
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

K-means Derived Unsupervised Feature Selection
using Improved ADMM

Ziheng Sun, Chris Ding, and Jicong Fan

Abstract—Feature selection is important for high-dimensional
data analysis and is non-trivial in unsupervised learning problems
such as dimensionality reduction and clustering. The goal of
unsupervised feature selection is finding a subset of features such
that the data points from different clusters are well separated.
This paper presents a novel method called K-means Derived
Unsupervised Feature Selection (K-means UFS). Unlike most
existing spectral analysis based unsupervised feature selection
methods, we select features using the objective of K-means. We
develop an alternating direction method of multipliers (ADMM)
to solve the NP-hard optimization problem of our K-means UFS
model. Extensive experiments on real datasets show that our
K-means UFS is more effective than the baselines in selecting
features for clustering.

Index Terms—Feature selection, K-means, ADMM

I. INTRODUCTION

FEATURE selection aims to select a subset among a
large number of features and is particularly useful in

dealing with high-dimensional data such as gene data in
bioinformatics. The selected features should preserve the most
important information of the data for downstream tasks such
as classification and clustering. Many unsupervised feature
selection methods have been proposed in the past decades.
They can be organized into three categories [1], [2]: filter
methods [3], wrapper methods [4], and hybrid methods. Filter
methods evaluate the score of each feature according to certain
criteria, such as Laplacian score (LS) [5], [6] and scatter
separability criterion [7]. Wrapper methods utilize algorithms
to evaluate the quality of selected features. They repeat se-
lecting a subset of features and evaluating the performance of
an algorithm on these features until the performance of the
algorithm is desired. Correlation-based feature selection [8]
and Gaussian mixture models [9] are representative ones of
wrapper methods. Hybrid methods [10], [11] utilize filtering
criteria to select feature subsets and evaluate the feature
subsets by algorithm performance.

Without labels to evaluate the feature relevance, many
criteria have been proposed for unsupervised feature selection
in recent years. The most widely used one is to select features
that can preserve the data similarity using Laplacian matrix.
For instance, Multi-Cluster Feature Selection (MCFS) [12]
selects features using spectral analysis and a regression model
with ℓ1-norm regularization. Non-negative Discriminative Fea-
ture Selection (NDFS) [13] selects features using non-negative
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spectral analysis and a regression model with ℓ2,1-norm reg-
ularization. Robust Unsupervised Feature Selection (RUFS)
[14] selects features using label learning, non-negative spectral
analysis and a regression model with ℓ2,1-norm regularization.
Joint Embedding Learning and Sparse Regression (JELSR)
[15] selects features using embedding learning and sparse
regression jointly. Li et al. [16] developed a sampling scheme
called feature generating machines (FGMs) to select informa-
tive features on extremely high-dimensional problems. Non-
negative Spectral Learning and Sparse Regression-based Dual-
graph regularized feature selection (NSSRD) [17] extends the
framework of joint embedding learning and sparse regression
by incorporating a feature graph. Wang et al. [18] proposed
to select features using an autoweighted framework based on
a similarity graph. Embedded Unsupervised Feature Selection
(EUFS) [19] used sparse regression and spectral analysis. Li
et al. [20] proposed an unsupervised feature selection method
based on sparse PCA with ℓ2,p-norm. Sparse and Flexible
Projection for Unsupervised Feature Selection with Optimal
Graph (SF2SOG) [21] selects features using the optimal flex-
ible projections and orthogonal sparse projection with ℓ2,0-
norm constraint. All these methods select features based on
data similarity using spectral analysis, but they don’t focus on
the separability of data points under the selected feature space.

In this work, we present a new method called K-means
Derived Unsupervised Feature Selection (K-means UFS). Un-
like those spectral analysis based methods, we select features
to minimize the K-means objective proposed by [22], [23].
The goal of our method is to select the most discriminative
features such that the data points are well separated, that is,
have small within-cluster differences and large between-cluster
differences. We focus on the separability of data points and
derive this new unsupervised feature selection method from
K-means. The contributions of this work are as follows.

• A novel unsupervised feature selection method is pro-
posed to select the most discriminative features based on
the objective of K-means.

• An Alternating Direction Method of Multipliers
(ADMM) [24] algorithm is developed for the NP-hard
problem of K-means UFS model.

• We compare K-means UFS with other state-of-the-art un-
supervised feature selection methods and conduct exper-
iments on real datasets to demonstrate the effectiveness
of our method.

The rest of this paper is organized as follows. In Section II,
we derive the K-means UFS model from K-means objective.
In Section III, we develop an ADMM algorithm to solve
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TABLE I: Notations

symbol description
x column vector
xi column vector with index i
X matrix
Tr(·) trace of matrix
∥ · ∥2 ℓ2 or Euclidean norm of vector
∥ · ∥F Frobenius norm of matrix
1(·) 1(x) = 1 if x ̸= 0; 1(x) = 0 if x = 0

∥ · ∥2,1
ℓ2,1 norm of matrix, defined as:

∥M∥2,1 =
∑q

j=1

√∑p
i=1 M

2
ij =

∑q
j=1 ∥mj∥2

∥ · ∥2,0
ℓ2,0 norm of matrix, defined as:

∥M∥2,0 =
∑q

j=1 1

(√∑p
i=1 M

2
ij

)
=

∑q
j=1 1(∥mj∥2)

the optimization problem of our K-means UFS model. In
Section IV, we compare K-means UFS with other state-of-
art unsupervised feature selection methods in detail. Section
V presents the experiments and Section VI draws conclusions
for this paper. Table I shows the main notations used in this
paper.

II. K-MEANS DERIVED UNSUPERVISED FEATURE
SELECTION

In unsupervised feature selection, there is no unique cri-
teria to evaluate the quality of selected features. We choose
to select features by minimizing the objective of K-means
clustering proposed by [22], [23]. Given a data matrix X =
(x1,x2, ...,xn) ∈ Rp×n, where p denotes the number of
features and n denotes the number of samples. Each feature
(row) of X is standardized to have zero mean and unit vari-
ance. In K-means clustering, the k centroids are determined
by minimizing the sum of squared errors,

Jk =

k∑
j=1

∑
i∈Cj

∥xi −mj∥22 , (1)

where mj =
∑

i∈Cj
xi/nj is the centroid of cluster Cj

consisting of nj points, j = 1, . . . , k. According to [22], Jk
can be reformulated as

Jk = Tr(X⊤X)− Tr(G⊤X⊤XG), (2)

where G = (g1, . . . , gk) ∈ Rn×k is a normalized indicator
matrix denoting whether a data point is in a cluster or not,
namely,

gij =

{
1/
√
nj , if xi ∈ Cj

0, otherwise. (3)

Let Ψ be the feasible set of all possible indicator matrices with
k clusters. Since Tr(X⊤X) is a constant, [22] pointed out that
K-means clustering is equivalent to

min
G∈Ψ

− Tr(G⊤X⊤XG). (4)

Our K-means derived unsupervised feature selection (K-means
UFS) seeks to select the most discriminative features. The
input data X contains p rows of features. Let Xh ∈ Rh×n be
the selected h rows of X . Our feature selection goals is the
following: Among all possible choice of Xh, we selection

the Xh which minimizes the K-means objective. Therefore,
K-means UFS solves the following problem

min
Xh

[min
G∈Ψ

− Tr(G⊤X⊤
h XhG)] (5)

In order to show the intuition of model (5), we generate a
toy data matrix X ∈ R4×30, shown in Figure 1. The left plot
shows Xh1 consisting of the first two rows of X , while the
right one shows Xh2 consisting of the last two rows of X . We
prefer Xh2 because the within-cluster differences are much
smaller than those in Xh1. It is expected that solving problem
(5) can select the last two features. We want to select the most
discriminative features in an unsupervised manner.

Fig. 1: Visualization of Xh1 and Xh2 of a toy example
(Description: The x-axis and y-axis of the left figure represent the
first two features (rows) of X , while the axis of the right one
represent the last two features of X .)

A. K-means UFS model

In this section, we show that problem (5) can be formulated
into a discrete quadratic optimization problem. Let S ∈ Rp×h

be a selection matrix defined as:

Xh = S⊤X, s.t. S⊤S = I, Sij ∈ {0, 1} (6)

Let Φ be the feasible set of all the selection matrix S, we
rewrite problem (5) as:

min
G∈Ψ,S∈Φ

−Tr(S⊤XGG⊤X⊤S) (7)

Therefore (7) solves both the K-means clustering problem
(the optimal G) and the feature selection problem (optimal
S) simultaneously.

Problem (7) is difficult to optimize. Fortunately, the ap-
proximate solution to K-means clustering was obtained in
[22], [23]. The approximate solution of K-means indicator G∗

can be constructed as the following. Let the singular value
decomposition (SVD) of X be X = PΣQ⊤, where P and
Q denote the left and right singular vectors and the singular
values in Σ are sorted decreasingly. Let Pk be the first k
columns of P , Qk be the first k columns of Q and Σk be
the first k singular values of Σ. [22], [23] showed that Qk is
a good approximation of G∗.

Now, with this approximate optimal solution for G, we
rewrite the objective of problem (7) as

min
S∈Φ

− Tr(S⊤PΣQ⊤QkQ
⊤
k QΣP⊤S)
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then, the feature selection optimization problem (7) is simpli-
fied to

min
S∈Φ

− Tr(S⊤PkΣ
2
kP

⊤
k S) ≡ −Tr(S⊤AS) (8)

where
A = PkΣ

2
kPk

is in fact the largest k rank of the square of data covariance
matrix. Problem (8) is our model for K-means UFS.

B. Relaxation

Problem (8) is a discrete optimization problem which is
typically NP-hard. To solve this problem we use numerical
relaxation. From Eq.(6), we infer that S has h nonzero rows.
This can be seen as the following. The p rows of X can be
reordered such that the selected rows are reshuffled to the top
h rows of X ,

X =

[
Xh

X−h

]
, S =

[
Ih×h

0(p−h)×h

]
where X−h represents the rest of rows un-selected, Ih×h is
an identity matrix and 0(p−h)×h is a zero matrix. Therefore,
S has three constraints:

S⊤S = I, ∥S⊤∥2,0 = h, Sij ∈ {0, 1} (9)

Now, from the K-means UFS model (8), if S∗ is an optimal
solution, V = S∗R (where R ∈ Rh×h is a rotation matrix,
that is, RR⊤ = I .) is also an optimal solution, because
Tr(S⊤AS) = Tr(R⊤S⊤ASR). Thus the binary discrete
constraint in Eq.(9) is not necessary. Therefore, the relaxed
V has only two constraints:

V ⊤V = I, ∥V ⊤∥2,0 = h (10)

Finally, we solve the K-means UFS model by the following
relaxed optimization problem.

min
V

− Tr(V ⊤AV )

s.t. V ⊤V = I, ∥V ⊤∥2,0 = h
(11)

Note that once the optimal solution V ∗ is obtained, the feature
selection matrix S∗ is determined uniquely by the index of the
h nonzero rows of V ∗. The value of rotation matrix R has no
contribution to feature selection.

III. OPTIMIZATION: AN IMPROVED ADMM

In this section, we elaborate how to solve optimization
problem (11) using ADMM.

A. Vanilla ADMM and its limitation

We consider an equivalent form of problem (11):

min
V

− Tr(V ⊤AV )

s.t. V = U, U⊤U = I

V = W, ∥W⊤∥2,0 = h.

(12)

Then the augmented Lagrangian function of (12) is

Lµ(V,U,W ) =− Tr(V ⊤AV ) +
µ

2
∥V − U +Ω/µ∥2F

+
µ

2
∥V −W + Γ/µ∥2F + const

(13)

where Ω,Γ ∈ Rp×h are Lagrange multiplier matrices, µ > 0
is a penalty parameter, U is an orthogonal matrix and W is
a row-sparse matrix. Then we update the variables alternately
[24]:

V t+1 = argmin
V

Lµ(V,U
t,W t) (14)

U t+1 = argmin
U

Lµ(V
t+1, U,W t) (15)

W t+1 = argmin
W

Lµ(V
t+1, U t+1,W ) (16)

Ωt+1 = Ωt + µ⊤(V t+1 − U t+1) (17)

Γt+1 = Γt + µ⊤(V t+1 −W t+1) (18)

µt+1 = µ⊤ × ρ, ρ = 1.05. (19)
(20)

Step 1: Update V
Let B = U⊤ − Ω⊤

µ⊤ , C = W⊤ − Γ⊤

µ⊤ , after algebra, the update
V step (14) is solving the following problem:

min
V

−Tr(V ⊤AV )+
µ⊤

2
∥V −B∥2F +

µ⊤

2
∥V − C∥2F (21)

Take the derivative of this objective function to be zero, we
can update V in t iteration by:

V t+1 =
1

2
µ⊤(µ⊤I −A)−1(B + C) (22)

To guarantee the minimal solution exists, (µ⊤I−A) should be
a positive definite matrix. Suppose λ1 is the max eigenvalue
of A, we select the initial value of µ as µ0 = λ1 + 0.1. Step
2: Update U
The update U step (15) is solving the following problem:

min
U

µ⊤

2
∥V t+1 − U +Ω⊤/µ⊤∥2F

s.t. U⊤U = I

Let D = V t+1 +Ω⊤/µ⊤, it is equivalent to:

max
U

Tr(D⊤U)

s.t. U⊤U = I
(23)

Let Ph be the first h column of P from D = PΣQ⊤ (SVD).
The solution is:

U t+1 = PhQ
⊤ (24)

Step 3: Update W
Let F = V t+1 + Γ⊤/µ⊤, the update W step (16) is solving
the following problem:

min
W

∥F −W∥2F
s.t. ∥W⊤∥2,0 = h

(25)

Now we split W and F by rows:

W⊤ = [w1T ,w2T , . . . ,wpT ]

F⊤ = [f1T ,f2T , . . . ,fpT ]
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Select l = {l1, l2, ..., lh} as the subset of h row indices in F
satisfy:

∥f l1∥2 ≥ ∥f l2∥2 ≥ · · · ≥ ∥f lh∥2 ≥ ∥f j∥2, ∀j /∈ l

Thus, we update each row of W in t iteration by:

w(t+1)j = f j , ∀j ∈ l

w(t+1)j = 0⃗, ∀j /∈ l
(26)

Fig. 2: log10(∥V ∥F ) of Quadratic ADMM Eq. (12) and Bi-
linear ADMM Eq. (27).
(Description: The y-axis represents the value of log10(∥V ∥F ) and
the x-axis represents the iteration of ADMM. The ∥V ∥F of
Quadratic ADMM Eq. (12) increases into 1012.5 in 80 iterations.)

In Figure 2, we apply Quadratic ADMM Eq.(12) on StatLog
DNA data[25] (3186 samples, 180 features and 3 classes) and
obsverve the log10(∥V ∥F ) (blue) increases into 12.5 before
convergence, that means the scale of matrix V is blow-up. The
very large values in V will dominate the ADMM process. It’s
caused by the subproblem (14) in update V step. The (µI−A)
matrix is an ill-conditioned matrix for some data and µ, thus
we should NOT compute the the inversion of it in Eq. (22). In
next subsection, two useful tricks are presented to avoid the
scale blow-up problem.

B. Bi-Linear ADMM

The first trick to avoid scale blow-up is to force ∥V ∥F to be
a constant in each iteration of ADMM. Considering V is an
orthogonal matrix in Eq. (11), the norm of V should satisfy
the constraint:

∥V ∥2F = Tr(V ⊤V ) = Tr(Ih×h) = h

The second trick is to change the quadratic objective function
(−Tr(V ⊤AV )) into a bi-linear one (−Tr(V ⊤AU)). This trick
can avoid the matrix inversion in Eq.(22). Using these two
tricks, we obtain an equivalent bi-linear form of Quadratic
ADMM Eq.(12) as following:

min
V

− Tr(V ⊤AU)

s.t. ∥V ∥2F = h, V = U, U⊤U = I

V = W, ∥W⊤∥2,0 = h

(27)

The ∥V ∥2F = h is necessary for Bi-linear ADMM, though it
is redundant in math. We can see it in the update V step.

Step 1: Update V
Let B = U⊤ − Ω⊤

µ⊤ and C = W t −Γt/µ⊤, the update V step
of problem (27) is solving the following problem:

min
V

− Tr[(U tTA+ µ⊤B⊤ + µ⊤C⊤)V ]

s.t. ∥V ∥2F = h
(28)

Let D = U tTA+ µ⊤B⊤ + µ⊤C⊤, the solution is:

V t+1 =

√
h

∥D∥F
D (29)

The ∥V ∥2F = h constraint is necessary to guarantee the
minimal solution for problem (28) exits. In each iteration,
updating V by Eq. (29) will force ∥V ∥2F to be a constant
h. In Figure 2, the log10(∥V ∥F ) (red) of Bi-linear ADMM is
always a constant.
Step 2: Update U
Let E = V t+1 +Ω⊤/µ⊤, after algebra, the update U step of
Bi-linear ADMM is solving the following problem:

min
U

− Tr(V (t+1)TAU) +
µ⊤

2
∥U − E∥2F

s.t. U⊤U = I

(30)

Let H = AV t+1 + µE, Ph be the first h column of P from
H = PΣQ⊤ (SVD). The solution is:

U t+1 = PhQ
⊤ (31)

The update W step is exactly the same as Eq. (26), so we
omit it here. With these update rules, our K-means UFS using
Bi-linear ADMM is summarized in Algorithm 1.

Algorithm 1 K-means UFS via Bi-linear ADMM

Require: Data X , number of clusters k, number of selected
features h.

1: Initialize µ = 0.1, ρ = 1.05. V,U,W is initialized using
Eq. (32). A is initialized using Eq. (8).

2: Set t = 0
3: repeat
4: Update V using Eq.(29).
5: Update U using Eq.(31).
6: Update W using Eq.(26).
7: Update Ω, Γ and µ using Eq.(17), Eq.(18), Eq.(19).
8: until Convergence

Select the h features determined by the h nonzero rows
in W .

C. Discussion on The Initialization

V,U,W should be initialized into the same value because
of the V = U and V = W constraint. We initialize V by
removing the discrete ℓ2,0-norm constraint in problem (11):

min
V

−Tr(V ⊤AV ) s.t. V ⊤V = I (32)
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Let Ph be the first h column of P from A = PΣP⊤ (SVD),
then we initialize V = Ph. Lagrange multiplier matrices Ω =
Γ = 0. µ is empirically set in the range from 10−4 to 10−1

depending on the datasets and is updated by µt+1 = µ⊤ × ρ
in each iteration. If µ is larger than µmax = 107, we stop
updating µ. ρ is empirically set to 1.05 in our algorithm.

D. Discussion on The Convergence

The convergence proof of ADMM can be found in [24].
In ADMM process, W is always a row-sparse matrix with h
nonzero rows (Eq. (26)) which represents the h selected fea-
tures. In t iteration, we can recover a unique feature selection
matrix S⊤ determined by the h nonzero row indices of W⊤

because of W⊤ = V ⊤ and V ⊤ = S⊤R. Our termination
criteria is: If S⊤ doesn’t change in 30 iterations, we stop
the ADMM and output the selected features. In practice,
we set the maximum iteration value as 3000. In experiment,
our algorithm converges within 300 iterations for all datasets.

E. Discussion on The Time Complexity

The time complexity of update V step (29) involves the
computation of D and its Frobenius norm, which is both
O(np). The time complexity of update U (31) involves com-
putation of E and its SVD, which is O(np) and O(np2). The
time complexity of update W Eq.(26) involves computation
of F and sort the norm of rows in F , which is O(np) and
O(p log(p)). Since n ≫ p, the time complexity of each
iteration is O(np2).

F. Discussion on The Reproducibility

There are no adjustable parameters in the relaxed K-means
UFS model (10). The two parameters µ and ρ come from
the ADMM. If we set ρ = 1.05 and using the initialization
settings above. Our algorithm is a deterministic algorithm with
reproducibility for all the datasets we used.

IV. OTHER UNSUPERVISED FEATURE SELECTION
METHODS

In this section, we compare K-means UFS with other state-
of-the-art unsupervised feature selection (UFS) methods. Most
other UFS methods select features using spectral analysis [5],
[6] and sparse regression. They tends to select features that can
preserve the structure of similarity matrix. Our K-means UFS
(5) select features in a totally different way. We select the most
discriminative features using the K-means objective which
have smaller within-cluster difference and larger between-
cluster difference.

For convenience, we denote original data X ∈ Rp×n,
similarity matrix1 S̃ ∈ Rn×n, 1 = [1, ..., 1]⊤, degree matrix

1Different methods use different definition of S̃ and details can be found
in their papers. Laplacian score use locality projection[26]. In NDFS and
RUFS, they use the k-nearest similarity matrix S̃. Denote Nk(i) as the set
of k-nearest nodes of xi, then

S̃ij =

{
exp ∥xi − xj∥2/σ, xi ∈ Nk(j) or xj ∈ Nk(i)

0, otherwise

D = diag(S̃1), Laplacian matrix L = D − S̃, normalized
Laplacian matrix L̂ = D− 1

2 (D−S̃)D− 1
2 , and k is the number

of clusters. Let Y ∈ Rn×k be the cluster indicator matrix,
W ∈ Rp×k be the regression coefficient weights matrix,
V ∈ Rp×k be the latent feature matrix.
Nonnegative Discriminative Feature Selection
NDFS [13] selects features using non-negative spectral analy-
sis and sparse regression with ℓ2,1-norm regularization. They
propose the NDFS model as following:

min
Y,W

Tr(Y ⊤L̂Y ) + α∥W⊤X − Y ⊤∥2F + β∥W⊤∥2,1

s.t. Y ⊤Y = I, Y ≥ 0
(33)

where α and β are parameters.
Robust Unsupervised Feature Selection
RUFS[14] selects features using non-negative matrix factoriza-
tion of X , non-negative spectral analysis and sparse regression
with ℓ2,1-norm. They propose the RUFS model as following:

min
Y,C,W

∥X − CY ⊤∥2,1 + νTr(Y ⊤L̂Y )

+ α∥W⊤X − Y ⊤∥2,1 + β∥W⊤∥2,1,
s.t. Y ⊤Y = I, Y ≥ 0, C ≥ 0

(34)

where C ∈ Rp×k are cluster centers and ν, α β are parameters.
Embedded Unsupervised Feature Selection
EUFS[19] also selects features using non-negative matrix
factorization of X , non-negative spectral analysis and sparse
regression with ℓ2,1-norm. They propose the EUFS model as
following:

min
Y,W

∥X − V Y ⊤∥2,1 + νTr(Y ⊤L̂Y ) + β∥V ⊤∥2,1

s.t. Y ⊤Y = I, Y ≥ 0
(35)

Sparse and Flexible Projection for Unsupervised Feature
Selection with Optimal Graph
SF2SOG [21] applies spectral analysis on the optimal graph
G ∈ Rn×n, not similarity matrix S. Denote LG ∈ Rn×n

as the normalized Laplacian matrix of G. They propose the
SF2SOG model as follows:

min
Y,W,G

Tr(Y ⊤L̂GY ) + λ∥W⊤X − Y ⊤∥2F + γ∥G− S∥2F

s.t. W⊤W = I, ∥W⊤∥2,0 = h, 0 ≤ Gij ≤ 1,

n∑
j=1

Gij = 1

(36)

A. Discussion and Comparison

NDFS (33), RUFS (34), EUFS (35) and SF2SOG (36)
are all based on the spectral analysis and sparse regression
framework. Our K-means UFS are totally different from these
methods. First, K-means UFS selects the most discriminative
features based on the K-means objective and focuses on
the separability of data points. NDFS, RUFS, EUFS and
SF2SOG consider the local structure of data distribution using
spectral analysis and sparse regression. Second, the ℓ2,0-norm
constraint used in K-means UFS is derived from the selection
matrix S in Eq. (6) directly. The ℓ2,1-norm regularization used
in NDFS, RUFS and EUFS can be regarded as a relaxation
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of ℓ2,0-norm constraints[27].Third, K-means UFS reveals the
relationship between data separability and the largest k rank of
the square of data covariance matrix A in Eq. (8). Researchers
can design more advanced methods base on our K-means
objective criterion to select features that can increase data
separability.

V. EXPERIMENTS

In this section, we conduct experiments to evaluate the
performance of K-means UFS. Following previous unsuper-
vised feature selection work[6], [13], [12], we only evaluate
the performance of K-means UFS in terms of clustering. We
evaluate the performance of clustering using accuracy(ACC)
and Normalized Mutual Information(NMI).

A. Datasets

The experiments are conducted on six real datasets. Some
datasets are too large so we choose a small subset of them
to reduce the time costs of Laplacian matrix computation
(O(n2)) in Laplacian Score, NDFS, RUFS and EUFS. The
statistics of the datasets are summarized in Table II.

• MicroMass2 is a dataset for the identification of microor-
ganisms from mass-spectrometry data.

• Human Activity Recognition using Smartphones
(HARS)3 is a dataset for the recognition of human
activities using waist-mounted smartphone with
embedded inertial sensors. The original dataset consists
of 10299 samples so we select the first 500 samples in
each classes.

• Fashion-MNIST (Fashion)4 is a dataset of Zalando’s
article images consisting of 70000 samples including T-
shirts, Trousers and so on. We select the first 300 samples
in each classes.

• Gina5 is a benchmark dataset for handwritten digit recog-
nition in the agnostic learning.

• Fabert and Dilbert6 are benchmark datasets for multiclass
tasks in AutoML challenge[28]. Fabert contains 8237
samepls so we select the first 500 samples in each classes.
Dilbert contains 10000 samepls so we select the first 700
samples in each classes.

TABLE II: Statistics of the Datasets

Dataset # of samples # of features # of classes
MicroMass 1300 360 10

HARS 3000 561 6
Fashion 3000 784 10

Gina 3468 784 10
Fabert 3500 800 7
Dilbert 3500 2000 5

2MicroMass is in UCI Machine Learning Repository: https://archive.ics.uci.
edu/ml/datasets/MicroMass

3HARS is in UCI Machine Learning Repository: https://archive.ics.uci.edu/
ml/datasets/human+activity+recognition+using+smartphones

4Fashion-MNIST is a dataset for Kaggle competitions : https://www.kaggle.
com/datasets/zalando-research/fashionmnist

5Gina is a benchmark dataset in IJCNN 2007 Workshop on Agnostic
Learning vs. Prior Knowledge: http://www.agnostic.inf.ethz.ch/datasets.php

6https://automl.chalearn.org/data

B. Experimental Settings

In experiments, the numbers of selected features are set
as {50, 100, 150, 200, 250, 300} for all datasets. There are
no adjustable parameters in K-means UFS model need to
be tuned. In experiments, we set ρ = 1.05 and use the
initialization settings above, the ADMM (Algorithm 1) is a de-
terministic algorithm with reproducibility for all the datasets.
We compare K-means UFS with the following unsupervised
feature selection methods:

1) All Features: All original features are adropted.
2) Laplacian Score [5]
3) NDFS: Non-negative Discriminative Feature Selection

(33) [13]
4) RUFS: Robust Unsupervised Feature Selection (34) [14]
5) EUFS: Embedded Unsupervised Feature Selection (35)

[19]
6) SF2SOG: Sparse and Flexible Projection for Unsuper-

vised Feature Selection with Optimal Graph (36) [21]
There are some parameters to be set for baseline methods.
Following [14], [19], we set the neighborhood size to be 5
for the similarity matrix of all datasets. To fairly compare
different unsupervised feature selection methods, the α, β, γ, λ
parameters in RUFS (34), EUFS (35), SF2SOG (36) are tuned
by ”grid-search” strategy from {10−6, 10−4, ..., 104, 106}. We
report the best clustering results from the optimal parameters.
Following [13], [14], [19], we use K-means to cluster samples
based on the selected features. Since K-means depends on
initialization, we repeat the clustering 20 times with random
initialization and report the average results with standard
deviation.

C. Experimental Results

We list the experimental results of different methods in
Table III and Table IV. From these two tables, we have the
following observations. First, feature selection is necessary
and effective. It can reduce the number of features significantly
and improve the clustering performance. Second, K-means
objective criterion can select the most discriminative features
such that data points are well separated. This UFS critierion
is effective and is different from other spectral analysis based
criteria such as NDFS and RUFS. Third, K-means UFS
achieves the best performance for all the datasets we used.
This can be mainly explained by the following reasons. First,
K-means UFS mainly focus on the discriminative information
information which results in more accurate clustering. Second,
[22], [23] pointed out that the approximate solution G∗ (8) to
K-means clustering can preserve the structure information of
data X . Third, the ℓ2,0-norm constraint in k-means UFS can
reduce the redundant and noisy features.

We also study the sensitiveness of parameters and the
convergence of ADMM. There are no adjustable parame-
ters need to be tuned in our K-means UFS model Eq. (8).
We tune the initial value of penalty parameter µ0 from
{10−6, 10−−3, ..., 106} and its update coefficient ρ from
{1.0001, 1.01, 1.1, 10, 100} in ADMM (Algorithm 1). Due to
the space limit, we only report experiments over MicroMass.
Fig. 3 show that when µ0 ≤ 1 and ρ ≤ 1.1, our method is not

https://archive.ics.uci.edu/ml/datasets/MicroMass
https://archive.ics.uci.edu/ml/datasets/MicroMass
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist
http://www.agnostic.inf.ethz.ch/datasets.php
https://automl.chalearn.org/data
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TABLE III: Clustering Results(ACC % ± std) of Different Feature Selection Algorithms

Datasets All Features Laplacian Score NDFS RUFS EUFS SF2SOG K-means UFS
MicroMass 48.1 ± 4.47 49.2 ± 4.58 51.1 ± 1.75 50.6 ± 3.61 50.4 ± 2.89 51.6 ± 2.73 52.3 ± 5.65

HARS 44.6 ± 0.70 46.1 ± 0.29 46.2 ± 1.15 47.2 ± 0.21 46.7 ± 0.16 47.1 ± 1.32 47.4 ± 0.17
Fashion 50.0 ± 1.46 52.1 ± 1.20 53.2 ± 3.34 53.3 ± 1.88 53.8 ± 2.42 53.0 ± 1.24 54.1 ± 1.00

Gina 48.0 ± 1.58 46.0 ± 2.38 48.1 ± 0.14 49.5 ± 2.42 46.9 ± 0.67 49.1 ± 1.25 50.1 ± 0.42
Fabert 17.3 ± 0.51 17.1 ± 0.90 17.8 ± 0.61 17.3 ± 0.72 17.3 ± 0.75 17.5 ± 1.32 18.0 ± 0.49
Dilbert 35.1 ± 0.28 37.2 ± 0.39 37.9 ± 0.28 37.6 ± 0.19 37.3 ± 0.09 37.1 ± 2.10 38.0 ± 0.57

TABLE IV: Clustering Results(NMI % ± std) of Different Feature Selection Algorithms

Datasets All Features Laplacian Score NDFS RUFS EUFS SF2SOG K-means UFS
MicroMass 58.7 ± 3.53 59.3 ± 3.84 61.6 ± 1.05 61.2 ± 2.75 61.3 ± 1.92 61.7 ± 1.11 62.3 ± 5.59

HARS 46.6 ± 0.40 47.3 ± 0.55 47.7 ± 0.82 48.1 ± 0.12 48.2 ± 0.06 47.1 ± 1.22 48.4 ± 0.12
Fashion 49.7 ± 0.62 50.3 ± 0.56 51.2 ± 1.90 52.1 ± 0.66 51.9 ± 0.72 52.2 ± 1.26 52.5 ± 0.34

Gina 43.4 ± 1.14 40.0 ± 1.22 42.2 ± 0.17 44.3 ± 1.25 41.9 ± 0.42 43.1 ± 1.14 44.8 ± 0.34
Fabert 2.9 ± 1.13 2.7 ± 1.12 3.4 ± 0.55 3.0 ± 0.60 3.3 ± 0.98 3.5 ± 1.28 3.6 ± 0.77
Dilbert 13.6 ± 0.30 14.6 ± 0.12 16.9 ± 0.24 16.4 ± 0.18 15.7 ± 0.02 16.1 ± 1.22 17.5 ± 1.08

(a) ACC for MicroMass
(ρ = 1.05)

(b) NMI for MicroMass
(ρ = 1.05)

(c) ACC for MicroMass
(µ0 = 0.1)

(d) NMI for MicroMass
(µ0 = 0.1)

Fig. 3: ACC and NMI of K-means UFS with different initial
µ0 and ρ on MicroMass data
(Description: In figure(a)(b), we fix ρ then tune µ0. In figure(c)(d),
we fix µ0 then tune ρ.)

sensitive to µ0 and ρ. If µ0 ≥ 103 or ρ ≥ 10, the ADMM will
converge within few iterations, which damages the clustering
performance. Therefore, we choose µ0 = 0.1 and ρ = 1.05
in experiments. Fig. 4 is the convergence curves of K-means
UFS over MicroMass and HARS. Our method will converges
very quickly and selects a subset of features with low K-means
objective value.

VI. CONCLUSION

In this paper, we propose a novel unsupervised feature
selection method called K-means UFS. Our method selects the

(a) MicroMass (b) HARS

Fig. 4: Convergence curve of K-means UFS on MicroMass
and HARS data (µ0 = 0.1, ρ = 1.05, h = 50)
(Description: The x-axis represents iterations and the y-axis
represents objective value of K-means UFS in ADMM.)

most discriminative features by minimizing the objective value
of K-means. We derive a solvable K-means UFS model with
ℓ2,0-norm using the approximate indicators of K-means and
numerical relaxed trick. We also develop an ADMM algorithm
for K-means UFS. The K-means objective criterion for UFS
is totally different from the most widely used spectral analysis
criterion. Experiments on real data validate the effectiveness
of our method.
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