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We analyze gravitaxis of a Brownian circle swimmer by deriving and characterizing analytically the
experimentally measurable intermediate scattering function (ISF). To solve the associated Fokker-
Planck equation we use a spectral-theory approach and find formal expressions in terms of eigen-
functions and eigenvalues of the overdamped-noisy-driven-pendulum problem. We further perform
a Taylor series of the ISF in the wavevector to read off the cumulants up to the fourth order. We
focus on the skewness and kurtosis analyzed for four observation directions in the 2D-plane. Vali-
dating our findings involves conducting Langevin-dynamics simulations and interpreting the results
using a harmonic approximation. The skewness and kurtosis are amplified as the orienting torque
approaches the intrinsic angular drift of the circle swimmer from above, highlighting deviations from
Gaussian behavior. Transforming the ISF to the comoving frame, again a measurable quantity, re-
veals gravitactic effects and diverse behaviors spanning from diffusive motion at low wavenumbers
to circular motion at intermediate and directed motion at higher wavenumbers.

I. INTRODUCTION

Microswimmers, microscopic objects capable of mov-
ing in liquid environments, have attracted considerable
interest because of their important role in nature, such
as in fertilization processes [1–3], or in diverse biomedi-
cal applications, for example, micro motors [4–7], imag-
ing [8, 9], microsurgery [10], targeted drug delivery [11–
13], and many more [14]. Of interest is their nontriv-
ial dynamics, stemming from their intrinsic state of be-
ing out of equilibrium because of the ongoing conver-
sion of energy into directed motion. Microswimmers can
be found in a variety of systems, both biological, such
as bacteria, sperm cells, and microorganisms, and arti-
ficially synthesized, including Janus particles, magnetic
microswimmers, and active colloids [15–18]. In particu-
lar, circle swimmers move in curved trajectories via inter-
actions with their physical shape, propulsion mechanism,
symmetry, or external interactions [19–22].

Taxis, in all its forms, embodies the ability of organ-
isms and particles to actively respond to external stim-
uli, for instance, this capability could enable microor-
ganisms to avoid sedimentation or adjust to the intensity
of the light they are exposed to. Their guided motions
can be influenced by external factors, such as chemical
gradients, light intensity, magnetic fields, fluid flows, or
gravity - referred to as gravitaxis. Negative gravitaxis,
which is the response to move oppositely to the gravi-
tational field has been observed for organisms, such as
Euglena gracilis [23], Paramecium [24] or asymmetric
self-propelled colloidal particles [22]. Theoretical model-
ing and experiments on these colloidal particles demon-
strated their alignment because of gravitational forces,
forming the foundation for our current model. In a pre-
vious study [25], two of the present authors used the
L-shaped gravitactic circle swimmer from Ref. [22] and
mapped it to an overdamped noisy driven pendulum.
This allowed computing analytically the variance and dif-

fusivity, which revealed a resonant diffusivity when the
orienting torque approaches the intrinsic angular drift
of the circle swimmer [25]. While the variance pro-
vides insight into transport properties ranging from di-
rected and circular motion to diffusive behavior, extract-
ing further information by computing higher moments
becomes increasingly more tedious. For the case of van-
ishing external force, higher-order moments and corre-
lation functions have been derived analytically using a
Laplace transform-based method applied to the Fokker-
Planck equation [26, 27].

The ISF encodes all moments in terms of derivatives
with respect to the wave vector, providing full spatio-
temporal information and has been computed analyti-
cally for an anisotropic active Brownian particle [28, 29]
and Brownian circle swimmer [26]. Furthermore, the ISF
is directly accessible via experiments, for example, dy-
namic light scattering [30], single particle tracking [29]
or differential dynamic microscopy (DDM) [31, 32].

In this work, we shall analytically derive the ISF for
the model of a circle swimmer subjected to gravity, as
described in Ref. [25] across various length and time
scales. We analyze the gravitactic effects by compar-
ing different strengths of the orienting torque relative to
the intrinsic angular drift. To validate our findings, we
will conduct Langevin-dynamics simulations and ratio-
nalize the results in terms of a harmonic approximation,
focusing on various regimes near the bifurcation point.
We solve the corresponding Fokker-Planck equation in
Fourier space by using an operator representation and
a spectral-theory approach. The analytical expressions
involve the eigenvalues and eigenfunctions of this opera-
tor, which can be computed numerically. Furthermore,
we derive analytically the skewness and kurtosis by time-
dependent perturbation theory. This method has previ-
ously demonstrated to be applicable in various contexts,
such as the anisotropic active Brownian particle [28] or
the anisotropic Brownian circle swimmer [26]. In our cur-
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FIG. 1. Tilted washboard potential for the angle ϑ and dif-
ferent torques γ above, exactly at, and below the classical
bifurcation. The harmonic approximation (HA) for the case
of γ/ω = 2 is shown in dashed lines. The inset is a zoom close
to the inflection point.

rent work, we extend this analytical framework to encom-
pass microswimmers navigating an external field, with a
specific focus on the phenomenon of gravitaxis [22, 25].

II. MODEL

An active L-shaped particle moving in the presence of
an external gravitational field causing a torque has been
introduced in Ref. [22]. It has been demonstrated that
the asymmetry in its shape alone was sufficient to induce
gravitactic behavior. We use a simplified model where
noise terms and additional drift components associated
with (anisotropic) translational diffusion are omitted. In
principle, one can include these terms as outlined in the
Supplemental Material of Ref. [25], however they do not
qualitatively affect the circular motion of interest for dis-
cussing gravitaxis. The particle’s position in space

ṙ(t) = vu(t) = v

Å
cosϑ(t)
sinϑ(t)

ã
, (1)

evolves in a plane with constant speed v along its orienta-
tion parametrized by an angle ϑ. The angular dynamics
are governed by the equation of motion

ϑ̇(t) = ω − γ sinϑ(t) + ζ(t). (2)

Here ω > 0 denotes the constant angular drift because
of the shape asymmetry. The gravitational force act-
ing on the particle translates to an orienting torque,
γ ∝ g, γ > 0, via the translational-rotational coupling,
see the Supplemental Material of Ref. [25]. Furthermore,
ζ(t) corresponds to a centered Gaussian white noise with
delta-correlated variance ⟨ζ(t)ζ(t′)⟩ = 2Drotδ(t − t′),

where Drot is the rotational diffusion coefficient. Strictly
speaking, γ has dimensions of a drift term, nevertheless
we refer to it as a torque since it tends to align the L-
shaped particle because of gravity. As a peculiarity, grav-
ity causes the angle ϑ to align in the x-direction perpen-
dicularly to the gravitational field. The L-shaped particle
is oriented along ϑ and an additional Hall angle, similar
to the Hall effect [22, 25].
There is an instructive mechanical analogy to the over-

damped noisy driven pendulum [33, 34]. The only differ-
ence is that the angle in the pendulum problem is mea-
sured from the negative y-axis. In this analogy, ω rep-
resents a driving motor trying to increase the angle at
a constant rate. In contrast, gravity parametrized by γ
aligns the pendulum to a downward position. The de-
terministic part of the angular motion in Eq. (2) derives
from an effective potential

Drot

kBT
U(ϑ) = −ωϑ− γ cosϑ, (3)

see Fig. 1. As all angles are 2π-periodic, periodic bound-
ary conditions are applied. For γ > ω the potential dis-
plays a local minimum located at ϑ∗ = arcsin (ω/γ) ∈
[0, π/2]. Similarly, the potential exhibits a maximum at
π−ϑ∗, yielding a barrier height ∆U = U(π−ϑ∗)−U(ϑ∗).
If γ = ω, the potential displays an inflection point. In the
absence of noise, this point corresponds to a saddle-node
bifurcation. In the pendulum analogy, above this point
(γ > ω), there is a stable fixed point at ϑ∗ where the
angle is locked. In contrast, below the bifurcation point
(γ < ω), no fixed points exist and the motor drives the
pendulum to complete full rotations. Correspondingly,
we refer to γ > ω as the locked state and to γ < ω as the
running state [35]. The introduction of noise smears this
transition.
Another special case that is analytically tractable is

the Brownian circle swimmer, i.e., without the orienting
torque, which has been already fully characterized [26,
34].

III. DERIVATION OF THE INTERMEDIATE
SCATTERING FUNCTION

Besides the equations of motion for the individual tra-
jectories from Sec. II, dynamical properties are equiva-
lently encoded in the propagator P := P(r, ϑ, t|ϑ0), which
is defined as the conditional probability distribution of
the particle displaced by r at lag time t with orienta-
tion ϑ, given it started with orientation ϑ0. By standard
means [36], the associated Fokker-Planck equation can
be derived

∂tP = −∂ϑ[(ω − γ sinϑ)P] +Drot∂
2
ϑP − vu · ∂rP. (4)

The initial condition is specified by P(r, ϑ, t = 0|ϑ0) =
δ(ϑ − ϑ0)δ(r). Here, all angles are considered to be 2π-
periodic.
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It is favorable to solve directly for the spatial Fourier
transform of the propagator P̃ := P̃(k, ϑ, t|ϑ0)

P̃ =

∫
R2

d r exp(−ik · r)P(r, ϑ, t|ϑ0). (5)

The Fourier-transformed Fokker-Planck equation then
reads

∂tP̃ = −∂ϑ[(ω − γ sinϑ)P̃] +Drot∂
2
ϑP̃ − ivk · uP̃

=: (L+ δLk)P̃, (6)

where the operator L encodes the angle-dependent mo-
tion containing the drifts ω and γ, and the rotational dif-
fusion. The k-dependent operator δLk encodes the deter-
ministic active motion for a given wave vector k. The ini-
tial condition then follows P̃(k, ϑ, t = 0|ϑ0) = δ(ϑ− ϑ0).

Hence, P̃ encodes the full information on the translational
and angular motion.

In the subsequent analysis we focus on the transla-
tional motion. The ISF F (k, t) := ⟨exp(−ik · ∆r(t))⟩
is the characteristic function of the stochastic displace-
ments ∆r(t) := r(t)− r(0) encoding the spatio-temporal
information for the process resolved at time scale t and
length scale 2π/|k|. Furthermore, by taking derivatives
with respect to the wave vector the low-order moments
can be obtained.

The ISF is derived by averaging over the initial an-
gle with the steady-state probability density pst(ϑ0) and
marginalizing over the angle ϑ

F (k, t) =

∫ 2π

0

dϑ

∫ 2π

0

dϑ0 P̃(k, ϑ, t|ϑ0)p
st(ϑ0). (7)

The formal solution of Eq. (6) is P̃ = e(L+δLk)tδ(ϑ−ϑ0)
and to obtain explicit expressions a spectral-theory ap-
proach is applied on the operators. We shall also employ
a time-dependent perturbation theory for small wave vec-
tors k to generate the low-order moments. The fol-
lowing derivation is already outlined in Ref. [25] (see
also [26, 37]) and for completeness, we summarize the
most important steps.

We use the Dirac notation and solve the eigenvalue
problem of the system L as well as of the full system
L+ δLk and write the operators in terms of the abstract
Hilbert space representation. Therefore, we introduce
the scalar product

⟨f |g⟩ =
∫ 2π

0

dϑ f(ϑ)∗g(ϑ) =

∫ 2π

0

dϑ ⟨f |ϑ⟩⟨ϑ|g⟩, (8)

where we use the generalized angular basis {|ϑ⟩} which
is orthogonal in the following sense ⟨ϑ|ϑ0⟩ = δ(ϑ − ϑ0)

and (over-) complete
∫ 2π

0
dϑ|ϑ⟩⟨ϑ| = 1. We rely on

the isomorphism between the periodic square-integrable
functions f(ϑ), g(ϑ) ∈ L2[0, 2π] and states |f⟩,|g⟩ in the
Hilbert space H. We are interested in the eigenfunc-
tions {|α⟩ : α ∈ Z} of the unperturbed operator L for
the standard orthonormal basis in H, with the real-space

representation ⟨ϑ|α⟩ = exp(iαϑ)/
√
2π. The unperturbed

operator L can be constructed in this basis by its matrix
elements

Lβα = ⟨β|Lα⟩ :=
∫ 2π

0

dϑ

2π
exp (−iβϑ)L exp (iαϑ) (9)

= δβα(−Drotβ
2 − iβω) +

γ

2
(βδβ,α+1 − βδβ,α−1).

The form of the resulting matrix is tridiagonal if the ex-
ternal torque is non-zero, and in general the matrix be-
comes non-Hermitian. Since the operator has the sym-
metry, L(−β)(−α) = L∗

βα,
∑

α |α⟩⟨−α|rn⟩∗ is a right-

eigenvector to eigenvalue λ∗ if |r⟩ =
∑

α |α⟩⟨α|r⟩ is a
right-eigenvector to eigenvalue λ. A similar relation holds
for the left-eigenvectors and eigenvalues, see Appendix A
for the derivations. The eigenvalue λ0 = 0 represents the
stationary state and the corresponding eigenstates are
called |r0⟩ and ⟨l0|. Using Eq. (9) one can directly observe
that the left eigenstate to eigenvalue zero is ⟨l0| = ⟨0|
with the real space representation l0(ϑ) = ⟨l0|ϑ⟩ = 1.
The right eigenstate to eigenvalue zero is the stationary
state with real space representation r0(ϑ) = ⟨ϑ|r0⟩ =
pst(ϑ), because of the normalization of the probability
density. Thus, we can define right and left eigenstates
L|rn⟩ = −λn|rn⟩, L†|ln⟩ = −λ∗

n|ln⟩, respectively and la-
bel them by n ∈ Z. Here, L† denotes the adjoint of L with
respect to the scalar product Eq. (8). Thus, λ−n = λ∗

n

and ⟨α|r−n⟩ = ⟨−α|rn⟩∗ The eigenstates are chosen to
be orthonormal ⟨lm|rn⟩ = δm,n and assumed to fulfill the
completeness relation

∑
n |rn⟩⟨ln| = 1.

The formal solution of the Eq. (6) can be rewritten in
the eigenbasis

P̃ = ⟨ϑ|e(L+δLk)tϑ0⟩, (10)

and for the ISF follows

F (k, t) =

∫ 2π

0

dϑ

∫ 2π

0

dϑ0 ⟨l0|ϑ⟩⟨ϑ|e(L+δLk)tϑ0⟩⟨ϑ0|r0⟩

= ⟨l0|e(L+δLk)tr0⟩. (11)

Here, we used the abstract notation for the stationary
state and inserted a ⟨l0|ϑ⟩ = 1 and used the completeness
relations for ϑ and ϑ0.
Building upon the model presented in Ref. [25], sum-

marized above, we derive an explicit expression for the
ISF in terms of the eigenfunction and eigenvalues of the
full operator. Therefore, we apply now the same formal-
ism to the full operator L+ δLk and find equivalently to
Eq. (9) the missing matrix elements

(δLk)βα = ⟨β|δLkα⟩

= − ikxv

2
(δβ,α+1 + δβ,α−1)−

kyv

2
(δβ,α+1 − δβ,α−1),

(12)

which results again in a tridiagonal matrix with left and
right eigenstates and eigenvalues

(L+ δLk)|rnk⟩ = −λnk|rnk⟩, (13)

(L† + δL†
k)|lnk⟩ = −λ∗

nk|lnk⟩. (14)
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Consequently, the time evolution operator can be ex-
pressed as the spectral sum of the eigenvalues and eigen-
states of the full operator

e(L+δLk)t =
∑
n∈Z

e−λnkt|rnk⟩⟨lnk|, (15)

which leads to the final representation of the ISF

F (k, t) =
∑
n∈Z

e−λnkt⟨l0|rnk⟩⟨lnk|r0⟩. (16)

This allows us to compute the ISF as a sum of decay-
ing exponentials with the eigenvectors and eigenvalues of
the matrix representations of both, L and L+δLk. Since
the eigenvalues can become complex, the ISF may display
oscillations. This property is in striking contrast to equi-
librium systems where the dynamics is always completely
monotone [38].

IV. HARMONIC APPROXIMATION

The effective potential, Eq. (3), shows a local mini-
mum ϑ∗ in the locked phase, γ > ω, where a harmonic
approximation (HA) can be applied, see Fig. 1. This
approximation holds in the regime of small fluctuations
Drot ≪ ω given fixed potential barriers with γ > ω, not
too close to the bifurcation. In Ref. [25], the harmonic
approximation is derived by approximating the Fokker-
Planck equation, here, in contrast, we show the deriva-
tion in the Langevin picture. From there we also derive
the ISF in the harmonic approximation. We shall also
discuss the limits of the HA.

Considering a small perturbation δϑ(t) around the
fixed angle ϑ∗ : ϑ(t) = ϑ∗ + δϑ(t) the linearized equa-
tion of motion of Eq. (2) for this perturbation reads

d

dt
δϑ(t) = −1

τ
δϑ(t) + ζ(t), (17)

with the characteristic time scale 1/τ =
√

γ2 − ω2. In
this approximation δϑ(t) becomes a Gaussian random
process with zero mean. Its dynamics are characterized
completely by its autocorrelation function

⟨δϑ(t)δϑ(0)⟩ = Drote
−|t|/τ . (18)

The dynamics in space simplify to

d

dt
r(t) = v

Å
cosϑ∗
sinϑ∗

ã
+ vδϑ∗(t)

Å
− sinϑ∗
cosϑ∗

ã
, (19)

and from there the displacement in space is computed

∆r(t) = r(t)− r(0)

= vt

Å
cosϑ∗
sinϑ∗

ã
+ v

Å
− sinϑ∗
cosϑ∗

ã∫ t

0

ds δϑ∗(s). (20)
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FIG. 2. Real part of the lowest eigenvalues λn for n ≥ 0 of
the unperturbed operator L for Drot/ω = 0.005 for increasing
values of γ above the bifurcation. Points correspond to nu-
merical values, and lines display the harmonic approximation
λHA
n .

Therefore, also the displacement becomes a Gaussian
processes completely characterized by its mean and co-
variance. Then

n · ⟨∆r(t)⟩ = vtn ·
Å
cosϑ∗
sinϑ∗

ã
, (21)

corresponds to the motion in the locked phase ignoring
fluctuations. The observation direction is set by n :=
k/k. Similarly, we derive the variance by averaging over
the squared, centered mean

Var[n · ⟨∆r(t)⟩] = ⟨[n ·∆r(t)− n · ⟨∆r(t)⟩]2⟩

=

ï
vn ·
Å
− sinϑ∗
cosϑ∗

ãò2 ∫ t

0

dt1

∫ t

0

dt2 ⟨δϑ(t1)δϑ(t2)⟩. (22)

We obtain again the same expression for the harmonic
approximation of the variance as in Ref. [25]

Var[n · ⟨∆r(t)⟩] = 2Dn(t− τ + τe−t/τ ), (23)

with

Dn = (vτ)2Drot(nx sinϑ∗ − ny cosϑ∗)
2. (24)

As no higher cumulants exist in harmonic approximation,
the expression for the ISF can be derived

F (k, t) = exp(−ikn · ⟨∆r(t)⟩ − k2

2
Var[n · ⟨∆r(t)⟩]),

(25)

indicating that oscillations in the ISF stem from the mean
displacement of the particle, while the strength of the
exponential decay is determined by the variance. Both
observables will be discussed in the following sections
Secs. V and VII.
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FIG. 3. (a) The angle arctan(vy/vx) of the direction of
motion and (b) the absolute value of the mean velocity |v|
for various rotational diffusion constants Drot. The black line
corresponds to the deterministic motion Drot/ω = 0.

The eigenvalues for harmonic motion are known [36]:
they are real, discrete and evenly spaced λHA

n = n/τ with
n ∈ N0. In Fig. 2 we illustrate how well the real part of
the lowest eigenvalues, Re λn, derived numerically from
the unperturbed operator L, Eq. (9), coincides with the
eigenvalues of the harmonic approximation. As for n ̸= 0
the eigenvalues show up in pairs with the same real part,
we plotted the real part once, i.e. the eigenvalues with
positive imaginary part n ≥ 0.

V. MEAN MOTION AND DIRECTIONS OF
OBSERVATION

The gravitactic circle swimmer model comprises four
parameters: The radius of the circular motion v/ω de-
notes the unit of length, while the unit of time is rep-
resented by 1/ω. The dimensionless torque is defined as
γ/ω and the relative significance of fluctuations is quanti-
fied as Drot/ω. Characteristic times are the time needed
for completing one circle τω = 2π/ω and the rotational
diffusion time τrot = 1/Drot, in which the particle loses

its orientation. We are interested in the case τω ≪ τrot,
in which the particle’s orientation becomes randomized
long after it completes one or more circles.
It is instructive to discuss the mean motion for the case

of vanishing fluctuations first. The results for this case
are known and can also be found in [36]. For the case
γ > ω a fixed point exists and the solution follows the
harmonic approximation as described in Eq. (21). When
γ ≤ ω we solve the classical equation of motion

ϑ̇ = ω − γ sinϑ, (26)

and compute the period by averaging over time steps dt

T =

∫ 2π

0

dϑ

ω − γ sinϑ
=

2π√
ω2 − γ2

, (27)

which diverges as γ ↑ ω. The average drift is determined
by averaging over the velocity

⟨v⟩ = 1

T

∫ T

0

dt v

Å
cosϑ(t)
sinϑ(t)

ã
=

v

T

∫ 2π

0

dϑ

ω − γ sinϑ

Å
cosϑ
sinϑ

ã
= v

Å
0

ω/γ −
√

(ω/γ)2 − 1)

ã
. (28)

The particle drifts on average along the y-direction, op-
posite to gravity.
We will now discuss the case with fluctuations and the

mean motion along certain directions of observation de-
noted by n. Natural choices are the direction parallel to
gravity, represented by ny = (0, 1)T , as well as its per-
pendicular counterpart nx = (1, 0)T . Additionally, we
look at directions aligned with the mean motion and per-
pendicular to it. From Ref. [25] the mean motion along
n = k/k of the problem is known

n · d

dt
⟨∆r(t)⟩ = n · v =

i

k
⟨l0|δLkr0⟩. (29)

The mean velocity v = (vx, vy)
T = v(⟨cosϑ⟩, ⟨sinϑ⟩)T

can be inferred by choosing the observation directions as
nx and ny, respectively. The mean of these trigonometric
functions can also be calculated directly from the knowl-
edge of the stationary distribution pst(ϑ) of the angular
motion, compare Ref. [36]. We introduce the directions
parallel and perpendicular to the mean velocity as

n∥ =
1

|v|

Å
vx
vy

ã
, n⊥ =

1

|v|

Å
−vy
vx

ã
. (30)

The direction of the particle motion is given by the
angle arctan(vy/vx). For low rotational diffusion Drot

and below the classical bifurcation, γ ≤ ω, the particle
predominantly moves along the y-axis against gravity,
corresponding to an angle of π/2, see Fig. 3 (a). This
behavior was computed in Eq. (28) for the deterministic
case. As the rotational diffusion increases, this alignment
angle decreases. In the locked phase, as γ increases, the
angle increasingly aligns with the nx direction since grav-
ity forces the angle in this orientation. The harmonic



6

approximation, represented by Drot/ω = 0 and defined
only in the locked state, aligns more closely with the nu-
merical values as γ increases and Drot decreases, which
is consistent with theoretical expectations.

In the locked phase, the absolute value of the mean
velocity |v| approaches the maximal velocity v for large
γ ≫ ω, see Fig. 3 (b). This convergence occurs faster
as the rotational diffusion Drot decreases. The better
the angle is locked, the faster the velocity becomes. In
contrast, for small γ ≪ ω, the velocity converges to zero
as in this regime there is no preferred direction.

VI. INTERMEDIATE SCATTERING
FUNCTION

We determine numerically the ISF, Eq. (16), for vari-
ous values of the wave vector k, covering a range of length
scales in terms of the radius of the circular motion. We
also conduct Langevin-dynamics simulations and com-
pare our findings. In principle, this should give identical
results, however both methods contain different sources
of errors. The simulation errors are of statistical nature,
the numerical error arise from the truncation of the ma-
trix that has to be diagonalized.

For the case of a high gravitational torque γ/ω = 1.5
and a low diffusion coefficient Drot/ω = 0.025 the har-
monic approximation for the ISF, Eq. (25), holds and is
in good agreement with the Langevin-dynamics simula-
tions and numerical results, compare Fig. 4. The direc-
tion of observation is chosen to be perpendicular to the
gravitational force, i.e., the wave vector takes the form
k = knx. In Fig. 4 the real part of the ISF is dom-
inated by weakly damped oscillations originating from
the drift motion. To remove this effect of the drift, we
transform to a frame comoving with the mean velocity,
exp(ikvxt)F (k, t). This can also be achieved experimen-
tally using the DDM technique, by shifting the images
according to the known mean velocity. The theoretical
background is given in Appendix C. Then the corrected
ISF decays monotonically with an increasing decay time
as the wavenumber decreases. For small k ≪ v/ω the mo-
tion becomes diffusive and the comoving ISF approaches
an exponential decay, exp(ikvxt)F (k, t) → exp(−Dk2t).
The imaginary part of the ISF is not shown here but

is as well dominated by oscillations, which again can
be eliminated by the transform to the comoving frame.
Without the oscillations, the imaginary part is about 2%
of the real part and thus negligible.

In the following, we analyze the ISF in the comoving
frame for the direction of observation parallel and per-
pendicular to the mean motion. In the perpendicular
direction, the ISF in the laboratory and comoving frame
are identical since v · n⊥ = 0. We focus on the case of
small fluctuations, Drot ≪ ω.
Several examples of the real and imaginary parts of the

ISF computed using the spectral theory and Langevin
simulations are shown in Fig. 5 and match each other
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FIG. 4. Real part of the ISF for different values of the wave
vectors in x direction k = knx for a diffusion coefficient
Drot/ω = 0.025 and γ/ω = 1.5. Full lines correspond to the
spectral theory and symbols to Langevin-simulation results.
The dashed lines correspond to the harmonic approximation
(HA). (a) Real part of the ISF. (b) Same quantity in the co-
moving frame. (c) Same upon rescaling time by k2v2/ω.

perfectly. We show sets of the ISF for three wavenumbers
k, in parallel and perpendicular direction. Each panel of
the figures displays the ISF arranged in ascending order
of the orienting torque γ and shows several values below,
at, and above the classical bifurcation, γ = ω.

The darkest line corresponds to the case γ = 0, no
external driving, illustrating the behavior of a Brownian
circle swimmer, as already discussed in detail in Ref. [26],
where the ISF is derived analytically in terms of general-
izations of the Mathieu functions. Since without torque
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FIG. 5. The real and imaginary parts of the ISF in the comoving frame for different orienting torques γ and for various values
and two directions of the wave vector k. The rotational diffusion coefficient Drot = 0.025ω is chosen. For three different lengths
k = 0.25, 1.0, 5.0 there is a plot for two different directions, parallel n∥ ((a)-(c) and (g)-(i)) and perpendicular n⊥ ((d)-(f) and
(j)-(l)) to the direction of the mean velocity. Full lines correspond to the spectral theory and symbols to the Langevin-simulation
results. The red dotted line in (a) and (d) correspond to the effective diffusion of a free circle swimmer exp(−D0k

2t). Each
legend in the first row is valid for the whole column.

the system is isotropic, the ISF is independent of the di-
rection of observation, in particular, the imaginary part
evaluates to zero, see Fig. 5. For smaller wavenumbers,
the ISF approaches an exponential decay, exp(−D0k

2t),

with the effective diffusion coefficient of a free circle
swimmer, D0 = v2Drot/[2(D

2
rot +ω2)], see Fig. 5 (a) and

(d).

Below the classical bifurcation the behavior is similar
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to the Brownian circle swimmer, although with a mean
drift. For large wavenumbers, k ≫ v/ω, length scales
smaller than the circular motion are probed and the dy-
namics appear persistent. The oscillations around zero in
the ISF originate from this persistent motion. For inter-
mediate wavenumbers, k ≃ v/ω, the circular motion is re-
solved which results in oscillations around a finite plateau
at time scales t = τω. At times t ≳ τrot, these oscillations
start to fade out as rotational diffusion takes over. The
oscillations diminish and persist for shorter periods for
even smaller wavenumbers. The oscillations have a big-
ger amplitude in the parallel direction compared to the
perpendicular one. Approaching the bifurcation the os-
cillation frequency becomes small as is expected from the
motion without fluctuations. The imaginary part of the
ISF shows oscillations below the bifurcation and those
oscillations reach the maximum amplitude at the bifur-
cation. At small wavenumbers, the imaginary part is
negligibly small compared to the real part and increases
for larger values of the wavenumber. In the perpendicu-
lar direction, the imaginary part has significantly lower
amplitudes than the parallel direction.

Above the bifurcation, the real part of the ISF decays
monotonically, as the particle’s orientation is essentially
locked. For small wavenumbers, an exponential decay
remains with a diffusion coefficient determined by the
variance. The diffusivity is the largest right above the
bifurcation and decreases with increasing γ.
In the perpendicular direction, the exponential decay

occurs at a much faster rate compared to the parallel
direction. Consequently, the diffusion coefficient is higher
in the perpendicular direction and increases in proximity
to the bifurcation point.

VII. EXACT LOW-ORDER MOMENTS

The first moments can be derived from the character-
istic function of the random displacements, the interme-
diate scattering function. Our goal is to compute the
time-dependent skewness and kurtosis and analyze them

for different orienting torques γ and directions of obser-
vation. For completeness, we show the derivation of the
mean motion and variance, which have been derived in
Ref. [25, 36].

The skewness is derived similarly, but the cumulant
expansion for small wavenumbers k = kn has to be ex-
tended to higher orders

lnF (k, t) =

∞∑
j=1

(−ik)jκj [n ·∆r(t)]

j!
= −ikn · ⟨∆r(t)⟩

− k2

2
⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]2⟩

+
ik3

3!
⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]3⟩

+
k4

4!

[
⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]4⟩

− 3⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]2⟩2
]
+ . . . .

(31)

Here, κj [n·∆r(t)] represents the jth cumulant of the ran-
dom variable n ·∆r(t). The goal is to compare the cumu-
lant expansion to the expansion of the ISF and read off
the cumulants. Therefore, we expand the ISF, Eq. (11),
by iteratively substituting the time evolution operator
with the Dyson representation [39]

e(L+δLk)t = eLt +

∫ t

0

ds eL(t−s)δLke
(L+δLk)s, (32)

up to the fourth order. We refer to the Appendix B,
where the time evolution operator up to the fourth or-
der is shown. The expansion of the ISF is derived by
sandwiching the time evolution operator between the zero
eigenvalue states ⟨l0|, |r0⟩, see Eq. (11), and then simpli-
fying the expression, equivalently as described in detail
in Ref. [25]. Taking the logarithm of the expression yields
the cumulant expansion of the ISF, given that the oper-
ator δLk is of first order in k

ln(F (k, t)) =t⟨l0|δLkr0⟩+
∑
n ̸=0

e−λnt + λnt− 1

λ2
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩

+
∑
n ̸=0

λnt+ e−λnt(λnt+ 2)− 2

λ3
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩(⟨ln|δLkrn⟩ − ⟨l0|δLkr0⟩)

+
∑
n ̸=0

∑
m ̸=0,m ̸=n

Ç
e−λnt + λnt− 1

λ2
n(λm − λn)

+
e−λnt + λnt− 1

λ2
m(λn − λm)

å
⟨l0|δLkrn⟩⟨ln|δLkrm⟩⟨lm|δLkr0⟩+O(|k|4).

(33)

Here, all sums run over all integers excluding zero and pairs m = n. The fourth-order term is rather lengthy
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FIG. 6. Variance for different values of the orienting torque γ and for four directions n for a rotational diffusion coefficient
Drot/ω = 0.005. Full lines correspond to the spectral theory and symbols to the Langevin-simulation results. The dashed black
lines represent the harmonic approximation (HA) for γ > ω. The black solid lines are auxiliary lines to serve as a guide to the
eye.

and the calculations are deferred to Appendix D. The
first three cumulants can be read off by comparison to
the expansion in Eq. (31), and we obtain the same ex-
pressions for the mean velocity, Eq. (29), and variance as
in Ref. [25]

Var[n ·∆r(t)] = κ2[n ·∆r(t)] = ⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]2⟩

= − 2

k2

∑
n ̸=0

e−λnt + λnt− 1

λ2
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩. (34)

There are pairs of complex conjugate eigenvalues λn =
λ∗
−n, for n ̸= 0 and it holds that ⟨lm|δLkrn⟩∗ =

−⟨l−m|δLkr−n⟩, see Appendix A. Thus, summing over
these pairs in Eqs. (33) and (34) results in just the real
parts of the terms with even order in k. Similarly, to
the odd orders in k only the imaginary parts contribute.
Comparing to Eq. (31), we find that because of this sym-
metry all cumulants are real.

In this work, we extend the analysis on the total vari-
ance as discussed in Ref. [25]. Our investigation includes
four directions of observation: the x and y axes, as well

as the directions parallel and perpendicular to the mean
velocity, see Fig. 6. We note that the total variance can
be computed by summing the x and y directions or the
parallel and perpendicular directions. Along these direc-
tions, we explore various values of the orienting torque γ,
spanning ranges above, exactly at, and below the classi-
cal bifurcation.

For small times we find persistent growth that is
quadratic in time ∝ t2, followed by oscillations start-
ing at times t ≳ τω for values γ below the bifurcation,
similar to a free circle swimmer [20, 26]. The oscillations
are fading out for long times as the angular motion is
randomized, and the particle starts to show diffusive be-
havior for t ≳ τrot, indicated by a linear increase in time.
The curves for the case below the classical bifurcation
are similar in all four directions, indicating that in the
running phase the diffusion becomes isotropic.

At and above the bifurcation we observe diffusive be-
havior and no oscillations occur as the angle ϑ is locked
by the strong gravitactic torque. Close to the classical
bifurcation, γ = ω, the diffusivity, i.e., the slope in the
long-time regime, is enhanced, as recently discussed in
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Ref. [25].
For the case of a strong orienting torque γ > ω, the

prefactor of diffusive growth ∝ t is much bigger for the
perpendicular direction than for the parallel direction,
i.e., the particle diffuses mainly in the direction perpen-
dicular to the mean motion. In the harmonic approx-
imation this becomes exact as the diffusion coefficient,
Dn = 0, evaluates to zero for the parallel direction, com-
pare Eq. (23). The approximation coincides with the
curves, the better, the stronger the orienting torque. For
the case of γ = 1.05ω, the harmonic approximation does
not match the analytic curve. The reason has been iden-
tified in [25] as the particle hops over the barrier before
relaxing in the minimum.

In conclusion, we find that the particle in the locked
phase diffuses primarily in perpendicular direction, while
in this direction the mean velocity is zero. The closer
the particle’s mean velocity is to the maximum v, the
lower is its diffusivity, which can be seen in the parallel
direction. In the periodic running phase, the diffusivity
becomes isotropic and the mean velocity increases close
to the bifurcation.

A. Skewness

Similarly to the second cumulant, the third cumulant is
obtained by comparing the third-order terms in Eqs. (31)
and (33). Rather than the third cumulant we discuss the
skewness defined as

Skew[n ·∆r(t)] =
κ3[n ·∆r(t)]

κ2[n ·∆r(t)]3/2

=
⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]3⟩

⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]2⟩3/2
. (35)

Again, we analyze the skewness in Fig. 7 for four dif-
ferent directions for a fixed diffusion coefficient and in
each panel several values of the orienting torque γ are
shown. Oscillations between positive and negative val-
ues occur again in the running phase in all directions for
times t ≳ τω. In the locked phase, the skewness is purely
negative (right-side skewed) for the x, y, and parallel
direction of observation, but with a difference in mag-
nitude. In the perpendicular direction the skewness is
positive (left-side skewed) and in y and parallel direction
the magnitude is much higher than in x and perpendicu-
lar direction, which can be explained by the higher mean
velocity in the y and parallel direction for values around
the bifurcation, see Fig. 3.

The skewness is zero by construction in the harmonic
approximation. We observe an increased skewness above
and close to the bifurcation point, which are also values
where the harmonic approximation does not hold well.
The harmonic approximation holds if the barrier is suffi-
ciently high, ∆U ≫ kBT , to ensure that Kramers’ escape
rate remains much lower than the harmonic relaxation
rate [25, 36].

For shorter times t ≲ τω the skewness is constant with
an enhanced value close but above the classical bifurca-
tion. For long times t ≳ τrot every curve decays to zero
since the angular motion is randomized and evolves to an
effective diffusion.
We find an algebraic tail in the decay of the form

∝ t−1/2 or faster. This dynamics can be understood
by assuming our random variables are the sum of identi-
cally and independently distributed increments

∆r(N) =

N∑
n=1

∆rn, (36)

since we can choose a time scale on which this assumption
is true (coarse-grained dynamics). For such long times,
the cumulants are extensive, κj(N) ∝ N , and since the
number of steps is proportional to time t = N∆t it fol-
lows that κj(t) ∝ t.
Therefore, the skewness maximally decreases or in-

creases for negative or positive skewness, respectively
with

κ3(t)

κ2(t)3/2
∝ t

t3/2
= t−1/2. (37)

This can also be applied for higher moments as the excess
kurtosis,

κ4(t)

κ2(t)2
∝ t

t2
= t−1, (38)

which will be discussed in the following section. In con-
clusion, in accordance with the central limit theorem, we
identified the speed of the convergence to a Gaussian dis-
tribution.

B. Kurtosis

Similar to the non-Gaussian parameter the kurtosis
measures the degree of non-Gaussianity and is defined
as

Kurt[n ·∆r(t)] =
κ4[n ·∆r(t)]

κ2[n ·∆r(t)]2
+ 3

=
⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]4⟩
⟨[n ·∆r(t)− ⟨n ·∆r(t)⟩]2⟩2

, (39)

where Kurt[n ·∆r(t)]− 3 is called the excess kurtosis. As
the expression for the fourth cumulant becomes lengthy
it is convenient to decompose the fourth cumulant in its
moments

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1, (40)

which can be computed from the characteristic function

F (k, t) =

∞∑
j=0

(−ik)jmj [n ·∆r(t)]

j!
= 1− ikn · ⟨∆r(t)⟩

− k2

2
⟨[n ·∆r(t)]2⟩+ ik3

3!
⟨[n ·∆r(t)]3⟩+ k4

4!
⟨[n ·∆r(t)]4⟩

+ · · · , (41)
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FIG. 7. Skewness for different values of the orienting torque γ and four directions n for a rotational diffusion coefficient
Drot/ω = 0.005. Full lines correspond to the spectral theory and symbols to the Langevin-simulation results. Inset: The
absolute value of the Skewness |Skew[n ·∆r(t)]| on double logarithmic scale to demonstrate the algebraic decay. The black solid
lines are auxiliary lines to serve as a guide to the eye.

similarly to the cumulant-generating function, Eq. (31).

We then compare the expansion of the characteristic
function to the moment expansion of the ISF, as shown
in the Appendix D. The derivation is analogous to the
derivation of the cumulant expansion of the ISF, Eq. (33).
The final expression for the fourth moment is lengthy and
therefore, it is deferred to the Appendix D.

We analyze the time evolution of the excess kurto-
sis again numerically and with Langevin simulations for
various orienting torques γ and in four different direc-
tions of observation, see Fig. 8. To visualize both wide
positive and negative scales, we plot the excess kurto-
sis, Kurt[n ·∆r(t)] − 3 using an inverse-area-hyperbolic-
sine transformation y → y0 sinh

−1(y/y0), with y0 = 0.15.
The values around zero (|y| ≪ |y0—) are plotted in a lin-
ear scale, which is controlled by the parameter y0. In the
linear range it is possible to show the oscillations between
positive and negative values. For larger values |y| ≫ |y0|
the values can be interpreted similarly to a logarithmic
scale, where values across multiple magnitudes and ana-
lytic tails can be visualized. This transformation allows
us to plot both behaviors in a single graph.

In all analyzed directions the excess kurtosis is con-
stant for short times t ≲ τω where this constant value is
enhanced close to but still above the bifurcation γ ≳ ω.
For long times t ≳ τrot the excess kurtosis approaches
zero, consistent with the expectation that the process
becomes Gaussian and the angular motion becomes ran-
domized and evolves into effective diffusion. Above the
bifurcation, we observe a decay ∝ t−1 or faster, see
Eq. (38). Oscillations occur in the running phase γ < ω
because of intrinsic drift of the particle, particularly no-
ticeable at intermediate times t ≳ τω.

The discrepancy between directions of observation lies
in the magnitude of the excess kurtosis. Similarly to
the skewness, in x and the perpendicular direction are
much smaller in magnitude compared to the y and par-
allel direction, especially above but close to the bifurca-
tion. This is again explainable with the enhanced mean
velocity in the y and parallel direction, Fig. 3. In the har-
monic approximation, the kurtosis is zero. Similar to the
skewness, we observe increased kurtosis close and above
the bifurcation point, where the harmonic approximation
does not hold well.
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FIG. 8. Rescaled kurtosis Kurt[n ·∆r(t)]− 3 for different values of the orienting torque γ and four directions n for a rotational
diffusion coefficient Drot/ω = 0.005. The values are by a inverse-area-hyperbolic-sine function y → y0 sinh

−1(y/y0), with
y0 = 0.15. Full lines correspond to the spectral theory and symbols to the Langevin-simulation results. The black solid lines
are auxiliary lines to serve as a guide to the eye.

The numerical values are much harder to obtain for the
kurtosis than for lower-order cumulants and especially
the extremes of very short and very long times were nu-
merically challenging. The explanation is that the matri-
ces are truncated in the numerical process and this plays
a major role in the precision of the measurements.

VIII. CONCLUSION

We have investigated gravitaxis of a Brownian circle
swimmer in two dimensions by deriving an analytical ex-
pression of the experimentally measurable ISF and ex-
panded the ISF in its cumulants to obtain the mean
velocity, variance, skewness, and kurtosis. The observ-
ables are analyzed in four directions of interest: par-
allel to the gravitational force y and perpendicular to
that in x-direction, as well as parallel and perpendicu-
lar to the mean velocity, referred to as parallel and per-
pendicular direction. The solutions are obtained by a
spectral-theoretical approach and validated by Langevin-
dynamics simulations.

First, the model we use maps the particle’s orientation
to an overdamped noisy driven pendulum with a classical
bifurcation when the orientational torque reaches the an-
gular drift. This picture suggests an analysis of different
orientational torques below (running phase), exactly at
and above (locked phase) the classical bifurcation. We
have interpreted our results in terms of a harmonic ap-
proximation, which is accurate, especially for a small dif-
fusion coefficient and fixed torque above and not too close
to the bifurcation. In this regime the harmonic approxi-
mation is in good agreement with the numerically com-
puted ISF and variance. We show the first eigenvalues
and they coincide with the eigenvalues of the harmonic
approximation within this regime and identified symme-
tries of the eigenvalues and eigenvectors.

Second, we have analyzed the ISF for different orienta-
tional torques and wave vectors kv/ω and demonstrated
that transforming the ISF into the comoving frame elim-
inates oscillations caused by pure drift motion stemming
from the non equilibrium dynamics. In the running
phase, the dynamics are similar to the Brownian circle
swimmer, with the difference that the imaginary part is
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highly oscillating, especially in the parallel direction . We
observed persistent motion at large wavenumbers, circu-
lar motion at intermediate wavenumbers, and enhanced
diffusion at small wavenumbers. Close to the bifurcation,
oscillation frequency increase, with the fastest diffusion
at small wavenumbers and persistent motion at interme-
diate wavenumbers.

In the locked phase, because of the mapping to the
comoving frame, we found diffusion, that was magnitudes
faster in perpendicular direction and the faster for higher
wavenumbers.

Additionally, we have investigated the variance and
mean motion, as well as the skewness and kurtosis, for
various directions and different gravitational torques. In
the running phase, the mean velocity in parallel direc-
tion is becoming significant close to the bifurcation as the
swimmer oscillates for very low gravitational torques, i.e.,
does not move in a certain direction. In perpendicular
direction the velocity is, by definition, zero. The vari-
ance, skewness and kurtosis exhibit oscillations, at times
comparable to the time it takes the particle to complete a
circle. These oscillations are more pronounced the lower
the gravitational torque and independent of the observa-
tion direction.

In the locked phase, the mean velocity in the paral-
lel direction reaches its maximum, while the variance
is much lower compared to the perpendicular direction,
where the mean velocity is zero. This behavior becomes
exact in the harmonic approximation. In the variance
we observe persistent, quadratic growth in time until the
particle begins oscillating. For times when the particle
has completed many oscillations, it exhibits diffusive be-
havior. The skewness and kurtosis reach their highest
values close but above the bifurcation, indicating big de-
viations from the harmonic approximation for those val-
ues. However, they converge to zero for high enough
gravitational torques. They decay to zero for long times
with a power law ∝ t−1/2 and ∝ t−1, respectively and
thus indicating Gaussian behavior for times when the
particle loses its orientation. In the parallel direction,
the skewness is negative and large, while the kurtosis is
positive and also relatively large. In contrast, in the per-
pendicular direction, both the skewness and kurtosis are
positive but smaller compared to the parallel direction.
These differences may be influenced by the mean velocity.

The model can be extented to the case of translational
diffusion by adding noise and additional drift terms, as
shown in the Supplemental Material of Ref. [25]. In our

current formulation, the perturbing operator is linear in
the wave vector, making the expansion of the ISF in or-
ders of the wave vector straightforward. The transla-
tional diffusion generates also quadratic terms to the per-
turbing operator which makes the analysis slightly more
involved without necessarily providing more insight in
the rotational dynamics. As a further extension of the
model, one can introduce angle-resolved spatial-temporal
observables, which encode correlations between the ini-
tial and final angle and the displacement. This can be
derived from the propagator, computed from the Fokker-
Planck equation. A full characterization along these lines
has been recently achieved for anisotropically diffusing
colloidal dimers [40].

The observed effects should also be visible in the ex-
periments with asymmetrical self-propelled particles of
various origins. Bacteria moving in circles, such as E.
coli and V. cholerae can serve as examples from the bio-
logical world. Various asymmetrical artificial microswim-
mers have also been developed in recent years. We are
not limited to gravity as a means to produce external
torque. Other forces, such as hydrodynamic ones in a
laminar flow or magnetic ones can be suitable too for ex-
perimental realizations. The interactions of many chiral
active particles are another avenue where the presence
of the external torque can be important to investigate.
The collective intermediate scattering function can be
explored based on the individual one studied here. Ex-
tending the model to three dimensions would make it
even more comparable to the real world as well as the
expansion to a asymmetric colloid in a viscoelastic fluid,
similar to [41], as they also found a transition from angu-
lar diffusion to persistent rotational motion. Complex en-
vironments, such as obstacles in assymetrically pattered
arrays [42] or patterned environment [43] are interesting
systems to address in the future.
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Appendix A: Symmetries of the operators

The matrix elements Eq. (9) have the symmetry ⟨(−β)|L(−α)⟩∗ = ⟨β|Lα⟩ resulting in a specific symmetry of the
eigenvalues and eigenvectors which we describe in the following. Rewriting the eigenvalue equation for the right
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eigenvector yields ∑
α

Lβα⟨α|rn⟩ = λn⟨β|rn⟩ ⇔∑
α

L(−β)(−α)⟨−α|rn⟩ = λn⟨−β|rn⟩ ⇔∑
α

L∗
βα⟨−α|rn⟩ = λn⟨−β|rn⟩ ⇔∑

α

Lβα⟨−α|rn⟩∗ = λ∗
n⟨−β|rn⟩∗,

and we can identify for each eigenvector |rn⟩ =
∑

α |α⟩⟨α|rn⟩ with eigenvalue λn an eigenvector |r−n⟩ :=∑
α |α⟩⟨−α|rn⟩∗ with eigenvalue λ−n := λ∗

n. A similar relation can be shown for the left eigenvector.
Moreover, the tridiagonal matrix Lβα has a zero line in the middle, L0α = 0, and each right eigenvector n ̸= 0

has a zero entry in the middle, ⟨0|rn⟩ = 0. This follows from the orthogonality, ⟨l0|rn⟩ = 1, and the fact that
⟨l0| = ⟨0| ⇔ ⟨l0|0⟩ = 1. Therefore, in the eigenvalue equation, the upper left or lower right block of the matrix do not
couple to each other. Consequently, the eigenvectors |rn⟩ have entries exclusively in either the upper half, ⟨α|rn⟩ = 0
for n > 0 and α ≤ 0 or lower half, n < 0 and α ≥ 0, respectively. As in (L†)βα there is a zero column, directly
following from the zero line in L, this also holds for the left eigenvectors. Similarly, we find that the eigenvectors ⟨ln|
have entries exclusively in either the upper or lower half, including zero, and we find ⟨ln|α⟩ = 0 for n > 0 and α < 0
or, n < 0 and α > 0, respectively.
Furthermore, the operator δLk has the symmetry ⟨(−β)|δLk(−α)⟩∗ = −⟨β|δLkα⟩ and we conclude a symmetry for

the matrix elements which are used to compute the cumulants and moments,

⟨ln|δLkrm⟩∗ =
∑
α,β

⟨ln|α⟩∗⟨α|δLk|β⟩∗⟨β|rm⟩∗

= −
∑
α,β

⟨ln|α⟩∗⟨(−α)|δLk(−β)⟩⟨β|rm⟩∗

= −
∑
α,β

⟨ln|(−α)⟩∗⟨α|δLkβ⟩⟨(−β)|rm⟩∗

= −⟨l−n|δLkr−m⟩. (A1)

Considering this symmetry, we conclude that the variance is real

Var[n ·∆r(t)] = − 2

k2

∑
n ̸=0

e−λnt + λnt− 1

λ2
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩ = − 4

k2

∑
n>0

Re

ñ
e−λnt + λnt− 1

λ2
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩
ô
.

(A2)

It can be checked that also higher cumulants are real because of these symmetries. The minus sign in the last line of
Eq. (A1) determines whether the real or imaginary part contributes to the cumulant expression. For even orders of
k, the real part contributes, while for odd orders of k, the imaginary part contributes.

Appendix B: Time evolution operator

To expand the ISF Eq. (11) we iteratively substitute the time evolution operator with the Dyson representation
Eq. (32). The time evolution operator up to the fourth order then reads

e(L+δLk)t =eLt +

∫ t

0

ds eL(t−s)δLk

Å
eLs +

∫ s

0

du eL(s−u)δLk

Å
eLu +

∫ u

0

dw eL(u−w)δLk

Å
eLw +

∫ w

0

dr eL(w−r)δLke
(L+δLk)r

ããã
=eLt +

∫ t

0

ds eL(t−s)δLke
Ls +

∫ t

0

ds

∫ s

0

du eL(t−s)δLke
L(s−u)δLke

Lu+

+

∫ t

0

ds

∫ s

0

du

∫ u

0

dw eL(t−s)δLke
L(s−u)δLke

L(u−w)δLke
Lw+

+

∫ t

0

ds

∫ s

0

du

∫ u

0

dw

∫ w

0

dr eL(t−s)δLke
L(s−u)δLke

L(u−w)δLke
L(w−r)δLke

Lr +O(δLk)
5. (B1)
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Appendix C: DDM corrected with drift

Differential dynamic microscopy (DDM) has been first introduced by Cerbino and Trappe [31] to measure the ISF
experimentally, relying only on advanced imaging techniques, rather than scattering experiments. The theoretical
background of DDM is nicely presented in Refs. [32, 44]. This technique can also be adapted to the comoving frame,
indicated in the literature as well [45–47]. In the DDM method, a sequence of microscopic images is taken, and
dynamic contrast is measured. In the comoving frame, the image is shifted with velocity v to include a drift and so
the difference of the two images recorded at time t and 0 is

∆I(r, t) = I(r, t)− I(r− vt, 0). (C1)

Here, the time- and space-dependent intensity

I(r, t) =

∫
κ(r− r′)c(r′, t)dr′ + η(r, t), (C2)

is a function of the concentration, c(r, t) =
∑N

i=1 δ(r − Ri(t)), the point spread function, κ(r), and the camera
noise, η(r, t), which is assumed to be uncorrelated with the signal. The measurable quantity and DDM signal is
∆D(k, t) = ⟨|∆I(k, t)|2⟩, where the Fourier transformation of the intensity is

∆I(k, t) = κ(k)[c(k, t)− e−ik·vtc(k, 0)] + ∆η(k, t). (C3)

The static structure factor and ISF are computed by the concentration

F (k) =
1

N
⟨|c(k)|2⟩, F (k, t) =

1

N
⟨c(k, t)c(k, 0)∗⟩. (C4)

Using the relation,
∫
dre−ik·rtI(r− vt, 0) = e−ik·vtI(k, t), we obtain the final expression for the signal

∆D(k, t) = a(k)

Å
1− Re

ï
eik·vt

F (k, t)

F (k)

òã
+ b(k), (C5)

which connects the signal to the ISF in the comoving frame. We identify the additional term b(k) = ⟨|∆η(k)|2⟩ as
the detection noise, and the term a(k) = 2N |κ(k)|2F (k) as a static amplitude term that depends on the point spread
function of the detector and structure factor.

Appendix D: Fourth-order moment

To find the fourth moment m4 we expand the ISF in moments, similarly to the cumulant expansion Eq. (33) up to
the fourth order

F (k, t) = 1 + t⟨l0|δLkr0⟩+
∑
n

e−λnt + λnt− 1

λ2
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩

+
∑
n

∑
m

Ç
e−λnt + λnt− 1

λ2
n(λm − λn)

+
e−λmt + λmt− 1

λ2
m(λn − λm)

å
⟨l0|δLkrn⟩⟨ln|δLkrm⟩⟨lm|δLkr0⟩

+
∑
n

∑
m

∑
p

Ç
e−λnt + λnt− 1

λ2
n(λn − λm)(λn − λp)

+
e−λmt + λmt− 1

λ2
m(λm − λn)(λm − λo)

+
e−λpt + λpt− 1

λ2
p(λp − λm)(λp − λn)

å
× ⟨l0|δLkrn⟩⟨ln|δLkrm⟩⟨lm|δLkrp⟩⟨lp|δLkr0⟩+O(|k|5). (D1)

Here, all sums run over all integers. This then is compared to the expansion in moments Eq. (41) to identify the
fourth moment. This expression formally contains divisions by zero, they arise since we should have distinguished the
cases of exponentials and constants before performing the integrals. However, this can be easily remedied since the
terms can be analytically continued. The result for the fourth moment then is
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1

4!
⟨[k ·∆r(t)]4⟩ =∑

n

∑
m

∑
p

Ç
e−λnt + λnt− 1

λ2
n(λn − λm)(λn − λp)

+
e−λmt + λmt− 1

λ2
m(λm − λn)(λm − λp)

+
e−λpt + λpt− 1

λ2
p(λp − λm)(λp − λn)

å
× ⟨l0|δLkrn⟩⟨ln|δLkrm⟩⟨lm|δLkrp⟩⟨lp|δLkr0⟩ =

t4

24
⟨l0|δLkr0⟩4

+ 3
∑
n ̸=0

λnt(λnt(λnt− 3) + 6) + 6eλn(−t) − 6

6λ4
n

⟨l0|δLkrn⟩⟨ln|δLkr0⟩⟨l0|δLkr0⟩⟨l0|δLkr0⟩

+ 2
∑
n ̸=0

λ2
nt

2 − 4λnt− 2eλn(−t)(λnt+ 3) + 6

2λ4
n

⟨l0|δLkrn⟩⟨ln|δLkrn⟩⟨ln|δLkr0⟩⟨l0|δLkr0⟩

+ 2
∑
n ̸=0

∑
m̸=0,m̸=n

Ç
t2

2λmλn
+

λmt+ eλm(−t) − 1

λ3
m(λm − λn)

+
λnt+ eλn(−t) − 1

λ3
n(λn − λm)

å
⟨l0|δLkrn⟩⟨ln|δLkrm⟩⟨lm|δLkr0⟩⟨l0|δLkr0⟩
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λ2
nt

2 − 4λnt− 2eλn(−t)(λnt+ 3) + 6

2λ4
n
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t2

2λmλn
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λ3
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λ3
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+
∑
n ̸=0

eλn(−t)
(
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+
∑
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∑
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∑
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λmt+ eλm(−t) − 1

λ2
m(λm − λn)(λm − λp)

+
λnt+ eλn(−t) − 1
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