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Abstract

Artificial Intelligence (AI) has driven innovations and cre-
ated new opportunities across various sectors. However,
leveraging domain-specific knowledge often requires auto-
mated tools to design and configure models effectively. In
the case of Deep Neural Networks (DNNs), researchers and
practitioners usually resort to Neural Architecture Search
(NAS) approaches, which are resource- and time-intensive,
requiring the training and evaluation of numerous candi-
date architectures. This raises sustainability concerns, par-
ticularly due to the high energy demands involved, creating
a paradox: the pursuit of the most effective model can un-
dermine sustainability goals. To mitigate this issue, zero-
cost proxies have emerged as a promising alternative. These
proxies estimate a model’s performance without the need for
full training, offering a more efficient approach. This pa-
per addresses the challenges of model evaluation by auto-
matically designing zero-cost proxies to assess DNNs effi-
ciently. Our method begins with a randomly generated set
of zero-cost proxies, which are evolved and tested using the
NATS-Bench benchmark. We assess the proxies’ effective-
ness using both randomly sampled and stratified subsets of
the search space, ensuring they can differentiate between
low- and high-performing networks and enhance general-
izability. Results show our method outperforms existing
approaches on the stratified sampling strategy, achieving
strong correlations with ground truth performance, includ-
ing a Kendall correlation of 0.89 on CIFAR-10 and 0.77 on
CIFAR-100 with NATS-Bench-SSS and a Kendall corre-
lation of 0.78 on CIFAR-10 and 0.71 on CIFAR-100 with
NATS-Bench-TSS.

1. Introduction

The impact that AI has had on human lives and soci-
ety spans various domains, from advances in health-
care diagnosis [4] to optimization of trade routes [36],
identification of diseases in plants [3], and cyber in-

trusion detection [8]. This technology allows us to
improve most fields of study. However, these ad-
vancements have a cost. Several issues affect AI sys-
tems: racial and gender bias in automated job and
loan applications [20], misclassification in critical sce-
narios due to data manipulation by bad actors [29], job
displacement [16, 34], and massive energy consump-
tion [37]. The latter is quantifiable and has grown ex-
ponentially in recent years. For instance, the popu-
lar GPT-3 model, similar to the models behind Ope-
nAI’s ChatGPT, used 1287 MWh in 15 days just for
its training [28]. The current “arms race” to develop
Large Language Models (LLMs) models with more ca-
pabilities will likely increase the number of parame-
ters, thereby ensuring that more recent models will
consume even more energy. Moreover, serving mil-
lions of users on a daily basis requires a tremendous
quantity of processing devices, such as GPUs and/or
TPUs, which use a massive amount of energy. The to-
tal energy consumption of NVIDIA GPUs, the leading
manufacturer of these devices, is expected to surpass
the total energy needs of countries such as Belgium or
Switzerland [9, 40]. Furthermore, technological com-
panies like Google and Microsoft, which have previ-
ously committed to offsetting their carbon emissions,
have struggled to maintain these promises due to allo-
cating more resources to AI data centers [17, 30]. This
growth is expected to continue, with hardly any re-
strictions, due to the positive impact this technology
has on the population and the economy [15].

Several techniques have been proposed to address
the energy consumption problem of AI, particularly
of Machine Learning (ML). Reducing the floating-
point precision of a model’s weights has been shown
to enhance energy efficiency, albeit at the tradeoff of
some performance [31]. Spiking Neural Networks
(SNNs) show promising results due to their sparsity
and event-based operation, though they require fur-
ther hardware-side developments to fulfill their theo-
retical energy efficiency potential [18, 26]. Using NAS
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or Neuroevolution (NE) to search for energy-efficient
DNN models has also significantly increased energy
efficiency [7]. This approach, however, requires sub-
stantial resources since each DNN must undergo a full
training process and subsequent evaluation, which
may ultimately undermine its potential for minimal
energy usage.

In this paper, we present an approach to miti-
gate the energy consumption problem of NAS. Zero-
cost proxies estimate a DNN’s performance without
training, with some recent proxies having achieved
high correlations with the ground truth, reporting a
Kendall correlation of 0.706 on the NATS-Bench-TSS
search space with the CIFAR-10 dataset [10], or even
0.741 on the same problem when using an ensemble
of four zero-cost proxies [21]. This means that the
score given by the zero-cost proxy to a DNN aligns
well with its actual performance in terms of accuracy.

Our main contribution is the proposal of an al-
gorithm that automatically generates and optimizes
zero-cost proxies using evolution1. Specifically, we
begin with a randomly generated set of proxies that
are then modified or evolved over several generations
to gradually improve their estimation of model per-
formance. These proxies are evaluated on the NATS-
Bench benchmark across the CIFAR-10, CIFAR-100,
and ImageNet16-120 datasets. We assess their per-
formance in two ways: 1) on a subset that is a ran-
domly selected sample of the overall search space; and
2) on a stratified subset with a diverse distribution of
networks to evaluate the proxies not only on “good”
networks but also on those with lower performance.
This approach is intended to ensure that the proxies
can differentiate between low- and high-performing
DNNs, minimizing overfitting and enhancing gener-
alizability.

Experimental results indicate that this approach
produced better-performing solutions than similar
methods in the literature. We achieved higher correla-
tions on nearly all datasets using a stratification tech-
nique to sample networks. Specifically, we obtained
a Kendall correlation of 0.89 on CIFAR-10 and 0.77 on
CIFAR-100 with NATS-Bench-SSS and a Kendall cor-
relation of 0.78 on CIFAR-10 and 0.71 on CIFAR-100
with NATS-Bench-TSS.

This paper is structured as follows. Section 2
presents the necessary background on Evolutionary
Algorithms (EAs), focusing on Genetic Programming
(GP), and on zero-cost proxies as well as related work.
Section 3 showcases the functioning of the developed
algorithm and details the experimental setup. After-
ward, Section 4 present the obtained results and a

1The code is publicly available on Github

discussion about them. At last, Section 5 concludes
this paper and outlines potential directions for future
work.

2. Background and Related Work

2.1. Genetic Programming

GP is an AI technique that allows for the automatic
design of programs, expressions, or models with vari-
able length, using the principles of natural selection
and evolution (Fig. 1) [13, 38]. When using GP, one
needs to specify the set of variables or constants and
the set of functions. One of the most commonly used
representations of solutions is syntax trees.

The initial set of solutions, called population, is
usually created randomly. Some trees are generated
with the maximum depth, others have branches with
varying depths, and a mix of both approaches is also
used.

Individuals are evaluated based on a fitness func-
tion that measures their performance on a given prob-
lem. The fittest individuals are then probabilistically
selected to produce new solutions, or offspring, for
the next generation, allowing successful traits to be
passed along. Offspring undergo mutation to intro-
duce genetic diversity, helping the population explore
a broader range of potential solutions.

In the context of GP, mutation is performed by re-
placing a sub-tree rooted at a randomly selected node
with a newly generated sub-tree, introducing novel
structures. Recombination occurs by swapping sub-
trees rooted at randomly selected nodes between two
individuals, enabling the exchange of genetic material
and potentially beneficial traits.

Grammatical Evolution

Grammatical Evolution (GE) is a grammar-based GP
that uses a variable-length integer representation [32].
It relies on the production rules of a Context-free
Grammar (CFG) to generate solutions. A CFG is de-
fined by a tuple (N, T, P, S) with N being the set of
non-terminals, T the set of terminals, P the set of pro-
duction rules, and S ∈ N is a start symbol.

The solution generation process from an integer
sequence is carried out as follows: the sequence is
read from left to right, beginning with S, and a pro-
duction rule is iteratively applied to expand the left-
most non-terminal symbol. The current item’s value
in the sequence determines the production rule to use
by calculating its modulo with respect to the number
of available expansions for the leftmost non-terminal
symbol.
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Figure 1. Simplified visualization of the flow of an EA.

Consider the grammar in Fig. 2 with
N = {<expr>,<op>,<trig>,<var>}, T =
{+,−, sin, cos, x, y, (, )} and S = <expr>. Con-
sidering a genotype with integer values ranging from
0 to 63, the mapping process is as follows (Fig. 3).
First, we begin with the start symbol, <expr>, and
read the first element of the integer vector. Since
there are three options on how to expand the start
symbol, we have 46 mod 3 = 1; thus, the start
symbol is replaced by its second expansion rule,
<trig>(<expr>). Following this, the second value
in the genotype is read, and we expand the leftmost
non-terminal symbol, repeating the process. This
is executed until there are no more non-terminal
symbols. It is possible to use a wrapping mechanism
instead of terminating the mapping process if there
are no more integers to read from the genotype, thus
reusing the genotype values.

<expr> ::= <expr> <op> <expr>
| <trig>(<expr>)
| <var>

<op> ::= + | -
<trig> ::= sin | cos
<var> ::= x | y

Figure 2. Example of a grammar.

Despite GE’s flexibility and ease of use, it has suf-
fered from issues, such as low locality and high redun-
dancy [24]. To address these limitations, Structured
Grammatical Evolution (SGE) [25] was introduced.
SGE mitigates these issues by associating each gene

Genotype: [46, 15, 17, 28, 50, 42, 22, 19, 51, 35]

<expr>

<trig>(<expr>) 46 mod 3 = 1
cos(<expr>) 15 mod 2 = 1
cos(<var>) 17 mod 3 = 2

cos(x) 28 mod 2 = 0

Figure 3. Example of Grammatical Evolution mapping.

with a specific non-terminal and using variable-length
integer lists to represent expansion choices. This struc-
ture ensures that changing one gene does not affect
the derivation choices for other non-terminals, which
reduces phenotypic changes and thereby improves lo-
cality. Furthermore, the values in each list are con-
strained by the number of expansion options avail-
able for the corresponding non-terminal, eliminating
the need for modulo operations and reducing redun-
dancy. Empirical results demonstrate that SGE out-
performs GE across various optimization problems.

2.2. Zero-cost proxies

Zero-Shot, also known as the training-free method, is
a technique that allows the prediction of the quality
of a model without training it [39]. This is achieved
through proxies, which are algorithms or mathemat-
ical formulas that estimate how good a model might
be. These proxies allow us to assess the performance
of a DNN model without training it, thus saving re-
sources. Zero-cost proxies are a relatively recent re-
search thread in the ML community since they were
introduced in 2018 by Camero et al. [5] and have
since been continuously improved. Traditional NAS
methods typically require hundreds or thousands of
GPU hours and, as such, can significantly benefit from
using training-free methods. Zero-cost proxies allow
us to predict the performance of a DNN model with-
out training it, and they usually require only a small
amount of GPU time or even CPU time to do so.
Despite numerous statistical analyses of training-free
NAS algorithms, a theoretical analysis of training-free
algorithms remains lacking. A comprehensive theo-
retical examination of this score function is essential
to further research in this field [39].

To avoid training many networks to evaluate the
correlation between the proxy and the actual accuracy,
well-established NAS datasets are used [39]. Among
other metrics, these datasets contain the architectures
of many networks and their corresponding accuracies.

A pioneer in the field, NASWOT is an algorithm
that generates scores reflecting a model’s test accu-
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racy without requiring training. It computes these
scores based on the network’s activation patterns in
response to a single mini-batch [27]. Synflow is a
pruning algorithm that aims to prevent the layer col-
lapse problem when pruning a neural network. It
was extended as a data-independent estimator of a
network’s performance without training it [35]. In-
spired by pruning-at-initialization, GradNorm is a
proxy metric that computes the sum of the Euclidean
norms of the gradients after passing a single mini-
batch of training data [1]. TE-NAS is a framework
that evaluates network architectures by examining the
spectrum of the neural tangent kernel and the num-
ber of linear regions in the input space [6]. Zen-NAS
is a zero-shot method that measures the expressivity
of a DNN by computing its Zen-Score, which is de-
rived from a few forward inferences on randomly ini-
tialized networks with random Gaussian inputs [23].
ZiCo demonstrates that high-performance DNNs tend
to possess high absolute mean values and low stan-
dard deviation values for the gradient and uses that
information to estimate the performance of a network
[22].

EZNAS proposes a GP approach to automate the
discovery of zero-cost proxies for NAS scoring [2] by
using the DEAP framework [14]. Each individual’s
fitness is determined by the minimum Kendall τ co-
efficient it achieves across both search spaces. After
the evolutionary process, the fittest individual is eval-
uated on 4000 random networks from the same two
search spaces. While EZNAS’s results are competi-
tive with the current state of the art, the authors do
not provide details on how the other zero-cost prox-
ies were evaluated, making direct comparisons poten-
tially unfair. Furthermore, EZNAS uses statistics from
only a portion of the overall layers of the models and
employs a relatively low recombination rate of 40%,
which may not be sufficient to generate optimal indi-
viduals consistently.

3. Methodology

3.1. Benchmarks

Benchmarking NAS algorithms is challenging due to
variations in data preprocessing, evaluation pipelines,
and even random seeds. Moreover, fully training a
large number of networks requires extensive compu-
tational resources, thus making reproducibility diffi-
cult for most researchers. To address this issue, some
datasets were proposed to standardize the bench-
marking process, providing a common ground for
comparisons and reducing the required computa-
tional resources by delivering the results that would

otherwise require the complete training of many DNN
models.

These benchmarks typically include not only the
network configuration and its accuracy metric after
training but also other data such as latency, number of
parameters, and more, enabling a quicker assessment
of the proposed NAS method.

NAS-Bench-201 features full graph cells, allowing
for a more comprehensive search space, though lim-
ited to four nodes and five associated operation op-
tions to maintain manageability [11]. Each archi-
tecture is trained and evaluated on the CIFAR-10,
CIFAR-100, and ImageNet-16-120 image classification
datasets. It contains 15,625 architectures. NATS-Bench
is a unified benchmark for searching for architecture
topology and size [12]. It includes 15,625 candidates
for the architecture topology (TSS) and 32,768 for ar-
chitecture size (SSS). It also presents results for CIFAR-
10, CIFAR-100, and ImageNet-16-120. Although not
explicitly mentioned in the paper, the authors note
in the project’s Github repository2 that the topology
search space is equivalent to NAS-Bench-201.

3.2. Experimental Setup

The experiments were conducted on a machine run-
ning Ubuntu 22.04.3 LTS with two Intel Xeon Silver
4310 CPUs with a clock frequency of 2.10GHz and 12
cores each, 256 GB of RAM, and three NVIDIA RTX
A6000 GPUs with 48 GB of GDDR6 RAM. The en-
vironment in which they were executed used CUDA
12.1, Python 3.10, and PyTorch 2.3.1.

3.2.1 Networks Sampling

After analyzing the search spaces (Fig. 4), we observed
a skew towards networks with high accuracy across
both search spaces, regardless of the dataset. Conse-
quently, random sampling does not ensure adequate
search space coverage, as it may produce a sample
set that is too constrained or biased toward high-
performance networks. This bias can result in prox-
ies that fail to distinguish effectively between low-
and high-performing networks. To address this issue,
we stratified the search space based on test accuracy,
creating five groups or bins of networks according to
their performance. This approach ensures a diverse
set of samples for evaluation. Additionally, we sample
20 networks from each dataset for each search space
using this stratification method to maintain a balanced
representation across different performance bins.

2https://github.com/D-X-Y/NATS-Bench
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Figure 4. Histograms of test accuracy for the NATS-Bench
benchmark across the topology and size search spaces and
the CIFAR-10, CIFAR-100, and ImageNet16-120 datasets.

3.2.2 Zero-Cost Proxies Evaluation

We assess the usefulness of the zero-cost proxies
using search spaces that comprise architectures of
DNNs and their respective test accuracy after train-
ing. Specifically, we use the NATS-Bench benchmark
[12]. The evaluation uses the zero-cost proxy to score
every network sampled. Then we calculate Kendall’s
correlation (τ) between the set of scores (S) and the
actual test accuracy (A). The τ measures the ordinal
association between the two sets according to the fol-
lowing:

Let S = {s1, s2, . . . , sn} represent the scores from a
zero-cost proxy, and A = {a1, a2, . . . , an} represent the
test accuracies.

The Kendall tau correlation coefficient between S
and A is given by:

τ =
P − Q√

(P + Q + T)(P + Q + U)

where:
• P is the number of concordant pairs, i.e., pairs

(si, ai) and (sj, aj) such that (si − sj)(ai − aj) > 0,
• Q is the number of discordant pairs, i.e., pairs

(si, ai) and (sj, aj) such that (si − sj)(ai − aj) < 0,
• T is the number of ties in S, i.e., pairs (si, sj) such

that si = sj,
• U is the number of ties in A, i.e., pairs (ai, aj) such

that ai = aj.
This metric indicates the zero-cost proxy’s suitabil-

ity for predicting model performance, reflecting the
likelihood that a proxy score correlates with the actual
model accuracy.

The evaluation function is defined as the sum of the
absolute values of the Kendall rank correlation coef-
ficients across all search space and dataset combina-
tions. We use absolute values rather than signed ones
to detect any correlation, not solely a positive one.

3.2.3 Feature Extraction

We extract 20 features from each layer of a network.
When applicable, these are the weights and gradients
of the layer and the weights before and after a forward
pass or a backward pass takes place. At first, we con-
sider the randomly initialized network and archive
each layer’s weights and gradients. After this, we re-
peat the complete extraction process in three modes:
one where we pass a batch of random data on the net-
work, another where we pass a batch from the dataset,
and, last, a mode where we pass a batch from the
dataset but perturbed with noise.

Having this archive of network statistics, we then
iterate over each of the network’s layers and compute
the current individual’s formula. The final score at-
tributed to the network is the mean value of the score
of all layers.

3.2.4 Operations

The available operations range from essential mathe-
matical functions like addition, subtraction, element-
wise product, and matrix multiplication to specialized
computations such as Frobenius norm and eigenvalue
ratios. We also include activation functions like ReLU
and sigmoid and normalization techniques. Addition-
ally, we provide methods for noise addition, cosine
similarity, and logical comparisons. The complete list
of operations is presented as supplementary material.

To handle feature extraction from every layer, we
ensure that matrices of any dimension are compatible
for operations. We do this by flattening the matrices,
comparing their lengths, and padding the shorter one
with a constant (1). This gives both matrices the same
number of elements, allowing them to be reshaped
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Table 1. Experimental parameters.

Evolutionary Parameter Value
Number of runs 5
Number of generations 100
Population size 100
Elitism size 10
Tournament size 5
Crossover rate 90%
Mutation rate 50%
Tree depth [5, 12]
Num. of evaluated networks 120

back to the original dimensions of the larger matrix.
Additionally, we replace invalid tensors with a default
tensor of 1 and substitute invalid values within ten-
sors to maintain valid operations and prevent runtime
errors, ensuring that no individuals are excluded due
to shape mismatches.

3.2.5 Search Algorithm

To perform the search for zero-cost proxies, we used
the grammar-based GP approach described in [25],
with the parameters detailed in Tab. 1. Specifically,
we performed five runs, each for 100 generations, with
a population size of 100 individuals. To preserve the
best solutions, an elitism size of 10 was applied. Selec-
tion was based on tournament selection with a tourna-
ment size of 5. The genetic operators were configured
with a crossover rate of 90% and a mutation rate of
50%. The evolutionary trees had depths ranging from
5 to 12, and each experiment evaluated 120 networks.

Table 1 lists the used experimental parameters.

4. Results and Discussion

Figure 5 shows the evolution of zero-cost proxies’ per-
formance, measured by the Kendall correlation coef-
ficient (τ), over 100 iterations across NATS-Bench’s
two search spaces on the CIFAR-10, CIFAR-100, and
ImageNet16-120 datasets, averaged over five runs. In
the figure, dashed lines represent performance on the
Topology Search Space (TSS), while solid lines indi-
cate performance on the Size Search Space (SSS). The
thick solid line illustrates the fitness of the individu-
als, defined as the sum of the absolute values of the τ
scores across the datasets.

Examining the results in Fig. 5, we observe
that zero-cost performance on the CIFAR-10 and
ImageNet16-120 datasets in the TSS (dashed lines) is
lower than in the SSS (solid lines). For CIFAR-100,

the difference is minimal. This suggests that identi-
fying zero-cost proxies in the TSS is more challeng-
ing than in the SSS. This difficulty can be attributed
to the typical correlation between network size and
performance [19]. A proxy that leverages the num-
ber of network parameters to estimate performance
has a better chance of accurately predicting perfor-
mance in the SSS. In contrast, extracting performance-
related features based on network topology is inher-
ently more complex, which is required to estimate the
performance on the TSS.

Additionally, as shown in Fig. 4, the distribution
of network performance differs between the search
spaces. In the TSS, network performance ranges
widely from about 10% (close to random choice) to
nearly 95%, while in the SSS, performance is concen-
trated within narrower accuracy ranges.

Finally, slight decreases in the solid and dashed
lines can be observed, particularly in the correlations
measured in the SSS search space. Since the quality of
the proxies is defined as the sum of the τ correlations
across both search spaces, this behavior is expected, as
tradeoffs are made to improve correlation in the other
search space.
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Figure 5. Evolution of the Kendall correlation coefficient on
NATS-Bench’s two search spaces and the fitness metric over
100 generations, averaged over 5 runs.

Validating the Zero-Cost Proxies To assess the gen-
eralization ability of the zero-cost proxies, we eval-
uate them on networks that differ from those used
in training. Specifically, we test the proxies on 4,500
new networks. We evaluate 30 sets of 150 networks
from each search space and dataset, using stratified
and non-stratified sampling strategies. This approach
ensures that our evaluation covers a diverse range of
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Figure 6. Representation of the GreenMachine-2 solution,
where ellipses represent functions and rectangles denote ter-
minal symbols (variables).

architectures, allowing us better to assess the general-
ization and robustness of the proxies. With 30 sets of
networks, we report the mean and standard deviation
across these sets.

We implemented state-of-the-art zero-cost proxies
from the literature and applied them to the same set
of networks to ensure a fair comparison. Addition-
ally, we included a random proxy that generates a ran-
dom score between 0 and 1 for comparison purposes.
Figure 6 depicts the GreenMachine-2 solution, and the
formulas for the remaining best solutions discovered
by our approach are provided as supplementary ma-
terial.

Tables 3 and 4 present the validation results for the
two sampling strategies using the τ correlation coeffi-
cient. The corresponding results for Spearman’s rank
correlation are available as supplementary material.

In Tab. 3, where networks are randomly sampled
without considering performance representativity, we
observe no significant differences among the zero-cost
proxies. However, one zero-cost proxy discovered by
our approach, GreenMachine-3 (GM-3), outperforms
the others on CIFAR-100 when applied to the SSS.

This result can be explained by the fact that the ran-
domly sampled set of networks shows very similar
performances, as indicated in Tab. 2. As mentioned
previously, if network sampling is not done carefully,
the resulting set can consist of models with very sim-
ilar performance. Observing the standard deviation
of the non-stratified set of networks, we see that it is
low, indicating high similarity in performance. This
reduces the need for proxies to make clear distinc-
tions. However, when evaluating CIFAR-100 on the

SSS, the standard deviation increases, requiring prox-
ies to distinguish between high- and low-performing
networks more effectively.

Table 2. Characterization of the networks used for valida-
tion of zero-cost proxies. Each cell presents the average ac-
curacy (%) and standard deviation of 30 sets of 150 networks
for the non-stratified and stratified versions of the SSS and
TSS search spaces across the three different datasets.

CIFAR-10 CIFAR-100 ImageNet16-120

Non-Stratified

SSS 85.98 ± 1.74 50.13 ± 6.28 29.19 ± 4.09

TSS 75.83 ± 13.76 40.60 ± 11.06 21.74 ± 6.36

Stratified

SSS 80.71 ± 4.90 42.95 ± 9.71 26.47 ± 6.59

TSS 49.28 ± 25.15 31.15 ± 17.21 19.04 ± 10.96

Concerning the validation where we used a strat-
ified sampling strategy, the zero-cost proxies discov-
ered by our approach can clearly distinguish between
low-performing and high-performing networks (see
Tab. 3). Our proxies achieve the highest τ correla-
tion across the entire SSS search space, and, on the TSS
search space, our solutions surpass those in the litera-
ture in all cases except for the ImageNet16-120 dataset.
This exception can be explained by the distribution of
network performances: as shown in Tab. 2, the TSS
ImageNet16-120 stratified version has a low standard
deviation, indicating that network performances are
very similar in this sample set, and proxies are not re-
quired to distinguish between low and high perform-
ers.

5. Conclusion

This paper introduces GreenMachine, an algorithm
that automatically designs zero-cost proxies using
an evolutionary approach. We evaluate the effec-
tiveness of the discovered proxies using the NATS-
Bench benchmark across CIFAR-10, CIFAR-100, and
ImageNet16-120 datasets.

The solutions discovered by our proposed ap-
proach perform better than existing zero-cost proxy
methods when distinguishing between low- and high-
performing networks. To assess this, we apply strat-
ified sampling to the search space, dividing it into
groups based on test accuracy to ensure a represen-
tative set of samples for evaluating the proxies. We
use the Kendall correlation coefficient to measure the
correlation between the proxy scores and network ac-
curacy.
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Table 3. Comparison of Zero-Cost proxies on the NATS-Bench benchmark across the CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets on the non-stratified subset. The presented values are the mean absolute Kendall correlation coefficient over
30 runs, multiplied by 100. Bold denotes the best value.

Proxy SSS (CF-10) SSS (CF-100) SSS (IN16-120) TSS (CF-10) TSS (CF-100) TSS (IN16-120)

Random 4.0 ± 2.2 4.4 ± 3.9 4.5 ± 3.6 4.4 ± 3.4 4.2 ± 2.8 4.1 ± 3.1

#Params 67.4 ± 3.3 53.5 ± 4.5 65.6 ± 3.3 37.3 ± 4.6 35.1 ± 5.5 28.3 ± 5.1

Synflow [35] 76.8 ± 1.9 59.0 ± 4.1 79.5 ± 2.3 37.4 ± 5.7 35.1 ± 5.7 35.6 ± 4.6

Gradnorm [1] 18.7 ± 5.0 48.4 ± 4.8 36.8 ± 5.8 14.7 ± 5.9 5.9 ± 4.4 6.7 ± 3.8

NASWOT [27] 38.1 ± 4.2 16.1 ± 5.3 40.7 ± 4.2 43.0 ± 4.6 38.0 ± 4.3 38.5 ± 5.8

TE-NAS [6] 34.2 ± 4.0 28.1 ± 5.8 38.8 ± 5.3 24.8 ± 4.8 13.0 ± 5.7 8.2 ± 6.0

Zen-NAS [23] 72.6 ± 2.5 47.0 ± 5.0 67.0 ± 2.9 12.6 ± 5.1 17.0 ± 5.8 21.9 ± 4.8

ZiCo [22] 73.1 ± 2.1 56.3 ± 3.1 73.5 ± 2.8 39.0 ± 5.5 35.6 ± 5.3 36.0 ± 4.8

EZNAS [2] 72.5 ± 2.5 48.7 ± 4.1 57.0 ± 2.9 61.1 ± 3.5 60.9 ± 3.8 54.7 ± 4.6

GM-1 (Ours) 51.8 ± 3.2 55.9 ± 4.3 49.7 ± 3.8 50.2 ± 4.8 48.1 ± 4.5 39.1 ± 4.8

GM-2 (Ours) 68.5 ± 2.9 62.4 ± 3.9 78.0 ± 1.7 33.7 ± 5.2 31.0 ± 4.9 31.5 ± 4.7

GM-3 (Ours) 75.6 ± 2.5 66.8 ± 3.3 70.2 ± 2.7 8.9 ± 4.9 6.7 ± 4.4 28.8 ± 5.0

Table 4. Comparison of Zero-Cost proxies on the NATS-Bench benchmark across the CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets on the stratified subset. The presented values are the mean absolute Kendall correlation coefficient over 30
runs, multiplied by 100. Bold denotes the best value.

Proxy SSS (CF-10) SSS (CF-100) SSS (IN16-120) TSS (CF-10) TSS (CF-100) TSS (IN16-120)

Random 5.1 ± 3.4 4.5 ± 2.9 4.2 ± 3.7 4.3 ± 3.3 3.4 ± 2.9 4.0 ± 3.0

#Params 75.8 ± 2.4 48.9 ± 4.5 59.4 ± 3.5 38.1 ± 3.7 42.9 ± 4.8 31.3 ± 4.1

Synflow [35] 80.6 ± 1.8 59.8 ± 3.9 71.3 ± 2.8 73.9 ± 2.1 45.9 ± 3.1 39.9 ± 4.7

Gradnorm [1] 41.0 ± 3.9 59.1 ± 2.2 47.4 ± 3.6 59.5 ± 2.4 20.9 ± 5.0 7.1 ± 4.9

NASWOT [27] 53.3 ± 3.5 14.9 ± 7.1 34.7 ± 5.1 71.2 ± 2.5 52.7 ± 3.2 43.2 ± 4.0

TE-NAS [6] 53.8 ± 2.8 28.6 ± 6.2 36.3 ± 4.6 14.5 ± 5.3 21.0 ± 7.2 11.6 ± 5.1

Zen-NAS [23] 77.2 ± 1.9 47.2 ± 4.7 59.0 ± 3.7 31.0 ± 4.9 18.2 ± 5.7 22.0 ± 5.7

ZiCo [22] 79.5 ± 1.9 58.1 ± 3.7 80.9 ± 1.2 75.0 ± 2.2 48.3 ± 3.5 62.1 ± 2.6

EZNAS [2] 82.8 ± 0.9 64.4 ± 2.6 70.7 ± 2.1 57.4 ± 2.3 70.0 ± 2.2 66.2 ± 3.4

GM-1 (Ours) 61.9 ± 2.6 65.3 ± 2.9 67.6 ± 2.1 78.3 ± 2.0 70.5 ± 2.2 64.3 ± 3.0

GM-2 (Ours) 82.7 ± 1.4 76.9 ± 1.6 85.6 ± 0.9 65.5 ± 2.9 55.8 ± 3.2 55.8 ± 3.5

GM-3 (Ours) 88.8 ± 0.9 74.4 ± 1.3 79.4 ± 1.3 39.1 ± 4.5 29.6 ± 4.6 57.0 ± 3.4

The results show that we achieve better perfor-
mance on nearly all datasets, demonstrating the abil-
ity to effectively differentiate between low- and high-
performing DNNs while minimizing overfitting and
enhancing generalizability. Notably, on the CIFAR-
10 dataset using the NATS-Bench-SSS benchmark,
GreenMachine achieved a Kendall correlation of 0.89,

and on the NATS-Bench-TSS benchmark with the
same dataset, a Kendall correlation of 0.78.

5.1. Future Work

In this work, we evolved and tested the generated so-
lutions on only two benchmarks. Using other search
spaces and datasets could enhance the generalizabil-
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ity of our results, allowing for a better assessment of
the proxy’s effectiveness across multiple problem do-
mains.

Allied with evaluating the individuals on more
search spaces, it might be relevant to experiment us-
ing more specialized selection operators, such as lexi-
case selection [33], to promote solutions that perform
well across a diverse range of tasks.

One potential enhancement to the evolutionary al-
gorithm involves using ephemeral constants, which
could fine-tune the relative importance of features
within the solutions, improving the quality of the
proxies.
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Supplementary Material

Table 5. List of unary operations used in GreenMachine.

Operation Description

Abs Compute the absolute value element-wise.

Add noise Add random noise (standard normal distribution)

to a tensor.

Determinant Calculate the determinant of a matrix.

Element-wise invert Invert elements of a tensor element-wise.

Exp Apply the exponential function element-wise.

Frobenius norm Compute the Frobenius norm of a tensor.

Gaussian initialization Initialize a tensor with the random values

from the standard normal distribution.

Greater than zero Check if elements are greater than zero.

Heaviside Compute the Heaviside step function for each element.

L1 norm Compute the L1 norm of a tensor.

Less than zero Check if elements are less than zero.

Log Apply the natural logarithm element-wise.

Log determinant Compute the log determinant of a matrix.

Normalized sum Return the sum of tensor elements normalized.

Normalization Scale tensor values to a 0-1 range.

Num elements Return the number of elements in a tensor.

Ones like Create a tensor of ones with the same shape as the input.

ReLu Apply the ReLU activation element-wise.

Sigmoid Apply the sigmoid function element-wise.

Sign Extract the sign of each element.

Softmax Apply the softmax function element-wise.

Squared power Raise each element to the power of 2.

Transpose Compute the transpose of a matrix.

Zeros like Create a tensor of zeros with the same shape as the input.
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Table 6. List of binary operations used in GreenMachine.

Operation Description

Cosine similarity Calculates cosine similarity between tensors.

Element-wise product Multiplies tensors element-wise.

Equal Checks element-wise equality of tensors.

Greater than Checks element-wise if one tensor is greater than another.

Kullback–Leibler divergence Computes the Kullback-Leibler divergence.

Less than Checks element-wise if one tensor is less than another.

Matrix multiplication Performs matrix multiplication.

Max Returns the element-wise maximum of two tensors.

Min Returns the element-wise minimum of two tensors.

Subtraction Subtracts one tensor from another element-wise.

Sum Adds two tensors element-wise.

GreenMachine-1: (greater_than((mat_mul(pass_noise_wt, (greater_than((
kl_div(pass_noise_grad, pass_noise_wt)),
subtract(pass_noise_fwd_output, pass_perturbation_bwd_input))))), random_wt))

GreenMachine-2: max(softmax(pass_perturbation_fwd_output), equal(pass_perturbation_grad,
element_wise_product(pass_perturbation_bwd_input, pass_bwd_input)))

GreenMachine-3: cosine_similarity(softmax(cosine_similarity(pass_perturbation_bwd_output,
pass_fwd_output)),(greater_than(greater_than(pass_noise_fwd_output, cosine_similarity(
pass_perturbation_grad,
less_than(less_than(equal((equal(abs((max(transpose(pass_noise_bwd_output),
normalize(less_than_zero(pass_fwd_output))))), (greater_than(gaussian_init((
kl_div(power(pass_noise_bwd_input),
normalized_sum(pass_grad)))), element_wise_product(kl_div(
cosine_similarity(pass_perturbation_fwd_output, random_grad),
(sum(random_wt, pass_perturbation_grad))),
greater_than(pass_bwd_output, (max(pass_perturbation_fwd_output, pass_bwd_input)))))))),
(subtract(element_wise_invert(pass_perturbation_wt),
gaussian_init(determinant(pass_perturbation_bwd_input))))),
(greater_than(kl_div((min(random_grad, pass_noise_bwd_input)), pass_noise_fwd_output),
(mat_mul((element_wise_product(pass_noise_fwd_input, pass_perturbation_fwd_output)),
ones_like(sum((mat_mul(frobenius_norm(pass_fwd_input),
frobenius_norm(pass_perturbation_bwd_output))), numel(l1_norm(pass_noise_grad))))))))),
greater_than(pass_noise_fwd_input, (subtract(sum(random_wt,
heaviside(pass_noise_bwd_output)), softmax((mat_mul(sum(greater_than(pass_fwd_output,
cosine_similarity(pass_perturbation_bwd_output, pass_perturbation_fwd_input)),
(sum((min(pass_bwd_output, pass_noise_wt)),
cosine_similarity(pass_grad, pass_noise_grad)))),
sigmoid(frobenius_norm(normalize(pass_fwd_output)))))))))))), random_wt)))

Figure 7. Formulas of the best solutions found.
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Table 7. Comparison of Zero-Cost proxies on the NATS-Bench benchmark across the CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets on the non-stratified subset. The presented values are the mean absolute Spearman correlation coefficient over
30 runs, multiplied by 100. Bold denotes the best value.

Proxy SSS (CF-10) SSS (CF-100) SSS (IN16-120) TSS (CF-10) TSS (CF-100) TSS (IN16-120)

Random 5.9 ± 3.3 6.6 ± 5.7 6.8 ± 5.4 6.4 ± 5.1 6.2 ± 4.3 6.1 ± 4.7

#Params 85.6 ± 2.8 71.5 ± 5.4 82.9 ± 3.4 51.9 ± 5.9 48.9 ± 7.3 39.3 ± 6.7

Synflow [35] 92.6 ± 1.3 78.2 ± 4.1 93.2 ± 1.6 52.8 ± 7.4 50.1 ± 7.6 50.0 ± 6.3

Gradnorm [1] 27.6 ± 7.5 67.0 ± 5.9 52.4 ± 7.5 21.1 ± 8.4 8.7 ± 6.2 9.5 ± 5.4

NASWOT [27] 54.0 ± 5.3 23.5 ± 7.6 56.6 ± 5.5 60.0 ± 5.7 54.0 ± 5.6 54.2 ± 7.4

TE-NAS [6] 48.9 ± 5.5 40.1 ± 8.0 54.3 ± 7.3 32.8 ± 7.1 16.6 ± 8.1 11.6 ± 8.0

Zen-NAS [23] 89.7 ± 1.8 64.9 ± 6.1 84.2 ± 2.8 17.8 ± 7.6 24.4 ± 8.1 31.1 ± 6.9

ZiCo [22] 90.2 ± 1.7 75.7 ± 3.3 89.9 ± 2.1 54.9 ± 6.9 51.2 ± 7.0 51.1 ± 6.3

EZNAS [2] 89.6 ± 1.9 67.0 ± 4.9 76.0 ± 3.0 79.6 ± 3.3 78.7 ± 3.8 72.4 ± 4.8

GM-1 (Ours) 70.4 ± 3.5 72.2 ± 4.9 68.6 ± 4.4 67.6 ± 5.6 65.1 ± 5.4 54.4 ± 5.9

GM-2 (Ours) 86.2 ± 2.6 80.4 ± 3.7 93.1 ± 1.0 47.3 ± 7.0 44.4 ± 7.0 44.8 ± 6.3

GM-3 (Ours) 91.2 ± 1.9 84.2 ± 3.2 87.7 ± 2.3 13.7 ± 7.0 10.6 ± 6.2 40.4 ± 6.9

Table 8. Comparison of Zero-Cost proxies on the NATS-Bench benchmark across the CIFAR-10, CIFAR-100, and ImageNet16-
120 datasets on the stratified subset. The presented values are the mean absolute Spearman correlation coefficient over 30
runs, multiplied by 100. Bold denotes the best value.

Proxy SSS (CF-10) SSS (CF-100) SSS (IN16-120) TSS (CF-10) TSS (CF-100) TSS (IN16-120)

Random 7.5 ± 5.0 6.6 ± 4.4 6.2 ± 5.3 6.4 ± 4.8 5.0 ± 4.3 6.0 ± 4.4

#Params 91.6 ± 1.7 66.4 ± 5.4 76.9 ± 3.8 51.1 ± 4.9 58.4 ± 6.0 43.6 ± 5.5

Synflow [35] 94.3 ± 1.1 78.4 ± 4.0 87.0 ± 2.3 91.1 ± 1.2 65.2 ± 3.8 55.8 ± 5.7

Gradnorm [1] 59.5 ± 5.0 80.9 ± 1.7 67.1 ± 4.4 79.0 ± 2.4 30.3 ± 6.9 10.5 ± 7.4

NASWOT [27] 73.0 ± 3.9 21.9 ± 10.3 48.8 ± 6.8 88.7 ± 2.0 72.1 ± 3.6 60.0 ± 4.8

TE-NAS [6] 74.3 ± 3.2 40.9 ± 8.6 51.0 ± 6.4 31.3 ± 6.6 26.5 ± 10.1 15.8 ± 7.3

Zen-NAS [23] 92.5 ± 1.2 64.7 ± 5.6 76.4 ± 3.8 48.5 ± 6.8 27.0 ± 8.9 32.2 ± 8.0

ZiCo [22] 93.9 ± 1.1 76.8 ± 3.8 94.9 ± 0.5 91.0 ± 1.4 67.3 ± 4.1 80.4 ± 2.7

EZNAS [2] 95.9 ± 0.4 82.9 ± 2.3 88.8 ± 1.6 76.1 ± 2.4 88.5 ± 1.5 84.7 ± 3.1

GM-1 (Ours) 81.6 ± 2.5 84.7 ± 2.3 86.8 ± 1.6 92.8 ± 1.7 87.3 ± 2.0 82.7 ± 2.8

GM-2 (Ours) 95.8 ± 0.7 92.4 ± 0.9 97.1 ± 0.3 83.1 ± 2.8 74.1 ± 3.5 73.3 ± 4.0

GM-3 (Ours) 98.2 ± 0.3 90.0 ± 1.0 94.2 ± 0.7 57.8 ± 5.5 44.8 ± 6.0 74.8 ± 3.6
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