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The pursuit of creating artificial intelligence (AI) mirrors our longstanding fascination
with understanding our own intelligence. From the myths of Talos to Aristotle’s logic and
Heron’s inventions, we have sought to replicate the marvels of the mind. While recent
advances in AI hold promise, singular approaches often fall short in capturing the essence
of intelligence. This paper explores how fundamental principles from biological computa-
tion—particularly context-dependent, hierarchical information processing, trial-and-error
heuristics, and multi-scale organization—can guide the design of truly intelligent systems.
By examining the nuanced mechanisms of biological intelligence, such as top-down causality
and adaptive interaction with the environment, we aim to illuminate potential limitations
in artificial constructs. Our goal is to provide a framework inspired by biological systems
for designing more adaptable and robust artificial intelligent systems.

I. HISTORICAL CONTEXT

The pursuit of artificial intelligence has deep
historical roots. Philosophers like Thomas
Hobbes, with his mechanical theory of thought,
and visionaries such as Blaise Pascal and Got-
tfried Leibniz ignited the dream of intelligent
machines, foreshadowing the notion that intelli-
gence could arise from complex, rule-bound ma-
nipulations.
Subsequent centuries saw renewed efforts to

formalize intelligence. Charles Babbage’s pro-
grammable machines and Ada Lovelace’s real-
ization that machines could manipulate sym-
bols—not just numbers—laid the groundwork
for modern computation. The 20th century,
from formal logic to Alan Turing’s foundational
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work, witnessed the birth of Artificial Intel-
ligence. Despite setbacks, this era produced
remarkable successes in specialized tasks; ma-
chines achieved impressive feats in chess (IBM
DeepBlue19) and Go (AlphaGo93), employing
powerful search algorithms that differed signifi-
cantly from the adaptable, context-sensitive in-
telligence of biological systems.

Recent advances in neuroscience and comput-
ing power have ignited excitement for neuro-
inspired computer vision23. However, the elu-
sive goal of Artificial General Intelligence (AGI)
remains, as the definition of intelligence evolves
and benchmarks like the Turing test shift our
expectations71,72. Promising strategies like
symbolic computation74 ultimately fell short,
possibly due to the lack of a vast knowledge base
reflecting real-world understanding69. Neural
networks, once met with skepticism, now flour-
ish with increased computational power, yet
even the most sophisticated networks still fall
short of the adaptive, context-dependent intel-
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ligence observed in biological systems.
These limitations have prompted researchers

to explore alternative paradigms inspired by the
adaptability and complexity of biological sys-
tems, which we will discuss in the following sec-
tion.

II. BIO-INSPIRED AI: CURRENT STATE AND

LIMITATIONS

Biological intelligence, refined through evo-
lutionary processes, offers an alternative
paradigm emphasizing adaptability and con-
text sensitivity. Evolution acts as a natural
tinkerer45, incrementally building complex sys-
tems that flexibly respond to environmental
challenges, leading to hierarchically structured
architectures that prioritize context-dependent
information processing.
Biological intelligence is not confined to neu-

ral systems. Research shows that even single-
celled organisms exhibit information processing
and adaptive behavior. For instance, Parame-

cium, a eukaryotic unicellular ciliate, can inte-
grate sensory inputs and modify its behavior
accordingly16. Plants also demonstrate sophis-
ticated behaviors like signal transduction and
environmental responsiveness without a ner-
vous system, challenging traditional notions of
cognition21,104.
Moreover, life has been navigating vari-

ous problem spaces—metabolic, transcrip-
tional, physiological, and anatomical—long
before nerves and muscles appeared34,35.
This indicates that intelligence predates
multicellularity5,6,65 and is rooted in funda-
mental biological processes. Cells’ problem-
solving abilities in physiological and metabolic
domains enable cell collectives to navigate mor-
phospace—an abstract multidimensional space
of possible biological forms and functions—by
relying on internal molecular pathways and
gene-regulatory networks for learning and
decision-making11,12,38,40,102.
Thus, a path toward artificial general intel-

ligence involves not merely replicating neural
architectures but implementing the multi-scale,

hierarchical organization found in life. In such
systems, every level—from molecules to cells
to organisms—possesses competencies and en-
gages in adaptive information processing, a con-
cept known as “polycomputing”13,60. By em-
bracing this broader view of intelligence, we can
explore bio-inspired designs that harness the in-
herent adaptability and context sensitivity of bi-
ological systems.

Recent years have seen a shift towards
bio-inspired designs in developing intelligent
machines. Projects like RoboBee66 and
RoboRay78, which mimic insect flight and com-
bine biological with electronic elements, under-
score the importance of understanding material
constraints for creating flexible, lightweight sys-
tems. Effective communication among compo-
nents and processing power are key to their suc-
cess. More directly addressing intelligence, neu-
romorphic computing aims to achieve brain-like
energy efficiency with spiking neural network
designs36,70. In algorithms, deep learning58 and
recurrent networks43 loosely mimic aspects of
biological network structure.

However, much of intelligent problem-solving
in biology occurs without spiking activity or
neurons3,64, challenging the AI focus on neu-
ral networks. Intelligence can emerge from
different biological substrates and mechanisms.
For instance, slime molds like Physarum poly-
cephalum can find the shortest path through
a maze to reach food sources, effectively solv-
ing complex optimization problems without
any neural structures101. Plants exhibit so-
phisticated behaviors such as opening and
closing stomata in response to environmental
conditions and adjusting growth patterns to-
ward light sources through hormonal signaling
pathways104. Social insects like ants and ter-
mites coordinate colony-level activities such as
foraging, nest building, and defense through
pheromone communication and emergent be-
haviors, without relying on neuronal processing
akin to spiking neurons18. Even single-celled or-
ganisms like bacteria demonstrate chemotaxis
and quorum sensing, adjusting their actions
based on chemical gradients and population
density, reaching optimal census7,99. Remark-
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ably, genetically modified bacteria can act as
cell-based biocomputers, solving mathematical
problems like identifying prime numbers14.

These examples illustrate that intelligence in
nature often arises from hierarchical, context-
dependent interactions within and between liv-
ing subsystems at multiple scales—not solely
from neural computations. They challenge the
assumption that replicating neuronal structures
is the only path toward artificial intelligence and
highlight the potential of alternative biological
mechanisms.

Despite some bio-inspired advances, under-
standing the computational limits imposed by
biological organization remains elusive. Cur-
rent AI approaches, focused on mimicking “be-
havioral function”, often overlook either com-
plex hierarchical architectures or adaptive en-
vironmental interactions. This stems from a
historical emphasis on functional aspects of
intelligence87, where the functional output is
paramount but intrinsic organization and ex-
ternal context are secondary. While achieving
functionality is desirable, replicating raw com-
putational power incurs high energy costs if we
do not understand intrinsic organization and ex-
ternal context.

Early attempts to incorporate goal-directed
(teleological) behavior via feedback loops of-
fered a path toward adaptation87,94,95. W. Grey
Walter’s Machina Speculatrix and Machina

Docilis tortoises39 could navigate environments
using simple sensors, displaying purposeful be-
haviors. However, purely behavioral approaches
failed to advance AI beyond narrow tasks. The
missing piece may be the hierarchical orga-
nization and multi-scale interactions found in
biological systems, enabling context-dependent
functional algorithms.

In biology, context dependency involves
top-down information exchange unique to
multi-scale organization107, where higher lev-
els modulate lower-level components75, allow-
ing dynamic adaptation. While information
is physical and subject to thermodynamic
limits10,55,56,79,103, biological systems exhibit
feedback where macroscopic information influ-
ences microscopic dynamics107. This hints at

strong causal emergence42, where higher-level
properties exert causal powers not reducible to
lower-level interactions75.

Furthermore, biological systems often per-
form polycomputing—the ability of the same
substrate to perform multiple computations
simultaneously13,60. Unlike traditional comput-
ers, living systems components carry out diverse
functions concurrently; for example, a protein
may participate in metabolism, signal transduc-
tion, and structural support. This multifunc-
tionality is a hallmark of biological efficiency
and adaptability.

This interplay of information and energy al-
lows goal-directed, context-sensitive processing
to reconfigure microscopic dynamics. Future
quantiative biological models must translate
macroscopic goals into computational rules at
network, unit (cells), and intracellular scales28.
Conventional AI often seeks intelligence emer-
gence from components lacking world models or
goal-directed behavior. In contrast, biology ex-
hibits problem solving at every level, with be-
havior resulting from cooperation and mutual
shaping of diverse modules across scales. Every
component has homeostatic goal-directedness,
and higher levels can modulate the energy land-
scape of sub-levels to harness autonomy toward
larger goals.

Biological systems also operate within unreli-
able mediums due to unavoidable noise, forcing
them to reinterpret information on-the-fly, pri-
oritizing saliency and real-time adaptation over
data fidelity60. This frames information in biol-
ogy as fundamentally semantic, carrying mean-
ing and purpose, not merely randomness as in
Shannon’s information theory68,92. Thus, it re-
flects information’s physical nature, offering a
framework distinct from the vague “brain (or
cell) is a computer” analogy28. Biological sys-
tems blur the separation of machine and data,
as components can modify their structure and
function based on information processing.

While bio-inspired AI holds promise, we must
be mindful of its limitations. The complexity
of biological systems poses challenges in repli-
cating multiple organizational levels. Strictly
adhering to biological models risks overfitting;
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biology should inspire, not constrain, AI design.
Scaling bio-inspired systems to real-world appli-
cations involves engineering inherently complex
context-dependent interactions.

III. CONCEPTUAL FOUNDATIONS FOR

BIO-INSPIRED AI

A. Contextual Information Processing in Biology

Biological intelligence relies on context, non-
locality, and adaptive feedback. Unlike deter-
ministic algorithms seeking optimal solutions
through exhaustive search or predefined rules,
biological systems interpret information based
on current context. Meaningful information
emerges from interactions across multiple scales
within a hierarchical architecture, without a di-
rect one-to-one correspondence between micro-
scopic dynamics (e.g., individual neuron activ-
ity) and information flow.

This framework mirrors gene expression in
cells, where DNA functions not as a rigid
blueprint but as a dynamic backbone influenced
by the cellular environment3,107. Genes interact
and respond to external signals, leading to the
expression or suppression of certain genes; these
interactions, rather than gene products alone,
carry information and realize possibilities based
on genetic composition68.

The key insight is that biological systems do
not operate on fixed instructions but adaptively
process information based on context. Evolu-
tion acts as a natural tinkerer45, incrementally
building complex systems that flexibly respond
to environmental challenges. This principle has
inspired fields like evolutionary robotics, apply-
ing evolutionary concepts to robot design and
leading to intelligent behaviors differing from
those produced by traditional algorithms81.
Similarly, within organisms, processes like mor-
phogenesis enable the development of com-
plex structures through context-dependent cel-
lular interactions, while behavioral circuits al-
low adaptive responses during an organism’s
lifetime.

B. Trial and Error as a Fundamental Strategy

In complex environments, organisms cannot
rely on precomputed optimal solutions; instead,
they employ heuristics derived from experi-
ence, particularly trial-and-error methods, to
adapt to new challenges80,83. This approach
enables effective exploration without exhaus-
tive search, favoring adaptability over perfec-
tion. Ashby demonstrated that parallel trial-
and-error strategies can rapidly solve high-
dimensional problems infeasible for serial ex-
haustive methods1. Similarly, chess masters use
experience-based heuristics to focus on promis-
ing moves, navigating vast possibilities without
calculating every option96. These non-optimal
yet effective strategies are characteristic of bio-
logical intelligence.

C. Maintaining Stability Through Hierarchical

Organization

A critical question arises: How does a system
exhibiting context-dependent, non-local behav-
ior remain stable? Ashby’s Law of Requisite Va-
riety provides an answer2: to effectively control
a system or adapt to an environment, the inter-
nal control mechanism must possess a variety at
least equal to that of the system-environment
complex.

However, simply increasing components and
connections can lead to instability; Gardner
and Ashby showed that excessive connectiv-
ity causes chaotic dynamics37. Biological sys-
tems address this challenge through modular
organization—subsystems performing specific
functions—maintaining stability while allowing
complex behaviors28,67. For example, modules
interact but their interactions become fixed over
time to ensure consistent functionality20. This
modular and hierarchical organization enables
robustness and flexibility, allowing systems to
adapt without becoming unstable. Moreover,
competitive dynamics can shape stable collec-
tive information processing, with modules re-
cruited as needed25.
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D. Hierarchy and Information Abstraction

Evolution has embraced hierarchical organi-
zation to build adaptive systems28. Simple or-
ganisms exhibit rudimentary behaviors, while
more complex ones display intricate behaviors
enabled by deeper hierarchical structures like
nervous systems. Comparative neuroanatomy
across species reveals increasing structural hier-
archy alongside more sophisticated behaviors.
Hierarchy involves organizing nested compo-

nent for information abstraction and efficient
processing29, akin to how deep learning net-
works use multiple layers to extract higher-
level features61. Hierarchical structures facil-
itate renormalization processes, summarizing
detailed lower-level information at higher levels
to handle complexity effectively.
Importantly, hierarchical organization pro-

vides modularity, aiding in repair and improve-
ment without disrupting the entire system. Si-
mon’s parable of the two watchmakers illus-
trates this point94,95: while Tempus builds
watches serially (in a non-modular fashion) and
must restart upon interruption, Hora uses mod-
ules, making the process more efficient and re-
silient.
Evolutionary tinkering crafts a modular

structure that increases the system’s requisite
variety as its functional repertoire grows. This
principle extends to biological systems and can
inform robust AI design. By adopting a mod-
ular, hierarchical approach, AI systems can
achieve greater adaptability and resilience.

E. Beyond Deterministic Algorithms

This understanding challenges attempts to
formalize intelligence purely through induction
or deterministic algorithms. Bayesian infer-
ence, relying on hierarchical generative models
and prior assumptions100, cannot achieve the
contextual, non-optimal generality of biological
intelligence30 due to its reliance on predefined
priors, which limits exploration and adaptabil-
ity. Trial and error, likely the most fundamental
knowledge-gathering strategy, underpins even

scientific discovery31,82. Complex intelligent
behavior arises through continuous interaction
with and modification of the environment. Bio-
logical systems exemplify this through constant
feedback with their surroundings, adjusting be-
haviors and strategies in real time.

F. Physical Computing and Compositionality

The theory of physical computing, grounded
in mathematical formalism, enhances our un-
derstanding of designing artificial systems that
engage with the complexities of natural intelli-
gence. Insights from category theoretic formal-
ism of physical computing, highlight the adapt-
ability and compositional capabilities essential
for artificial general intelligence, emphasizing
system compositionality28.
This approach mirrors our discussions on the

hierarchical and context-sensitive nature of bio-
inspired computational models. By focusing on
how components compose and interact, we can
create systems that fundamentally engage with
complex dynamics, akin to biological systems.

IV. INSIGHTS FROM NEUROSCIENCE AND

NEUROAI

Biological systems can continue to inspire
new paradigms in AI, offering principles that
could revolutionize our approach to building in-
telligent systems109.

A. Embracing Embodiment

While the importance of embodiment in bi-
ological intelligence has been acknowledged105,
recent neuroscience research provides deeper in-
sights into how physical interaction with the
environment shapes the brain as the engine of
cognition. Studies show that neural develop-
ment and synaptic connectivity are profoundly
influenced by sensorimotor experiences46,76,90,
underscoring the need for AI systems that
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can physically interact with their surround-
ings to achieve adaptive and context-aware
intelligence81,98.
This hints at the embodied Turing test as a

more meaningful benchmark for AI. In fact, as
discussed earlier, a general problem with the
current use of the Turing test is that the goal-
post is constantly moved as the definition of the
‘target’ is reinterpreted whenever a new innova-
tive tool, such as neural networks, surpasses the
current threshold72.
The embodied Turing test proposes evaluat-

ing AI based on its ability to interact physi-
cally and adaptively with the world, rather than
solely through disembodied tasks like language
processing or game playing. This shifts the fo-
cus to dynamic, context-dependent interactions
that are more representative of natural intel-
ligence. It emphasizes building systems that
can sense, act, and adapt to their environments,
echoing the evolutionarily honed sensorimotor
capabilities of living creatures.

B. Neuromorphic Efficiency and Adaptability

Although brain comprises roughly 2% of the
body weight, it utilizes about 20% of the body’s
energy intake84. Despite this significant energy
use relative to its size, the brain is remark-
ably energy-efficient compared to traditional
computing models. Consuming only about 20
watts of power—with approximately 100 bil-
lion neurons with 1015 synapses firing at 1Hz

(using 10−10 Joules per act on potential and
10−14 Joules per synaptic transmission)—the
human brain outperforms supercomputers in
tasks like complex pattern recognition and con-
textual understanding59,89.
Neuromorphic engineering aims to mimic the

brain’s efficiency by implementing principles
like sparse coding, where only a small sub-
set of neurons is active at any time, and
asynchronous communication, where signals are
transmitted only when necessary44. This con-
trasts with conventional processors that con-
sume energy continuously, regardless of compu-
tational demand88.

Projects like IBM’s TrueNorth chip70 and In-
tel’s Loihi26 exemplify efforts to build hardware
that emulates neural architectures for improved
efficiency and performance. By incorporating
these insights, AI can strive toward the flexibil-
ity and resilience characteristic of biological in-
telligence. Neuroscience suggests that dynamic
interactions within complex neural networks are
central to adaptation and robust learning, em-
phasizing the potential of neuromorphic designs
to reduce the immense computational costs of
modern AI.

C. Evolutionary Inspiration

The brain’s layered and modular architecture
offers a roadmap for scaling AI without sacri-
ficing stability. Evolution incrementally added
complexity to existing regulatory intracellular
and neural structures28, enabling advanced cog-
nitive abilities while maintaining functionality.
In AI development, an incremental approach

can mirror this evolutionary path. Beginning
with basic sensorimotor systems and gradually
adding complexity allows manageable progress
toward AGI. Evolutionary algorithms evolve
neural network architectures better suited for
specific tasks, mimicking natural selection97.
This method has shown promise in developing
AI systems that are both efficient and adapt-
able.

V. EMPIRICAL EVIDENCE OF BIO-INSPIRED

SUCCESS

The conceptual foundations we’ve discussed
find support in empirical evidence showcasing
the success of bio-inspired AI approaches. Be-
low, we examine key case studies that bridge
biological inspiration and practical AI applica-
tions.
a. Case Study 1: Mimicking the Vi-

sual Cortex—Convolutional Neural Net-
works (CNNs) Overview: The visual cor-
tex processes visual information hierarchically;
early layers detect simple features like edges and
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contrasts, while deeper layers integrate these
into complex patterns and objects32,33,86. This
hierarchical organization allows efficient and ro-
bust interpretation of visual stimuli, enabling
invariant object recognition15,77.
Application in AI: Convolutional Neural

Networks (CNNs), inspired by this biological
architecture, have become the backbone of the
deep learning revolution57,58. They consist of
multiple layers performing convolutions, pool-
ing, and non-linear activations to extract hierar-
chical features from input images57. Each layer
captures increasingly abstract representations,
from raw pixels to high-level concepts.
Yamins et al.108 demonstrated that CNNs

modeled after the primate visual cortex could
perform object recognition tasks with high ac-
curacy and predict neural responses in the in-
ferior temporal cortex of macaques. By align-
ing artificial network layers with biological ones,
they showed a remarkable correspondence be-
tween CNN activations and neural activity.
Connection to Conceptual Founda-

tions: This case exemplifies the power of hi-

erarchical organization and context-dependent

computation discussed earlier. By mimicking
the multi-scale processing of the visual cortex,
CNNs harness hierarchical structures for effi-
cient abstraction and pattern recognition. The
success of CNNs underscores the importance of
embracing biological principles to enhance AI
capabilities.
Outcomes and Benefits:

• Improved Performance: CNNs have
achieved state-of-the-art results in image
classification, object detection, and seg-
mentation tasks52,57,63.

• Biological Plausibility: Aligning AI
models with biological structures en-
hances our understanding of both artifi-
cial and natural intelligence108.

• Scalability: Hierarchical architectures
allow CNNs to handle high-dimensional
data efficiently58.

b. Case Study 2: Adaptive Robots
and Evolving Behaviors—-Xenobots

Overview: Biological organisms exhibit
remarkable adaptability, navigating complex
environments through flexible behaviors devel-
oped over evolutionary timescales. Replicating
this adaptability in artificial systems can lead
to robots capable of handling unpredictable
scenarios.
Application in AI: Xenobots are novel liv-

ing robots constructed from frog (Xenopus lae-

vis) embryonic cells50,51. Using evolutionary al-
gorithms, various configurations were simulated
to identify designs capable of locomotion and
task performance. The physical xenobots, as-
sembled based on these designs, displayed be-
haviors such as moving toward targets, self-
healing, and cooperative work.
Connection to Conceptual Founda-

tions: This case illustrates the application of
trial-and-error heuristics and evolutionary in-

spiration highlighted earlier. By leveraging evo-
lutionary algorithms—a form of guided trial
and error—the researchers harnessed modular-
ity and hierarchical organization to discover
functional designs. The xenobots’ adaptabil-
ity reflects the importance of embodiment and
context-dependent interactions in developing
intelligent systems.
Outcomes and Benefits:

• Adaptability: Xenobots adjust their
behaviors in response to environmental
changes51.

• Self-Repair: They can recover from
damage, demonstrating resilience4,50.

• Applications: As living robots, they of-
fer potential for intelligent drug delivery,
environmental sensing, and understand-
ing morphogenesis4,51.

c. Case Study 3: Bridging the
Gap—Neuro-inspired Transformers
Overview: Large Language Models (LLMs),
such as GPT-4, have revolutionized natural
language processing by generating human-like
text, translating languages, and answering
complex questions73,91. The Transformer
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architecture underpins these models, utiliz-
ing mechanisms like self-attention to process
sequential data efficiently62,106.
Application in AI: Astrocytes, once seen

merely as support cells to neurons, are
now recognized as key players in cortical
computation8,47. Comprising a substantial por-
tion of brain cells (50–90%), astrocytes interact
extensively with numerous synapses and other
astrocytes, serving as integrators in spatiotem-
poral signaling27. This connectivity parallels
the Transformer architecture, where integration
of diverse data inputs optimizes computational
efficiency and accuracy106.
Recent work suggests parallels between the

Transformer architecture and neuron-astrocyte
interactions in the brain48. This novel bio-
inspired architecture posits that astrocytes
implement functions analogous to the self-
attention mechanism in Transformers, influenc-
ing information flow based on context48,49.
Connection to Conceptual Founda-

tions: This case aligns with context-dependent

processing and multi-scale interactions dis-
cussed earlier. Recognizing the role of as-
trocytes acknowledges the importance of non-
neuronal components in neural computation, re-
flecting a holistic view of intelligence. This in-
sight emphasizes the significance of modularity

and hierarchical organization in both biological
and artificial systems.
Outcomes and Benefits: This neuron-

astrocyte interaction model opens exciting av-
enues for building bio-inspired Transformers
that could exhibit:

• Enhanced Learning: Incorporating
astrocyte-like elements could improve
adaptive learning in Transformers, allow-
ing more efficient and dynamic learning
from new data.

• Biological Plausibility: A biologically
grounded architecture mirrors accurate
neural processes, increasing our under-
standing of complex cognitive tasks in the
brain.

• Robustness and Generalization:

Modulating synaptic activity through

astrocyte-like mechanisms may lead to
AI models more resilient to noise and
capable of generalizing from limited or
varied data.

• Energy Efficiency: Bio-inspired designs
drawing from astrocyte energy manage-
ment functions could reduce computa-
tional demands, making AI systems more
energy-efficient.

d. Bridging Bio-inspired AI and Large
Language Models The Challenge: LLMs
like GPT-4 spark debates about whether they
truly understand language or merely mimic
understanding through statistical patterns73,91.
While these systems excel at generating co-
herent text, they often lack deep comprehen-
sion, common sense, and the ability to rea-
son causally9,24,54. They may require care-
ful evaluation to prevent deceitful outputs and
fallibility22,41.
Integrating Bio-inspired Concepts:

Marrying bio-inspired principles with LLMs
offers pathways to address these limitations:

• Hierarchical Structures: Incorporat-
ing biological hierarchies into LLMs could
refine contextual and adaptive processing.
Training LLMs to build and refine inter-
nal concept representations hierarchically,
mirroring how brains organize knowledge,
may enhance reasoning and abstraction.

• Experience-Driven Learning: LLMs
thrive on pattern recognition from mas-
sive datasets. Bio-inspired approaches
emphasize learning through interaction
with the environment. Enabling LLMs
to engage with simulated environments or
multimodal data (e.g., text, vision, ac-
tion) could ground their understanding,
moving beyond pattern recognition to ex-
periential learning.

• Causal Reasoning: Integrating mecha-
nisms for causal inference, inspired by bi-
ological cognition, could allow LLMs to
understand cause-and-effect relationships,
improving their problem-solving capabili-
ties and reducing spurious correlations.
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• Collaborative Intelligence: Combin-
ing statistical models with bio-inspired
modules may leverage the strengths of
both. For example, coupling an LLM with
a reinforcement learning agent could en-
able decision-making that considers vast
knowledge and contextual adaptability.

Connection to Conceptual Founda-

tions: This interdisciplinary approach reflects
embodied intelligence and evolutionary inspira-
tion. By integrating bio-inspired mechanisms,
we address the limitations of purely statistical
models, moving toward AI systems that exhibit
true general intelligence and contextual under-
standing.
Outcomes and Benefits:

• Richer Understanding: AI models
gain deeper comprehension, moving be-
yond surface-level patterns.

• Adaptability: Systems adjust to new
tasks and environments more effectively.

• Alignment: AI that understands context
and causality is better equipped to align
with human values and norms.

e. Summary These case studies demon-
strate the tangible benefits of incorporating bio-
inspired principles into AI design. By aligning
artificial systems with the hierarchical, context-
sensitive, and adaptive nature of biological in-
telligence, we can overcome limitations inherent
in traditional AI paradigms. The empirical suc-
cesses highlighted here validate the conceptual
foundations discussed earlier and illuminate the
path forward for developing more robust, effi-
cient, and intelligent AI systems.

VI. COMPARATIVE ANALYSIS OF

BIO-INSPIRED AI APPROACHES

Bio-inspired AI distinguishes itself from other
AI methodologies—such as symbolic AI, con-
nectionist approaches, evolutionary computa-
tion, and hybrid methods—by striving to emu-
late the comprehensive complexity of biological

intelligence. It emphasizes adaptive learning,
emergent behaviors, hierarchical information
processing, and context-dependent responses,
mirroring the adaptability of natural systems.
While symbolic AI relies on explicit rules and
excels in structured domains, and connection-
ist approaches focus on pattern recognition
using neural networks, bio-inspired AI seeks
deeper mimicry, including dynamic reconfigu-
ration and plasticity. Evolutionary computa-
tion targets optimization with predefined goals,
whereas bio-inspired AI aims for open-ended
evolution and self-organization leading to in-
telligence emergence. Integrating bio-inspired
principles with strengths from other methodolo-
gies—such as the precision of symbolic AI, the
pattern recognition of neural networks, and the
optimization of evolutionary algorithms—can
enhance adaptability and robustness, accelerat-
ing progress toward more intelligent and versa-
tile AI systems.

VII. METHODOLOGICAL INSIGHTS FROM

BIOLOGY FOR AI

Methodological advances in bio-inspired AI
draw from biological systems to inform com-
putational models. The design of reconfig-
urable organisms like Xenobots50 demonstrates
how evolutionary algorithms can navigate com-
plex design spaces, leading to novel configu-
rations that emphasize efficiency, robustness,
and adaptability. This highlights evolution as
a powerful design tool and underscores the im-
portance of embodiment and physical realiza-
tion in AI. Our “HomeoDynamic” project illus-
trates how evolutionary optimization enhances
reservoir computing models, improving predic-
tion accuracy in chaotic systems through op-
timized, sparse network structures that reflect
biological efficiency. Additionally, hybrid mod-
els like the Hopfield-Transformer53,85 combine
associative memory with sequential processing,
inspired by hippocampal structures, to enhance
memory retrieval and contextual understand-
ing. These examples showcase how biological
insights lead to novel computational models, re-
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inforcing the value of interdisciplinary collabo-
ration in advancing bio-inspired AI.

VIII. CONCLUSION

This paper underscores the crucial role of bio-
logical inspiration in developing intelligent arti-
ficial systems. Biological intelligence features
context-dependent, adaptive behavior emerg-
ing from a constantly changing environment.
Mimicking this requires a multi-scale organiza-
tion of information, where causal interactions
flow both top-down and bottom-up across dif-
ferent levels, akin to the concept of “biological
relativity”75. The requisite variety and trial-
and-error approaches in nature highlight the
fundamental role of experimentation and adap-
tation—elements often neglected in formal the-
ories of intelligence.

Inspired by Vannevar Bush’s influential es-
say “As We May Think”17, we envision a fu-
ture where computers seamlessly support hu-
man endeavors. Achieving this goal depends on
a bio-inspired approach that fully embraces the
contextual nature of cognition and intelligence.
Evolution offers a time-tested blueprint: success
through trial and error, adaptability to the en-
vironment, and elegant solutions emerging from
complexity. The path forward lies in decipher-
ing these principles and translating them into
the design of intelligent artificial systems.
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