters’,
such as the minibatch size (the number of examples used in a single step
of training). These hyperparameters control how to generate the training
signal that the neural network learns from – they are used in generating the
numbers that incrementally update the neural network. Just like how a mis-
tuned radio will not play your favourite radio show, it is possible to mis-tune
hyperparameters and end up with a training signal that does not do what
you want, i.e., it will not teach the neural network how to do the task.

4

1.3. The Open Question of Hyperparameters
Alongside hyperparameters that modulate the training process, one can

consider what we might call ‘architectural hyperparameters’, which control
the size and shape of a neural network. Quite commonly, when faced with
poor results, a practitioner might make their neural network bigger. The
layers used to construct the network could be enlarged or the network could
be built by stacking more layers together. After making such changes, the
neural network will contain more trainable parameters (numbers used to store
information about how to process inputs) and thus have more capacity to
learn about the task. If a neural network is not working then quite a natural
step is to make it larger by increasing the architectural hyperparameters.

The reason we tweak hyperparameters is that the wrong choice of set-
tings will lead to inferior performance whilst good choices will bring out the
best from a neural network. In the case of severe ill-hyperparameterisation,
a network might fail to learn at all during training. Returning specifically
to bearing fault detection, we noted earlier that the differences appear to be
minimal between the top 25 neural networks for detecting damaged bearings.
By contrast, larger differences in accuracy can emerge when the hyperparam-
eters of a network are changed. For example, [14] reports that the accuracy
of a bearing fault classifying CNN is cut in half simply as a result of increas-
ing from 6 convolutional layers to 8. When it comes to getting near-perfect
accuracy on bearing fault detection, getting the hyperparameters right might
be more important than choosing between neural network architectures.

However, although bad hyperparameter settings can result in misery,
there is a question of why this matters, because we know that the hyperpa-
rameters work on our benchmark data. If the hyperparameters are already
configured well, then what exactly is the problem? This is really a question
of whether hyperparameters that work well on one dataset will necessarily
be successful on another. To hone in on just a single reason why this might
not always happen, we can ask whether drastically changing the sampling
rate would impact what size the filters in a convolutional network should be.

Convolutional filters act like learned patterns that the network recognises
at different time points during the input signal. Each pattern is stored in an
array of numbers. If we increase the sampling rate used to record a signal
that is otherwise kept fixed – so that more points are used to record the
same peaks, troughs and plateaus over time – then it might be reasonable
to expect that the number of points used to record the important patterns
(in convolutional filters) also needs to be increased. The main point of this

5

example is to highlight how data properties like the sampling rate might cause
a meaningful difference in what hyperparameters are successful on different
datasets. In fact, by examining the performance of neural networks on seven
benchmark datasets, one important contribution of our work will be to show
that hyperparameters working on one dataset sometimes stop working when
changing to another dataset.

Another question is whether some hyperparameters can be changed with-
out affecting the accuracy of the neural network on a specific dataset. Of
course, it is possible to imagine that there is a miniscule ‘sweet spot’ of hy-
perparameters, a specific combination of numbers which is the only one that
works. The reason this seems unlikely is that there is no obvious explanation
for how the authors of successful algorithms were able to find this one-and-
only sweet spot. Therefore, we instead expect that at least some of the
hyperparameters can be modified without disastrous consequences for the
accuracy of the neural network. Having more options in this way, it would
be easier for an author to find a successful combination of hyperparameters
without performing a rigorous search.

1.4. Shaping the Neural Network

Architectural hyperparameters like the number of layers in a network af-
fect how complicated it is to process each input. Making the network smaller
reduces the number of internal parameters it has, meaning that the computer
needs to perform fewer arithmetic operations. This has a knock-on effect
that impacts, for example, how long it takes to train the network. Smaller
networks train faster and are quicker to generate predictions on new data.
If some architectural hyperparameters can be reduced without harming the
accuracy, it would be good to know this. Practitioners would benefit from
knowing that they can make the network smaller and thus faster to train and
use. Moreover, in real-world settings, there is the possibility of ‘embedding’
fault detection algorithms, so that they run on small devices situated in and
amongst the machines they analyse rather than running on a user’s laptop.
Embedded processing skips the step of extracting data from the sensors and
communicating it to a central location (like a laptop), and removes the need
to keep a laptop or computer running continuously in order to process the
data. An additional benefit of small networks is that they can be run on
smaller and cheaper embedded devices. Clearly, there is real value to under-
standing the hyperparameters of a network, to see which hyperparameters
can and cannot be changed when processing a given dataset. In this vein, we

6

have worked to understand the architectural hyperparameters of a network
capable of state-of-the-art results on fault detection tasks.

Of course, there must be limits to how much we can shrink a network or
otherwise manipulate its hyperparameters. Some changes will be too drastic
to work and they will make the neural network less able to detect bearing
faults. Another line of our research is to study which hyperparameters are
crucial and require the most careful handling. We wish to understand how
much impact different changes will have and be able to state the relative
importance of the hyperparameters. Re-examining the wide-kernel network
presented in [15, 12], we distil new explanations of how the network’s hy-
perparameters impact its accuracy at classifying bearing fault signals.

1.5. Do Dataset Properties Determine Performance?

Datasets have different properties, one reason why hyperparameters might
need (re)tuning on new data even though they were already working on
benchmarks. In the field of bearing vibration, research focuses on sensor
recordings stored in ‘time series’, so called because they consist of a series
of sequential measurements of some variable over time. The sampling rate
is one of the key data properties when discussing time series. With a sam-
pling rate of 12kHz, the movement of a vibrating machine is measured every
0.00008333 seconds. The sampling rate determines how many measurements
are made per second and conversely how far apart in time each individual
measurement point is. The sampling rate is documented for most benchmark
datasets and we can see that it varies. One thread of our research will be to
find out if changes to the sampling rate have an impact on the accuracy of a
network and on which hyperparameter settings are best.

The sampling rate affects the dataset in multiple ways. It affects what
frequency bands can be detected, with half the sampling rate (also known
as the ‘Nyquist frequency’) providing the upper limit of what frequencies
can be captured. An increased sampling rate also means that more numbers
are used to record a vibrating machine, implying that the neural network
needs to do more computation in order to process the inputs. One open
question is how much the highest frequencies in vibration recordings are
used by neural networks. This is interesting because if the highest frequencies
are not needed, then storing and processing the recordings could be made
more efficient by reducing the sampling rate. In fact, if high frequencies
are unnecessary for fault detection then removing them could be a form of
noise filtering. This is not implausible, since many signals resulting from

7

vibrations (like from musical instruments) have an overtone series, implying
that there is redundancy. As noted in [16], vibrations in bearing elements
are transmitted to the sensors through the rest of the machine, which also
consists of multiple components that themselves vibrate. This potentially
leads to irrelevant or misleading information in the recorded signal, and if
some frequency bands are just noise then it could be beneficial to remove
them. Our research looks at how changes in the sampling frequency, for
example when moving to one dataset to another one, affect neural networks.
We ask whether filtering the irrelevant frequencies be helpful, for example by
increasing the size of the ‘sweet spot’ of hyperparameters.

1.6. Explaining Hyperparameters

How many layers is enough in a neural network? Why do we set other
hyperparameters in the way that we do? Although there are rules to follow
when tuning some hyperparameters like the minibatch size (e.g., “set it to the
largest value that will still allow the minibatch to fit into GPU memory”) in
other cases we can look at a neural network and find that the hyperparameter
settings seem totally arbitrary. To pick just a pair of fault detection papers
at random, we find that [9] uses 20 hidden units in fully-connected layers
whilst [17] uses 64 instead. As is typical in the field, neither author noted
why they chose the particular numbers they use and the reader is left with
no explanation of why there is a difference. If there is ever a need to adapt
these hyperparameters when working with new datasets, future users could
quite justifiably feel lost. What users in fact want is a simple, explainable
process for setting the hyperparameters.

The terms “Explainability” and “Explainable AI (XAI)” tie together sev-
eral strands of research aimed at clarifying how the inputs to an algorithm
relate to the outputs. With complex statistical models such as neural net-
works the inner workings are not understandable and we must rely upon
specialised techniques to illuminate why particular outputs were chosen by
the algorithm. This is a large topic and there are many surveys of the work
done in this research area, such as [18] for example. What XAI aims to do is
to cast a light on obscure and hidden relationships that exist in the algorithm
and which link the inputs to the outputs. In many real-world domains such
as bearing fault detection, algorithms need to learn nonlinear mathematical
functions in order to approximate the complex interactions between multiple
factors seen in observed data.

8

Returning now to our own focus, we want to do something similar with
hyperparameters in order to better understand how they propel some net-
works to near-perfect accuracy and other networks to near-total failure. As
we have noted, neural networks are clearly powerful and numerous in bearing
fault classification but they are also poorly understood. By adapting tech-
niques from XAI, we aim to build a bridge between empirical results and
more general insights about how to tune hyperparameters.

1.7. The Paper Ahead

The present paper re-examines and then extends upon the results from
several pieces of our own past work. In addition to providing new insights
on past results, this present study presents new experiments with resampling
and filtering of the data, allowing us to investigate how the properties of the
data affect hyperparameter tuning.

To summarise the intention of the research: we already have neural net-
work architectures for bearing fault detection ([7] gives many examples) but
their success relies on hyperparameters which are poorly understood. Hyper-
parameters become especially important when we remember that the users of
a neural network will not want to take it and apply it to a benchmark dataset.
For the network to be any use at all, it must be possible for someone who is
not the developer to take it and apply it themselves to novel datasets. To
do so, they need some idea of how to decide the hyperparameter settings.
However, the hyperparameters might as well be written in a cypher – there
is no intuitive way to know that 64 convolutional filters works but a rate of
128 does not. The numbers seem arbitrary.

Engineers in a factory might have different machinery and types of bear-
ings from what was used in benchmark datasets. They may have restrictions
about where the sensors can be placed, and even what sensors they can use
to record vibrations. Together, the specifics of a factory’s machinery, bear-
ing types, sensor availability and sensor placement will conspire to make a
unique dataset for each engineer. As already noted, the choice of algorithm
will not impact performance that much on benchmark datasets (see [7]), but
the performance drop as a result of trying out a new dataset might be no-
ticeable. Therefore, we take an existing neural network architecture which
is capable of achieving state-of-the-art results on multiple benchmarks, and
enrich it by presenting a detailed analysis of the hyperparameter decisions
presented to the user.

9

We use a cocktail of multiple methods to explain the impact of hyper-
parameters on the wide-kernel CNN’s accuracy. We summarise results from
past work in order to see the average performance level when specific hy-
perparameter values are carried across seven datasets. We also harvest new
results from experiments on manipulated versions of the data. We quantify
the ‘feature importance’ – the extent to which different variables contribute
to an outcome – of different hyperparameters and how it changes when pro-
cessing either resampled or filtered copies of a dataset. This lets us find out
how relevant dataset properties like the sampling rate are to deciding what
hyperparameters to use. We also undertake separate additional experiments
with two other architectures (besides the wide-kernel CNN) in order to round
out the generality of our basic premise.

The key contributions of this work are:

• We show that hyperparameters are important across multiple types of
neural networks rather than a single network type. Past results and
new experiments with additional neural network architectures confirm
this.

• We show that hyperparameters affect how accurate a neural network is
(the majority of our work specifically investigates a wide-kernel CNN
architecture).

• Fusing information from 7 datasets to analyse the wide-kernel architec-
ture, we show that hyperparameters that are successful on one dataset
are not necessarily successful on another dataset.

• We also highlight that not all hyperparameters are equally important.

• We propose that properties of the dataset, such as sampling rate, im-
pact the optimal values of hyperparameters, which leads us to run
experiments with manipulated versions of the time series data.

• After fusing the information from multiple different experiments, we
find that due to redundancy in the signal, very high frequencies are not
needed for successful bearing fault detection.

• We give general guidelines for how to set the hyperparameters of a
wide-kernel CNN when transitioning to new data.

10

2. Background & Related Work

In this section, we review fault detection for the rotating machines seen in
industrial settings. We also provide an overview of deep learning (DL) in the
realm of time series analysis using sensor data, emphasising the design and
training of convolutional neural networks (CNN). Additionally, given that
this research concentrates on the architectural hyperparameters of a wide-
kernel network, we discuss studies related to hyperparameter optimisation.

2.1. Fault Detection

Detecting faults in rotating industrial machinery is essential to avoid
breakdowns [19]. Fault detection data are typically collected from sensors
that measure vibrations, represented as time series data. Initially, fault de-
tection relied on physics-based models that required an understanding of the
underlying mechanisms that generate and propagate vibrations [20]. How-
ever, these models struggled to adapt to changing environments and increas-
ing data complexity. The advent of the Industrial Internet of Things (IIoT)
and data-driven analysis techniques has revolutionised fault detection meth-
ods, enabling a more intelligent and automated approach [17, 21]. These
advances eliminate the need for in-depth technical knowledge of industrial
machinery, allowing for automated processing and adaptation to changing
operational environments. For example, machine learning approaches such
as K-NN [22, 23], Random Forest [24], and SVM [25, 26, 27, 28] have been
applied for fault detection. However, these methods require extensive feature
extraction, a time-consuming process that has to be fine-tuned towards the
type of data used.

With the development of deep learning techniques, these steps were no
longer necessary since deep learning techniques are able to automatically
extract features from raw data, simplifying the otherwise complex feature
extraction process. Initially, multilayer perceptrons (consisting of computa-
tional units arranged into simple layers where every unit in one layer connects
to every unit in the next layer) were used, but their limited depth due to
computational constraints shifted the focus to other architectures such as
recurrent neural networks (RNNs), which can more effectively model tem-
poral dependencies [29, 30]. An RNN processes sequences of data one step
at a time, passing information along internally to keep track of what it has
seen. The computational units in an RNN are arranged differently than for
an MLP, since the RNN is formed from small blocks suited for processing

11

sequences one step at a time whilst the layers of an MLP must process the
entire input sequence in a single vast computation. However, RNN networks
are less suited for time series data that appear as especially long sequences,
which is common in sensor data sampled at a high frequency (e.g., mechani-
cal vibrations or electrical currents). The main reason for this relates to the
storage of long-term dependencies, also resulting in increased computational
needs when the time series is of high resolution. On the other hand, convo-
lutional neural networks (CNNs) including the one-dimensional version for
processing time series gained popularity, demonstrating state-of-the-art per-
formance in fault detection, especially with wide-kernel designs in the first
convolutional layer [31, 32, 2, 33, 34]. Convolutions are an efficient alterna-
tive to RNNs because they also process sequences as a collection of smaller
sub-pieces.

2.2. Deep Learning

Deep Learning draws inspiration from the human brain’s ability to com-
bine many simple units into a large system capable of learning difficult
tasks [35]. Its strength lies in processing and learning complex data, making
it particularly effective for tasks requiring automatic feature extraction and
refinement. This capability is crucial when valuable insights can be revealed
by recognising patterns and relationships in the data [36, 37].

The fundamental component of a neural network is the artificial neuron,
or “node,” which processes multiple data inputs to produce an output. Many
nodes can be grouped together into a layer and the term “deep” in deep
learning refers to the inclusion of many layers in neural networks. A simple
representation of a neuron i is given by:

ai = σ

(∑
j

wijxj + bi

)
(1)

Here, xj are the inputs, wij are the weights, bi is the bias, and σ is a
nonlinear activation function. Each input is multiplied by a corresponding
weight and the resulting values are added together along with an extra bias
term. The formula operates somewhat like a recipe that combines different
amounts of the various inputs (the xj terms) and adds some final garnish (the
bias bi). The nonlinearity introduced by the activation function is needed in
order to handle difficult tasks, for example when similar inputs need different
outputs. With layers stacking and interconnecting in complex architectures,

12

neural networks can develop into intricate patterns, which gives them the
flexibility and complexity needed to handle difficult tasks like image and
speech recognition [36, 37, 38, 39].

The development of the multilayer perceptron (MLP) marked the begin-
ning of deep learning, featuring fully connected layers [35, 40]. However, com-
putational limitations initially restricted the depth of these networks. More
advanced architectures were developed to overcome the limitations MLPs
had when processing time series. Recurrent neural networks (RNNs), par-
ticularly long-short-term memory (LSTM) networks, emerged as effective
architectures for time series analysis due to their ability to capture temporal
dependencies [29, 30, 39]. Despite their success, RNNs are memory-intensive
and less suited for long sequence data due to increased training times. RNNs
are therefore not appropriate for directly processing raw inputs in many cases,
and the undesirable step of pre-processing becomes necessary once again.

The initial application of MLPs in time series analysis spanned various
domains, including stock prediction [41], weather forecasting [42], and fault
detection [43]. Subsequently, RNNs [29, 39] and Convolutional Neural Net-
works (CNNs) [32, 21, 44, 17, 45] demonstrated significant performance im-
provements in time series tasks. CNNs, particularly one-dimensional (1D)
CNNs were designed to process raw time series data effectively, leveraging
automated feature extraction [31, 46]. These networks are robust against
noise in the data and can be trained with relatively small datasets [47]. For
fault detection a multi-layer perceptron (MLP) where all layers are fully
connected [43] was initially proposed. Afterwards, the field of fault detection
began to utilise convolutional neural networks (CNN) [17, 21, 44, 32] due
to their notable performance improvements. CNN methods, when combined
with data transformations like spectrograms, have been employed multiple
times [48, 49]. However, 1D CNNs are able to process the raw time series
data directly (without the need for spectrograms) and integrate automated
feature extraction, and are often used in fault detection. These 1D CNNs
also tend to be resilient to noise in time series data and can be trained with
a small sample size [47].

Subsequently, numerous refinements for fault detection using convolu-
tions were introduced. These include, but are not limited to, wide-kernel
CNNs [15, 33, 34] (which are used in this work), attention CNNs [50], peri-
odic CNNs [51], and CNN autoencoders for unsupervised learning tasks [52].
Each of these networks has unique characteristics regarding complexity, com-

13

putational requirements, and specific tasks. The general mechanics behind
CNNs are further discussed in the next paragraph.

2.2.1. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialised type of neural
network that were originally created to handle two-dimensional (2D) data,
such as images. Introduced by LeCun in 1989 [53, 38], CNNs utilise a feed-
forward architecture that applies convolutions instead of general matrix mul-
tiplications, making them highly effective for data organised in a grid-like
structure. In contrast to conventional MLPs, CNNs have become essential in
areas such as Computer Vision, Image Recognition [38, 37], and are increas-
ingly used in time series analysis.

The primary benefits of CNNs compared to other neural networks arise
from their use of local receptive fields, weight-sharing, and sub-sampling [54].
These characteristics greatly decrease memory usage and computational com-
plexity, thereby improving algorithmic efficiency. Convolutional layers apply
filters to convolve input data and this basically allows the network to identify
where patterns occur within a large signal. The activation function, com-
monly a Rectified Linear Unit (ReLU), introduces non-linearity, allowing the
network to learn intricate patterns [55]. After convolution and activation, a
pooling layer often shrinks the signal’s size in order to decrease the number
of parameters of the next layer which helps prevent overfitting and lowers
computational demands.

Initially, CNNs were less common for time series data due to their 2D
nature, requiring conversion of one-dimensional (1D) data into 2D matrices,
adding computational overhead. This changed with the development of 1D
CNNs, which can directly process raw time series data [56, 34, 15, 47, 33,
31]. These advancements have solidified CNNs as a powerful tool for time
series analysis, capable of efficiently handling high-frequency sensor data and
extracting valuable features with minimal preprocessing.

The convolution operation is mathematically expressed as:

yl+1
i (j) = kl

i ∗M l(j) + bli, (2)

where bli is the bias, k
l
i represents the filter weights, and M l(j) is the local

region of the input in layer l. The weights of the filter act in some ways like
a learned pattern, in the sense that the filter reacts most strongly (gives the
largest numbers as outputs) when the input correlates with the weights of

14

the filter in addition to being large. The filter applies to little regions of the
overall signal with each region being one stride along from the previous one.
In the notation above i is a number used to refer to different regions. The
most common activation function is ReLU [57], which introduces nonlinearity
to the network.

Next, a pooling layer is utilised that allows the CNN to downsample the
output of the convolutional layer making it more resource efficient in various
applications from image and speech recognition to time series analysis.

2.3. Hyperparameter Search in Deep Learning

Past literature furnishes us with several examples of hyperparameter
searches: activities in which authors tweak and tune the hyperparameters
of a neural network in order to find the best performance. Because many
decisions when designing and training neural networks can be called ‘hyper-
parameters’, previous studies have different degrees of overlap.

Working in the field of sentiment analysis, [58] used a grid search – which
takes a list of valid values for each hyperparameter individually and then tests
out every possible combination of these values – to optimise the accuracy of
their LSTM-CNN network. Their motivation for using the grid search ap-
proach was to guarantee the absolute best performance, which more efficient
search methods trade off in favour of increased processing speed. As will be
described in Section 3, we also employ a grid search method, although our
reason for doing so is that it supports a wider range of follow-on analyses
rather than to find a single combination of hyperparameters that is best.
Grid search is fairly common, for example being used by [59] to optimise the
three training hyperparameters of learning rate, minibatch size and dropout
ratio when training a CNN. The authors of [59] used the Talos package to
implement their hyperparameter grid search.

Bayesian optimisation is another popular technique to find good hyperpa-
rameter settings. When developing a CNN-GRU network to detect different
types of activities from wearable fitness tracker-type devices, [60] used the
Optuna and OptKeras packages to implement their Bayesian optimisation
search. The hyperparameters they tuned included the number of convolu-
tional filters in different layers, and the number of hidden units in the GRU
layers. The authors of [61] used SigOpt to perform Bayesian optimisation on
a wide range of hyperparameters, from minibatch size and learning rate to the
number of fully-connected neurons and the properties of the convolutional

15

layers in their network. Furthermore, [62] applied Bayesian optimisation for
LSTM-RNNs in highway traffic prediction.

Another popular possibility for performing a hyperparameter search is to
use a genetic algorithm. At the beginning of a genetic algorithm, there is a
population of candidate solutions which are tested out. The key step is that,
after testing out a population of candidates, a new ‘generation’ of candidate
solutions is created to replace the old population of candidates, and the
new generation is formed by combining and mutating candidates from the
previous generation with some preference being given to the candidates that
performed best. Such an algorithm is used by [63] to tune hyperparameters
such as the number of layers, the number and size of convolutions in a layer,
and the number of fully-connected neurons in a CNN for identifying sleep
apnea. A genetic algorithm was used by [64] to decide a very similar collection
of hyperparameters, although in this case the CNN was applied to emotion
recognition in smart tutoring.

Beyond the search methods already mentioned, there are more esoteric
ideas that are sometimes presented as alternatives. An example of a more
uncommon approach is to use orthogonal arrays to decide which hyperpa-
rameter combinations to test out. In [65], experiments with RNN and CNN
networks on three time series datasets found that a hyperparameter search
based on orthogonal arrays got closer to the global maximum level of accu-
racy for a limited time budget, compared to random search and Bayesian
optimisation alternatives.

Although these studies provided valuable insights, their methods and ob-
jectives differ from the present work, which seeks a comprehensive view of
network performance through a grid search rather than focusing on optimi-
sation algorithms. Hence, our approach emphasises an extensive automated
grid search, inspired by the work in [2, 1] to determine if the most important
hyperparameters change as a result of differences in times series properties.
In this way, we attempt to better understand and explain the hyperparame-
ters wide-kernel CNN.

2.4. Summary of Own Previous Work

In [2] we investigated how choices of the hyperparameters for a specific
deep learning architecture (wide-kernel CNN) affect its performance in clas-
sifying faults from vibration signals in industrial machines. This architecture
consists of five convolutional layers including an initial ‘wide’ layer with a
large kernel size which then feed into a fully-connected classifier. See Section

16

3.3.1 for a detailed description. We were particularly interested in learning
more about how performance changes across the hyperparameter space and
so we performed a large-scale analysis, training and testing many versions
of the wide-kernel CNN with different configurations (e.g., number of fil-
ters, kernel size) on three different datasets. The research used a grid search
to explore the hyperparameter space and then presented multiple pieces of
follow-on analysis.

Looking at how the distribution of test accuracy scores changes as a
result of tweaking individual hyperparameters, it was found that the number
of filters in the later convolutional layers (3 to 5) has the biggest impact
on performance, with an optimal value around 32. The kernel size in the
first layer was also found to be important for datasets with a high sampling
rate, where larger kernels perform better. Another discovery was that high-
performing hyperparameter settings could be unstable, i.e., small changes to
hyperparameters can have a large impact on performance, highlighting the
need for careful tuning.

Overall, this study provided insights into how to configure a wide-kernel
CNN for better fault detection in industrial machinery. We also identified
interesting areas for future research, such as applying this approach to other
signal classification tasks and different neural network architectures.

A second study increased the number of benchmark datasets by four and
applied 12,960 variations of the wide-kernel CNN to seven different industrial
vibration datasets [1]. Once again, we analysed the grid search in order to
identify how hyperparameter settings influence the network’s performance
and how to effectively tune them for new datasets.

Compared to the previous study [1], a more thorough investigation using
seven datasets confirmed that the most important hyperparameters for the
network’s performance are the number of filters in layers 3-5 and the kernel
size in the first layer. New analysis focused on pairwise interactions be-
tween hyperparameters, where changing one hyperparameter might require
adjusting another one for optimal performance. After looking at how hyper-
parameters influence one another, we suggested a specific order for tuning
the hyperparameters to minimise the need to re-tune them later. This would
be useful in situations where practitioners want to tune the hyperparameters
one-at-a-time sequentially rather than using a full grid search. Tuning the hy-
perparameters in our suggested order leads to better performance compared
to random or reverse order.

17

3. Method

Our research method consists of several parts which feed into each other.
In this section, we step through each piece of the method and describe it in
detail. Starting out, we describe seven different benchmark datasets that we
use to train and test neural networks. Different types of fault, machinery
and recording set-up are possible in fault detection and we therefore expect
that datasets can differ from one another. We want to account for variations
in the data and so we assembled a selection of seven benchmarks to train
and test out CNNs. The properties of the benchmark datasets are described
in detail below.

Next, our method splits into two main structural components based on
which architectures we study. Previous work in [2] and [1] looked at the
consequences of tuning the hyperparameters of a wide-kernel CNN but not
other kinds of architecture. We devote a short section to the impact of
hyperparameter tuning on two other architectures with the goal of showing
more generally that hyperparameters matter for bearing fault classification,
at least when using neural networks. We introduce two popular types of
architecture that are used in this short section as alternatives to a wide-
kernel CNN. Additionally, we describe how we generate results by sampling
different hyperparameter values from a range of possibilities and then training
and testing networks on the seven benchmark datasets.

The second structural component and the majority of the research how-
ever focuses on the wide-kernel CNN and aims to investigate how much
dataset properties affect which hyperparameter settings are best. We de-
scribe the wide-kernel CNN architecture used in our work and its architec-
tural hyperparameters. Training and testing on seven benchmark datasets
gives an indication of how differences in the data can have consequences for
hyperparameter tuning. We start off with a grid search which is an exhaus-
tive exploration of different combinations of hyperparameters and for each
combination we train and test a CNN on benchmark data. We repeat the grid
search seven times in order to include all the benchmark datasets mentioned
earlier.

In addition to accepting the benchmark datasets as-is, we also want to
get into a position to see what happens when we manipulate the dataset
properties ourselves. By manipulating the datasets, we gain fine-grained
control over factors that might explain why some hyperparameter settings
result in high accuracy while others perform badly. In concrete terms, we edit

18

the sampling frequency of the CWRU dataset by resampling it and we also
cut out high frequencies by filtering. Both types of data manipulation are
described below. Each modified version of the CWRU data becomes the input
to a new grid search over important hyperparameters and produces a new
grid of test accuracy scores. Collating these grid searches, we can compare
how hyperparameters behave in response to different levels of resampling or
filtering. At this point, we have several different types of architecture being
tested out on different datasets; for clarity, we illustrate the overall flow of
the various steps in Figure 1.

Ultimately we wish to extract useful insights into how to tune hyperpa-
rameters. There are actually several related analyses based on the outputs
of the grid searches, and we go over each one in turn. Correlations are used
to see how much hyperparameter settings generalise across datasets. Feature
importance is used to see which hyperparameters matter the most. We have
two approaches, the first of which is based on Shapley values and the sec-
ond of which is based on the d-dimensional earth mover’s score. What these
terms mean is laid out towards the end of this section.

3.1. Datasets

In this subsection we describe the most obvious input to our experiments:
data. We use seven benchmark datasets, described below along with their
main properties of the datasets and our pre-processing steps. These are the
seven datasets we used earlier in [1].

3.1.1. CWRU Bearing Dataset

The CWRU bearing dataset, provided by Case Western Reserve Uni-
versity [66], represents a benchmark for fault detection experiments where
various damages were gouged into bearing elements. Sensors were placed on
the drive end and fan end of the machine to measure vibration signals, which
were digitised into two time series and segmented into sequences of 2048 data
points. The data was collected at a sampling rate of 12 kHz for both the
drive-end and fan-end experiment, and the data sampled at 48 kHz for the
drive-end experiment. The latter is sampled at a much higher rate and there-
fore contains more data points. For all recordings retrieved from the CWRU
experiments, we extracted only the machine operation conditions with mo-
tor speed of 1797 and 1750 rotations per minute (RPM). The damages of
the bearing are inflicted at three depths (0.007, 0.014, and 0.021 inches) and
across five fault locations (ball, inner race, outer race opposite, outer race

19

Hyper-
parameter
searches

Grid
searches

CWRU
Gearbox
MFPT

Paderborn
SEU

UOC
XJTU

Datasets

Accuracy when using
different hyperparameters

Architectures

LSTM Transformer

CWRU

Dataset

Wide-Kernel CNN
Architecture

How dataset properties affect
which hyperparameters work well

3 kHz

Resampling at
different rates

6 kHz
12 kHz

24 kHz

47 Hz

Filtering at different
thresholds

93 Hz
187 Hz

375 Hz
750 Hz

1500 Hz
3 kHz

6 kHz
12 kHz

Part 1 -- Hyperparameters of alternatives to wide-kernel CNN architecture

Part 2 -- Deep dive into wide-kernel CNN architecture and dataset properties

Figure 1: Workflow of the method to test out multiple architectures on varying data.

orthogonal, and outer race centered) with approximately balanced samples
per class except for the normal conditions. We concatenated fault conditions
that were equal between the two motor speeds since they are in fact the
same fault. However, in some cases, a fault did not occur in both machine
operating conditions, therefore making the data somewhat imbalanced. In
total for all three experiments, we identified 13 fault conditions.

The specific choice for this dataset relates to the frequent usage within the
fault detection domain [15, 47, 49, 67, 68, 69], due to its public availability
and its structure, which mirrors real-world industrial applications where data
is typically not openly accessible. For training purposes, we split the dataset
into just 20% train and 80% test data in order to enhance the complexity
of the classification task and reduce computation time. For more detailed
information, we refer to the original source [66] and the test rig displayed at

20

https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures,
along with Figure 2 which shows an example of the vibration signals.

Figure 2: Illustration of vibration signals retrieved from [12], representing two sensors
based on the CWRU Bearing dataset. The red box highlights the duration of a single
data sample (sequence).

3.1.2. Paderborn Dataset

The Paderborn bearing dataset serves as a benchmark for fault detection
and condition monitoring of damaged rolling bearing elements, as seen in
studies like [17, 44]. The dataset captures motor current signals of an elec-
tromechanical drive system and vibrations of the housing [70]. These signals
are extracted using existing frequency inverters, eliminating the need for ad-
ditional sensors, which was necessary in the CWRU bearing experiments.
This results in more resource-efficient and cost-effective experimentation. A
unique feature of the method is its ability to monitor damages in external
bearings positioned within the drive system but outside the electric motor.

In total, the data derived from the experiments represents “healthy”,
“real damaged”, and “artificially damaged” bearings. The data is recorded
for approximately 4 seconds at a sampling rate of 64 kHz which produces nu-
merous data files containing around 256,000 data points each. For this study,
we focused solely on the “real damaged” experiments, specifically targeting
the “inner race” faults, encompassing 8 distinct conditions as highlighted
by [70].

This resulted in 80,000 sequences (10,000 for each condition), necessitat-
ing substantial computational resources to run various CNN configurations.
To manage this, we took an equally divided random sample from the dataset,
retaining 10%, or 1,000 sequences per condition. Similar to other datasets,
a train/test split of 20% and 80% was implemented.

21

https://engineering.case.edu/bearingdatacenter/apparatus-and-procedures

The Paderborn Bearing dataset, compared to the CWRU data, has fewer
classes, more balanced data between classes, and a higher number of se-
quences, which increases network training time. Furthermore, the dataset
includes three time series, two motor current signals and one vibration sig-
nal. We only used the vibration signal to align with the data types from
the other datasets. For this experiment, we used k-fold cross-validation with
k = 3 to enhance the generalisability of the trained networks and tested the
networks’ performance with various data splits.

3.1.3. Gearbox

The Gearbox dataset originates from the necessity to optimise and anal-
yse industrial gearboxes, particularly in applications like wind turbines where
gearbox failures can lead to significant downtime [71]. Previous research has
shown that downtime due to gearbox failures is higher compared to other
components. The most common approach for examining faults in wind tur-
bine gearboxes involves recording and analysing vibration signals, which are
inherently non-stationary. The Gearbox dataset was created using the Spec-
traQuest Gearbox Fault Diagnostics Simulator, enabling researchers to sim-
ulate the behavior of an industrial gearbox for diagnostics and prognostics
research [72]. The dataset includes vibration signals from four sensors placed
in various directions around the gearbox. The experiments were conducted
under varying load conditions, ranging from 0% to 90%. The dataset en-
compasses two primary conditions: a healthy gearbox and one with a broken
tooth. We combined all load variations into a binary classification task, dis-
tinguishing between healthy and broken gearboxes. This resulted in 978 se-
quences, each containing 2048 data points. The dataset is balanced, with 492
sequences labeled as healthy and 486 as broken. For our study, we focused on
these binary conditions and implemented a train/test split of 20/80% to make
the task more challenging and to reduce computation times. Additionally,
the dataset allows for the separation of each operating condition combined
with their respective gearbox condition, offering a nuanced perspective on
the data.

This comprehensive dataset provides a robust foundation for analysing
and improving fault detection in industrial gearboxes, particularly in high-
stakes applications like wind turbines. The detailed setup and balanced
data ensure that the classification task, although simplified by the train/test
split, remains a challenging and informative endeavor for network training
and evaluation.

22

3.1.4. MFPT Dataset

The Society for Machinery Failure Prevention Technology (MFPT) dataset
[73] is a widely used dataset for studying faults in machinery. This dataset
comprises 7 outer race faults, 7 inner race faults, and a healthy baseline
condition, resulting in a total of 15 unique classes. The data was collected
under various load conditions to provide a comprehensive overview of fault
scenarios.

Sequences of 2048 data points were created from one of the vibration
sensors. Fault conditions were sampled at a frequency of 48.828 kHz, yielding
71 sequences for each fault type. In contrast, the healthy condition was
sampled at a higher frequency of 97.656 kHz, resulting in an additional 858
sequences. This discrepancy in the number of sequences per condition makes
the dataset inherently unbalanced.

The unbalanced nature of the dataset poses a challenge for machine learn-
ing algorithms, as it requires strategies to handle the imbalance effectively.

This dataset provides a rich source of information for the development
and evaluation of fault detection algorithms, making it an essential tool for
researchers in the field of machinery failure prevention. The diversity of fault
conditions and the high sampling rates ensure that the dataset can be used
to test a wide range of diagnostic methods.

3.1.5. XJTU

The XJTU-SY bearing datasets are provided by the Institute of Design
Science and Basic Component at Xi’an Jiaotong University (XJTU) and the
Changxing Sumyoung Technology Co. The datasets contain complete run-to-
failure data of 15 rolling element bearings that were acquired by conducting
many accelerated degradation experiments [74]. In this case, we chose to
extract the last 30 minutes of every experiment containing the fault occur-
rence, and potentially already some vibration deviations prior to this fault.
Therefore, sampling an equal length of data, containing the fault would be
an appropriate strategy. Since the data are retrieved from a remaining useful
life (RUL) experiment, the datasets are imbalanced in general, and also until
the fault occurs, they are somewhat similar. The experiments contain two
time series making it a multivariate use-case. The data are sampled at a 25.6
kHz where the sampling frame was 1.28 seconds within every minute, result-
ing 32,768 data points per minute. This results in 480 sequences for every of
the 15 different fault conditions, totaling the dataset with 7,200 sequences.
Due to the vast amount of data, we can state that this dataset is large.

23

3.1.6. UoC

The dataset retrieved from the University of Conneticut (UoC) [75] pro-
vides a gear fault dataset that measures vibrations with the use of accelerom-
eters. the data are collected with a sampling frequency of 20 kHz. It only
consists of a single sensor, therefore making it a single time series channel,
i.e., univariate time series. In total, the dataset contains eight different gear
fault conditions accompanied by one healthy gear condition, resulting in a
multi-class classification task with 9 unique conditions. The following condi-
tions are gathered during the experiments; healthy condition, missing tooth,
root crack, spalling, and chipping tip with 5 different levels of severity [76].
The dataset is balanced for all conditions. We segmented the data into se-
quences of 2048 data points per sequence, giving 182 sequences per condition,
amounting to a fairly small dataset.

3.1.7. SEU

The Southeast University (SEU) in China has developed two sub-datasets
for their gearbox datasets, both aimed at providing insights into the health
of bearings and gearboxes [77]. Data collection was accomplished through a
Drivetrain Dynamics Simulator, capturing eight channels of vibration data.
The data encompasses five different conditions: one healthy state and four
fault states, all under two operational conditions defined by rotational speed
and load: 20 Hz-0 V and 30 Hz-2 V. We specifically utilised the bearing-
related data, extracting three vibration channels (channels 2, 3, and 4) cor-
responding to the x, y, and z directions of the planetary gearbox, thus forming
multivariate time series data. To increase the complexity within every fault
condition, we merged the data from both rotational speeds and loads. The
full recordings were employed, including the initial start-up phase. Over-
all, the dataset consists of 5110 sequences of 2048 data points each, which
translates to 1022 sequences per class, ensuring a balanced dataset across all
conditions.

3.2. Method Pt. 1 – Experiments on Alternatives to Wide-Kernel CNN Ar-
chitecture

A wide-kernel CNN architecture takes centre stage in our research how-
ever we also want to say that hyperparameters are an important and un-
avoidable decision for other neural networks too. Therefore, in addition to
the wide-kernel CNN which is our focus we also perform limited experiments

24

on two additional architectures. By encompassing more than one architec-
tural style, our work has a broader basis on which more general conclusions
can be built.

The first additional architecture uses “long- short-term memory” (LSTM)
to digest the signal as a sequence of smaller pieces. The second additional
architecture, a “transformer”, also consumes its inputs as a sequence. Both
architectures boast a good record of accomplishing sequence processing tasks
and can be adapted to work on time series.

Our goals for the LSTM and transformer architectures are not the same
as those we have for the wide-kernel CNN. With the wide-kernel CNN, our
intention is to weigh up the importance of different hyperparameters and
familiarise ourselves with each hyperparameter in detail. Our results do
not generalise to other architectures which have their own distinct sets of
hyperparameters. The extra LSTM and transformer architectures are not
included to allow for a detailed analysis but simply to provide evidence
that hyperparameter tuning has important consequences for a wide range
of state-of-the-art neural networks. We want to show that the dangers of
ill-hyperparameterisation are not a consequence of choosing the wide-kernel
architecture in particular.

3.2.1. Long Short Term Memory (LSTM) Architecture

Following the example of [78], we consider a bearing fault classifier built
around Long Short Term Memory (LSTM) layers. The central idea of an
LSTM layer is that it passes information forward between steps when pro-
cessing a sequence stepwise – making it possible to ‘remember’ things seen
earlier – and yet it also allows the internal flow of information to be flushed
out [79]. Strategically flushing out the internal information deals with the
problems of vanishing and exploding gradients that previous kinds of re-
current network suffered from, with the upshot being that LSTMs are more
successful at handling longer sequences and performing a wide range of tasks.

Like [78], we situate LSTM layers in an architecture that can be imagined
as a structure with three main chambers. The first two components are
CNNs which proceed in parallel and then they both pass into the third main
component which is the LSTM itself. Two CNNs are used in order to achieve
a “multi-scale” effect. A CNN containing smaller kernels gives prominence to
brief or high-frequency vibrations in the signal. Features of the signal that
develop more slowly are emphasised in a second CNN consisting of larger
kernels. The patterns that emerge from both CNNs then proceed into the

25

Figure 3: Architecture of the used LSTM network, inspired by [78]. The network utilises
two convolutional paths at different scales which are multiplied together and fed into the
main LSTM.

LSTM. Crucially, the patterns coming from the CNNs take on the form of a
sequence, in which each step summarises a period of time from the raw signal.
This is needed because the LSTM layer would be overwhelmed by the sheer
number of measurement points in the raw signal without any summarisation.
The LSTM component takes the shape of a pair of layers which run along
the length of the input sequence and ultimately exit to a vector of numbers
which captures the key details of the signal. At the end of the LSTM, fully
connected layers head onwards to arrive at a final prediction of what type of
fault is present in the machinery. The architecture is visualised in Figure 3

26

3.2.2. Transformer Architecture

We also consider a transformer architecture, following the example set
by [50] for bearing fault analysis. Transformers use a so-called ‘attention’
mechanism which allows them to process each step in a sequence by pooling
information from other steps [80]. The innovation of using attention provides
an efficient alternative to recurrent connections, and the booming popularity
of transformers in applications like ChatGPT testifies to their efficacy.

Figure 4: Architecture of the used transformer network, inspired by [50]. The network
utilises convolutional layers that feed into transformer layers.

27

Much like the LSTM architecture, the transformer would also be quickly
overwhelmed by the number of time steps in the raw vibration signal. There-
fore, the network we use (shown in Figure 4) receives incoming signals in a
CNN component which leads to a compact sequence that then passes through
to the transformer component. The CNN has a simple structure arranged
into two layers and after passing though it the raw input signal shrinks to
a sequence of roughly 1/16th the length. The transformer section of the
architecture is larger and consists of 4 layers by default. When exiting the
transformer layers we still have a sequence of vectors. All the pieces of the se-
quence need to come together into a single vector, something that is achieved
using a global average pooling layer. Following the pooling layer it is possi-
ble to proceed into a single fully-connected layer which brings us to the final
prediction of the network.

3.2.3. Hyperparameter Search on Other Architectures

When studying the LSTM and transformer networks we restrict ourselves
to drawing some generic conclusions about the impact of (mis)tuning hyper-
parameters. As such, we do not find it necessary to perform a full grid search,
but instead to rely on a reduced sample from a grid of possibilities. We select
100 configurations uniformly at random from a larger collection of possible
hyperparameter combinations.

For the LSTM-based neural network, the values we consider for each
hyperparameter are shown in Table 1. The middle value for each hyper-
parameter is based on what it is set to by default in the code published
alongside [78]. The other two options simply expand or shrink the amount
by a factor of four. From the space of possibilities defined in Table 1, we
take 100 random samples.

The transformer hyperparameters are also confined to a limited set of
possibilities, which are shown in Table 2. From these we choose a sample
of 100 combinations of values. Like with the LSTM, our choice of default
options is inspired by the code published by the authors (alongside [50]).

3.2.4. Analysis Techniques

Our analysis of the LSTM and transformer architectures asks how much
the accuracy of a network changes when its hyperparameters change. The
evidence considered is a sample of 100 LSTMs and 100 transformers cho-
sen at random from the range of hyperparameter options, with each network

28

Table 1: Hyperparameter values considered for the LSTM network.

Hyperparameter Value Domain

Kernel size shallow network layer 1 {5, 20, 80}

Filters shallow network layer 1 {13, 50, 200}

Kernel size shallow network layer 2 Always half of layer 1 value

Filters shallow network layer 2 {8, 30, 120}

Kernel size deep network layer 1 {2, 6, 24}

Filters deep network layer 1 {13, 50, 200}

Kernel size deep network layer 2 Always equal to layer 1 value

Filters deep network layer 2 {10, 40, 160}

Kernel size deep network layer 3 Always equal to layer 1 value

Filters deep network layer 3 {8, 30, 120}

Kernel size deep network layer 4 Always equal to layer 1 value

Filters deep network layer 4 Always equal to filters in layer 2
of the shallow network

Hidden units LSTM layer 1 {15, 60, 240}

Hidden units LSTM layer 2 {15, 60, 240}

trained and evaluated on seven benchmark datasets. Based on their hyperpa-
rameters, some of the 200 networks perform better and some perform worse.
To give an overview of the results, we present to the reader a summary of the
distribution of accuracy scores. We report the distribution of test accuracy
– the spread of how well the networks performed – as follows. First, for the
LSTM we state the minimum, 25th percentile, median, 75th percentile and
maximum accuracy achieved after training and testing on CWRU data. We
then state what values the LSTM reached on the Gearbox data for the min-
imum, 25th percentile, median, 75th percentile and maximum (also known
as Tukey’s five-number summary). The results proceed to give the corre-
sponding values for all the other benchmark datasets and when using the
transformer instead. In total, there are 5 values describing how 2 architec-

29

Table 2: Hyperparameter values considered for the transformer network.

Hyperparameter Value Domain

Kernel size CNN layer 1 {4, 16, 64}

Filters CNN layer 1 {1, 4, 16}

Kernel size CNN layer 2 {4, 16, 64}

Filters CNN layer 2 {2, 8, 32}

Hidden units in transformer layers {64, 256, 1024}

Attention heads in transformer layers {8, 32, 128}

Number of transformer layers {1, 4, 16}

tures did on 7 different datasets, with the goal being to give an idea of the
spread of the data and quickly clarifies how much the architectures are af-
fected by their hyperparameters and by changes in the data. We are also
curious how well the default hyperparameter values used in past literature
fare. Therefore we also report the accuracy obtained when using the default
settings.

3.3. Method Pt. 2 – Focusing on the Wide-Kernel CNN Architecture

Next we leave behind the LSTM and transformer architecture and ar-
rive at the main body of the research, which is to explain how to set the
hyperparameters of a wide-kernel CNN architecture.

3.3.1. Overview of Architecture

Previous work demonstrated excellent performance in bearing fault de-
tection by employing a wide-kernel in the first convolutional layer followed
by smaller kernels in subsequent layers [33, 15, 34, 2]. This wide-kernel CNN
does not only perform well but is also particularly suitable for fault detec-
tion tasks due to its reasonable size in terms of convolutional layers and its
capability to process raw time series directly.

Our architecture contains two convolutional layers, each utilising several
combinations of stride, kernel size and filters. After that, a convolutional
unit (see Figure 5) is repeated three times, resulting in a total network of
five convolutional layers. The three convolutional units all have the same
hyperparameter combination in this study, relying on the observation that

30

the deeper layers of the network should have the same properties for optimal
learning, as described in previous work [33, 34, 15]. After each convolutional
layer, the network utilises local average pooling to decrease the vector size of
the convolutional output with length T divided by two, resulting in a pooled
output length of T

2
. At last, the reduced output from the convolutional

layers is fed to two fully connected layers and the last one functions as the
classification layer. Figure 5 shows the overall network architecture with two
exemplary time series as input.

We originally chose to use a wide-kernel CNN architecture as the focus of
our hyperparameter investigation because it had already been achieved near-
perfect accuracy on the two bearing fault detection datasets (CWRU and
Paderborn) in prior work [15, 33, 34]. Its performance on these benchmarks
indicated to us that it is well-suited for fault detection tasks and that a more
complicated network would not necessarily give extra benefit. Furthermore,
the architecture is lightweight in terms of computational resources and mem-
ory usage, which allows it to have a wider range of uses, in particular opening
up the possibility of edge computing in the context of Industry 4.0.

Moreover, the modest depth of the wide-kernel architecture, compared to
other state-of-the-art CNN architectures [51, 50, 81, 52, 78, 82], lends itself
well for an extensive grid search of the hyperparameters due to the relatively
low number of hyperparameters.

In addition to the network’s architecture, some additional refinements
improve performance and computation time. These remained the same for
every combination that was tested. First of all, between convolutional layers,
a batch normalisation layer is added to speed up the training process. Second,
we used the Adam stochastic optimiser. Adam is an optimisation algorithm
that leverages the strength of adaptive learning rates for each individual pa-
rameter and is well-suited for networks that analyse high dimensional input
and have a lot of trainable parameters, since it is memory-light and compu-
tationally efficient. Furthermore, according to [83], Adam is very effective
with noisy signals.

3.3.2. Hyperparameter Search

Each hyperparameter of a neural network is a decision and changing any
one of them leads to a new configuration for the network, potentially lead-
ing to a different accuracy score on the task being attempted. From any
given starting point there are as many directions for the configuration of the
network to go as there are hyperparameters. By imposing lower and upper

31

Figure 5: Architecture of the used 1D wide-kernel CNN, inspired by [33, 2]. The network
utilises two convolutional layers followed by a convolutional unit (in grey), which is re-
peated 3 times.

limits on what values each hyperparameter can take, it is possible to chart
out a finite hyperparameter space for exploration. In the ensuing section
of this paper, we describe the hyperparameter spaces used in our different
experiments and how we explore them.

Earlier work on the wide-kernel CNN identified seven architectural hy-
perparameters [2]. These were explored using a grid search strategy in which
each hyperparameter is restricted to a limited set of values and every possible
way of combining these is tested. For example, every kernel size in the first
layer is tried out with every stride in layer 1, and each of these combinations
is tried out with every kernel size in layer 2, etc. Since they differ from one
another, the set of options tried for any particular hyperparameter is not the
same as for other hyperparameters. Table 3 shows the options. Looking at

32

all the mixtures that can be created, there are 5×3×6×2×6×2×6 = 12960
combinations included in the grid search.

Previous work also found that three hyperparameters in particular are
important: kernel size in the first layer, number of filters in the first layer
and number of filters in layers 3-5 (these are indicated in italics in 3) [2, 1].
We use these hyperparameters as a basis for new grid searches. The reason we
are performing new grid searches is that we want to find out more about the
impact of manipulating the properties of the data by filtering or resampling.
Our approach to filtering and resampling the data is described in the next
subsections. By manipulating the dataset we create new versions of it. On
each version, we perform a grid search considering the values shown in Table
3. The data manipulation strategies and the goals of performing them are
explained in more detail in the next subsection.

In summary, we have a grid search performed over seven hyperparame-
ters which tests the accuracy of the network on seven benchmark datasets.
Additionally, as will be explained in a moment, we have multiple smaller
grid searches which apply to modified versions of the data. These smaller
searches operate over three hyperparameters.

Table 3: Architectural hyperparameters with the values they take in grid search.

Hyperparameter Value Domain

Kernel size layer 1 {16, 32, 64, 128, 256}

Stride layer 1 {4, 8, 16}

Filters layer 1 {8, 16, 32, 64, 128, 256}

Kernel size layer 2 {3, 6}

Filters layer 2 {8, 16, 32, 64, 128, 256}

Kernel size layers 3-5 {3, 6}

Filters layers 3-5 {8, 16, 32, 64, 128, 256}

3.3.3. Analysis Techniques on Seven Benchmark Datasets

In order to flesh out certain points from the work reported earlier in [2, 1],
we take the results from a grid search over seven hyperparameters applied to
seven benchmark datasets and present them in new ways, as follows.

33

Descriptive Analysis :
If possible, we would like to recommend effective default values for the

seven architectural hyperparameters of our wide-kernel CNN architecture.
Recommendations would be easy to make if we find that a single value per-
forms best across all the seven benchmark datasets. Therefore, we present a
simple table that shows the average accuracy obtained on each dataset when
using each hyperparameter value. The table compares different options for
a hyperparameter, showing if there is a generally best option or if instead
there is no obvious default value that performs well on all datasets.

Influence between Important Hyperparameters :
Part of the work of [1] was to attribute importance scores to the hyper-

parameters after testing out hyperparameter configurations on seven bench-
mark datasets. These importance scores represented the extent to which a
hyperparameter impacts the accuracy of the wide-kernel CNN. In particu-
lar, the results identified three especially important hyperparameters: the
number of filters in the first layer, the kernel size in the first layer, and the
number of filters in layers 3-5.

In the aforementioned past work there was also an analysis of the influence
each hyperparameter on other hyperparameters. The ‘influence’ of A on B
was interpreted as the likelihood that the optimal value for B will change as
a result of tuning A. In other words, A is influential on B if tuning A is likely
to mean that B needs re-tuning.

When someone tunes a network, they tweak the options available to them
until they find hyperparameter settings that result in better accuracy. One
approach to the problem is to focus on a single choice – for example the num-
ber of convolutional filters used in the first layer of the network – and modify
this value without changing anything else. We call this approach tuning a
hyperparameter ‘individually’. Tuning individually reduces the number of
possibilities, perhaps to testing out a handful of values the hyperparameter
might reasonably take. After trying the possibilities the best performer will
be retained.

An underlying assumption of individually tuning hyperparameters is that
there is a definite starting point. All of the other hyperparameters must
be given a fixed value at the beginning of the process. The results from
individual tuning are therefore contingent on there being a starting point
and indeed we may find that a different starting point leads to a different
optimal value for the hyperparameter being tuned. Even if a hyperparameter

34

has been given the ‘best’ value through individually tuning it, we may find
that the best value changes when another hyperparameter has been edited.
In which case, the original hyperparameter needs to be re-tuned to reflect a
new starting point.

It is not clear whether changing one hyperparameter will have any impact
on another. It is possible for hyperparameters to be largely independent so
that we can modify one of them freely without it affecting which value is
optimal for the other hyperparameter. Alternatively, they could be closely
linked and it might be best to tune them so they always change together. In
our research we consider the derived question of whether tuning one hyper-
parameter individually has an impact on the outcome from tuning another
hyperparameter. The answer will be a probability because we need to sum-
marise what happens across a large range of starting points. We have seven
hyperparameters and each way of setting them is a different starting point.

We therefore revisit the notion of ‘influence’ used in [1] and computed
by Algorithm 1. This fairly straightforward method to quantify influence
considers every combination of values in a grid search as a starting point.
From each starting point the algorithm tests the influence of individually
tuning one hyperparameter (let us call it ‘A’) on another hyperparameter
(‘B’). First, B is tuned, then A is tuned and subsequently B is re-tuned to
see if the optimal value has changed. If re-tuning changes the value of B then
the algorithm increments a running count. At the end, the algorithm returns
the final value of the running count divided by the number of starting points
that were tested.

When reporting these influence scores, [1] provided a visualisation to show
the influence each hyperparameter has on one another. In the current paper,
we repeat this procedure but consider what happens when only the three most
important hyperparameters are tuned and the other hyperparameters are
held to their default values (as defined in [12]). We show this new information
since it allows us to focus on strategies that allow for faster and more effective
tuning. Excluding hyperparameters that have low impact on the accuracy of
the CNN makes it possible to cut down on computation.

3.3.4. Resampling

When tuning the first layer of the wide-kernel CNN we often find that the
largest kernel size is best, but sometimes a small kernel is best and sometimes
it does not matter. It depends what benchmark dataset is being used and
therefore seems to be a result of differences in the data. We try to isolate

35

Algorithm 1 Compute the influence of A on B

trialCount ← 0
differenceCount ← 0
for each configuration c ∈ (c1, c2, ..., c12960) do
Btuned ← tune(c, B)
c′ ← c
c′[A]← tune(c′, A)
Bre−tuned ← tune(c′, B)
trialCount ← trialCount +1
if Btuned ̸= Bre−tuned then
differenceCount ← differenceCount +1

end if
end for each
return differenceCount / trialCount

which dataset properties cause different kernel sizes in the first layer to be
better or worse. This leads to two types of data manipulation, the first of
which is resampling.

One practical question about how to tune the hyperparameters of a wide-
kernel CNN is whether to resize the convolutional filters, particularly in the
first layer, when the sampling rate changes. Fortunately, the sampling rate is
something that we can control artificially. We resample windows of vibration
data to a lower rate, for example going from an initial window sampled at 48
kHz to a window of data which now contains the same content but is sampled
at 24 kHz instead. The highest frequencies will be lost, but otherwise the
signal will be preserved with high accuracy. Simply it will take fewer data
points to record the same back-and-forth vibrations, and each data point will
represent a bigger jump forward in time from the previous one.

To investigate the impact of the sampling rate on hyperparameters such
as the kernel size of the first layer, we make multiple copies and resample
them by a factor of 2, 4, 8 and 16. Starting off with data sampled at 48 kHz,
this results in versions sampled at 24 kHz, 12 kHz, 6 kHz and 3 kHz. On
each version of the data, we run a grid search over the hyperparameters which
previous work showed were the most important. The grid search results can
be analysed to compare what hyperparameter settings work best at different
sampling rates.

36

For each combination of possible hyperparameters in our grid search,
we train and test on the original and the four resampled versions of the
CWRU 48 kHz dataset. The CWRU data was chosen because it combines:
a relatively high sampling rate, a well-documented and high-quality data
collection procedure, remaining a moderate challenge for neural networks,
and being perhaps the most widely used benchmark in the field.

3.3.5. Filtering

It has been suggested in past work that the reason a wide kernel boosts
the accuracy of a neural network is that wide kernels are good at filtering
out high-frequency noise. We investigate this by employing a lowpass filter
to deliberately remove high frequencies from the data. If the main accom-
plishment of a wide kernel is to filter out high frequencies, then a larger
range of kernel sizes should become viable if the high frequencies are already
eliminated by pre-filtering. We do not know what (if any) cutoff should be
used to decide which frequencies to keep and which to throw away, so we try
multiple cutoff thresholds, starting from near the upper limit provided by
the Nyquist frequency. In real terms, given data like CWRU sampled at 48
kHz, we apply filtering to multiple copies of the data. We filter with cutoff
frequencies of 12 kHz, 6 kHz, 3 kHz, 1500 Hz, 750 Hz, 375 Hz, 187 Hz, 93
Hz and 46 Hz. An additional benefit of using many cutoff thresholds is that
we can also check if any of them are too drastic, shedding light on which
frequencies are essential for accurate fault detection and cannot be removed.

It should be noted that filtering in this way does not impact the sampling
rate or the size of a window of vibration data, it simply removes content which
occurs at high frequencies. This makes it easy to compare the results when
performing a grid search over the most important hyperparameters. A grid
search can be performed on each filtered version of the CWRU dataset, and
the results are directly comparable since the same architectures are applied
to data which has exactly the same size and shape.

3.3.6. Analysis Techniques on Resampled and Filtered Data

We analyse the resulting information in multiple ways. First, we look
at correlations between different versions of the dataset, which gives an in-
dication of the impact that resampling had. If resampling had no impact
at all, then we would expect to have a perfect correlation of 1.0, and val-
ues lower than this would imply that resampling has an influence on which
hyperparameter combinations are stronger and which are weaker.

37

Afterwards, we look at how important different hyperparameters are. We
do this by initially asking a related question of whether the test accuracy
of a network can be predicted from the hyperparameters it has. If the ac-
curacy can be predicted, we can hone in on the specifics of how much each
hyperparameter contributes to the predictability.

Correlation analysis : By resampling the CWRU data, we create multi-
ple versions of the dataset. One obvious question that arises is whether a
combination of hyperparameters that works well on one version of the data
will also work well on another. A similar question could be asked about the
worst-performing hyperparameters. In general, this is a question of correla-
tion: to what extent do the accuracy scores obtained on one dataset version
correlate to the scores on data resampled to a different rate? We compute
and then display the correlations, which gives an insight into how much the
hyperparameters are affected by the resampling/filtering. One possibility
is that certain hyperparameter combinations are simply better than others,
and it does not matter if the properties of the data (such as sampling rate)
change. In the extreme, this would result in a correlation of 1.0 between all
versions of the dataset. However, if smaller correlations are found, then it
would suggest that the properties of the data impact which hyperparameters
are best, or that there is some degree of randomness in the accuracy scores
that deflates the correlations.

Box plots : One of the key questions in our research is whether the optimal
kernel size in the first layer changes when the data is either resampled or
filtered. Box plots provide a straightforward view onto how well different
kernel sizes tend to work. We plot the distribution of accuracy scores for
each kernel size when applied to each version of the data.

Feature importance based on Shapley values : After performing a grid
search over different values that the hyperparameters can take, we are left
with a set of accuracy scores. Each entry in the results records the specific
values that were used for the three hyperparameters manipulated in the grid
search, plus the trained network’s accuracy on test data. We use these four
pieces of information to investigate the relative importance of each hyperpa-
rameter. The analysis proceeds by analysing one grid search at a time, before
comparing across grid searches. Remember that a grid search represents a
certain level of resampling or filtering, e.g. it tells us what happens when

38

different hyperparameter values are tried out on CWRU data resampled from
48 kHz to 24 kHz. Another grid search covers CWRU data resampled from
48 to 12 kHz, and so on.

‘Importance’, of course, can mean many things. Here, we provide one
particular approach to quantifying the importance of hyperparameters. Our
approach asks how much each hyperparameter seems to contribute to the
final accuracy of a network. If a hyperparameter is important, then setting it
correctly tends to result in a noticeably higher accuracy. If a hyperparameter
is not important, then even changing it drastically will not cause any increase
or decrease in how accurate the network is.

It is difficult to directly state how much a hyperparameter influences
the accuracy of the network because this can be contingent based on other
hyperparameters or could be subject to a nonlinear relationship which is
hard to identify using basic statistical analysis. Our past work showed that
nonlinear regression methods were noticeably better at the task of predicting
how accurate networks will be. In order to model the obscure, nonlinear
relationships between hyperparameters and accuracy, we use a multilayer
perceptron. It is a simple neural network – ours contains two hidden layers
of 32 neurons – which is told the how the hyperparameters of a wide-kernel
CNN have been configured and is trained to predict what accuracy those
hyperparameters lead to. The outputs from grid searches provide the data
used for training the MLP.

Once the MLP is trained, it contains information about the importance
of different hyperparameters. In order to probe the MLP further we train
versions which have access to a hyperparameter (i.e., are told what value
the hyperparameter has) and versions which do not. If the versions without
access to a hyperparameter perform much worse then the hyperparameter is
seen as important. Shapley values provide a framework for fairly combining
information from all the possible permutations of inclusions/exclusions of
hyperparameters [84]. By visualising these Shapley values, we can look into
the relative importance of each single hyperparameter, measured in terms
of how much it contributes to reducing the MLP regressor’s Mean Absolute
Error (MAE). This is the method we employed earlier in [2], although there
we applied it to raw benchmark data rather than filtered and resampled
CWRU data.

Calculating the Shapley value of a hyperparameter is done by permuting
the order of all hyperparameters and then performing two regressions (using
the MLP): one with the current hyperparameter included and one without.

39

The difference in error between these two regressions indicates the hyper-
parameter’s contribution to the overall model’s performance. By averaging
over all possible permutations, we obtain the precise Shapley value. For an
approximation, a set number of permutations can be chosen at random. For
the sake of computational efficiency, we use 100 random permutations. As
seen in [85], Shapley values tend to converge quite quickly to a reasonable
approximation, and so we do not feel it is necessary to run all permutations.
Following the notation in [85], the calculation can be written down follows:

φi =
1

|N |!
∑

O∈π(|N |)

[v(Prei(O) ∪ {i})− v(Prei(O))] (3)

where φi is the Shapley value of feature i, |N | is the number of features, O
is a randomly-chosen permutation of the features, v(s) is the average test
performance (mean absolute error or MAE) of a regression using only the
set of features s, and Prei(O) is the set of features that appear earlier than
feature i in the permutation O.

Feature importance based on d-dimensional earth mover’s distance: We
want to understand how much the accuracy of the neural network changes
depending on specific settings of the hyperparameters. To do this, we first
look at how to summarise a single setting of a single hyperparameter, such
as giving the filter in the first layer a width of 256. When the first layer has a
filter of width 256, many possibilities remain for the other hyperparameters.
Within our grid search, all the possibilities are exhaustively tested, the upshot
of which is that we have a collection of many tested networks that all have
a first layer filter width of 256. The test accuracy scores from a collection of
networks, taken together, form a distribution. Some accuracy scores will be
more frequent than others.

The idea of our analysis is to take different distributions and compare
them. We can compare the distribution of accuracy scores when the first
layer has a filter size of 256 to when the filter size is 128, for example. If two
distributions are wildly different, it clearly shows that changing the hyper-
parameter has caused a change in what accuracy you can expect from the
network.

To summarise this information, we use a metric called the d-dimensional
Earth Mover’s Distance (EMD) for each hyperparameter [86]. The EMD
essentially measures the difference between two probability distributions, re-

40

flecting how much one needs to be adjusted to become the other. Higher
EMD values indicate greater dissimilarity. The EMD is the same as the
Wasserstein difference when comparing two distributions, but it can be ex-
tended to compare more than two distributions (hence ‘d-dimensional’).
Analysing all the values that a hyperparameter can take, we come up with
a single EMD that summarises the hyperparameter overall. With EMD, we
can assign a single number to each hyperparameter, representing its impact
on accuracy scores. This is a method we used earlier in [1], although there we
applied it to raw benchmark data rather than filtered and resampled CWRU
data.

It is important to note that some hyperparameters are tested with more
values than others are. For instance, we might test five kernel sizes but
only three strides and this makes the EMD values somewhat inconsistent
and difficult to interpret. To make the results more usable we add an extra
processing step that begins by calculating a baseline EMD for each hyperpa-
rameter. We do this by calculating the EMD for surrogate data in which the
accuracy scores have been shuffled and therefore the relationships between
hyperparameters and accuracy have been destroyed. Shuffling multiple times
and recalculating the EMD allows us to estimate the average EMD due to
chance. When we present the EMD for each hyperparameter we make the
numbers more comparable and meaningful by dividing by the baseline.

3.4. Summary of Datasets Used

Across the various parts of our research, multiple datasets are employed.
For the sake of clarity we now present the full collection of datasets we use
and remark on which architectures they are used with. Table 4 shows these
details.

4. Results

Here we analyse the outputs from our grid search over hyperparameters,
which has been applied to multiple datasets and to multiple filtered and
resampled versions of the CWRU dataset. Combining these analyses leads
to a broader understanding of how to set hyperparameters under different
conditions. Before doing that however, we first attempt to establish the im-
portance of hyperparameter tuning outside the context of a wide-kernel CNN
by looking at how alternative architectures perform while their hyperparam-
eters change.

41

Dataset Used With

Unmanipulated benchmarks

CWRU LSTM, Transformer, Wide-kernel CNN
Gearbox LSTM, Transformer, Wide-kernel CNN
MFPT LSTM, Transformer, Wide-kernel CNN
Paderborn LSTM, Transformer, Wide-kernel CNN
SEU LSTM, Transformer, Wide-kernel CNN
UOC LSTM, Transformer, Wide-kernel CNN
XJTU LSTM, Transformer, Wide-kernel CNN

Resampling

CWRU 48 kHz resampled to 24 kHz Wide-kernel CNN
CWRU 48 kHz resampled to 12 kHz Wide-kernel CNN
CWRU 48 kHz resampled to 6 kHz Wide-kernel CNN
CWRU 48 kHz resampled to 3 kHz Wide-kernel CNN

Filtering

CWRU 48 kHz lowpass at 12 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 6 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 3 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 1500 Hz Wide-kernel CNN
CWRU 48 kHz lowpass at 750 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 375 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 187 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 93 kHz Wide-kernel CNN
CWRU 48 kHz lowpass at 46 kHz Wide-kernel CNN

Table 4: Summary of datasets used in the research.

4.1. Results Pt. 1 – Experiments on Multiple Architectures

The overall focus of our work is a specific wide-kernel CNN architecture.
However, it is important to note that other architectures also present the user
with hyperparameter decisions, and also suffer from the fact that poor hyper-
parameter choices can be disastrous for accuracy. We therefore briefly present
some experiments with two other popular architectural styles: a recurrent
LSTM type of neural network and a transformer network. These results es-
tablish the general importance of hyperparameter tuning when working with
neural networks, which is the basis for the remaining sections where we deal
with the wide-kernel architecture much more extensively.

42

4.1.1. Long Short Term Memory (LSTM)

Across our sample of 100 LSTM configurations, we see that poor hyper-
parameters can be disastrous. In the worst cases (CWRU and XJTU) the
lowest-performing network was wrong more than 10 times as often as the best
network. On all datasets the default values do roughly as well as about 75%
of modified hyperparameter settings and therefore are reasonable choices.
One interesting thing is that the LSTM network’s default values appear to
under-perform on XJTU data. Facing this benchmark, an LSTM configured
with the defaults only achieved an accuracy of 72% whilst it was possible
to get above 90% with other hyperparameter values. Re-tuning the default
hyperparameter settings seems to be a good idea on XJTU data, indicating
that hyperparameters that perform well on one dataset do not necessarily
perform well on another dataset. The default values fared relatively much
better on CWRU and SEU. Overall the results show that hyperparameter
tuning has a noticeable impact on the LSTM architecture much like with the
transformer and wide-kernel CNN networks.

Min 25% Median 75% Max w/ Defaults

CWRU 35 59 68 80 94 81
Gearbox 6 9 11 13 17 14
MFPT 46 49 50 50 54 52
Paderborn 28 40 46 50 57 48
SEU 62 88 96 98 99 94
UOC 24 35 41 50 72 54
XJTU 26 48 57 75 97 72

Table 5: Tukey’s five-number summary of how accurate the LSTM architecture was with
different hyperparameter settings. The accuracy score when using the default hyperpa-
rameter values is also shown in the right-hand column.

4.1.2. Transformer

The transformer architecture performs relatively well when using the de-
fault hyperparameter settings, as shown in Table 6. On four of the baselines
it was able to correctly identify fault conditions on more than 90% of test
cases. Looking across all of the baseline datasets, the default hyperparame-
ter settings were at least as good as 75% of altered versions of the settings.
The results suggest that the default values are quite reasonable choices. On

43

the Gearbox dataset the transformer was inaccurate no matter if the default
hyperparameter settings were used or not, suggesting a specific problem with
that one dataset. Importantly, our results show overall that the transformer
architecture is sensitive to hyperparameter tweaking. On CWRU and UOC
for example, the accuracy plunges by roughly 90% when swapping the best-
performing hyperparameters for the worst.

Overall, the transformer architecture beats the LSTM architecture so long
as it is given the right hyperparameter settings. The transformer was more
sensitive to changes in the hyperparameters our study explored, in the sense
that it could be very accurate or be very inaccurate depending on whether
those were right. However, getting the hyperparameters right paid off for the
transformer since its max accuracy was 40% higher than the LSTM’s max
when testing on UOC data. Given the correct hyperparameter settings, the
transformer could be at least as good as any LSTM network we tried out on
the seven benchmarks.

Min 25% Median 75% Max w/ Defaults

CWRU 8 16 69 89 100 93
Gearbox 4 5 11 14 24 13
MFPT 18 46 62 68 77 68
Paderborn 10 26 54 62 68 62
SEU 20 23 87 96 100 95
UOC 8 17 82 95 100 94
XJTU 7 35 89 95 99 97

Table 6: Tukey’s five-number summary of how accurate the transformer architecture was
with different hyperparameter settings. The accuracy score when using the default hyper-
parameter values is also shown in the right-hand column.

4.2. Results Pt. 2 – Focusing on the Wide-Kernel CNN Architecture

The main body of our research is about the wide-kernel CNN architecture
described in Section 3.3.1. We begin the results by revisiting how successful
networks in a grid search are when trained and tested on seven different
benchmark datasets. This grid search is the same as was analysed before in
[1], although here our results have a different focus. We look at the average
test results when setting individual hyperparameters to specific values, and
we also zoom in on the interactions between the hyperparameters that were

44

previously identified as most important. These results help us formulate
guidance on how to tune the hyperparameters of the wide-kernel CNN, in
later sections of this paper.

After revisiting the grid search applied to seven benchmark datasets we
shift our attention to how well wide-kernel CNNs work on manipulated ver-
sions of the CWRU data. Deliberately manipulating the data is a means
to get greater control of data properties and see how they influence which
hyperparameter values are best. We maintain a special interest in the kernel
size in the first layer (the ‘wide kernel’ of the wide-kernel architecture) be-
cause this seems to be the most data-dependent hyperparameter. The other
hyperparameters of the network appear fairly consistent in terms of what is
the correct way to tune them, but the first layer kernel size sometimes needs
to be shrunk and sometimes needs to be expanded. By first resampling and
then filtering we look at whether the sampling rate and the spectral content
have an impact on what kernel size is best.

4.2.1. Summarising Grid Search Results

Now we look at how the accuracy of the wide-kernel CNN varies as we
change both the hyperparameter values and the data. Each condition’s ac-
curacy is shown in Table 7. These results are based on the same grid search
used previously in [1], which trained and tested different combinations of hy-
perparameters on 7 benchmarks. We revisit the grid search in order to pull
out and highlight helpful information when thinking about how to tune the
hyperparameters on different datasets.

First, we see that the accuracy tends to be higher on some benchmark
datasets than others. It seems that some tasks were more difficult or were
more demanding within the constraints imposed by the grid search. Differ-
ences are not unexpected however, since each dataset is distinct in terms of
recording procedure and number and type of faults.

Perhaps more interesting are the individual accuracy scores showing what
happens when we tune different hyperparameters. The kernel size in the
first layer reveals the most unexpected results. With CWRU, Paderborn
and UOC there is a strong effect whereby a longer kernel does better and the
longest kernel exceeds the shortest by at least 15% accuracy. The MFPT and
XJTU benchmarks exhibit a weaker effect of roughly 6% difference between
the longest and shortest kernel. The kernel size in layer 1 barely effects
the results on Gearbox data. Meanwhile, a strong contradictory effect is
observed when using SEU data. The shortest kernel is much better (more

45

Hyperparameter Value CWRU Gearbox MFPT Paderborn SEU UOC XJTU

Kernel size layer 1 16 25 78 47 74 87 32 64
32 31 78 48 84 80 35 59
64 40 77 49 87 70 40 64
128 55 77 51 89 61 49 64
256 69 77 53 89 53 58 70

Stride layer 1 4 41 77 48 79 69 35 54
8 44 80 50 86 70 45 66
16 47 75 51 89 72 49 73

Filters layer 1 8 43 74 53 84 74 57 69
16 53 76 56 86 74 61 68
32 53 77 54 85 72 51 65
64 45 77 49 85 70 37 63
128 37 79 45 84 67 28 61
256 33 81 42 83 65 23 60

Kernel size layer 2 3 43 78 50 85 71 43 67
6 45 77 49 84 70 43 62

Filters layer 2 8 44 78 52 85 74 49 68
16 50 78 52 85 73 50 66
32 51 79 52 85 71 47 63
64 47 77 50 85 69 42 62
128 40 76 47 85 68 37 63
256 33 76 45 84 66 33 65

Kernel size layers 3-5 3 45 80 50 84 71 43 65
6 43 75 49 85 69 42 64

Filters layers 3-5 8 33 83 49 86 67 49 75
16 45 91 50 89 72 51 82
32 53 90 51 89 73 48 75
64 52 81 50 88 73 41 64
128 46 67 49 82 70 36 52
256 35 52 49 74 65 32 39

Table 7: The average performance for different values of wide-kernel CNN hyperparameters
when trained and tested on different datasets.

than 30% better) compared to the longest kernel size. In all, it seems that
longer kernels in the first layer tend to be best but it very much depends on
the fault vibration data.

The stride in the first layer is a simpler story. In the case of Gearbox
it does not affect the accuracy by more than 5% whilst in all the other
datasets it is clear that the highest value (16) is best. A greater stride reduces
computation by shrinking the outputs and potentially removes redundancy
by decreasing the overlap of the outputs.

The number of filters in the first layer was also identified as important
by past work. Good performance is often achieved when there are 16 or 32

46

filters in the first layer. Either 16 or 32 was the best on every dataset except
XJTU (when 8 filters was 1% better) and Gearbox. With Gearbox, the trend
is that more filters gives higher accuracy and 256 beats 8 filters by about 7%
accuracy. Looking across all the datasets, 16 or 32 are the safest bets when
tuning this hyperparameter but exceptions are possible.

The final ‘important’ hyperparameter is the number of filters in layer 3 to
5. We observe that either 16 or 32 works best on all the benchmark datasets.
This conclusion at least is straightforward.

4.2.2. Influence of Important Hyperparameters on One Another

0.41

0.42

0.17

0.38

0.16

0.31
Kernel
size

Layer 1

Filters
Layer 1

Filters
Layers 3-5

Figure 6: The likelihood that tuning one hyperparameter (source of an arrow) will cause
another (destination of an arrow) to need re-tuning.

We now take another deep dive into the three hyperparameters identified
as important by our previous work. It is very computationally expensive
to run a full grid search over all the possible hyperparameter combinations
and so someone applying the network to new data might well want to know
how to tune the hyperparameters one-at-a-time. We ask which is the best

47

order to tune the three most important hyperparameters sequentially. The
method we used in our previous paper [1] comes in handy again here: we look
at how much one hyperparameter influences another hyperparameter which
has already been tuned. Because the hyperparameters are interconnected it
is possible that a hyperparameter that started off being optimal no longer
has the best value when a different hyperparameter changes. We look at how
often this phenomenon happens and we summarise the information as an
‘influence’ score. If A is highly influential on B then changing A most likely
means changing the best value for B. We can see the numbers in Figure 6.

The kernel size in layer 1 appears to be the most influential and therefore
it appears to be the best one to tune first. Tuning it later on would likely
disrupt the other hyperparameters and cause them to need re-tuning. In
other words, there is often no point in tuning the number of filters in layers
1 or 3-5 beforehand, since they will need to be tuned again when the kernel
size changes. After choosing the size of filters in the first layer it is best to
choose how many next. The choice of how many filters in layers 3 to 5 can
be delayed to the end.

4.2.3. Resampling

The results of a grid search over the three most important hyperparame-
ters, performed once each for the different resampling conditions, are brought
together in the results here. Visualising the results makes it possible to spot
any obvious trends in how the (increasing levels of) resampling impact the
performance of different hyperparameter settings. We present several analy-
ses on both CWRU 48 kHz data to see how much each hyperparameter seems
to influence performance. These analyses include using a method based on
Shapley values and using a method based on d-dimensional earth mover’s
scores to pinpoint important hyperparameters. Here, we include the results
obtained when resampling CWRU data, starting from data originally sam-
pled at 48 kHz.

First, we consider how much the accuracy scores change as a consequence
of resampling the data. Correlations tell us whether the best-performing
combinations of hyperparameters on one version of the data also remain the
best after resampling, and vice versa with the worst performers. The precise
correlation results are shown in Figure 7. All correlations are positive which
implies that the hyperparameter values that do well on one version of the
data have a tendency to perform well on data resampled to a different rate.
The weakest correlation is between the original 48 kHz data and the most

48

48 kHz 24 kHz 12 kHz 6 kHz 3 kHz

48
 k

Hz
24

 k
Hz

12
 k

Hz
6

kH
z

3
kH

z

0.48

0.4 0.56

0.48 0.69 0.61

0.15 0.68 0.59 0.78

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Correlation between different resampling conditions, starting from 48 kHz.

resampled data of 3 kHz. This is not surprising since they are the furthest
away from each other in terms of data properties. The weakened correlation
between 48 kHz and 3 kHz gives us an initial

Before moving on we must make a brief disclaimer about the correlations,
in particular we acknowledge there is a ceiling effect because many networks
achieve close to the maximum accuracy of 1.0, and, the training and testing
of neural networks is stochastic and so there may be some random noise
in the accuracy scores. There is a chance that these statistical quirks have
inflated or deflated the correlations, and so we do not report p-values which
might be biased by these effects. Instead, we view the results as indicative.
The results give an indication that hyperparameter settings that are stronger
on one version of the data are more likely to be stronger when also used on
a resampled version of the data, but room is also left for differences between
sampling rates to emerge.

We take a closer look at the kernel size hyperparameter in particular since
we want to know if the kernel size needs to change when the sampling rate is
altered. The box plots in Figure 8 let us see more clearly which specific kernel
sizes are best and not only how important the hyperparameter is overall.

49

16

32

64

128

256

Ke
rn

el
 si

ze

Sampling rate = 48 kHz

16

32

64

128

256

Ke
rn

el
 si

ze

Sampling rate = 24 kHz

16

32

64

128

256

Ke
rn

el
 si

ze

Sampling rate = 12 kHz

16

32

64

128

256

Ke
rn

el
 si

ze

Sampling rate = 6 kHz

0.2 0.4 0.6 0.8 1.0
Test accuracy

16

32

64

128

256

Ke
rn

el
 si

ze

Sampling rate = 3 kHz

Figure 8: Accuracy scores for different kernel sizes in the first convolutional layer, as tested
on different resampling conditions for data originally sampled at 48 kHz.

50

These plots confirm that larger kernels perform better, with 128 or 256 being
the best even when resampling from 48 kHz to 3 kHz. Resampling condenses
the data and makes the inputs shorter and one might expect smaller kernels
to become more effective as a result of increased resampling. The results
however show no such trend. When looking at the box plots we also observe
that the task becomes more difficult as the data is resampled further. Either
the loss of information that comes with compression or the impact of reducing
the length of inputs could explain the downwards trajectory. Considering the
results in Figure 8, resampling to 24 kHz at least seems to have no negative
impact and so it could be unnecessary and wasteful to record at 48 kHz
when a lower sampling frequency is equally good. Further research would be
needed to establish this more firmly.

Kernel size layer 1 Filters layer 1 Filters layers 3-5
Hyperparameter

48
 k

Hz
24

 k
Hz

12
 k

Hz
6

kH
z

3
kH

z
Co

nd
iti

on

0.12 0.29 0.59

0.46 0.0088 0.53

0.072 0.15 0.77

0.085 0.083 0.83

0.1 0.00092 0.9

Shapley normalised per row

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 9: Feature importance after resampling to different rates, starting from 48 kHz.
Each row is normalised to show the relative importance of the hyperparameters.

In the next piece of our analysis we look at feature importance. This
shows us the impact of resampling on the other two most important hyper-
parameters alongside kernel size in the first layer. We interpret importance
by saying that if a hyperparameter is important then it determines whether a
neural network is accurate or not. If a hyperparameter is important and you

51

know its value, then you can predict the accuracy of the network. We arrive
at numeric importance scores by looking at the contribution (Shapley value)
of each hyperparameter to the successful predictions of accuracy of a multi-
layer perceptron. Figure 9 shows the Shapley values after normalising each
row to add up to 1.0. Naturally, higher values indicate more importance.

No matter the degree of resampling, the number of filters in layers 3-
5 is the most important. Interestingly, this hyperparameter is increasingly
dominant as the resampling gets more extreme. With no resampling or with
resampling to 24 kHz, the other hyperparameters constitute almost half of
the Shapley values. There is no obvious pattern to the kernel size, and
the much higher importance when resampling to 24 kHz is an unexplained
outlier. In any case, the kernel size did not keep on becoming more important
as a result of escalating resampling. Instead, the clearest conclusion is that
the filters in the later layers become more important when resampling is
greater. If we consider that the first layer is often used to process raw, noisy
signals then the declining importance of this layer might reflect the fact
that more resampled data is already more processed before it reaches the
neural network as an input. Alternatively, networks’ overall lower accuracies
on highly resampled data (shown in Figure 8) present the possibility that
resampling deletes patterns in the signal, hence the first layer is important
when processing mildly resampled data since it allows networks to pick up
on patterns useful for successfully classifying vibrations.

Another way to consider how important different hyperparameters are is
to ask how much the accuracy scores change when the hyperparameter is
changed. The d-dimensional earth mover’s distance (EMD) quantifies just
this. Figure 10 shows how many times larger the observed EMD is than
a surrogate baseline. Firstly we see that compared to baseline values, the
number of filters in the first layer has little impact. The number of filters in
layers 3-5 however are much more important no matter what resampling has
been applied. The size of the filter in the first layer is interesting because
it seems important with no resampling or little resampling, but becomes
unimportant when resampling to 12 kHz or less.

4.2.4. Filtering

In this section, instead of resampling we look at filtering the data. Fil-
tering modifies the information that is included in the data such that certain
frequencies are removed, whilst holding constant the sampling rate and the
time series length. This gives us some companion results to the resampling

52

Kernel size layer 1 Filters layer 1 Filters layers 3-5
Hyperparameter

48
 k

Hz
24

 k
Hz

12
 k

Hz
6

kH
z

3
kH

z
Co

nd
iti

on
2 1.1 2.7

2.1 1.1 2.3

1.1 1.3 2.7

1.3 1.3 2.8

1.1 1.1 3.1

Wasserstein over baseline

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Figure 10: How much the accuracy scores change as a result of tweaking a hyperparameter,
when processing data with different levels of resampling, starting from 48 kHz. Each cell is
normalised to show its value relative to surrogate data (see explanation in Section 3.3.6).

results we just showed. The filtered data isolates the impact of the content of
the signals whereas the previous resampling also made the sequences shorter
and more condensed.

When processing data sampled at 48 kHz we have nine filtering conditions:
low-pass with a threshold of 12 kHz, 6 kHz, 3 kHz, 1.5 kHz, 750 Hz, 375 Hz,
187 Hz, 93 Hz and 46 Hz. These can be compared side by side. We use
the methods described earlier, namely employing Shapley values and the d-
dimensional earth mover’s scores, to investigate the impact of filtering. It
had been suggested that a wide kernel is beneficial primarily because it filters
out high-frequency noise. The filtering experiments make it possible to verify
whether this really is the benefit granted by a wide kernel. Here, we include
the results obtained when filtering CWRU data, applying different thresholds
to decide how many frequencies to filter out.

Correlations between the different conditions appear in Figure 11. We see
that many levels of filtering, especially the weakest forms that only remove
the highest frequencies, give correlations in the range 0.5 to 0.8. These quite
high correlations imply that moderate filtering did not have a large impact

53

12
 k

Hz

6
kH

z

3
kH

z

15
00

 H
z

75
0

Hz

37
5

Hz

18
7

Hz

93
 H

z

46
 H

z

12 kHz

6 kHz

3 kHz

1500 Hz

750 Hz

375 Hz

187 Hz

93 Hz

46 Hz

0.79

0.72 0.73

0.63 0.63 0.63

0.71 0.66 0.79 0.62

0.54 0.57 0.62 0.53 0.64

0.53 0.48 0.57 0.53 0.62 0.69

-0.062 -0.027 0.11 0.11 0.15 0.23 0.29

0.082 0.084 0.21 0.13 0.23 0.3 0.35 0.5
0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Correlation between filtering conditions with 48 kHz CWRU data.

on how to set the hyperparameters. Filtering at a threshold lower than 187
Hz however causes a sudden drop in correlations. The most extreme forms
of filtering evidently do affect which hyperparameter settings work well. We
observe that the average accuracy is much lower when filtering at 46 or 93
Hz (the average accuracy was 0.29 in both cases) than when filtering at 3000
Hz or above (the averages ranged from 0.95 to 0.97), and there might simply
be no distinction between good and bad hyperparameter settings when using
extreme filtering. If there are no good and bad hyperparameter settings then
the results will be more influenced by noise and will correlate less, which is
one possible explanation for the relatively low correlations seen. In summary,
hyperparameters generalise fairly well and so the same settings do well on
multiple levels of filtering, except when the strongest filtering is applied.
Filtering changed the data properties but did not completely redefine which
settings are good or bad.

In order to make a deeper dive into the kernel size in the first layer we
can plot the accuracy scores visually for each kernel size. Figure 12 shows
the spread of accuracy scores obtained when using different lengths of kernel
and when processing data with different levels of filtering. If the filtering

54

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 12 kHz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 6 kHz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 3 kHz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 1500 Hz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 750 Hz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 375 Hz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 187 Hz

16
32
64

128
256Ke

rn
el

 si
ze

Filter threshold = 93 Hz

0.2 0.4 0.6 0.8 1.0
Test accuracy

16
32
64

128
256Ke
rn

el
 si

ze

Filter threshold = 46 Hz

Figure 12: Accuracy when using different kernel sizes in the first layer, as applied to
different filtering conditions when using data recorded at 48 kHz.

55

Kernel size layer 1 Filters layer 1 Filters layers 3-5
Hyperparameter

46 Hz

93 Hz

187 Hz

375 Hz

750 Hz

1500 Hz

3 kHz

6 kHz

12 kHz

Co
nd

iti
on

0.0054 0.12 0.88

0.059 0.17 0.77

0.53 0.038 0.44

0.54 0.014 0.44

0.46 0.044 0.5

0.69 0.31 0.0061

0.12 0.16 0.72

0.25 0.18 0.58

0.58 0.18 0.24

Shapley normalised per row

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 13: Feature importance after filtering 48 kHz CWRU data at different cutoff thresh-
olds. Each row is normalised to show the relative importance of the hyperparameters.

is anything milder than 93 Hz we see that a larger kernel performs better.
The value of a wide kernel does not relate to high-frequency noise as was
suspected because any such noise would be removed by the filters. It seems
that the benefit of a wide kernel must be explained in some other way.

We derive Shapley values that represent how much each hyperparameter
helps when predicting how accurate a network will be. These importance
values are large when a hyperparameter really tells us something about how
well a network will perform. Figure 13 shows Shapley values derived from
networks trained to classify faults from vibration data with different levels of
filtering. Both the size of the first filters and the number of filters in the later
layers are important. Note that the balance of importance between these two
hyperparameters changes as filtering is increasingly applied but it changes
without any obvious pattern.

The earth mover’s distance (EMD) also paints a picture of how important
different hyperparameters are. We show the EMD for our hyperparameters
in Figure 14. This again confirms that the kernel size in the first layer and
the number of filters in layers 3-5 are both important hyperparameters. The

56

Kernel size layer 1 Filters layer 1 Filters layers 3-5
Hyperparameter

46 Hz

93 Hz

187 Hz

375 Hz

750 Hz

1500 Hz

3 kHz

6 kHz

12 kHz

Co
nd

iti
on

1.1 1.1 2.1

1.4 1.5 1.9

2.2 1.2 1.9

2.1 0.95 2.5

1.9 1 2.3

2.4 1.4 1.3

1.8 0.82 2.7

2.2 0.99 1.9

2.2 1 1.4

Wasserstein over baseline

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Figure 14: How much the accuracy scores change as a result of tweaking a hyperparameter,
when processing 48 kHz CWRU data that was filtered at different cutoff thresholds. Each
cell is normalised to show its value relative to surrogate data (see explanation in Section
3.3.6).

number of filters seems to become slightly more important when the filtering
is increased.

5. Discussion: Hyperparameters of a Wide-Kernel CNN Explained

Having thoroughly analysed the hyperparameter space for our wide-kernel
CNN we can now lay down some guidelines. We researched architectural
hyperparameters such as the size of convolutional kernels in different layers
and now we are ready to give the following advice. First, we note that
some hyperparameters are less important and it should be possible to set
these low in order to save computation. The kernel size and number of
convolutional filters in the first layer are more important however and so we
took additional care when analysing these. The number of filters in layers
3-5 is also important. We observe that larger kernels do better in the first
layer and so suggest using a kernel of size 256 but we found that this depends
on the dataset. Testing out different numbers of filters in layers 3-5 is a good

57

way to improve performance although we see that a default value of 32 does
well on multiple datasets.

Considering all of the above, we are then able to give fairly specific guid-
ance on how to set the hyperparameters of the network. Going through the
hyperparameters in turn:

• First layer kernel size: As a first attempt, it seems best to set this
high and therefore use a wide kernel. Of all options we found that
the highest value of 256 did the best usually. However, we also found
that this hyperparameter is highly sensitive to differences between the
datasets and so it should be carefully tuned if the initial accuracy of
the network seems to leave room for improvement.

• Stride in the first layer: This does not greatly impact the accuracy
so it may as well be set to the most computationally efficient value,
which is actually the highest value since a long stride allows the network
to skim faster over the inputs. In our experiments, that was 32.

• Number of filters in the first layer: We considered 8, 16, 32, 64,
128 and 256 as options and found that 16 and 32 are the best. We
recommend 16 since it balances accuracy and computational efficiency.
Although our results suggest it will not be necessary in most cases,
since this is an important hyperparameter the user might decide to
search for the optimal value amongst all the options.

• Second layer kernel size: This hyperparameter does not greatly im-
pact the accuracy so it may as well be set to the most computationally
efficient value. In our experiments, that was 3.

• Number of filters in the second layer: This hyperparameter also
does not greatly impact the accuracy and can be set to the most com-
putationally efficient value, which was 8 in our experiments.

• Kernel size in layers 3 to 5: This is another hyperparameter that
does not greatly impact the accuracy and may as well be set to the
most computationally efficient value. In our experiments, that was 3.

• Number of filters in the second layer: We considered 8, 16, 32, 64,
128 and 256 as options and found that 16 and 32 are the best. We rec-
ommend 32 as a reasonable default value. Although our results suggest

58

that it will not be necessary in most cases, since this is an important
hyperparameter the user might choose to search for the optimal value
amongst all the options.

Our experiments suggest that if we use the default values recommended
above, on average we would obtain an accuracy better than 75% of alterna-
tives across the 7 datasets. Additionally tuning the kernel size in the first
layer gives an accuracy that is better than 82% of alternative hyperparameter
combinations, on average across all the datasets. It is worth noting also that
increasing the number of filters in the first two layers to 32 gives a further
boost so that the accuracy is higher than about 88% of alternative hyperpa-
rameter combinations. The number of filters in the first two layers seems to
have increased importance in the specific context of a network tuned accord-
ing to the advice we give above. In this context, the accuracy is better when
using 32 and 32 instead of 16 and 8 filters in the first and second layers,
providing another option for users to consider if they need to boost accu-
racy. Overall, putting our advice into practice appears to give competitive
accuracy scores across multiple datasets.

6. Conclusion

In our introduction, we argued that while there are many successful neu-
ral network architectures for bearing fault detection, achieving good perfor-
mance in real-world applications depends on how well the hyperparameters
are tuned for a specific dataset. Benchmark datasets are useful for compar-
ing algorithms but they might not reflect the real-world conditions where
the algorithm will be applied, leading to a situation where an algorithm per-
forms well on a benchmark dataset but poorly on a new dataset. Even small
changes to hyperparameters can significantly impact the network’s perfor-
mance and yet there is often no clear guidance on how to choose the best
hyperparameters in order to maximise accuracy on new data. We went as far
as to say that explaining how hyperparameters affect accuracy on different
datasets is more important than focusing on finding ever-newer neural net-
work architectures and we overall argued for a shift in focus from developing
new neural network architectures to explaining how to optimise existing ones
for real-world applications through better hyperparameter tuning.

Past work showed that the wide-kernel architecture we focus on in this
paper is sensitive to changes in the hyperparameters. Our new explorations

59

of a transformer-based architecture and an LSTM architecture for fault de-
tection showed that different kinds of neural network are greatly impacted by
the values of the hyperparameters, with the accuracy dropping dramatically
when the hyperparameters are set poorly. This serves to emphasise the value
of knowing how to set the hyperparameters soundly.

Shifting our focus back to the wide-kernel CNN architecture, a lot of our
research focused on the width of the kernel in the first layer. The kernel size
is an important hyperparameter and a ‘wide’ kernel in particular has been
pointed out in past literature as especially useful for processing raw sensor
data. Making the first layer kernel too small causes a drop to 25% average ac-
curacy on CWRU data from 69% when the kernel is large. We had expected
the value of a wide kernel to be related to either the sampling rate of the
data or the presence of high-frequency noise and yet our experiments showed
that neither the sampling rate nor noise is responsible for wide-kernel CNNs
performing better than narrow kernel networks. Instead, we are left spec-
ulating about what really causes wide kernels to perform better on CWRU
data. One possibility is that the wide kernel provides some sort of generic
architectural advantage such as regularisation that speeds up training and
makes it easier for the training process to converge to a good solution. How-
ever, if the advantage of a wide kernel is in some way generic then it is not
clear why the phenomenon fails to generalise to SEU data, where a larger
kernel performs worse. There could be data properties driving the choice of
kernel size which we are simply unaware of.

After considerable exploration our investigations led to some concrete
advice on how to tune the hyperparameters: most of them can be set low in
order to save computation, whilst the preferred number of filters in layer 1 and
in layers 3-5 seems to be 16 or 32. The kernel size in the first layer is the most
sensitive to differences between datasets, and it needs to be tuned carefully.
Correctly tuned hyperparameters give the final touch to a wide-kernel CNN
that performs well on multiple datasets yet also is small and lightweight,
making it easier to train and potentially deploy in embedded systems. If
performance is lower than expected when generalising to new data then the
kernel size in the first layer and the number of filters in layers 3-5 have the
highest feature importance and should be tuned first. If the network is still
poor-performing on new data then we also suggest an order for tuning the
most important hyperparameters individually (Kernel size layer 1, Filters
layer 1 and then Filters layers 3-5). Tuning the hyperparameters one-at-a-

60

time saves a huge amount of computation compared to a full grid search and
could be more realistic for practitioners to do.

We of course acknowledge there are limitations to our work. Limitations
include the fact that we have to restrict our advice only to people analysing
raw vibration signals sampled at a fairly high sampling rate. Our insights
do not apply to other data, such as data unrelated to (potentially faulty) ro-
tating machines. In other words, our insights are domain-specific. Another
disclaimer that should be attached to our work is that although we tried
to incorporate as much data as possible, there are only a few benchmark
datasets in existence. Even when using seven datasets, we do not have a
statistically robust sample, so our conclusions could be influenced by sam-
pling error. It is important to check the results on new data. The accuracy
scores reached by neural networks are strongly influenced by how they were
trained and so it is also important to contemplate the details of our training
approach. One consideration is that we restricted the number of epochs to
100 when training networks and applied early stopping if a network did not
improve in validation loss for more than 10 successive epochs. The training
procedure must end at some point and so it is necessary to have rules for
when to stop in this manner. However, a possible consequence of our stop-
ping rules is that we do not know if networks would have improved further
had they been given more time to train. There is a chance that some net-
works which seem to perform poorly are actually effective but just relatively
slow to train. At the same time, there is no reason to assume this is true and
the stopping rules might have had no impact on the results. The limitation
is that we cannot be completely certain.

Turning to look back at our research as a whole, we see many smaller
analyses combining to give a larger picture of the hyperparameters for one
specific wide-kernel CNN architecture and also how to set them. We see
the hyperparameters impacting how accurate networks are on seven differ-
ent benchmark datasets. Some hyperparameters can be kept at the same
value when shifting between datasets, but the kernel size of the first layer
(the so-called ‘wide kernel’ itself) needs to change in response to dataset
properties. Multiple experiments with resampling and filtering sought but
were ultimately unable to find the data property driving the correct choice
of kernel size. Sitting next to these pieces of analysis, we also included an
exploration of how the most important hyperparameters interact and which
order to tune them in. Framing the entire analysis is our discussion of the im-
portance of understanding hyperparameters when applying neural networks

61

for bearing fault classification. Our main focus was to explain how to set
the hyperparameters of a wide-kernel CNN architecture, and we concisely
summarised the guidance we can give in that regard, following an extensive
data-driven exploration.

CRediT Authorship Contribution Statement

Dan Hudson: Conceptualization, Investigation, Methodology, Project
administration, Resources, Software, Validation, Visualization, Writing –
original draft, Writing – review and editing
Jurgen van den Hoogen: Conceptualization, Data curation, Investiga-
tion, Methodology, Project administration, Resources, Software, Validation,
Visualization, Writing – original draft, Writing – review and editing
Martin Atzmueller: Conceptualization, Methodology, Project administra-
tion, Supervision, Validation, Writing – review and editing

Funding

This work was supported by funds of zukunft.niedersachsen, Volkswagen
Foundation (project “HybrInt – Hybrid Intelligence through Interpretable
Artificial Intelligence in Machine Perception and Interaction”).

Declaration of Competing Interest

The authors declare they have no financial and personal relationships with
other people or organizations to disclose that could inappropriately influence
or bias their work.

Data Availability

The data used in this research (results from the hyperparameter searches)
are available on request.

References

[1] D. Hudson, J. van den Hoogen, S. Bloemheuvel, M. Atzmueller, Stay
tuned! analysing hyperparameters of a wide-kernel architecture for
industrial faults, in: 2024 IEEE Conference on Artificial Intelligence
(CAI), 2024, pp. 1350–1356.

62

[2] J. van den Hoogen, D. Hudson, S. Bloemheuvel, M. Atzmueller, Hy-
perparameter analysis of wide-kernel cnn architectures in industrial
fault detection – an exploratory study, Int. J. Data Sci. Anal. (2023).
doi:10.1007/s41060-023-00440-6.

[3] W. Wahlster, From industry 1.0 to industry 4.0: towards the 4th indus-
trial revolution (forum business meets research), Proceedings of the 3rd
European Summit on Future Internet Towards. Future Internet Inter-
national Collaborations. Espoo, Finland: Tivit (2012).

[4] H. Kagermann, W. Wahlster, Ten years of industrie 4.0, Sci 4 (3) (2022)
26.

[5] T. Zonta, C. A. Da Costa, R. da Rosa Righi, M. J. de Lima, E. S.
da Trindade, G. P. Li, Predictive maintenance in the industry 4.0: A
systematic literature review, Computers & Industrial Engineering 150
(2020) 106889.

[6] S. Vollert, M. Atzmueller, A. Theissler, Interpretable Machine Learning:
A Brief Survey From the Predictive Maintenance Perspective, in: Proc.
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA 2021), IEEE, 2021, pp. 01–08.

[7] D. Neupane, M. R. Bouadjenek, R. Dazeley, S. Aryal, Data-driven
machinery fault detection: A comprehensive review, arXiv preprint
arXiv:2405.18843 (2024).

[8] W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, A deep convolutional
neural network with new training methods for bearing fault diagnosis
under noisy environment and different working load, Mechanical systems
and signal processing 100 (2018) 439–453.

[9] L. Eren, Bearing fault detection by one-dimensional convolutional neu-
ral networks, Mathematical Problems in Engineering 2017 (1) (2017)
8617315.

[10] X. Guo, L. Chen, C. Shen, Hierarchical adaptive deep convolution neural
network and its application to bearing fault diagnosis, Measurement 93
(2016) 490–502.

63

https://doi.org/10.1007/s41060-023-00440-6

[11] T. Han, R. Ma, J. Zheng, Combination bidirectional long short-term
memory and capsule network for rotating machinery fault diagnosis,
Measurement 176 (2021) 109208.

[12] J. van den Hoogen, S. Bloemheuvel, M. Atzmueller, An improved wide-
kernel cnn for classifying multivariate signals in fault diagnosis, in: 2020
International Conference on Data Mining Workshops (ICDMW), 2020,
pp. 275–283. doi:10.1109/ICDMW51313.2020.00046.

[13] J. van den Hoogen, S. Bloemheuvel, M. Atzmueller, Classifying mul-
tivariate signals in rolling bearing fault detection using adaptive
wide-kernel cnns, Applied Sciences 11 (23) (2021). doi:10.3390/

app112311429.
URL https://www.mdpi.com/2076-3417/11/23/11429

[14] D. W. Kim, E. S. Lee, W. K. Jang, B. H. Kim, Y. H. Seo, Effect of
data preprocessing methods and hyperparameters on accuracy of ball
bearing fault detection based on deep learning, Advances in Mechanical
Engineering 14 (2) (2022) 16878132221078494.

[15] W. Zhang, G. Peng, C. Li, Y. Chen, Z. Zhang, A new deep learning
model for fault diagnosis with good anti-noise and domain adaptation
ability on raw vibration signals, Sensors 17 (2) (2017) 425.

[16] S. J. Lacey, An Overview of Bearing Vibration Analysis, Brochure
(2008).
URL https://www.schaeffler.com/remotemedien/media/_shared_

media/08_media_library/01_publications/schaeffler_2/

technicalpaper_1/download_1/vibration_analysis_en_en.pdf

[17] V. Pandhare, J. Singh, J. Lee, Convolutional neural network based
rolling-element bearing fault diagnosis for naturally occurring and pro-
gressing defects using time-frequency domain features, in: 2019 Prog-
nostics and System Health Management Conference (PHM-Paris), 2019,
pp. 320–326. doi:10.1109/PHM-Paris.2019.00061.

[18] W. Saeed, C. Omlin, Explainable ai (xai): A systematic
meta-survey of current challenges and future opportunities,
Knowledge-Based Systems 263 (2023) 110273. doi:https:

//doi.org/10.1016/j.knosys.2023.110273.

64

https://doi.org/10.1109/ICDMW51313.2020.00046
https://www.mdpi.com/2076-3417/11/23/11429
https://www.mdpi.com/2076-3417/11/23/11429
https://www.mdpi.com/2076-3417/11/23/11429
https://doi.org/10.3390/app112311429
https://doi.org/10.3390/app112311429
https://www.mdpi.com/2076-3417/11/23/11429
https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/vibration_analysis_en_en.pdf
https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/vibration_analysis_en_en.pdf
https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/vibration_analysis_en_en.pdf
https://www.schaeffler.com/remotemedien/media/_shared_media/08_media_library/01_publications/schaeffler_2/technicalpaper_1/download_1/vibration_analysis_en_en.pdf
https://doi.org/10.1109/PHM-Paris.2019.00061
https://www.sciencedirect.com/science/article/pii/S0950705123000230
https://www.sciencedirect.com/science/article/pii/S0950705123000230
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110273
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110273

URL https://www.sciencedirect.com/science/article/pii/

S0950705123000230

[19] M. R. W. Group, et al., Report of large motor reliability survey of
industrial and commercial installations, part i, IEEE Trans. Ind Appl.
1 (4) (1985) 865–872.

[20] S. Yin, X. Li, H. Gao, O. Kaynak, Data-based techniques focused on
modern industry: An overview, IEEE Trans. Ind. Electron. 62 (1) (2014)
657–667.

[21] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R. X. Gao, Deep learning
and its applications to machine health monitoring, Mechanical Systems
and Signal Processing 115 (2019) 213–237.

[22] D. Pandya, S. Upadhyay, S. P. Harsha, Fault diagnosis of rolling element
bearing with intrinsic mode function of acoustic emission data using apf-
knn, Expert Systems with Applications 40 (10) (2013) 4137–4145.

[23] Z. Zhou, C. Wen, C. Yang, Fault detection using random projections
and k-nearest neighbor rule for semiconductor manufacturing processes,
IEEE Transactions on Semiconductor Manufacturing 28 (1) (2015) 70–
79. doi:10.1109/TSM.2014.2374339.

[24] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, J. He, Fault diagnosis
of a rolling bearing using wavelet packet denoising and random forests,
IEEE Sensors Journal 17 (17) (2017) 5581–5588.

[25] P. Santos, L. F. Villa, A. Reñones, A. Bustillo, J. Maudes, An svm-based
solution for fault detection in wind turbines, Sensors 15 (3) (2015) 5627–
5648.

[26] D. You, X. Gao, S. Katayama, Wpd-pca-based laser welding process
monitoring and defects diagnosis by using fnn and svm, IEEE Transac-
tions on Industrial Electronics 62 (1) (2014) 628–636.

[27] J. Huang, X. Hu, F. Yang, Support vector machine with genetic al-
gorithm for machinery fault diagnosis of high voltage circuit breaker,
Measurement 44 (6) (2011) 1018–1027.

65

https://www.sciencedirect.com/science/article/pii/S0950705123000230
https://www.sciencedirect.com/science/article/pii/S0950705123000230
https://doi.org/10.1109/TSM.2014.2374339

[28] P. Konar, P. Chattopadhyay, Bearing fault detection of induction motor
using wavelet and support vector machines (svms), Applied Soft Com-
puting 11 (6) (2011) 4203–4211.

[29] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, G. Shroff,
Lstm-based encoder-decoder for multi-sensor anomaly detection, arXiv
preprint arXiv:1607.00148 (2016).

[30] P. Yao, S. Yang, P. Li, Fault diagnosis based on rsenet-lstm for in-
dustrial process, in: 2021 IEEE 5th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), Vol. 5, 2021,
pp. 728–732. doi:10.1109/IAEAC50856.2021.9391030.

[31] T. Ince, S. Kiranyaz, L. Eren, M. Askar, M. Gabbouj, Real-time motor
fault detection by 1-d convolutional neural networks, IEEE Trans. Ind.
Electron. 63 (11) (2016) 7067–7075.

[32] W. Zhang, G. Peng, C. Li, Rolling element bearings fault intelligent di-
agnosis based on convolutional neural networks using raw sensing signal,
in: Advances in Intelligent Information Hiding and Multimedia Signal
Processing, Springer, 2017, pp. 77–84.

[33] J. van den Hoogen, S. Bloemheuvel, M. Atzmueller, An improved wide-
kernel cnn for classifying multivariate signals in fault diagnosis, in: 2020
International Conference on Data Mining Workshops (ICDMW), 2020,
pp. 275–283. doi:10.1109/ICDMW51313.2020.00046.

[34] J. van den Hoogen, S. Bloemheuvel, M. Atzmueller, Classifying mul-
tivariate signals in rolling bearing fault detection using adaptive
wide-kernel cnns, Applied Sciences 11 (23) (2021). doi:10.3390/

app112311429.
URL https://www.mdpi.com/2076-3417/11/23/11429

[35] F. Rosenblatt, The perceptron: a probabilistic model for information
storage and organization in the brain., Psychological review 65 (6) (1958)
386.

[36] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Advances in neural information
processing systems, 2012, pp. 1097–1105.

66

https://doi.org/10.1109/IAEAC50856.2021.9391030
https://doi.org/10.1109/ICDMW51313.2020.00046
https://www.mdpi.com/2076-3417/11/23/11429
https://www.mdpi.com/2076-3417/11/23/11429
https://www.mdpi.com/2076-3417/11/23/11429
https://doi.org/10.3390/app112311429
https://doi.org/10.3390/app112311429
https://www.mdpi.com/2076-3417/11/23/11429

[37] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-
scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[38] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech,
and time series, The handbook of brain theory and neural networks
3361 (10) (1995) 1995.

[39] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, et al., Deep
speech: Scaling up end-to-end speech recognition, arXiv preprint
arXiv:1412.5567 (2014).

[40] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations
by back-propagating errors, nature 323 (6088) (1986) 533–536.

[41] M. P. Naeini, H. Taremian, H. B. Hashemi, Stock market value pre-
diction using neural networks, in: 2010 international conference on
computer information systems and industrial management applications
(CISIM), IEEE, 2010, pp. 132–136.

[42] K. Abhishek, M. Singh, S. Ghosh, A. Anand, Weather forecasting model
using artificial neural network, Procedia Technology 4 (2012) 311–318.

[43] A. Hajnayeb, A. Ghasemloonia, S. Khadem, M. Moradi, Application and
comparison of an ann-based feature selection method and the genetic
algorithm in gearbox fault diagnosis, Expert systems with Applications
38 (8) (2011) 10205–10209.

[44] Y. Liu, X. Yan, C.-a. Zhang, W. Liu, An ensemble convolutional neural
networks for bearing fault diagnosis using multi-sensor data, Sensors
19 (23) (2019). doi:10.3390/s19235300.
URL https://www.mdpi.com/1424-8220/19/23/5300

[45] J. Yang, M. N. Nguyen, P. P. San, X. Li, S. Krishnaswamy, Deep convo-
lutional neural networks on multichannel time series for human activity
recognition., in: Ijcai, Vol. 15, Buenos Aires, Argentina, 2015, pp. 3995–
4001.

[46] Y. Zheng, Q. Liu, E. Chen, Y. Ge, J. L. Zhao, Time series classifica-
tion using multi-channels deep convolutional neural networks, in: Inter-
national Conference on Web-Age Information Management, Springer,
2014, pp. 298–310.

67

https://www.mdpi.com/1424-8220/19/23/5300
https://www.mdpi.com/1424-8220/19/23/5300
https://doi.org/10.3390/s19235300
https://www.mdpi.com/1424-8220/19/23/5300

[47] A. Zhang, S. Li, Y. Cui, W. Yang, R. Dong, J. Hu, Limited data rolling
bearing fault diagnosis with few-shot learning, IEEE Access 7 (2019)
110895–110904.

[48] D. Zhao, T. Wang, F. Chu, Deep convolutional neural network based
planet bearing fault classification, Computers in Industry 107 (2019)
59–66.

[49] R. Chen, X. Huang, L. Yang, X. Xu, X. Zhang, Y. Zhang, Intelligent
fault diagnosis method of planetary gearboxes based on convolution neu-
ral network and discrete wavelet transform, Computers in Industry 106
(2019) 48–59.

[50] Z. Zhao, Y. Jiao, X. Zhang, A fault diagnosis method of rotor system
based on parallel convolutional neural network architecture with atten-
tion mechanism, Journal of Signal Processing Systems (2023) 1–13.

[51] R. Li, J. Wu, Y. Li, Y. Cheng, Periodnet: Noise-robust fault diagnosis
method under varying speed conditions, IEEE Transactions on Neural
Networks and Learning Systems (2023) 1–15doi:10.1109/TNNLS.2023.
3274290.

[52] S. Chen, J. Yu, S. Wang, One-dimensional convolutional auto-
encoder-based feature learning for fault diagnosis of multi-
variate processes, Journal of Process Control 87 (2020) 54–67.
doi:https://doi.org/10.1016/j.jprocont.2020.01.004.
URL https://www.sciencedirect.com/science/article/pii/

S0959152419300708

[53] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11) (1998)
2278–2324.

[54] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[55] C. Gulcehre, M. Moczulski, M. Denil, Y. Bengio, Noisy activation func-
tions, in: International conference on machine learning, PMLR, 2016,
pp. 3059–3068.

68

https://doi.org/10.1109/TNNLS.2023.3274290
https://doi.org/10.1109/TNNLS.2023.3274290
https://www.sciencedirect.com/science/article/pii/S0959152419300708
https://www.sciencedirect.com/science/article/pii/S0959152419300708
https://www.sciencedirect.com/science/article/pii/S0959152419300708
https://doi.org/https://doi.org/10.1016/j.jprocont.2020.01.004
https://www.sciencedirect.com/science/article/pii/S0959152419300708
https://www.sciencedirect.com/science/article/pii/S0959152419300708

[56] S. Kiranyaz, T. Ince, R. Hamila, M. Gabbouj, Convolutional neural
networks for patient-specific ecg classification, in: Proc. IEEE EMBC,
IEEE, 2015, pp. 2608–2611.

[57] A. F. Agarap, Deep learning using rectified linear units (relu) (2019).
arXiv:1803.08375.
URL https://arxiv.org/abs/1803.08375

[58] I. Priyadarshini, C. Cotton, A novel lstm–cnn–grid search-based deep
neural network for sentiment analysis, The Journal of Supercomputing
77 (12) (2021) 13911–13932.

[59] D. Jana, J. Patil, S. Herkal, S. Nagarajaiah, L. Duenas-Osorio, Cnn and
convolutional autoencoder (cae) based real-time sensor fault detection,
localization, and correction, Mechanical Systems and Signal Processing
169 (2022) 108723.

[60] S. Gupta, Deep learning based human activity recognition (har) using
wearable sensor data, International Journal of Information Management
Data Insights 1 (2) (2021) 100046.

[61] G. Kalouris, E. I. Zacharaki, V. Megalooikonomou, Improving cnn-based
activity recognition by data augmentation and transfer learning, in:
2019 IEEE 17th International Conference on Industrial Informatics (IN-
DIN), Vol. 1, IEEE, 2019, pp. 1387–1394.

[62] H. Yi, K.-H. N. Bui, An automated hyperparameter search-based deep
learning model for highway traffic prediction, IEEE Transactions on
Intelligent Transportation Systems 22 (9) (2020) 5486–5495.

[63] S. S. Mostafa, F. Mendonca, A. G. Ravelo-Garcia, G. G. Juliá-Serdá,
F. Morgado-Dias, Multi-objective hyperparameter optimization of con-
volutional neural network for obstructive sleep apnea detection, IEEE
Access 8 (2020) 129586–129599.

[64] R. Zatarain Cabada, H. Rodriguez Rangel, M. L. Barron Estrada, H. M.
Cardenas Lopez, Hyperparameter optimization in cnn for learning-
centered emotion recognition for intelligent tutoring systems, Soft Com-
puting 24 (10) (2020) 7593–7602.

69

https://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375

[65] X. Zhang, X. Chen, L. Yao, C. Ge, M. Dong, Deep neural network
hyperparameter optimization with orthogonal array tuning, in: Neural
Information Processing: 26th International Conference, ICONIP 2019,
Sydney, NSW, Australia, December 12–15, 2019, Proceedings, Part IV
26, Springer, 2019, pp. 287–295.

[66] Cwru dataset; case western reserve university bearing data center, avail-
able: https://csegroups.case.edu/ bearingdatacenter/home.

[67] D. Neupane, J. Seok, Bearing fault detection and diagnosis using case
western reserve university dataset with deep learning approaches: A
review, IEEE Access 8 (2020) 93155–93178.

[68] X. Liu, H. Huang, J. Xiang, A personalized diagnosis method to detect
faults in a bearing based on acceleration sensors and an fem simulation
driving support vector machine, Sensors 20 (2) (2020) 420.

[69] F. Piltan, J.-M. Kim, Svm-based hybrid robust pio fault diagnosis for
bearing, in: International Conference on Intelligent and Fuzzy Systems,
Springer, 2020, pp. 858–866.

[70] C. Lessmeier, J. K. Kimotho, D. Zimmer, W. Sextro, Condition monitor-
ing of bearing damage in electromechanical drive systems by using motor
current signals of electric motors: A benchmark data set for data-driven
classification, Proc. PHM Society European Conference 3 (1) (2016).

[71] H. Malik, Y. Pandya, A. Parashar, R. Sharma, Feature extraction us-
ing EMD and classifier through artificial neural networks for gearbox
fault diagnosis, in: Applications of Artificial Intelligence Techniques in
Engineering: SIGMA 2018, Volume 2, Springer, 2019, pp. 309–317.

[72] Y. Pandya, Gearbox fault diagnosis data (06 2018).
URL https://data.openei.org/submissions/623

[73] Society For Machinery Failure Prevention Technology, Fault Data Sets,
https://mfpt.org/fault-data-sets/, accessed: July 2023 (Online).

[74] B. Wang, Y. Lei, N. Li, N. Li, A hybrid prognostics approach for estimat-
ing remaining useful life of rolling element bearings, IEEE Transactions
on Reliability (2018) 1–12doi:10.1109/TR.2018.2882682.

70

https://data.openei.org/submissions/623
https://data.openei.org/submissions/623
https://mfpt.org/fault-data-sets/
https://doi.org/10.1109/TR.2018.2882682

[75] P. Cao, S. Zhang, J. Tang, Gear Fault Data (4 2018). doi:10.6084/

m9.figshare.6127874.v1.
URL https://figshare.com/articles/dataset/Gear_Fault_Data/

6127874

[76] P. Cao, S. Zhang, J. Tang, Preprocessing-free gear fault diagnosis using
small datasets with deep convolutional neural network-based transfer
learning, Ieee Access 6 (2018) 26241–26253.

[77] S. U. (SEU), Gearbox mechanical datasets, https://github.com/

cathysiyu/Mechanical-datasets, accessed: July 2023 (Online).

[78] X. Chen, B. Zhang, D. Gao, Bearing fault diagnosis base on multi-scale
cnn and lstm model, Journal of Intelligent Manufacturing 32 (4) (2021)
971–987.

[79] S. Hochreiter, Long short-term memory, Neural Computation MIT-
Press (1997).

[80] A. Vaswani, Attention is all you need, Advances in Neural Information
Processing Systems (2017).

[81] R. Qiang, X. Zhao, An intelligent diagnosis method for rolling bearings
based on ghost module and adaptive weighting module, Research Square
Preprint https://doi.org/10.21203/rs.3.rs-2627489/v1 (2023).

[82] A. Zhou, A. B. Farimani, Faultformer: Pretraining transformers for
adaptable bearing fault classification, IEEE Access (2024).

[83] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 (2014).

[84] L. S. Shapley, A value for n-person games, Contribution to the Theory
of Games 2 (1953).

[85] A. Brandsæter, I. K. Glad, Shapley values for cluster importance, Data
Mining and Knowledge Discovery (2022) 1–32.

[86] J. Kline, Properties of the d-dimensional earth mover’s problem, Dis-
crete Appl. Math. 265 (2019) 128–141. doi:https://doi.org/10.

1016/j.dam.2019.02.042.

71

https://figshare.com/articles/dataset/Gear_Fault_Data/6127874
https://doi.org/10.6084/m9.figshare.6127874.v1
https://doi.org/10.6084/m9.figshare.6127874.v1
https://figshare.com/articles/dataset/Gear_Fault_Data/6127874
https://figshare.com/articles/dataset/Gear_Fault_Data/6127874
https://github.com/cathysiyu/Mechanical-datasets
https://github.com/cathysiyu/Mechanical-datasets
https://doi.org/https://doi.org/10.1016/j.dam.2019.02.042
https://doi.org/https://doi.org/10.1016/j.dam.2019.02.042

	Introduction
	Finding Faults and Beating Benchmarks
	Limits of What the Benchmarks Can Tell Us
	The Open Question of Hyperparameters
	Shaping the Neural Network
	Do Dataset Properties Determine Performance?
	Explaining Hyperparameters
	The Paper Ahead

	Background & Related Work
	Fault Detection
	Deep Learning
	Convolutional Neural Networks

	Hyperparameter Search in Deep Learning
	Summary of Own Previous Work

	Method
	Datasets
	CWRU Bearing Dataset
	Paderborn Dataset
	Gearbox
	MFPT Dataset
	XJTU
	UoC
	SEU

	Method Pt. 1 – Experiments on Alternatives to Wide-Kernel CNN Architecture
	Long Short Term Memory (LSTM) Architecture
	Transformer Architecture
	Hyperparameter Search on Other Architectures
	Analysis Techniques

	Method Pt. 2 – Focusing on the Wide-Kernel CNN Architecture
	Overview of Architecture
	Hyperparameter Search
	Analysis Techniques on Seven Benchmark Datasets
	Resampling
	Filtering
	Analysis Techniques on Resampled and Filtered Data

	Summary of Datasets Used

	Results
	Results Pt. 1 – Experiments on Multiple Architectures
	Long Short Term Memory (LSTM)
	Transformer

	Results Pt. 2 – Focusing on the Wide-Kernel CNN Architecture
	Summarising Grid Search Results
	Influence of Important Hyperparameters on One Another
	Resampling
	Filtering

	Discussion: Hyperparameters of a Wide-Kernel CNN Explained
	Conclusion

