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Abstract

Continual learning, or the ability to progressively integrate
new concepts, is fundamental to intelligent beings, enabling
adaptability in dynamic environments. In contrast, artifi-
cial deep neural networks face the challenge of catastrophic
forgetting when learning new tasks sequentially. To alle-
viate the problem of forgetting, recent approaches aim to
preserve essential weight subspaces for previous tasks by
limiting updates to orthogonal subspaces via gradient pro-
jection. While effective, this approach can lead to subop-
timal performance, particularly when tasks are highly cor-
related. In this work, we introduce COnceptor-based gra-
dient projection for DEep Continual Learning (CODE-CL),
a novel method that leverages conceptor matrix represen-
tations, a computational model inspired by neuroscience,
to more flexibly handle highly correlated tasks. CODE-
CL encodes directional importance within the input space
of past tasks, allowing new knowledge integration in di-
rections modulated by 1 − S, where S represents the di-
rection’s relevance for prior tasks. Additionally, we an-
alyze task overlap using conceptor-based representations
to identify highly correlated tasks, facilitating efficient for-
ward knowledge transfer through scaled projection within
their intersecting subspace. This strategy enhances flex-
ibility, allowing learning in correlated tasks without sig-
nificantly disrupting previous knowledge. Extensive exper-
iments on continual learning image classification bench-
marks validate CODE-CL’s efficacy, showcasing superior
performance with minimal forgetting, outperforming most
state-of-the-art methods.

1. Introduction
The ability to continually acquire, retain, and adapt knowl-
edge over time is a defining characteristic of intelligent be-
havior in humans and animals. This capacity to learn incre-
mentally from new information, while retaining past knowl-
edge, enables adaptation to dynamic and unpredictable en-
vironments [11, 14, 19]. In contrast, conventional deep

learning models typically excel when trained in a static,
batch-based manner on fixed datasets, but they face signifi-
cant difficulties when adapting to new information sequen-
tially without revisiting previous data, a limitation known
as catastrophic forgetting [8, 14, 30]. This phenomenon,
where knowledge of previous tasks degrades as new tasks
are learned, poses a fundamental obstacle to achieving con-
tinual learning (CL) in artificial neural networks.

Recent research in continual learning has led to the de-
velopment of strategies aimed at mitigating catastrophic
forgetting while enabling the integration of new informa-
tion. These strategies broadly fall into three categories:
regularization-based, expansion-based, and memory-based
methods. Regularization-based methods seek to constrain
updates to important model parameters for previous tasks,
preserving essential features while allowing flexibility in
unimportant regions of the parameter space [12, 18, 27, 28,
36]. Expansion-based methods dynamically allocate new
network resources to accommodate the growing complex-
ity of sequential tasks [20, 23, 32–34]. Memory-based ap-
proaches, by contrast, store representative samples or fea-
tures from previous tasks to maintain performance on ear-
lier data distributions [2, 3, 6, 17, 21, 25, 31, 35]. While
each of these approaches provides valuable contributions,
they often require trade-offs between flexibility and reten-
tion, and many still rely on extensive memory storage or the
allocation of dedicated resources for each new task.

A promising direction in the pursuit of efficient and scal-
able continual learning involves leveraging gradient projec-
tion methods, a group of techniques within the memory-
based approaches. Recent work in this area [6, 7, 9, 16,
24, 25, 31, 35] aims to preserve essential subspaces in the
weight vector space of neural networks that correspond to
previously learned tasks. By restricting model updates to or-
thogonal subspaces, through projecting gradients into those
subspaces, these methods effectively limit interference with
prior knowledge, thereby reducing catastrophic forgetting.
However, subspace-restricting gradients face inherent limi-
tations, as they often exclude potentially beneficial regions
of the weight space, thereby limiting the model’s capac-
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ity to fully utilize shared information across tasks. This
restriction is particularly problematic in scenarios where
tasks share common characteristics, as such overlap could
be leveraged for positive forward transfer of knowledge
[4, 16, 24].

In this work, we propose COnceptor-based gradient pro-
jection for DEep Continual Learning (CODE-CL), a novel
method that extends gradient projection approaches through
leveraging conceptor matrix representation [10], a compu-
tational model inspired by neuroscience, to more flexibly
manage overlapping tasks’ vector subspaces in continual
learning. Conceptor matrices model the task subspaces
based on input feature vectors, encoding the importance of
directions in the input space of previous tasks and enabling
selective updating for new tasks. By encoding past knowl-
edge in conceptor matrices, CODE-CL enables a more com-
prehensive yet controlled exploration of the weight space,
allowing learning to occur in previously restricted areas that
do not interfere with critical directions from past tasks.

A core contribution of CODE-CL lies in its adaptive
mechanism for task overlap analysis. We introduce a
method to analyze overlap by computing intersection sub-
spaces among tasks based on their conceptor representa-
tions, identifying highly correlated tasks with substantial
shared feature space. For these correlated tasks, CODE-
CL employs a gradient projection strategy that allows the
model to learn a scaled projection within the intersection
subspace. This approach promotes efficient forward knowl-
edge transfer, leveraging shared information between tasks
to enhance performance on new tasks without significant
interference with previously learned knowledge. For less
correlated tasks, CODE-CL constrains updates to avoid dis-
rupting prior knowledge, preserving task-specific informa-
tion effectively. Furthermore, we conduct extensive evalua-
tions on widely used continual learning benchmarks in im-
age classification, such as Permuted MNIST [15], Split CI-
FAR100 [13], Split miniImageNet [29], and 5-Datasets [5],
to demonstrate the efficacy of CODE-CL. The results show
that CODE-CL consistently achieves superior performance
with minimal forgetting across tasks, outperforming several
comparable state-of-the-art continual learning methods. In
summary, CODE-CL provides a scalable, memory-efficient
approach that enables both retention of past knowledge and
the flexible acquisition of new information. The main con-
tributions of this work are summarized as:
• Introduce a novel continual learning method, CODE-CL,

that leverage the conceptors’ pseudo-Boolean algebra for
promoting retention of past knowledge and flexible acqui-
sition of new information.

• Validate effectiveness of the proposed method extensively
on multiple continual image classification benchmarks
achieving performance superior to most of the state-of-
the-art gradient projection methods.

2. Background
In this section, we outline essential properties of concep-
tor matrices that are central to our approach and provide an
overview of related work in continual learning.

2.1. Conceptor matrices
Conceptor matrices are a computational model inspired by
neuroscience [10]. This mathematical framework was in-
troduced to encode and control the dynamics of recurrent
neural networks [10]. Given a batch of feature vectors
X ∈ Rb×n, where b is the batch size and n is the dimension
of the feature vector space, a conceptor matrix C(X, α) is
defined as the solution to the following minimization prob-
lem:

C(X, α) = argmin
C

1

b
∥X −XC∥2F + α−2∥C∥2F (1)

Here, α ∈ (0,∞) is called the aperture and serves as a reg-
ularization factor. Also, note that this optimization problem
has a closed-form solution:

C(X, α) =
X⊤X

b

(
X⊤X

b
+ α−2I

)−1

(2)

Therefore, given the singular value decomposition (SVD)
of the matrix X = UΣV ⊤, the conceptor matrix can be
expressed as C = USU⊤ = UΣ2(Σ2 + bα−2I)−1U⊤.
Thus, the singular values of C lie between 0 and 1 (0 <
Si,i < 1, ∀i ∈ {0, 1, . . . , n}), representing the importance
of a particular direction U:,i in the feature vector space X .
In this way, C acts as a soft projection matrix onto the linear
subspace of the feature vectors of X .

One important feature of the conceptor matrices is that
those satisfy most laws of Boolean logic, as described by
Jaeger [10], allowing to define a pseudo-Boolean algebra
that provide a simple and intuitive framework to handle the
linear subspaces defined within a conceptor matrix. Some
of the boolean operations supported by conceptor matrices
are NOT (¬), OR (∨), and AND (∧). Specifically, for two
conceptor matrices (C and B), the operations are defined
as follows:

¬C = I −C (3)

C ∧B = (C−1 +B−1 − I)−1 (4)

C ∨B = ¬(¬C ∧ ¬B) (5)

Here ¬C can be interpreted as a soft projection onto a linear
subspace that is the pseudo-orthogonal complement of the
subspace characterized by C. Moreover, C ∧ B compute
the conceptor matrix that describes approximately a space
that lies in the intersection between the subspaces charac-
terized by C and B. Similarly, C ∨B describes approxi-
mately the union between the linear subspaces represented
by C and B.
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Figure 1. CODE-CL procedure for learning Task t after learning sequentially Task 1 to Task t − 1. The first step involves analyzing the
intersection between the conceptors Ct−1 and Ct,pre, which represent the input space for tasks 1 to t − 1, and the current task t before
training, respectively. Such intersection space is represented by the conceptor Ct,and = Ct−1∧Ct,pre. So, if Ct,and capacity (Θ(Ct,and)) is
greater than certain threshold (ϵ) of the Θ(Ct−1), then it means that there is a high correlation between the current tasks and all the previous
tasks, so to achieve high performance on the current task, we allow the model to learn on the top K dimensions of the intersection subspace
(Ct,and) by projecting the weights into that subspace using square matrix M ∈ RK×K . In this manner, the effective weights (W eff)
become a projection of the actual weights and projected weights, and allows learning without affecting the previous tasks. Otherwise,
if Θ(Ct,and)/Θ(Ct−1) ratio is lower than ϵ, then there is low correlation between task therefore the complementary subspace of Ct−1

(¬Ct−1), must be enough to learn the current task successfully, so the effective weight remains unchanged (W eff = W ). Afterward,
optimization proceeds as usual, subject to the gradients of the weights (∇WL) projected onto the complementary subspace (¬Ct−1) of
the previous tasks. Once training is complete, we consolidate the knowledge of the current task by computing a new conceptor matrix,
Ct,post, and merging it with Ct−1. In this manner a new conceptor representing all the tasks from 1 to t is obtained as Ct = Ct,post∨Ct−1.

The aperture parameter α plays a crucial role in deter-
mining how information is stored in the conceptors, as it
scales the energy of the feature vectors (X:,i) stored in
them. Aperture adaptation for a conceptor C(X, α) is de-
fined by:

ψ(C, β) = C(C + β−2(I −C))−1 = C(X, αβ) (6)

Here, the function ψ(C, β) scales the aperture factor of the
conceptor C by a factor of β.

Also, we can measure the capacity, or memory usage, of
a conceptor matrix based on the mean value of their singular
values Si,i as:

Θ(C) =
1

n

n∑
i=0

Si,i (7)

A capacity of 0 would indicate that the conceptor is empty
and can be represented as a null matrix, while a capacity of 1
would indicate that the conceptor memory is full, becoming
in practice, an identity matrix.

In summary, conceptors provide a powerful framework
for handling concepts encoded in the linear subspaces
where the feature vectors lie, which we leverage for con-
tinual learning in deep neural networks. This section offers
only a brief overview of the key properties of conceptors
relevant to our work.

2.2. Related works
Continual learning (CL) is a challenging problem where
models need to learn new tasks sequentially without for-
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getting previously learned knowledge. Several methods
have been proposed to address this, which can be broadly
classified into expansion-based, regularization-based, and
memory-based approaches [16, 25, 30].

2.2.1. Regularization-based methods
These methods aim to mitigate forgetting by penalizing
changes to important model parameters. Elastic Weight
Consolidation (EWC) [12] utilizes the Fisher information
matrix to estimate the importance of each parameter, ap-
plying this as a regularization term in the loss function to
preserve essential parameters across tasks. Similar strate-
gies are employed in [22, 26]. Other methods, such as the
approach in [36], measure parameter importance based on
each parameter’s contribution to overall loss variation. In
contrast, methods like Hard Attention to Task (HAT) [27]
and PackNet [18] utilize attention masks or binary weight
masks to control the update of neurons relevant to previous
tasks. Although these methods are effective at protecting
essential parameters, they often rely on complex heuristics
to determine parameter importance or require storing multi-
ple model versions, which significantly increases memory.

2.2.2. Expansion-based methods
These techniques tackle catastrophic forgetting by increas-
ing the model’s capacity as new tasks are introduced. Pro-
gressive Neural Networks (PNNs) [23] freeze the parame-
ters of the previous tasks while expanding the network with
new sub-networks for each task. Methods like RCL [32]
and BNS [20] expand the network model based on a rein-
forcement learning strategy. Dynamically Expandable Net-
works (DEN) [33] combine strategies like model compres-
sion and network expansion to optimize task-specific archi-
tectures. While effective in isolating tasks to prevent inter-
ference, these approaches often lead to significant network
growth, which makes them resource-intensive.

2.2.3. Memory-based methods
These approaches mitigate catastrophic forgetting by re-
taining information, either as stored samples or gradient-
related information, from previous tasks. Experience Re-
play (ER) [2, 21] retains a subset of past task data to be re-
played alongside new tasks, effectively reinforcing knowl-
edge retention. Gradient Episodic Memory (GEM) [17]
and Averaged GEM (A-GEM) [3] employ stored gradi-
ent information to constrain updates in a way that pre-
vents interference with previous tasks. Another category
within memory-based methods is gradient-projection based
approaches, which address forgetting without the need to
store raw data from past tasks. These methods achieve
this by projecting gradients orthogonally to prior task di-
rections. For example, Orthogonal Weight Modulation
(OWM) [35] learns a projection matrix that transforms gra-
dients for new tasks minimizing interference. Similarly,

Conceptor-Aided Backpropagation (CAB) [9] utilizes con-
ceptor matrices and regularization terms to project gradients
into pseudo-orthogonal directions, preserving knowledge
from earlier tasks. An alternative approach is presented
in Gradient Projection Memory (GPM) [25], which applies
singular value decomposition (SVD) to identify and store
the most significant singular vectors. This process defines a
subspace for each previous task, allowing subsequent gradi-
ents to be projected orthogonally to these task-specific sub-
spaces. More recent methods such as TRGP [16] and SGP
[24] build upon GPM to improve performance while main-
taining low levels of forgetting. Specifically, TRGP defines
“trusted region” projection subspaces within the subspace
of previous tasks, enabling selective model updates by as-
sessing the gradient projection magnitude for each prior
task subspace as defined by GPM. In contrast, SGP relaxes
the strict orthogonality requirement of GPM, allowing gra-
dients to contain components that align partially with pre-
vious task subspaces. This modification provides a balance
between effective knowledge transfer and retention.

3. CODE-CL: Conceptor-based Deep Contin-
ual Learning

In this section, we describe the steps of our COnceptor-
based gradient projection for DEep Continual Learning
(CODE-CL) method. We consider a supervised contin-
ual learning setting where T tasks are learned sequentially,
with each task having sufficient labeled samples. We ex-
plore both domain-incremental and task-incremental learn-
ing scenarios in this supervised setting [30].

Each task is identified by t ∈ T = {1, 2, . . . , T}, and
its associated dataset is represented as Dt = {(xt

i, y
t
i)

nt
i=1},

where nt is the number of samples, xt
i is the input sam-

ple, and yti is the corresponding label. Using these
datasets, we train a neural network with parameters Wt =
{(W (l),t)Ll=1}, where L is the model’s number of layers.

For all tasks beyond the first, learning follows a three-
step process: (1) Analyzing the overlap of the input space
between the current task and previous tasks, using their re-
spective conceptor matrices, (2) training the model on the
current task with gradients constrained to subspaces defined
by previous tasks’ conceptor matrices, and (3) merging the
information of the current and previous tasks into an up-
dated conceptor matrix. As each layer follows the same
procedure, the following discussion focus on a single layer.

3.1. Learning on Task t = 1

For the initial task, learning proceeds with random weight
initialization, W = W 0, and the model is trained on
dataset D1 by minimizing a loss function:

W 1 := argmin
W
L(W ;D1) (8)
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Optimization is performed using minibatch stochastic gra-
dient descent (SGD) without constraints. After training
concludes based on set criteria, we compute a concep-
tor matrix C1 to encode the input subspace layer-wise.
Specifically, we randomly sample a batch of inputs from
D1, forming X1 = [x1⊤

1 ,x1⊤
2 , . . . ,x1⊤

b ], where b de-
notes batch size. Based on (2), we compute the conceptor
C1 = C(X1, α) with aperture α. This process is repeated
for each layer by forward propagating inputs through the
model, so each layer has its own conceptor matrix. As dis-
cussed in Section 2, the singular values Si,i of the conceptor
represent the importance of each direction, guiding which
directions are preserved for new tasks.

3.2. Learning on Task t ∈ {2, 3, . . . , T}

For each new task, we follow a three-step process, as illus-
trated in Fig. 1.

3.2.1. Task overlap analysis: Tasks 1 : t− 1 and Task t
Before training on task t, we analyze the overlap between its
input space and that of previous tasks, represented by Ct−1.
In order to do this, we compute a conceptor matrix for task
t. First, we sample a batch of samples from Dt to construct
X(0),t,pre, where the superscript ‘pre’ indicates pre-training
status. Then, for hidden layers, we propagate inputs for-
ward through the model with weights from the prior task,
W t−1, to obtain X(l),t,pre = f(X(l−1),t,pre;W (l),t−1),
where f(·) denotes the model’s non-linear function (e.g
ReLU). We then compute the pre-training conceptor for task
t as Ct,pre = C(Xt,pre, α). The input space overlap is
represented by the intersection Ct,and = Ct,pre ∧ Ct−1,
depicted geometrically in Fig. 1. The similarity between
Ct,and and Ct−1 indicates task correlation. So, if many di-
rections for the current task are encoded in Ct−1, tasks are
highly correlated. Task correlation is measured by the ca-
pacity ratio between conceptor matrices (7), defining high
(low) correlation when the ratio surpasses (falls below) a
threshold ϵ:

Case 1 (Θ(Ct,and)
Θ(Ct−1) > ϵ): In this high-correlation scenario

(illustrated in Fig. 1), directions encoded in Ct−1 are im-
portant for task t. The model is permitted to learn in the
top K directions of Ct,and without disturbing prior tasks.
To achieve this, weights are projected onto the subspace de-
fined by the top K directions and optimized using a matrix
M ∈ RK×K :

W t,eff = W +WU t,and
:,1:KM tU t,and⊤

:,1:K (9)

Here, U t,and
:,1:K are the top-K singular vectors of Ct,and. This

is explicitly allowing to effectively forward transfer knowl-
edge form old tasks to the current task.

Case 2 (Θ(Ct,and)
Θ(Ct−1) ≤ ϵ): In this low-correlation case, task

overlap is minimal, so no previous directions need adjust-
ing. Thus, the effective weights remain as W t,eff = W .

3.2.2. Optimization for task t
With W t,eff defined, weights are initialized as W =
W t−1, and the model is trained on Dt to minimize a loss
function:

W t,M t := arg min
W ,M

L(W t,eff;Dt)

s.t.∇WL = ∇WL(I −Ct−1)
(10)

Minibatch SGD optimizes the weights with gradients con-
strained to lie in the pseudo-orthogonal subspace of the con-
ceptor matrix defined by ¬Ct−1. This process continues
until certain stopping criteria are met.

3.2.3. Conceptor update after training on task t
After training, we merge current and past task knowledge
into a new conceptor matrix. Firsr, a new post-training
conceptor matrix Ct,post is computed by sampling a batch
from Dt, constructing X(0),t,post, and forward propagating
through the model using the updated weights W t, similarly
to Section 3.2.1. The layer-wise conceptor matrix for task
t post-training is Ct,post = C(Xt,post, α). We then merge
Ct,post and Ct−1 into a new conceptor matrix consolidating
all learned tasks: Ct = Ct,post∨Ct−1, illustrated in Fig. 1.

4. Experimental evaluation
In this section, we present an empirical assessment of
CODE-CL, demonstrating its effectiveness across multiple
continual learning image classification benchmarks. Our
evaluation focuses on measuring the method’s ability to re-
tain prior knowledge while adapting to new tasks, compar-
ing its performance against other CL approaches.

4.1. Experimental Setup
This subsection describes the general experimental setup
applied across all evaluations of CODE-CL. We outline the
benchmarks and models, training details, and metrics, to en-
sure consistent and fair evaluation.

4.1.1. Benchmarks and models:
We evaluate our method on widely used continual learning
(CL) benchmarks, including Permuted MNIST [15], Split
CIFAR100 [13], Split miniImageNet [29], and 5-Datasets
[5]. The Permuted MNIST benchmark is a variation of the
MNIST dataset where the pixel positions of each image are
randomly permuted, creating distinct versions of the origi-
nal images for each class. In our experiments, we use ten
sequential tasks, each with a different permutation, and train
a three-layer fully connected network with 100 neurons in
each hidden layer, similar to the setup in [16, 17, 25], in a
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Table 1. Performance comparison on continual image classification datasets using multi-head networks. Accuracy and BWT (mean ± std)
are reported over five trials. Best results are in bold and second best are underlined. †,‡ and * denote the results from [25], [16] and [24]
respectively

Method Split CIFAR100 Split MiniImageNet 5-Datasets

ACC (%) BWT (%) ACC (%) BWT (%) ACC (%) BWT (%)

Multitask† 79.58± 0.54 − 69.46± 0.62 − 91.54± 0.28 −
OWM [35]† 50.94± 0.60 −30± 1 − − − −
EWC [12]† 68.80± 0.88 −2± 1 52.01± 2.53 −12± 3 88.64± 0.26 −4± 1
HAT [27]† 72.06± 0.50 0± 0 59.78± 0.57 −3± 0 91.32± 0.18 −1± 0
A-GEM [3]† 63.98± 1.22 −15± 2 57.24± 0.72 −12± 1 84.04± 0.33 −12± 1
ER Res [2]† 71.73± 0.63 −6± 1 58.94± 0.85 −7± 1 80.31± 0.22 −4± 0
GPM [25]† 72.48± 0.40 −0.9± 0 60.41± 0.61 −0.7± 0.4 91.22± 0.20 −1± 0
TRGP [16]‡ 74.46± 0.32 −0.9± 0.01 61.78± 0.60 −0.5± 0.6 93.56± 0.10 −0.04± 0.01
SGP [24]* 76.05± 0.43 −1.0± 0 62.83± 0.33 −1.5± 1 − −
CODE-CL (Ours) 77.21± 0.32 −1.1± 0.28 68.83± 0.41 −1.1± 0.3 93.32± 0.13 −0.25± 0.02

domain-incremental setting. For Split CIFAR100, the orig-
inal CIFAR100 dataset is divided into T groups, each con-
taining an equal number of classes (100/T ). In our experi-
ments, we split the dataset into 10 groups, with each group
representing a separate task, and train a 5-layer AlexNet
model in a multi-head setting, where each task has its own
output head, following the methodology of [16, 24, 25].
Similarly, the Split miniImageNet benchmark consists of a
subset of 100 classes from the ImageNet dataset, divided
into T groups. For our experiments, we split the dataset
into 20 groups, each containing 5 classes, and trained a
reduced ResNet18 architecture in a multi-head setting, as
done in prior works [16, 24, 25]. The 5-Datasets bench-
mark involves training a model sequentially on five different
datasets, CIFAR10, MNIST, SVHN, notMNIST, and Fash-
ion MNIST, with each dataset treated as a single task. For
this benchmark, we again use a reduced ResNet18 model in
a multi-head setting. In all experiments, we refrained from
using data augmentation to align with prior works. The dat-
aloaders for Split CIFAR100 and 5-Datasets were sourced
from [25], while those for Permuted MNIST and Split mini-
ImageNet were provided by the Avalanche library [1].

4.1.2. Training details:

For all our experiments we use vanilla stochastic gradient
descent (SGD), with dynamic learning rate reduction based
on a validation metric and using early stopping criteria.
Each task in Split CIFAR100 is trained for 200 epochs with
a batch size of 64 with an aperture α = 6, similarly, each
task on Split miniImageNet and 5-Datasets is trained for
a maximum of 100 epochs with a batch size of 64, with
α = 8 and α = 4 respectivetly. Additionally, each task on
Permuted MNIST is trained for 5 epochs with a batch size
of 100 with α = 3. All the experiments reported on Ta-
ble 1 and Table 2 used K = 80. More details of training

setup, hyperparameters and implementation are given in the
Supplementary Material.

4.1.3. Metrics:
Similar to previous works [16, 17, 25], we use two metrics
to evaluate the performance of our method, such as: the
average final accuracy over all tasks, Accuracy (ACC), and
Backward Transfer (BWT), which measures the forgetting
of old tasks when learning new tasks. ACC and BWT are
defined as:

ACC =

T∑
i=1

AT,i

T
; BWT =

T−1∑
i=1

AT,i −Ai,i

T − 1
(11)

Here, T is the number of tasks, Aj,i is the accuracy of the
model on i-th task after learning the j-th task sequentially
(i ≤ j).

4.2. Results
In this subsection, we present the performance of CODE-
CL in comparison with prior approaches, along with a de-
tailed analysis of its memory complexity. Additionally, we
conduct ablation studies to assess the impact of varying
the number of free dimensions, K, on the method’s per-
formance.

4.2.1. Performance Comparison:
As shown in Table 1 and Table 2, our method demonstrates
high accuracy with minimal forgetting across all bench-
marks. Specifically, CODE-CL consistently delivers com-
petitive results, outperforming previous methods on most
datasets.

On Permuted MNIST, Table 2, CODE-CL surpasses ex-
isting methods such as GPM and TRGP in terms of accu-
racy. Moreover, on Split CIFAR100, CODE-CL achieves
an impressive accuracy of 77.21%, coming close to the

6



Table 2. Performance comparison on the Permuted MNIST dataset
using a single network in a domain incremental setting. Accuracy
and BWT (mean ± std) are reported over five trials. Best results
are in bold and second best are underlined. † and ‡ denote the
results from [25] and [16] respectively

Method Permuted MNIST

ACC (%) BWT (%)

Multitask† 96.70± 0.02 −
OGD [6]† 82.56± 0.66 −14± 1
OWM [35]† 90.71± 0.11 −1± 0
EWC [12]† 89.97± 0.57 −4± 1
A-GEM [3]† 83.56± 0.16 −14± 1
ER Res [2]† 87.24± 0.53 −11± 1
GPM [25]† 93.91± 0.16 −3± 0
TRGP [16]‡ 96.34± 0.11 −0.8± 0.1

CODE-CL (Ours) 96.56± 0.06 −0.24± 0.04

upper bound set by Multitask learning (79.58%), which
serves as an ideal, but unrealistic, comparison point. No-
tably, CODE-CL outperforms other state-of-the-art contin-
ual learning methods, registering 4.73%, 2.75%, and 1.16%
higher accuracy than GPM, TRGP, and SGP, respectively.
Similarly, on Split MiniImageNet, CODE-CL once again
performs exceptionally well, achieving an accuracy sec-
ond only to Multitask learning, and outperforming GPM
by 8.42%, TRGP by 7.05%, and SGP by 6%. This further
underscores CODE-CL’s robustness, particularly when han-
dling more challenging datasets, where competing methods
tend to experience significant performance drops. On the
5-Datasets benchmark, CODE-CL reaches an accuracy of
93.32%, outperforming GPM by 2.1% and Multitask learn-
ing by 1.78%. Although it falls just 0.24% short of TRGP
on this benchmark, the difference is marginal, highlight-
ing CODE-CL’s strong overall performance across diverse
tasks.

In terms of backward transfer (BWT), our results fur-
ther illustrate the effectiveness of CODE-CL in mitigating
catastrophic forgetting. On Permuted MNIST, CODE-CL
achieves a BWT of −0.24%, which is lower than previ-
ous methods like GPM and TRGP. Furthermore, on Split
CIFAR100, CODE-CL records a BWT of −1.1%, indicat-
ing minimal performance loss on previously learned tasks,
and this result is comparable to those obtained by GPM,
TRGP, and SGP. Likewise, on Split MiniImageNet, CODE-
CL reports a BWT of −1.1%, which is consistent with
state-of-the-art methods, demonstrating its capacity to re-
tain learned knowledge with minimal degradation. Finally,
in the 5-Datasets benchmark, CODE-CL achieves a BWT
of −0.25%, outperforming GPM and performing slightly
worse than TRGP. In summary, the high accuracy and
low forgetting of CODE-CL highlight its ability to effec-

(a) Split CIFAR100 (ACC) (b) Split CIFAR100 (BWT)

(c) Split miniImageNet (ACC) (d) Split miniImageNet (BWT)

(e) 5-Datasets (ACC) (f) 5-Datasets (BWT)

(g) Permuted MNIST (ACC) (h) Permuted MNIST (BWT)

Figure 2. Effect of the number of free dimensions (K) parameter
on the final accuracy and BWT for the Split CIFAR100, Split mini-
ImageNet, 5-Datasets, and Permuted MNIST benchmarks. The
box plots were generated based on the results of five independent
runs.

tively balance the trade-off between plasticity and stability,
maintaining strong performance across a range of continual
learning tasks while minimizing forgetting.

4.2.2. Memory Complexity:
Efficient memory usage is crucial, especially when scaling
to larger networks and a greater number of tasks. In this sec-
tion, we compare the memory complexity of our proposed
method against other established methods, including GPM,
TRGP, and SGP.

For simplicity, the following analysis focuses on a sin-
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Table 3. Memory complexity comparison among methods. The analysis is done for a single fully-connected layer with N inputs, M
outputs, after being trained on T tasks. Also, B is the average number of important direction per task used in [16] and K is the number of
free dimensions parameter used in CODE-CL.

Methods GPM TRGP SGP CODE-CL (Ours)

Memory Complexity O(N2) O(N2 + TNB + TB2) O(N2) O(N2 + TNK + TK2)

gle fully-connected layer with N inputs and M outputs af-
ter training sequentially on T tasks. For CODE-CL, the
memory complexity is influenced by the conceptor matri-
ces that has a dimension N2 that encode the information of
the input vector space, more over as discussed in Section 3,
CODE-CL uses a discrete fixed number of free dimensions
per task (K) to learn the an optimal linear combination of
the K most important direction of the subspace represented
by the intersection of the conceptor of old tasks with the
new task. This term incurs into additional memory propor-
tional to TKN +TK2, where TKN represent the K most
important direction of dimension N for T tasks. Therefore,
reaching a memory complexity of O(N2 + TNK + TK2)
In the case of GPM and SGP, the additional memory usage
is determine by the dimension of the inputs N , the number
of important directions per task B and the number of tasks
T . So the maximum dimension in those cases is in the order
of O(N2). Finally, TRGP requires the same memory than
GPM to store the important direction of all learned tasks,
but in addition to this, TRGP requires to store the impor-
tant directions per tasks as well as the important direction
in the trusted region projection subspaces, which incur in
additional memory TNB + TB2. Table 3 summarizes the
memory complexity for each method.

Note that, as the methods scale for deeper models, the
number of free dimension used in our method is fixed and
significantly less than the dimension of the input space,
K ≪ N , which make the ratio between memories require-
ments of GPM and CODE-CL close to ∼ 1. However, for
deeper models B scales with the size of the model, there-
fore the memory of TRGP becomes dominated by the term
TNB, which make the method essentially require ∼ B/K
times more memory than our method.

4.2.3. Effect of K in performance:
To investigate the influence of the number of free dimen-
sions (K) on model performance, we conduct ablation stud-
ies using different values of K. The results for all four
benchmarks are presented in Fig. 2. In general, we observe
that increasingK enhances model accuracy while maintain-
ing a low Backward Transfer (BWT). However, this trend
varies across the benchmarks, revealing two distinct pat-
terns.

For the 5-Datasets and Permuted MNIST benchmarks,
increasing K consistently improves accuracy and substan-
tially reduces BWT. In contrast, for Split CIFAR100 and

Split miniImageNet, the model achieves higher accuracy
when K ≥ 40, while setting K = 20 leads to a small accu-
racy decline. Moreover, in these latter benchmarks, higher
values of K slightly increase BWT, though the effect re-
mains relatively minor. These contrasting results can be at-
tributed to the nature of the benchmarks. In the 5-Datasets
and Permuted MNIST benchmarks, the tasks are inherently
diverse, as the images originate from distinct distributions
with minimal overlap. Conversely, the tasks in Split CI-
FAR100 and miniImageNet are derived from a shared dis-
tribution, leading to greater overlap among tasks. Conse-
quently, while increasingK generally enhances accuracy by
facilitating knowledge transfer from previous tasks to new
tasks, the reduction in BWT is less pronounced for tasks
with significant data distribution overlap. The similarity in
data distributions across tasks in Split CIFAR100 and mini-
ImageNet likely limits BWT reduction, even as accuracy
benefits from a larger K.

5. Conclusions

The ability to learn incrementally, retaining past knowledge
while adapting to new information, is essential for contin-
ual learning in artificial neural networks. This work pro-
posed CODE-CL, a novel continual learning method that
leverages conceptor-based gradient projection. CODE-CL
addresses the limitations of traditional gradient projection
by employing conceptor matrices, a model inspired by neu-
roscience, allowing the model to flexibly manage overlap-
ping task’s subspaces for continual learning. By encod-
ing past tasks into conceptor matrices, CODE-CL enables
a nuanced approach to managing shared and unique in-
formation across tasks, facilitating both knowledge reten-
tion and efficient forward transfer. The method’s adaptive
mechanism analyzes task overlap, enhancing the model’s
ability to leverage shared knowledge between tasks with-
out compromising performance on previously learned tasks.
Extensive evaluations on diverse continual learning bench-
marks, including Split CIFAR100, Split miniImageNet, 5-
Datasets, and Permuted MNIST, demonstrate CODE-CL’s
superior performance and reduced forgetting compared to
other comparable state-of-the-art methods. CODE-CL’s
ability to dynamically allocate memory for correlated and
independent tasks makes it scalable and efficient for real-
world applications where adaptability to evolving environ-
ments is essential.
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CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning

Supplementary Material

A. Conceptor Implementation Details
We implement the conceptor operations following the equa-
tions presented in Section 2, with one exception: the AND
operation (4).

As noted in [10], the operation defined in (4) is only valid
when the conceptor matrices are invertible. However, in
practice, since we use a limited number of samples to com-
pute the conceptors, the resulting matrices are often not full
rank. To address this, we adopt a more general version of
the AND operation, as proposed in [10]:

C ∧B = D(D⊤(C† +B† − I)D)−1D⊤, (12)

Here, C† and B† denote the pseudo-inverses of C and B,
respectively. The matrix D consists of columns that form
an arbitrary orthonormal basis for the intersection of the col-
umn spaces of C and B.

The procedure for computing D is outlined in Algo-
rithm 1.

Algorithm 1 Computation of matrix D in (12)

Input: C, B, β (threshold), N (dimension of C and B)
Output: D
UC ,SC ← SVD(C) ▷ Singular value decomposition
UB,SB ← SVD(B)
kC ← num elements(SC > β) ▷ # of elements > β
kB ← num elements(SB > β)
U ′

C ← UC [:, kC :] ▷ Last N − kC columns
U ′

B ← UB[:, kB :]
U ,S ← SVD(U ′

CU ′⊤
C +U ′

BU ′⊤
B )

k ← num elements(S > β)
D ← U [:, k :]

B. Experimental Setup
This section provides details on the architecture of all mod-
els used in this work, the dataset statistics, the hyperparam-
eters for each experiment, and the compute resources em-
ployed.

B.1. Model Architecture
In this work, we utilize two models: an AlexNet-like archi-
tecture, as described in [27], and a Reduced ResNet18 [17].

The AlexNet-like model incorporates batch normaliza-
tion (BN) in every layer except the classifier layer. The BN
layers are trained during the first task and remain frozen
for subsequent tasks. The model consists of three convolu-
tional layers with 64, 128, and 256 filters, using kernel sizes

of 4× 4, 3× 3, and 2× 2, respectively. These are followed
by two fully connected layers, each containing 2048 neu-
rons. ReLU activation functions are used throughout, along
with 2×2 max-pooling layers after each convolutional layer.
Dropout is applied with rates of 0.2 for the first two layers
and 0.5 for the remaining layers.

The Reduced ResNet18 follows the architecture detailed
in [25]. For the Split miniImageNet experiments, the first
layer uses a stride of 2, while for the 5-Datasets benchmark,
it uses a stride of 1.

For all models and experiments, cross-entropy loss is
employed as the loss function.

B.2. Dataset Statistics
The statistics for the four benchmarks used in this work for
continual image classification are summarized in Table 4
and Table 5. For all benchmarks, we follow the same data
partitions as those used in [16, 24, 25].

For the 5-Datasets benchmark, grayscale images are
replicated across all RGB channels to ensure compatibility
with the architecture. Additionally, all images are resized to
32× 32 pixels, resulting in an input size of 3× 32× 32 for
this benchmark.

B.3. Hyperparameters
The hyperparameters used in our experiments are detailed
in Table 6.

B.4. Compute resources
All experiments were conducted on a shared internal Linux
server equipped with an AMD EPYC 7502 32-Core Pro-
cessor, 504 GB of RAM, and four NVIDIA A40 GPUs,
each with 48 GB of GDDR6 memory. Additionally, code
was implemented using Python 3.9 and PyTorch 2.2.1 with
CUDA 11.8.

C. CODE-CL algorithm
The pseudo-code for CODE-CL is shown in Algorithm 2.
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Algorithm 2 CODE-CL pseudo code

Input: Dt = {(xt
i, y

t
i)

nt
i=1}, W = {(W (l))Ll=1}, α (aperture), ϵ (threshold), η0 (learning rate), E (number of epochs), b

(batch size), ηth (minimum learning rate), bs (batch size for computer computation), K (number of free dimensions)
W←W0 ▷ Random initialization
epoch← 0
η ← η0
while epoch < E and η > ηth do ▷ Learning on the first task (t = 1)

for n = 1, 2, . . . , ⌊n1

b ⌋ do
Bb ∼ D1

train ▷ Sample of a mini-batch of size b from the train set of task 1 (D1
train)

∇WL ← compute gradient(W,Bb)
W←W− η∇WL

end for
epoch← epoch+ 1
η ← LR decay(W,D1

test, η)
end while
Bbs ∼ D1

train
X1 ← forward(W,Bbs) ▷ Set of inputs for all layers X1 = {(X(l),1)Ll=1}
C1 ← compute conceptor(X1, α) ▷ Compute conceptor matrices per layer (C1 = {(C(l),1)Ll=1}) based on (2)
W1,eff ←W1

for t = 2, 3, . . . , T do ▷ Learning on Task t ∈ {2, 3, . . . , T}
Bbs ∼ Dt

train
Xt ← forward(Wt−1,eff,Bbs)
Ct,pre ← compute conceptor(Xt, α)
Ct,and ← Ct,pre ∧ Ct−1 ▷ AND operation based on (4)
for l = 1, 2, . . . , L do

if Θ(C(l),t,and)
Θ(C(l),t−1) > ϵ then
U (l),t ← SVD(C(l),t,and) ▷ Singular value decomposition
M (l),t ∼ N ▷ Random initialization of matrix M ∈ RK×K

W (l),t,eff ←W (l)(I −U
(l),t
:,1:KM (l),tU

(l),t⊤
:,1:K )

else
W (l),t,eff ←W (l)

end if
end for
Wt,eff ← {(W (l),t,eff)Ll=1}
epoch← 0
η ← η0
while epoch < E and η > ηth do

for n = 1, 2, . . . , ⌊n1

b ⌋ do
Bb ∼ Dt

train
∇WL,∇MtL ← SGD(Wt,eff,Bb)
∇WL ← ∇WL −∇WLCt−1 ▷ Gradient projection per layer∇W (l)L ← ∇W (l)L −∇W (l)LC(l),t−1

W←W− η∇WL
Mt ←Mt − η∇MtL

end for
epoch← epoch+ 1
η ← LR decay(W,Dt

test, η)
end while
Bbs ∼ Dt

train
Xt ← forward(W,Bbs) ▷ Set of inputs for all layers Xt = {(X(l),t)Ll=1}
Ct,post ← compute conceptor(Xt, α)
Ct ← Ct,post ∨ Ct−1 ▷ Compute conceptor matrices for Task t based on (5)

end for
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Table 4. Permuted MNIST, Split CIFAR100 and Split miniImageNet datasets statistics.

Dataset Permuted MNIST Split CIFAR100 Split miniImageNet

Number of tasks (T ) 10 10 20
Sample dimensions 1× 28× 28 3× 32× 32 3× 84× 84
Number of classes per task 10 10 5
Training samples per task 54000 4750 2375
Validation samples per task 6000 250 125
Test samples per task 10000 1000 500

Table 5. 5-Datasets statistics.

Dataset CIFAR10 MNIST SVHN Fashion MNIST notMNIST

Number of classes 10 10 10 10 10
Training samples 47500 57000 69595 57000 16011
Validation samples 2500 3000 3662 3000 842
Test samples 10000 10000 26032 10000 1873

Table 6. List of hyperparameters used in our experiments.

Dataset Permuted MNIST Split CIFAR100 Split miniImageNet 5-Datasets

Learning rate (η) 0.01 0.01 0.1 0.1
Batch size (b) 100 64 64 64
Batch size for conceptor comp. (bs) 300 125 125 125
Min. learning rate (ηth) − 10−5 10−5 10−3

Learning rate decay factor − 1/2 1/2 1/3
Patience − 6 6 5
Number of epochs (E) 5 200 100 100
Aperture (α) 3 6 8 4
Threshold (ϵ) 0.5 0.5 0.5 0.5
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