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Abstract

This paper tackles the pressing challenge of mutagenicity prediction by introducing three ground-
breaking approaches. First, it showcases the superior performance of 2D scattering coefficients extracted
from molecular images, compared to traditional molecular descriptors. Second, it presents a hybrid
approach that combines geometric graph scattering (GGS), Graph Isomorphism Networks (GIN), and
machine learning models, achieving strong results in mutagenicity prediction. Third, it introduces a
novel graph neural network architecture, MOLG3-SAGE, which integrates GGS node features into a
fully connected graph structure, delivering outstanding predictive accuracy. Experimental results on
the ZINC dataset demonstrate significant improvements, emphasizing the effectiveness of blending 2D
and geometric scattering techniques with graph neural networks. This study illustrates the potential of
GNNs and GGS for mutagenicity prediction, with broad implications for drug discovery and chemical
safety assessment.
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1. Introduction

In toxicological and pharmaceutical research, determining a compound’s mutagenesis potential is
critical to protecting public health and safety. This assessment is crucial in a number of domains, in-
cluding medication development, environmental preservation, and conformity to regulations. The Ames
test, a biological assay created by Bruce Ames in the 1970s, has long been considered the gold stan-
dard for determining chemicals capable of causing genetic changes [1]. The test includes exposing
specially modified Salmonella bacteria strains to the substance of interest and detecting whether or not
it causes DNA alterations. Despite its great popularity and acceptability, the Ames test is not without
flaws. It can occasionally produce erroneous results. The repeatability of the test between laborato-
ries is not absolute, with a reproducibility of less than 100% [2]. These limitations, combined with
the resource-intensive nature of the test and the ethical concerns associated with animal testing, have
led the scientific community to seek alternative methods. The exponential increase in the number of
new chemical entities requiring toxicological evaluation, coupled with the critical need for rapid screen-
ing in modern drug discovery pipelines, has accelerated the development of computational methods for
predicting mutagenicity. These in silico methods hold the promise of faster, more cost-effective and po-
tentially more accurate mutagenicity assessments that overcome the limitations of classical experimental
methods while meeting the needs of today’s research and regulatory environment.

As toxicology has evolved, the need for accurate mutagenicity assessment has increased, leading to
the emergence of advanced computational models. While conventional machine learning (ML) [3] and
deep learning (DL) [4] methods have shown potential, recent studies highlight the distinct advantage
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of graph neural networks (GNNs) [5] for molecular analysis, including mutagenicity prediction. This
advantage arises from the inherent graph structure of molecules, where atoms serve as nodes and bonds
as edges, making GNNs particularly well suited to capturing molecular relationships. Graph Neural
Networks (GNNs) outperform typical machine learning models that rely on manually created features,
as well as deep learning approaches that may overlook critical structural aspects. This ability to preserve
molecular structure is crucial because it enables more detailed and nuanced examination of the molecular
characteristics that determine mutagenicity.

Traditional machine learning models, while simpler, can struggle with the complexities of molec-
ular data since they rely on predefined molecular descriptors and procedures. Although deep learning
models, notably those based on convolutional neural networks (CNNs) [6] and recurrent neural net-
works (RNNs)[7], have improved performance, they still struggle to capture the spatial and relational
properties of molecules. Accurate prediction of chemical toxicity is critical for ensuring the safety of
new compounds. In this work, we present a novel approach that leverages the power of molecular graph
representations based on scattering transform to predict zinc toxicity.

At the heart of our method is the Geometric Scattering Transform (GST), a powerful tool that can
capture the intricate multi-scale structures within molecular graphs. We use GST to generate rich, infor-
mative embeddings that encode the essential features of each molecule. These GST-derived embeddings
serve two purposes. First, we use them as input to sophisticated machine learning models, which are
then trained to directly predict the toxicity of molecules. Secondly, we use the embeddings to compute
the similarity between molecules, forming a fully connected graph where the nodes features are the
scattering coefficients and the edge weights reflect these similarities.

This graph-based representation is then processed using the GraphSAGE algorithm, which allows
us to exploit the relational information between molecules to further improve the accuracy of our toxi-
city predictions. By combining the feature extraction capabilities of GST and the graph-based learning
power of GraphSAGE, our approaches delivers state-of-the-art performance for zinc toxicity prediction.
The ability to accurately predict toxicity is a critical step in the development of new and safer chemi-
cals. Our method, based on molecular graph representations and advanced machine learning techniques,
represents a significant advance in this important area of research.

2. Related Work

Our work focuses on 2D and geometric scattering, graph neural networks (GNNs), and mutagenic-
ity prediction. While earlier approaches have employed supervised machine learning models, CNN and
GNNs to predict mutagenicity on the ZINC dataset, the application of scattering transform for feature
extraction is relatively unexplored. In this paper, we close this gap by combining the geometric scattering
transform with both supervised machine learning models like Lightgbm and GNNs like GraphSAGE.
While the previous literature shows considerable gains in GNN-based mutagenicity prediction, our tech-
niques improve prediction capabilities by including geometric scattering to gather multi-scale structure
information. Here, we review key research, highlight the merits and limits of current approaches, and
offer our work as a step forward in enhancing predictive accuracy for toxicology.

2.1. Traditional Machine Learning Approaches in Mutagenicity Prediction
Traditional machine learning (ML) models have been widely used in Ames mutagenicity prediction,

generally using molecular fingerprints and specified descriptors to forecast toxicological effects. The
Random Forest (RF) model is among the most widely utilized. Chu et al. [8] used RF with ECFP
and FCFP features on a dataset of 5359 chemicals and obtained an AUC of 0.84 and an ACC of 0.79.
Similarly, Venkatraman et al. [9] used RF with PUBCHEM fingerprints (FP) on a larger dataset of 7950
chemicals, yielding an AUC of 0.87 and an ACC of 0.79. These researches established the usefulness
of fingerprint-based descriptors for predicting mutagenicity by allowing models to extract key structural
information from chemical substances.
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Support Vector Machines (SVM) have also demonstrated excellent performance in this domain.
Shinada et al. [10] used SVM with ECFP4 fingerprints, chemical characteristics, and genotoxicity alerts
to achieve an AUC of 0.93 across a dataset of 6512 compounds. The inclusion of diverse molecular
descriptors enabled the SVM model to efficiently capture critical structural and chemical features related
to mutagenicity, emphasizing the importance of feature selection in maximizing model performance.

Consensus models, which combine many methods, have also been investigated for improving mu-
tagenicity prediction. Lou et al. [11] created a consensus model that included SVM, RF, XGBoost,
Lightgbm, and GNN. Using characteristics such as MACCS keys, RDKit descriptors, and ECFP4 fin-
gerprints, their technique achieved an AUC of 0.93 and an ACC of 0.87 on a dataset of 8576 chemicals.
The success of consensus models stems from their ability to use the complementing qualities of many
algorithms, resulting in increased robustness and predictive power across heterogeneous datasets.

In a 2024 study, Van Tran et al.[6] investigated the utilization of Lightgbm with RDKit 2D chemical
descriptors with their AMPred-CNN model. The Lightgbm model has an AUC of 0.901 and an ACC of
0.827, indicating that classical machine learning methods can still yield high accuracy in mutagenicity
prediction when paired with powerful molecular descriptors.

While these traditional ML models have been successful in many mutagenicity prediction tasks, they
come with limitations. A key challenge is their reliance on predefined molecular descriptors such as
ECFP, FCFP, and PUBCHEM FP, which may not fully capture the complex and non-linear relationships
within molecular structures.

2.2. Advances in Deep Learning for Predicting Mutagenicity
Deep learning algorithms have considerably improved mutagenicity prediction because of their ca-

pacity to learn complicated patterns from data. However, in some applications, deep neural networks
(DNNs) are still used alongside molecular descriptors, which provide a structured representation of
chemical substances. Kumar et al. [12] used a DNN with alvaDesc molecular descriptors on a dataset
of 4053 chemicals, attaining an AUC of 0.89 and an ACC of 0.84. In this scenario, while the DNN ar-
chitecture allowed for the automatic learning of molecular feature connections, the alvaDesc descriptors
still supplied a predefined structure to the data, making the learning work easier.

Similarly, Lui et al. [13] used DNNs with Binary Morgan fingerprints to predict Ames mutagenicity.
Their model, when applied to a dataset of 6380 chemicals, produced an AUC of 0.88 and an ACC of 0.78.
The use of Morgan fingerprints as input features indicates that even deep learning models occasionally
rely on feature engineering to capture crucial chemical attributes, rather than learning purely from raw
data.

On the other hand, models such as the AMPred-CNN created by Van Tran et al. [6] used CNNs
to learn directly from molecular images generated from SMILES strings. This method enabled the
model to avoid typical feature engineering by utilizing CNNs’ capacity to extract spatial and structural
information from molecular representations autonomously. They also tested a Lightgbm model with
RDKit 2D molecular descriptors and obtained an AUC of 0.901 and an ACC of 0.827, demonstrating
the efficacy of combining classical machine learning and deep learning for mutagenicity prediction.

While deep learning models like as DNNs and CNNs have impressive potential for learning intricate
chemical interactions, they are not without limits. There is a concern that models like the AMPred-CNN,
which use CNNs to process molecular pictures, will overlook essential chemical structural information.
Molecular pictures created from SMILES representations can occasionally oversimplify or obfuscate
important chemical interactions like bond types, electron distributions, or three-dimensional spatial ar-
rangements.

2.3. Using Graph Neural Networks for Molecular Toxicity Prediction
Graph Neural Networks (GNNs) have emerged as an effective technique for predicting mutagenicity

due to its ability to naturally model complicated chemical structures as graphs. Atoms are represented
as nodes in these models, while bonds between them act as edges, allowing GNNs to successfully
capture the intricate topological relationships seen within molecules. Xiong et al. [14] used GNNs
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for mutagenicity prediction with molecular graph data from ChEMBL, PubChem, OCHEM, and other
sources. Their model, applied to 7575 molecules, obtained an AUC of 0.90 and an ACC of 0.81.

Further developments in Graph Convolutional Neural Networks (GCNNs) have expanded the range
of mutagenicity prediction. Hung et al. [15] used a GCNN model on a dataset of 17,905 chemicals and
obtained an AUC of 0.88 and an ACC of 0.85. Similarly, Li et al. [5] created the MutagenPred-GCNN
model, which combined molecular graphs with data-driven molecular fingerprints to achieve an AUC of
0.88 and an ACC of 0.81 on a smaller dataset of 6307 chemicals. These models demonstrate GCNNs’
capacity to handle big datasets and learn complex chemical characteristics automatically from graph
structure.

Guo et al. [16] proposed a GNN model for predicting mutagenicity on a dataset of 7617 chemi-
cals, with an AUC of 0.92. Their approach emphasized the model’s strong interpretability, highlighting
GNNs’ ability to not only provide accurate predictions but also insights into molecular interactions im-
portant to mutagenicity. Wei et al. [17] also used GCNNs to analyze molecular graphs from ChEMBL,
PubChem, DrugBank, and other publications. Their model achieved an AUC of 0.84 and an ACC of
0.84 on 7387 chemicals.

Although GNNs and GCNNs have distinct benefits in capturing topological links inside molecular
structures, their usefulness is limited by the quality of the molecular graphs utilized as input. These
graphs may not adequately capture crucial characteristics of molecular structure, such as 3D spatial
configurations, electron distributions, or complicated bond dynamics. As a result, essential chemical
features required for accurate mutagenicity predictions may be ignored, reducing the model’s overall
performance and generalizability.

To overcome these constraints, the Geometric Scattering Transform (GST) offers a more advanced
method for obtaining multi-scale characteristics from molecule structures. Unlike standard graph rep-
resentations, GST captures both local and global structural information, allowing for a more complete
understanding of chemical interactions. This approach maintains the geometric structure of molecules,
which is critical for accurately forecasting traits like mutagenicity. By integrating GST with GNNs,
we can improve the model’s ability to detect intricate chemical properties that traditional graph-based
approaches may overlook. GST introduces multi-resolution analysis, which allows GNNs to better un-
derstand molecular interactions at many scales, ranging from individual atom bonds to larger molecular
substructures. This integration has the potential to outperform cutting-edge models by providing more
precise and detailed representations of molecular characteristics, resulting in higher predicted accuracy
in mutagenicity tasks.

3. Preliminaries and Background

3.1. Wavelet Scattering Transform
The 2D Wavelet Scattering Transform (WST) is a powerful method for extracting robust, translation-

invariant features from images while preserving high-frequency information often lost in traditional
convolutional approaches. Structurally resembling a CNN, the WST provides a predefined, training-
free alternative that excels on small datasets.

WST iteratively applies scaled and rotated wavelet convolutions, followed by modulus operations
and smoothing, to generate hierarchical representations of images. At each layer, it performs wavelet
transforms and nonlinearities; refer to [18] for more background and references. Using Morlet wavelets,
this method captures multi-scale and multi-orientation information, forming the foundation of the scat-
tering transform.

3.1.1. Morlet wavelets
The 2D Morlet wavelet ψθ(x) for x ∈ R2 is defined as:

ψθ(x) = eikθ·xe−
|x|2
2 − βe−

|x|2

2σ2 ,
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where θ is the orientation angle of the wavelet, κ is the wave vector magnitude, β is the DC (Direct
Current) correction term, and σ is the width of the Gaussian envelope. We refer to Mallat [19] for more
background.
These parameters can be optimized for specific applications. Typically, θ is sampled at multiple orienta-
tions for comprehensive directional analysis, κ is chosen based on the characteristic scale of the features
of interest, and β is adjusted to control sensitivity to intensity variations in the analyzed signal. Figure 1
plots the Morlet wavelet at various orientations and parameter settings.

κ=10.0, θ=2.6, β=0.2

κ=3.1, θ=4.0, β=0.6 κ=8.8, θ=6.2, β=1.0

κ=5.4, θ=4.8, β=0.0

Figure 1: 2D Morlet Wavelet visualization at various orientations and parameters

3.1.2. Scattering Transform
Let X be the signal to be analysed. A WST is implemented with a deep convolution network that

iterates over traditional wavelet transform, nonlinear modulus, and averaging operators.
The zeroth-order scattering coefficient is obtained by averaging the input signal with a low-pass filter
ϕJ:

S 0x = I ∗ ϕJ , (1)

where ϕJ(x1, x2) = 2−Jϕ(2−J x1, 2−J x2) is a scaled version of the low-pass filter ϕ.this later is the parent
low-pass filter, typically chosen as a normalized 2D Gaussian function:

ϕ(x1, x2) =
1

2πσ2 exp
− x2

1 + x2
2

2σ2

 .
The first-order scattering coefficients are computed by convolving the input signal with oriented wavelets
ψ2 j,θ, taking the complex modulus, and then averaging with ϕJ:

S 1( j, θ)I = |I ∗ ψ2 j,θ| ∗ ϕJ , (2)

where j represents the scale and θ the orientation. The wavelets at each scale are obtained by dilating
the mother wavelet defined previously: ψ2 j,θ(x1, x2) = 2−2 jψθ(2− jx1, 2− jx2).
This process continues recursively to generate higher-order coefficients. The mth order scattering coef-
ficients are computed by applying m successive wavelet transforms and modulus operators, followed by
a final averaging:

S m( j1, θ1, ..., jm, θm)I = |||I ∗ ψ2 j1 ,θ1
| ∗ ... ∗ ψ2 jm ,θm | ∗ ϕJ , (3)

where j1 < j2 < ... < jm < J ensures a coherent multi-scale analysis. The intermediate representations
U[ j, θ]I = |I ∗ ψ2 j,θ| capture the modulus of wavelet coefficients before averaging, preserving high-
frequency information that is essential for discrimination.
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Several important mathematical aspects can be observed in the resulting scattering representation.
The transform is locally translation invariant up to a scale of 2J , thanks to the final averaging with ϕJ . It
is particularly resistant to tiny deformations, which is an important characteristic for pattern recognition
applications. This stability results from a series of wavelet transforms and modulus operations that
gradually increase invariance while conserving discriminative information.

In practical implementations in images, particularly molecular ones, the transform is often com-
puted up to second order (m ≤ 2), as higher-order coefficients have decreasing energy. The scattering
coefficients at each order capture progressively complicated geometric patterns: first-order coefficients
encode directional properties such as edges, whereas second-order coefficients record more intricate ge-
ometric connections and textural information. This hierarchical decomposition generates a rich, multi-
scale representation of visual material that preserves fundamental properties while ensuring invariance
to common changes.

The final representation is made up of concatenated scattering coefficients from all orders and scales
as in (3), resulting in a vector that accurately describes the geometric and textural aspects of the original
image. This representation has proven very useful for machine learning activities since it provides a
consistent and meaningful set of features that may be utilized for classification, regression, and other
predictions of chemical properties.

3.2. Geometric Scattering on Graphs
Geometric scattering on graphs extends the principles of the previous section on WST to graph-

structured data [20]. This approach provides a rich, multi-scale representation of graphs that is invariant
to vertex permutations, making it particularly useful for graph analysis, classification, and regression
tasks [21, 22].

In the field of graph-based machine learning, a fundamental challenge is developing algorithms that
are invariant to graph isomorphism. This property ensures that the algorithm’s output remains consistent
regardless of how the vertices and edges of a graph are indexed, especially in molecular graph analysis.
A common approach to achieve this invariance is through the use of summation operators, which act on
signals defined on graphs. Let G = (V, E) be a graph with vertex set V and edge set E, and let x = xG be
a signal defined on G.

While these simple summation-based features capture some graph properties, they do not fully rep-
resent the graph’s structural information. To address this limitation, we turn to wavelet transforms on
graphs. In this work,we associate each graph an adjacency matrix W, where Wi j = 1 if nodes i and j are
connected, and 0 otherwise. The degree matrix D is a diagonal matrix where Dii =

∑
j Wi j, represents

the degree of each node.
The graph Laplacian L = D−W serves as a fundamental operator, describing the difference between

the degree and adjacency relationships. Alternatively, the normalized Laplacian:

Lnorm = I − D−1/2WD−1/2,

is often used to ensure stability and prevent biases due to nodes with high degrees.
The eigen decomposition of the normalized Laplacian gives us the graph Fourier basis:

Lnorm = VΛVT , (4)

where V is the matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues λ. These eigenvalues
represent the frequencies in the graph spectral domain.

Graph wavelets are at the heart of geometric scattering, as they are designed to capture local and
multi-scale aspects of graph-based signals. Several varieties of graph wavelets have been proposed.
In our case studying graphs-based molecular analysis, we focus on two popular wavelets, diffusion
wavelets and tight Hann wavelets.
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• Diffusion wavelets [23] are constructed from the matrix T = 1
2 (I+D−1W) raised to dyadic powers.

Specifically, for J ≥ 1, the diffusion wavelet filters at a scale j are defined as

H0 = I + T, H j = T 2 j−1
(I − T 2 j−1

), j ≥ 1. (5)

Different powers of P capture information between nodes at different scales, revealing electron
exchange and chemical bonding patterns. In the ZINC dataset [24], diffusion wavelets effectively
detect significant substructures, helping predictions of molecular attributes such as toxicity.

• In this work, we focus on tight Hann wavelets [25] defined as:

ψ j(λi) = h(λi − t j), i = 1, . . . ,N, (6)

where λi represents the eigenvalue i in the graph Laplacian and t j = ( j + 1)emax/(J + 1 − R)
allowing for a flexible and energy-preserving representation of the graph structure, and the Hann
kernel function h defined as:

h(x) = 0.5 + 0.5 cos
(
2π

J + 1 − R
Remax

x + 0.5
)
, (7)

where J is the number of scales, R is a scaling factor, and emax is the upper bound on the spec-
trum. The tight Hann wavelets are then constructed using the eigenvectors and eigenvalues of the
normalized Laplacian. It’s important to note that ψ j is applied element-wise to each eigenvalue λi.
This results in a vector of wavelet coefficients for each scale j:

ψ j = [ψ j(λ1), ψ j(λ2), . . . , ψ j(λN)]. (8)

The wavelet transform on graphs is implemented through wavelet operators H j. These operators
are defined in terms of the graph Fourier basis and the wavelet functions:

H j = Vdiag(ψ j)V
T , (9)

where V is the matrix of eigenvectors of the graph Laplacian, and diag(ψ j) creates a diagonal
matrix with the elements of ψ j on its diagonal.

Let X ∈ RN×F be the graph signal where N is the number of nodes and F is the dimension of the
feature vector at each node. Given these graph wavelets, the zeroth and m-order scattering coefficients
are defined by:

S 0X = ⟨X,U⟩ =
1
N

N∑
i=1

Xi, Xi ∈ RF (10)

S mX( j1, . . . , jm) =
〈∣∣∣∣∣H jm

(∣∣∣∣H jm−1

(
· · ·

∣∣∣H j1 X
∣∣∣)∣∣∣∣)∣∣∣∣∣ ,U〉

, j ≥ 1. (11)

The graph scattering transform is then defined by concatenating all of these coefficients:

S X = [S 0X, S 1X, S 2X, . . . , S mX].

Figure 2 illustrates the hierarchical process of the graph scattering transform, where a graph signal X
is filtered through J = 3 scales using graph wavelets and processed over L = 3 layers. At each layer,
non-linearities and aggregation operators capture multi-scale hierarchical features of the signal.
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S0X= <X,U>
X

∣Hj X∣

S1X= <∣ HjX∣,U>

S2X= <∣Hj1∣Hj2X∣∣,U>

∣Hj1∣Hj2X∣∣

∣Hj3∣Hj1∣Hj2X∣∣∣

S3X= <∣Hj3∣Hj1∣Hj2X∣∣∣,U>

Figure 2: Graph Scattering Transform with J = 3 and L = 3 for multiscale signal decomposition.

3.3. Graph Neural Network
Graph Neural Networks [26] are deep learning models that analyze graph-structured data. They

work by iteratively updating node representations via message transmission among surrounding nodes.
The basic premise is that each node’s attributes are updated using both its own qualities and aggregated
information from its neighbors. This method enables GNNs to capture both node-level features and
structural information embedded in the graph topology.

In general, the message passing framework for GNNs can be expressed as:

h(k)
v = UPDATE(k)

(
h(k−1)

v ,AGGREGATE(k)
(
h(k−1)

u : u ∈ N(v)
))
, (12)

where h(k)
v represents the feature vector of node v at layer k, N(v) denotes the neighbors of node v, and

AGGREGATE and UPDATE are learnable functions.

3.3.1. GraphSAGE
GraphSAGE [27] is an inductive learning framework for GNNs that enables generating embeddings

for previously unseen nodes. The key innovation of GraphSAGE lies in its neighborhood sampling
strategy and aggregation functions. The message passing in GraphSAGE can be formulated as:

h(k)
v = σ

(
Wk · CONCAT

(
h(k−1)

v ,AGGk(h(k−1)
u ,∀u ∈ N(v))

))
, (13)

where AGGk can be any differentiable aggregator function (e.g., mean, max, or LSTM), Wk is a learnable
weight matrix, and σ is a nonlinear activation function. The CONCAT operation ensures that the model
preserves the target node’s own features alongside the neighborhood information.

3.3.2. Graph Isomorphism Network (GIN)
GIN [28] is designed to be as powerful as the Weisfeiler-Lehman graph isomorphism test in distin-

guishing graph structures. It achieves this by using a simple but powerful update function that maintains
injective aggregation of multisets. The GIN layer update rule is defined as:

h(k)
v = MLP(k)

(1 + ϵ(k)) · h(k−1)
v +

∑
u∈N(v)

h(k−1)
u

 , (14)

where ϵ(k) is either a learnable parameter or fixed to zero, and MLP is a multi-layer perceptron. The
(1 + ϵ(k)) term helps the model to distinguish central nodes from their neighbors, while the summation
provides a simple yet powerful aggregation scheme that preserves multiset properties. The key distinc-
tion of GIN is its proven theoretical capacity to capture structural information with maximal discrim-
inative power among GNNs, making it particularly effective for graph-level tasks where isomorphism
testing is important.
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4. Methods

4.1. Dataset Preparation
We utilized the well-known mutagenicity dataset http://doc.ml.tu-berlin.de/

toxbenchmark/ compiled by Hansen et al.[24], which originally contained 6,512 compounds, to
assess and compare the effectiveness of our approach against previous methods. To preprocess and har-
monize the molecular data, we stripped explicit hydrogens, detached and discarded any metal ions, and
kept only the largest fragments of the molecules. To handle duplicate entries with identical canonical
SMILES strings but differing mutagenicity outcomes, we applied the clear evidence rule. According
to this rule, when two Ames test results conflict, preference is given to the positive outcome. After
this filtering process, a refined set of 6,277 compounds was obtained, comprising 3,388 mutagenic and
2,889 non-mutagenic compounds. We then divided the dataset randomly, allocating 80% for training
and validation purposes and the remaining 20% for testing.

4.2. Scattering Transform for Hierarchical Molecular Representation Learning
4.2.1. Geometric Scattering-Based Molecular Featurization

Molecular graphs are a strong tool for representing the structure of chemical compounds by storing
atoms as nodes and bonds as edges. Each molecular structure is turned into a graph G = (V, E), where
V represents the set of atoms and E the chemical bonds between them. Individual atom parameters such
as atomic number, formal charge, aromaticity, hybridization, and valence are incorporated as node fea-
tures, whereas bond types contribute to the adjacency matrix, which defines the graph’s connectedness.
These graph-based models are critical for reflecting both local surroundings (such as aromatic rings or
functional groups) and long-range interactions inside the molecule.

To generate expressive embeddings, as shown in Figure3a, geometric scattering transforms are ap-
plied to these molecular graphs.These transforms use wavelet-based filters to capture patterns at various
scales and layers, increasing the feature space for subsequent tasks such as molecular property predic-
tion. In our study, we use two complimentary wavelet-based transforms: Tight Hann Frame Wavelets
and Diffusion Wavelets. Each technique provides a distinct view of the graph, guaranteeing that both
local atomic surroundings and global molecule interactions are reflected in the embedding.

The Tight Hann wavelet transform [25] is a spectral graph scattering technique that relies on local-
ized filtering in both the node and frequency domains. The Hann window function is used to create
wavelets that balance spectral localization and leakage. This approach detects small-scale patterns, such
as aromatic rings and functional motifs, which are necessary for molecular property prediction.

In our approach, as illustrated in table 1, we use one layer of the tight Hann wavelet transform, driven
by the compact size of molecular graphs. For smaller graphs, a single layer strikes a balance between
computational efficiency and the ability to extract meaningful patterns, such as functional groups and
aromatic rings. To further enrich the structural representation, we apply the wavelet across multiple
scales. After experimenting with various combinations of layers and scale values, we found that using
three scales ( j = 3) provided the best results. This multi-scale capability ensures that both local mo-
tifs and short-range dependencies are captured in the embeddings, making it particularly effective for
datasets like ZINC in our case, where molecules exhibit diverse structural patterns.

The Diffusion wavelet’s structure [23] allows for the extraction of both local and global information,
allowing the model to identify electron exchange patterns, chemical bonds, and functional connections
at multiple scales. At this step, we use the diffusion wavelet transform with three layers. Each layer
represents a bigger neighborhood interaction: the first encodes local atomic interactions, the second
catches mid-range dependencies, and the third discloses global molecule features. This multi-scale
propagation preserves and amplifies structurally significant substructures, such as rings, chains, and
long-range relationships, in the final embeddings.

This dual-wavelet technique is especially useful for molecular property prediction tasks, such as
toxicity evaluation and activity prediction, because it takes advantage of both localized motifs and global
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Figure 3: Multi-Modal Pipeline for Mutagenicity Prediction Using Molecule Representations as Graphs and Images. The
pipeline utilizes the Hansen et al. dataset of 6,512 compounds divided into mutagens and non-mutagens. Molecules are
transformed into graph representations for geometric scattering (a) using Diffusion and Tight HANN wavelets, along with
embeddings from a Graph Isomorphism Network (GIN), and into 2D molecular images for scattering coefficient extraction
(b). These features are fused and fed into machine learning models to classify compounds as mutagenic or non-mutagenic.

molecular interactions. By combining the strengths of spectral filtering (Hann wavelets) and random-
walk-based propagation (diffusion wavelets), the geometric scattering framework produces durable and
expressive embeddings suited for a wide range of downstream machine learning tasks.

Table 1: Hyperparameter values used in Geometric Scattering.

Hyperparameter Values

No. Tight HANN Layers 1

No. Tight HANN Scale J 4

No. Tight HANN coefficients 7

No. Diffusion Wavelet Layers 3

No. Diffusion Wavelet Scales 4

No. Diffusion Wavelet Coefficients 588

4.2.2. Molecular featurization using scattering 2D
The 2DWST uses multi-scale wavelet convolutions to successfully capture both local and global

molecular characteristics. RDKit converts molecular graphs into 2D images while maintaining impor-
tant substructures such as aromatic rings, functional groups, and bond configurations. 2DWST has both
translation invariance and deformation robustness, making it ideal for studying the variety of molecular
structures present in the dataset ZINC.

The 2DWST consists of Morlet wavelet convolutions followed by non-linear modulus operations.
First-order coefficients capture basic chemical properties such as bonds and edges (Figure 3b), but
second-order coefficients encode more sophisticated interactions like ring connectedness. Higher or-
ders provide less energy and are frequently shortened for efficiency. After extensive experimentation,
The chosen combination of J = 9 scales and L = 8 orientations ensures that both local and global struc-
tures are fully represented while minimizing overhead. This is critical for datasets such as ZINC, where
molecular variety necessitates a model that is sensitive to small chemical differences while remaining
computationally tractable.
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After applying the 2DWST to molecular pictures, each image produces an 11,681-dimensional fea-
ture vector. This high-dimensional representation, while dense in information, poses considerable pro-
cessing hurdles. To address this, we used the Chi-squared (χ2) feature selection method to determine
the most important factors determining mutagenicity. We tested different feature subset sizes, including
1000, 2000, 4000, 6000, and 8000. The results 5 show that a subset of 4000 characteristics is ideal for
balancing computational efficiency with predictive effectiveness.

4.3. Molecular Graph-of-Graphs with Geometric Scattering and SAGE (MOLG3-SAGE)
In this study, we propose an alternative method MolG³-SAGE (Molecular Graph-of-Graphs with

Scattering and GraphSAGE), a novel approach for molecular structure classification that models
molecules as hierarchical, connected graphs. Each molecule is represented as a node in a fully con-
nected meta-graph, with the nodes being individual molecular graphs made up of atomic and bonding
information. This graph-of-graphs structure allows us to encode both intra- and intermolecular interac-
tions, resulting in more sophisticated and hierarchical data representations.

The construction of the meta-graph as shown in figure4 involves creating weighted edges between
molecular nodes based on their geometric scattering feature similarities. For each pair of molecules i and
j, we first compute their scattering embeddings, denoted as si and s j respectively. The similarity between
these embeddings is captured through cosine similarity, which is then transformed into a normalized
weight Wi j. Let S = {s1, ..., sn} be the set of scattering embeddings for n molecules. The edge weight
Wi j between molecules i and j is defined as

cos sim(i, j) =
⟨si, s j⟩

∥si∥∥s j∥
, (15)

where ⟨·, ·⟩ denotes the inner product and ∥·∥ represents the L2 norm. To ensure non-negative weights
bounded between [0, 1], we normalize the similarity:

sim norm(i, j) =
cos sim(i, j) + 1

2
. (16)

The similarity is then converted to a distance metric:

d(i, j) = 1 − sim norm(i, j). (17)

Finally, we apply a Gaussian diffusion kernel [23] to obtain the final edge weights:

Wi j =
exp(−d(i, j)2/(2σ2))

maxk,l exp(−d(k, l)2/(2σ2))
, (18)

where σ is chosen as the standard deviation of the distance matrix to ensure appropriate scaling of
the kernel, and the denominator normalizes the weights to [0, 1]. This formulation ensures that the edge
weights decay exponentially with molecular dissimilarity while preserving local structure through the
Gaussian kernel.

The resulting weighted graph G = (V, E,W) consists of |V | = n nodes representing individual
molecules, with E containing all possible edges between nodes, and W containing the computed edge
weights. Each node vi ∈ V maintains its original molecular graph structure Gi = (Vi, Ei) representing
atomic connections, thus creating a hierarchical graph representation. This dual-level structure allows
MolG3-SAGE to simultaneously capture both local atomic interactions through the molecular graphs
and global molecular relationships through the weighted meta-graph structure.

This hierarchical structure enables MolG3-SAGE to effectively capture both local atomic interac-
tions and global molecular similarities, learn from the relationship between molecular structures, and
leverage both geometric and topological information for enhanced message passing during graph neural
network training. As illustrated in Table 2 and Figure 4, MolG³-SAGE’s design includes two sequential
GraphSAGE layers [27] and a classification layer. Each GraphSAGE layer employs a neighborhood
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aggregation technique, which generates node representations by sampling and aggregating information
from local graph neighborhoods. The first layer converts the initial molecular features into an inter-
mediate representation, which is then refined further to produce a final embedding space. To avoid
overfitting, a dropout mechanism is used between layers, and the ReLU activation function is used to
add nonlinearity to the model.

Figure 4: Fully Connected Layer Architecture for Binary Mutagenicity Classification in MolG³-SAGE Framework

Our method uses a message-passing framework in which each node accumulates information from
its neighbors using a mean-pooling process. The aggregated neighborhood features are added to the
node’s own features before being converted using a learned linear projection. This approach enables
the model to recognize both local structural patterns and global chemical characteristics. Edge weights
in the meta-graph are calculated using chemical similarity metrics, resulting in a weighted connectivity
structure that reflects the interactions between distinct molecules.

To minimize cross-entropy loss, the Adam optimizer is used during the training process, along with
weight decay regularization. We use an early stopping mechanism based on validation loss to prevent
overfitting and model checkpointing to keep the best-performing configuration. The model’s perfor-
mance is evaluated using traditional binary classification measures, with a focus on the area under the
receiver operating characteristic curve (ROC-AUC), which is robust to class imbalance.

Table 2: Hyperparameter values used in the MolG³-SAGE model for mutagenicity classification.

Hyperparameter Values

Number of Layers 2

Input Feature Dimension 595

Hidden Features 128

Embedding Size 64

Dropout Rate 0.5

Learning Rate 0.001

Weight Decay 1e-5

Activation Function ReLU

Training Epochs 1000

Optimizer Adam

Classification Output 2

The neural network architecture is implemented with PyTorch and the Deep Graph Library (DGL),
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allowing for efficient processing of graph-structured data. To handle bigger molecular datasets, we
use multi-GPU support via data parallelization, assuring computational economy while retaining model
performance. This implementation technique enables scalable processing of molecular graphs while
maintaining the model’s capacity to capture complicated structural patterns.

4.4. Model evaluation
To evaluate the effectiveness of our classification models, we used a range of performance indica-

tors. Accuracy (ACC) measures the overall proportion of properly predicted cases. The Area Under the
Receiver Operating Characteristic Curve (AUC) measures the model’s discriminative power, indicating
how well it performs compared to random guessing. Sensitivity (SE) and specificity (SP) assess the
model’s ability to accurately identify positive and negative examples, respectively, providing informa-
tion about how well the model distinguishes between classes. In addition, the Matthews Correlation
Coefficient (MCC) and the F1 Score provide a more nuanced evaluation, with MCC analyzing the bal-
ance of true and incorrect predictions across both classes and the F1 Score capturing the balance of
precision and recall. The mathematical definitions of these metrics are given below.

ACC =
TP + TN

TP + TN + FP + FN

SE =
TP

TP + FN

SP =
TN

TN + FP

F1 Score =
2 × Precision × Recall

Precision + Recall

MCC =
(TP × TN) − (FP × FN)

√
(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)

5. Results and discussion

We conducted our experiments using the widely recognised Hansen et al.[24] benchmark dataset
for Ames mutagenicity prediction. The final dataset consisted of 6,277 compounds after extensive pre-
processing. To ensure robust model evaluation, we implemented a systematic data partitioning strategy:
80% of the data was allocated for model development (training and validation), while the remaining
20% was reserved for independent testing. For the development phase, we used 10-fold cross-validation
on the training portion to rigorously assess model performance. Each molecular feature type underwent
extensive hyperparameter optimisation to identify its optimal model configuration. This methodolog-
ical approach allowed us to make fair comparisons between different molecular representations while
maintaining the integrity of our evaluation framework.

Our paper presents a series of novel approaches to Ames mutagenicity prediction, including 2D
scattering, GGS, and advanced geometric graph neural network-based representations (MOLG3-SAGE),
which outperform existing methods and state-of-the-art models. The findings demonstrate the advantage
of our multiresolution approaches for capturing structural and spatial intricacies within molecular rep-
resentations. In Table 3, the 2D scattering image features analyzed with a Lightgbm model outperform
standard chemical descriptors such as RDKit2D, Mordred, and EPCF6, as reported in [6]. The best
accuracy (ACC) and area under the ROC curve (AUC) obtained with these descriptors and multiple ma-
chine learning models are 0.823 and 0.895 for Lightgbm with Mordred, 0.827 and 0.901 for Lightgbm
with RDKit2D, and 0.821 and 0.896 for CatBoost with MACCS keys.

The Lightgbm model, which used 2D scattering image coefficients, outperformed the standard
descriptor-based techniques, with an ACC of 0.8337 and an AUC of 0.9128. This improved performance
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Figure 5: Comparative Performance Analysis of Machine Learning Models for Ames Mutagenecity Using Multiple Evalu-
ation Metrics

demonstrates the benefits of 2D scattering for molecular image analysis, as the scattering features can
capture finer structural details, spatial relationships and edge orientations that go beyond simple chem-
ical descriptors, allowing the model to extract better the rich patterns and characteristics present in
molecular structures.

Table 3: Comparison of the best performance of ML algorithms with different feature types and our proposed models on a
test set.

Model Feature ACC AUC F1 MCC SE SP
Lightgbm RDKit2D 0.827 0.901 0.843 0.652 0.860 0.789
AMPred-CNN image feature 0.899 0.954 0.897 0.803 0.848 0.954
Lightgbm 2D Image Scattering Features 0.8337 0.9128 0.8300 0.6639 0.8125 0.8547
SVC GGS features 0.8382 0.9100 0.8346 0.6771 0.8166 0.8598
RandomForest GGS features 0.8621 0.9341 0.8585 0.7251 0.8367 0.8875
XGBoost GGS features 0.8775 0.9469 0.8753 0.7555 0.8598 0.8952
Lightgbm GGS features 0.8767 0.9507 0.8750 0.7538 0.8629 0.8906
SVC GGS features+GIN embeddings 0.9132 0.9747 0.9199 0.8242 0.9271 0.8970
RandomForest GGS features+GIN embeddings 0.9293 0.9796 0.9348 0.8589 0.9429 0.9136
XGBoost GGS features+GIN embeddings 0.9247 0.9748 0.9306 0.8495 0.9386 0.9086
Lightgbm GGS features+GIN embeddings 0.9239 0.9812 0.9300 0.8470 0.9400 0.9053
MOLG3-SAGE GGS node features 0.9301 0.9622 0.9356 0.8603 0.9440 0.9136

Beyond 2D scattering, we used GGS characteristics to represent molecular graphs, allowing for a
more subtle and detailed representation of molecular structure and spatial configuration. Table 3 and
Figure 5 shows that models trained using GGS features (SVC, RandomForest, XGBoost, and Light-
gbm) perform well even without the usage of deep learning architectures such as CNNs. Notably, the
Lightgbm model using only GGS features achieved an AUC of 0.9507, which is very similar to the
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AMPred-CNN’s AUC of 0.954 and more better than [10, 29, 7] as shown in Table 4 , demonstrating
the power of GGS features in capturing structural aspects related to mutagenicity. Similarly, the XG-
Boost model with GGS features achieved an AUC of 0.9469, demonstrating that our graph scattering
technique, even without GNN or CNN training, is a potent alternative to the cutting-edge AMPred-CNN
[6]. This discovery underscores the effectiveness of GGS features in capturing important mutagenesis
trends, providing comparable prediction value while requiring less computational complexity.

To increase representation capacity, we combined GGS features with node embeddings produced
by a GIN. The GIN architecture employs three sequential graph isomorphism layers, each of which
enriches the atomic representations (atomic number, formal charge, hybridization state, total number
of hydrogens, aromaticity (binary), atomic mass, and total valence) by aggregating information from
surrounding atoms.

The core of the embedding generation is the GIN architecture, which consists of three GIN con-
volution layers followed by linear transformations. Each GIN convolution layer employs a multi-layer
perceptron (MLP) with two linear layers separated by ReLU activation functions. This architecture
generates final molecular embeddings (dimension: 128) by processing the input features (dimension:
7) through 64 hidden layers. The GIN layers are particularly effective at capturing structural informa-
tion due to their ability to discriminate between different graph structures, making them well-suited for
molecular representation learning. This hierarchical processing enables the network to learn more com-
plex chemical patterns and structural motifs. The model’s capacity to distinguish between diverse local
environments while remaining permutation-invariant is a key advantage for molecular representation
learning.

Following the graph convolution processes, a global pooling mechanism converts the atomic char-
acteristics into a single molecular descriptor. This fixed-dimensional representation is further enhanced
with completely connected layers, yielding 128-dimensional molecule embeddings. These embeddings
capture both atomic and topological information, resulting in a comprehensive vectorial representation
of the molecule structure that can be used for a variety of downstream chemical informatics activities.

Using the Lightgbm algorithm, this hybrid featurization achieved even better results: a model accu-
racy of 0.9239, an AUC of 0.9812, and an MCC of 0.8470. This extensive study of different machine
learning techniques, such as Gradient Boosting, Random Forests, and Support Vector Classifiers, con-
firms the GGS and GIN-augmented representations’ superior predictive performance. Adding to that,
from 10-fold cross-validation experiments as shown in figure 6, all models exhibit very consistent and
remarkable performance, with AUC scores ranging from 0.98 to 0.99 across all folds, as evidenced by
the significant rise in the ROC curves along the y-axis and proximity to the top-left corner. The same
curve shapes and AUC values across all models and folds indicate that the GGS-GIN embedding ap-
proach delivers highly discriminative features for mutagenicity prediction, resulting in robust and steady
performance regardless of the classifier used.

The MOLG3-SAGE model with GGS node features offers a significant advance in mutagenicity pre-
diction (figure 5). Using GraphSAGE and GGS node features, this model obtains the best performance
across practically all measures, with an ACC of 0.9301, SP of 0.9136,SE of 0.9440 and MCC of 0.8603.
This configuration outperforms not only the AMPred-CNN, but also other sophisticated models that em-
ploy RNN-derived continuous vectors, MACCS, ECFP4 and other molecular properties as embeddings
as illustrated in Table4.

MOLG3-SAGE uses a fully connected graph and GGS characteristics to capture complex struc-
tural and relational patterns important for predicting mutagenicity. Each node benefits from the ag-
gregated knowledge of the complete graph, allowing the model to distinguish between mutagenic and
non-mutagenic chemicals more accurately than isolated representations.

Finally, as shown in Table 4, our suggested models, particularly the Lightgbm architecture with GGS
features and GIN embeddings, produce an outstanding AUC of 0.9812, exceeding previous techniques
across architectures. This includes traditional SVM-based methods (Hansen et al., AUC=0.86; Winter
et al., AUC=0.89; Shinada et al., AUC=0.93), neural network approaches (Efficient Toxicity Prediction,
AUC=0.86), graph-based methods (MutagenPred-GCNNs, AUC=0.88; Rao et al.’s GAT, AUC=0.88),
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Table 4: Performance Comparison of AI-based Approaches utilizing Hansen et al. benchmark for Ames Mutagenicity
Prediction.

Approach name Ref. Model Features Reported AUC

Hansen et al. [24] SVM Dragon’s molecular de-
scriptor

0.86

Efficient Toxicity
Prediction

[30] Shallow Neural
Network

Padel’s 2D Molecular
descriptors

0.86

MutagenPred-
GCNNs

[5] GCNN Molecular graph 0.88

Rao et al. [31] GAT Molecular graph 0.88
Winter et al. [7] SVM RNN-derived continu-

ous vectors
0.89

ProTox II [29] RF MACCS/ECFP 0.90
Shinada et al. [10] SVM ECFP4, molecular

properties, genotoxicity
alerts

0.93

Thi et al. [6] Lightgbm RDKit 2D 0.901
Thi et al. [6] Ampred-CNN Image feature 0.954

Proposed Models (Ours)

Lightgbm 2D Image Scattering
Features

0.9128

Lightgbm GGS Features 0.9507
MOLG3-SAGE Meta-Graph Geometric

Scattering Features
0.9622

Lightgbm GGS features, GIN em-
beddings

0.9812

and more recent deep learning approaches like Ampred-CNN (AUC=0.954).The robust performance
across many feature representations (2D Image Scattering, CGS Features, and Meta-Graph Geometric
Scattering Features) proves our methodology’s versatility and effectiveness. These findings set a new
standard in computational toxicology, implying that our methodology may be applicable to a broader
range of molecular property prediction applications. We hope that this methodology will help to improve
the accuracy and efficiency of chemical safety evaluations, aiding both drug discovery and environmen-
tal safety assessments.

6. Conclusion

In this paper, we have presented a comprehensive framework for molecular mutagenicity predic-
tion that employs a variety of methods, including geometric graph scattering , 2D image scattering, and
novel graph neural network designs MOLG3-SAGE. Our multifaceted approach considerably increases
the state of the art by making numerous important contributions. First, we showed that 2D Image Scat-
tering Features outperformed traditional molecular descriptors, including RDKit2D, MACCS, Mordred,
and ECFP6, with an AUC of 0.9128 using Lightgbm. This increase confirms the efficacy of scattering
transforms in extracting relevant molecular information from 2D images. More significantly, our GGS
features outperformed standard descriptors, CNN, GNN, and RNN-based features in terms of capturing
rich molecular structure information, resulting in remarkable prediction performance. The integration of
GGS features with GIN embeddings considerably increased model performance, obtaining exceptional
results with an AUC of 0.9812. Furthermore, our unique MOLG3-SAGE design, which makes use of
GGS node features, displayed exceptional performance (ACC: 0.9301, AUC: 0.9622, MCC: 0.8603),
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Figure 6: ROC Curves for Mutagenicity Prediction Using GGS-GIN Embeddings: Performance Comparison of Random-
Forest, SVC, XGBoost, and Lightgbm Models Across 10-Fold Cross-Validation

setting a new standard in the field. These findings demonstrate the efficacy of our multi-perspective
strategy, which combines the advantages of scattering transforms in both 2D and graph domains with
sophisticated graph neural network topologies. The higher performance across numerous feature types,
machine learning techniques, and assessment criteria demonstrates the robustness and generalizability
of our methods. Looking ahead, we believe our methodology has extensive implications beyond muta-
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genicity prediction and might be used to various molecular property prediction tasks in drug discovery
and chemical safety evaluation. Future research could look into the interpretability of our models and
their application to additional toxicological endpoints, perhaps leading to more efficient and accurate
computational tools for chemical safety evaluation.
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