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Abstract—Deep learning models often require specially de-
signed architectures to process data of different dimensions,
such as 1D time series, 2D images, and 3D volumetric data.
Existing bidirectional models mainly focus on sequential data,
making it difficult to scale effectively to higher dimensions.
To address this issue, we propose a novel multi-dimensional
bidirectional neural network architecture, named Nd-BiMamba2,
which efficiently handles 1D, 2D, and 3D data. Nd-BiMamba2 is
based on the Mamba2 module and introduces innovative bidi-
rectional processing mechanisms and adaptive padding strate-
gies to capture bidirectional information in multi-dimensional
data while maintaining computational efficiency. Unlike existing
methods that require designing specific architectures for different
dimensional data, Nd-BiMamba2 adopts a unified architecture
with a modular design, simplifying development and mainte-
nance costs. To verify the portability and flexibility of Nd-
BiMamba2, we successfully exported it to ONNX and Torch-
Script and tested it on different hardware platforms (e.g., CPU,
GPU, and mobile devices). Experimental results show that Nd-
BiMamba2 runs efficiently on multiple platforms, demonstrating
its potential in practical applications. The code is open-source:
https://github.com/Human9000/nd-Mamba2-torch.

Index Terms—mamba2, nd-mamba2, bimamba2, attention,
multi-dimensional learning, deep learning, model deployment,
ONNX, TorchScript, cross-platform

I. INTRODUCTION

Deep learning has made significant progress in many fields,

but data of different dimensions (e.g., 1D time series, 2D

images, and 3D volumetric data) often require specially de-

signed model architectures. For instance, convolutional neural

networks (CNNs) [1] excel at processing image data, recurrent

neural networks (RNNs) [2] are suitable for sequential data,

while 3D CNNs are used for volumetric data. This domain-

specific model design paradigm leads to increased develop-

ment and maintenance costs and limits the generalization

ability of models.

Although bidirectional models, such as bidirectional RNNs

(BiRNNs) [3], have been successful in sequential data mod-

eling, they struggle to scale effectively to higher-dimensional

data and face challenges in cross-platform deployment. The se-

quential processing nature of BiRNNs limits their paralleliza-

tion capabilities, making them inefficient for long sequences

and high-dimensional data, and they are prone to gradient

vanishing issues. Moreover, the recurrent structure of RNNs

makes it difficult to convert them into formats like ONNX or

TorchScript for cross-platform deployment. On the other hand,

self-attention mechanisms like Transformers [4] can capture

long-range dependencies, but their computational complexity

becomes prohibitive and memory consumption increases when

processing high-dimensional data, complicating deployment.

While the existing Mamba [5] model strikes a balance

between efficiency and performance, most are limited to

unidirectional processing or data of specific dimensions. To

overcome these limitations, this paper proposes a novel multi-

dimensional bidirectional neural network architecture, Nd-

BiMamba2. The core innovations of Nd-BiMamba2 include:

1) extending the Mamba2 module to support efficient bidi-

rectional processing that can be applied effectively to 1D,

2D, and 3D data; 2) introducing an adaptive padding strategy

that adjusts padding size based on input data dimensions,

improving computational efficiency and reducing memory

consumption.

The main contributions of this paper are as follows:

• We propose Nd-BiMamba2, a unified bidirectional net-

work architecture that can efficiently process multi-

dimensional data.

• We design an innovative bidirectional processing mech-

anism that effectively captures bidirectional information

in high-dimensional data.

• We introduce an adaptive padding strategy to improve

computational efficiency and reduce memory consump-

tion.

• We validate the portability and deployment capability of

Nd-BiMamba2 across different hardware platforms.

The following sections will provide detailed descriptions

of the network structure and implementation details of Nd-

BiMamba2, experimental results, its performance on multi-

dimensional tasks, and discuss the model’s advantages and

potential applications.

II. RELATED WORK

Multi-dimensional data modeling is a key research direction

in deep learning, encompassing various scenarios such as 1D

time series, 2D images, and 3D volumetric data. To efficiently

model multi-dimensional data, researchers have proposed vari-

ous methods, including convolutional neural networks (CNNs),

recurrent neural networks (RNNs), self-attention mechanisms,

and recently emerging modular architectures such as Mamba.

However, these methods have limitations to varying degrees

and struggle to balance the efficiency and generalizability

required for multi-dimensional feature modeling.

A. Convolutional Neural Networks (CNN)

CNNs, as classical deep learning methods, have achieved

outstanding performance in image processing tasks. Typical

models such as LeNet [6], ResNet [7], and U-Net [8] extract

local features through multiple layers of convolutions and

http://arxiv.org/abs/2411.15380v1
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progressively expand the receptive field. However, CNNs face

the following limitations in multi-dimensional data modeling:

- Inadequate long-range dependency modeling: CNNs strug-

gle to capture global context information when processing long

sequences or high-resolution images. - High computational

cost for high-dimensional extension: 3D CNNs are effective

for spatial feature extraction but significantly increase the

parameter scale and computational complexity, limiting their

practical applications.

B. Recurrent Neural Networks (RNN)

RNNs and their variants (such as LSTM [9] and GRU

[10]) perform excellently in sequence modeling, especially

in capturing long-term and short-term dependencies in time

series. For example, bidirectional LSTMs (BiLSTMs) [11]

enhance context modeling in natural language processing tasks

by fusing bidirectional information.WaveNet [12] introduces a

novel deep neural network architecture based on dilated causal

convolutions, capable of directly generating high-quality raw

audio waveforms and effectively capturing long-range depen-

dencies in audio signals. However, RNNs have the following

limitations:

1) Difficulty in parallelization: The sequential processing

nature of RNNs makes them inefficient when handling long

sequences. 2) Challenges in scaling to high-dimensional data:

The recurrent structure does not adapt well to 2D images or

3D volumetric data, leading to increased memory consumption

and computational complexity. 3) Training stability issues:

RNNs still face gradient vanishing and gradient explosion

problems, impacting model performance.

C. Self-Attention Mechanisms (SA)

Self-attention mechanisms, with their global modeling abil-

ity, have been widely applied to natural language processing

and computer vision tasks. The Transformer [4] is a represen-

tative model, and its extensions such as BERT [13] and ViT

[14] have made significant progress in various fields. However,

in multi-dimensional data modeling, self-attention mechanisms

still face the following challenges:

1) High computational complexity: Although numerous

Swin-based attention methods [15], [16] have been proposed

to reduce computational complexity in 2D, the quadratic

complexity of attention mechanisms leads to a significant

increase in memory and computational resource requirements

when dealing with high-dimensional data. 2) Poor adaptability

to high-dimensional scenarios: While low-rank decomposition

methods (such as Linformer [17],Rethinking [18]) reduce

complexity, they still do not fully solve the memory bottleneck

in high-dimensional data processing.

D. Mamba Modules

The Mamba module is a lightweight architecture that com-

bines the advantages of convolution and attention mechanisms,

which has recently gained prominence in multi-dimensional

data modeling. For example, the latest Mamba2 [19] and vssd

[20] etc [21], [22]modules significantly improve image clas-

sification performance by combining local feature extraction

with global information modeling. However, existing Mamba

modules primarily focus on unidirectional feature modeling

and have the following limitations:

1) Lack of bidirectional feature modeling: The inabil-

ity to effectively capture bidirectional information in multi-

dimensional data limits its generalization capability.

2) Insufficient adaptation to multi-dimensional data: Current

designs mainly target 1D or 2D image data individually,

making it challenging to efficiently extend to 3D scenarios.

E. Summary and Limitations

Existing methods each have their advantages, but still face

shortcomings in efficient and multi-dimensional feature mod-

eling:

1) CNNs excel at local feature extraction but struggle to

capture global context.

2) RNNs are strong in modeling sequential data but suffer

from low computational efficiency and poor scalability.

3) Self-attention mechanisms offer global modeling capa-

bilities but come with high computational complexity.

4) The Mamba module, while excelling in lightweight de-

sign, lacks a unified modeling capability for multi-dimensional

data.

F. Innovations of Nd-BiMamba2

To address the above issues, we propose a unified bidi-

rectional modeling architecture, Nd-BiMamba2. By extending

the Mamba2 module, it supports efficient modeling of 1D,

2D, and 3D data. The bidirectional processing mechanism

fully explores directional information in multi-dimensional

data. Dynamic padding adjustment based on input data dimen-

sions improves computational efficiency and reduces memory

consumption. We validated the model’s efficiency on CPU,

GPU, and mobile devices, enhancing its practical application

potential.

In conclusion, Nd-BiMamba2 provides a general and effi-

cient solution, opening new directions for multi-dimensional

data modeling and cross-platform deployment.

III. ALGORITHM DESIGN

IV. ALGORITHM DESIGN OPTIMIZATION

A. Design Objectives and Challenges

To handle data of different dimensions (1D, 2D, 3D) and

optimize model performance, the design objectives of Nd-

BiMamba2 include the following:

• Generality: The algorithm needs to provide a unified pro-

cessing framework to accommodate multi-dimensional

data.

• Efficiency: To reduce computational redundancy on high-

dimensional data, convolution operations need to be de-

signed for adaptation.

• Boundary Handling: To avoid boundary effects in multi-

dimensional scenarios, tailored padding strategies must be

designed.
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B. Core Algorithm Design

1) Input Representation: To simplify the processing of

data with different dimensions, the input tensor is uniformly

represented as:

X ∈ R
B×C×D1×D2×D3 (1)

where B is the batch size, C is the number of channels, and

D1, D2, D3 represent the sizes of the three dimensions. For 1D

and 2D data, this is maintained consistently by setting D3 = 1
or D2 = D3 = 1.

This unified representation reduces the complexity of han-

dling logical branches between different dimensional data,

allowing subsequent convolution and activation operations to

reuse the same logic.

2) Core Convolution Calculation Formula:

a) Design Philosophy:: To capture local features,

dimension-adaptive convolution operations are employed. The

core calculation formulas are as follows:

F(X) = σ(Wf ∗X + bf ) (2)

B(X) = σ(Wb ∗X + bb) (3)

where Wf ,Wb are the convolution kernels for the forward and

backward paths, bf , bb are the biases, ∗ denotes dimension-

adaptive convolution, and σ is the activation function.

To enhance the model’s ability to handle directional infor-

mation, separate forward and backward paths are designed.

Additionally, an activation function σ is included to improve

the model’s nonlinear modeling capabilities.

b) Dimensional Differences and Optimizations::

1) 1D Data: For processing sequential data, the convolu-

tion kernel is designed with shape (k, 1, 1), sliding only

along the D1 direction:

Y [i] =

k−1∑

j=0

W [i, j] ·X [i · s+ j] + b[i] (4)

where k is the kernel size, and s is the stride. To

reduce computational redundancy in other dimensions,

the convolution operation slides only along the D1

direction, improving computational efficiency.

2) 2D Data: For processing image data, the convolution

kernel is designed with shape (k1, k2, 1), sliding along

both D1 and D2:

Y [i, j] =

k1−1∑

m=0

k2−1∑

n=0

W [i, j,m, n]·

X [i · s1 +m, j · s2 + n] + b[i, j]. (5)

To effectively capture local pattern information, the

convolution operation slides simultaneously along D1

and D2, which is suitable for extracting image features.

3) 3D Data: For processing high-dimensional spatial

data, the convolution kernel is designed with shape

(k1, k2, k3), sliding along D1, D2, D3 simultaneously:

Y [i, j, k] =

k1−1∑

m=0

k2−1∑

n=0

k3−1∑

l=0

W [i, j, k,m, n, l]·

X [i · s1 +m, j · s2 + n, k · s3 + l] + b[i, j, k]. (6)

To capture the complex features in 3D space, convolu-

tion operations are evenly distributed across the three

dimensions, improving feature extraction capabilities.

3) Padding Strategy:

a) Formula Definition:: To handle boundary effects, the

padding size pi in the i-th dimension is calculated as:

pi = max(0, ⌈
Di − 1 · si + ki − 1

2
⌉) (7)

where ki and si are the kernel size and stride for the i-th

dimension, respectively.

b) Dimensional Differences and Advantages::

1) 1D Data: To preserve the original data characteristics,

padding is minimized only along the D1 direction.

2) 2D Data: To enhance the effectiveness of the boundary

regions, a mirroring padding strategy is applied along

both D1 and D2.

3) 3D Data: To balance boundary handling with com-

putational complexity in high-dimensional scenarios,

padding is uniformly distributed across D1, D2, D3.

4) Activation Function Selection: To improve the model’s

nonlinear expression capabilities, Nd-BiMamba2 uses the

GELU (Gaussian Error Linear Unit) activation function, de-

fined as:

σ(x) = x · Φ(x) (8)

where Φ(x) is the cumulative distribution function of the

standard normal distribution.

The GELU activation function was selected to more

smoothly handle the distribution of input values, espe-

cially exhibiting stronger feature extraction abilities in high-

dimensional data.

Overall, Nd-BiMamba2 retains the advantages of Bi-

Mamba2 when processing sequential and image data, and by

incorporating support for three-dimensional data, along with

more refined partitioning and feature fusion techniques, it

extends the application scope. This improvement enables Nd-

BiMamba2 to provide more efficient and accurate modeling

capabilities when dealing with more complex input data.

Nd-BiMamba2’s modules and functional layers are shown

in Table I:

C. Comparative Analysis

To highlight the advantages of Nd-BiMamba2, the following

Table II summarizes its comparison with other models:
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TABLE I
ALGORITHM MODULES, LAYERS, AND FUNCTIONAL DESCRIPTIONS

Module Contained Layers Functional Description

Data Preprocessing Input Padding Pads the input data to meet processing requirements:
1D padding to a multiple of 4, 2D padding to a
multiple of 8, 3D padding to a multiple of 4.

Dimension Adjustment Rearranges the data according to its dimensions,
flattening 2D or 3D data into a 2D matrix to conform
to the network structure.

Channel Mapping Uses a linear layer FCin to map the input channel
size c to the target model’s dimension dmodel.

Bi-Directional Modeling Forward Feature Extraction Extracts features through the forward Mamba2 net-
work to obtain the forward feature representation
Hforward.

Backward Feature Extraction Reverses the input data and inputs it into the back-
ward Mamba2 network to extract the backward
feature representation Hbackward, then restores the
original order.

Feature Fusion Fuses the forward and backward feature represen-
tations using an addition operation to obtain the
final feature representation: Hfused = Hforward +

Hbackward.
Output Generation Linear Transformation Uses a linear layer FCout to map the fused feature

representation back to the target channel size c′.
Padding Removal Removes the additional data added during padding

to restore the original shape of the input data.

TABLE II
MODEL COMPARISON ANALYSIS

Model Applicable Cross-Platform Modular Deployment
Data Computational Design

Dimensions Efficiency

BiLSTM 1D Medium No Difficult

Transformer 1D/2D/3D Low No Difficult

Mamba2 1D/2D High Yes Fairly Easy

Nd-BiMamba2 1D/2D/3D High Yes Easy

D. Summary

By optimizing strategies for padding, dimension rearrange-

ment, channel adjustment, and feature fusion across different

dimensions, the model can efficiently extract features from

1D, 2D, and 3D data while maintaining consistency in the

output dimension with the input data. These steps are clearly

described through mathematical symbols to ensure the correct-

ness and efficiency of multi-dimensional optimization.

E. Model Export and Deployment

To enhance model portability and deployment capabilities,

Nd-BiMamba2 supports multiple export formats:

• ONNX Export: Supports converting the model to ONNX

format for running on various hardware platforms.

• TorchScript Export: Supports converting the model to

TorchScript format to ensure efficient inference in pro-

duction environments.

Through this modular design and multi-dimensional opti-

mization, Nd-BiMamba2 achieves efficient and unified mod-

eling for 1D, 2D, and 3D data, providing powerful support for

multi-modal data processing.

V. EXPERIMENTS

A. Experimental Setup

All experiments were conducted on the following hardware

platform:

• Processor (CPU): Intel Core i9-11900K, 8 cores, 16

threads, 3.5 GHz base frequency. The high clock speed

and multi-core design of this processor allow it to effi-

ciently handle parallel computing tasks, particularly for

processing large amounts of data and task scheduling, sig-

nificantly enhancing overall computational performance.

• Graphics Processing Unit (GPU): NVIDIA RTX

4090D, 24GB GDDR6X VRAM. As one of the latest

high-performance GPUs, the RTX 4090D provides pow-

erful parallel computing capabilities for deep learning

model training and inference, especially for large-scale

datasets and complex models. The 24GB of VRAM en-

sures the processing of large models and high-resolution

data, effectively mitigating memory bottlenecks.

• Memory (RAM): 64GB DDR4 3200 MHz. The am-

ple memory capacity ensures efficient data reading and

caching during model training, preventing computational

bottlenecks due to memory limitations. This is especially

important when handling large-scale data, maintaining

high data throughput.

• Storage: 1TB NVMe SSD (used for data storage and in-

termediate result caching). The high-speed SSD improves

data read/write speed, significantly reducing I/O latency,

especially when training involves large amounts of data

input and output, ensuring efficient operation during the

training process.

B. Feature Representation Ability of Nd-BiMamba2

The bidirectional modeling module of the Nd-BiMamba2

model enhances its feature perception ability by incorporating

both forward and backward information flows. In traditional

unidirectional modeling, the model can only rely on informa-

tion from one direction of the input sequence for inference.

In contrast, bidirectional modeling considers both forward and

backward information flows, allowing for the capture of more
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comprehensive features. The advantages of bidirectional mod-

eling are particularly evident in various data dimensions (1D,

2D, and 3D), especially in capturing long-range dependencies

and local features.

Through comparative experiments across different data di-

mensions (1D, 2D, and 3D), we have validated the im-

provement in feature representation by bidirectional modeling,

demonstrating that this approach is more efficient than tra-

ditional unidirectional modeling when dealing with complex

data. The experimental model configuration parameters were

set as follows: cin = 64, cout = 64, dmodel = 128, ensuring the

ability to handle high-dimensional data and perform sufficient

feature extraction.

TABLE III
PERFORMANCE COMPARISON BETWEEN ND-BIMAMBA2 AND

TRADITIONAL UNIDIRECTIONAL MODELING (DIMENSIONS: 1D/2D/3D,
FLOPS IN GMAC, TIME IN MILLISECONDS, PARAMETERS IN

THOUSANDS)

Bi. Size FLOPs (GMac) Time (ms) Params (k)

1024 0.15 1.69
No 128× 128 2.47 1.53 150.8

32× 32× 32 4.93 4.36

1024 0.29 2.43
Yes 128× 128 4.66 3.15 285.21

32× 32× 32 9.33 8.11

Note: The number of parameters is independent of input size and is only
affected by the use of Bi.

As shown in Table III, enabling bidirectional modeling leads

to a significant increase in FLOPs (floating point operations)

and computation time. Particularly with 3D data, the increase

in FLOPs and computation time is more pronounced, though

the growth in parameter count remains relatively small. This

result indicates that while bidirectional modeling increases

computational overhead, it captures more feature information

and improves the model’s expressive power.

C. Flexibility and Adaptability from Modular Design

The modular design of Nd-BiMamba2 provides strong sup-

port for model flexibility and adaptability. Through experi-

ments on 1D, 2D, and 3D data, the model can adaptively adjust

padding strategies according to different data dimensions,

ensuring computational efficiency and flexibility. With this

design, Nd-BiMamba2 can dynamically adjust input size and

padding strategy, achieving good computational efficiency and

performance across different data dimensions.

To observe the model’s performance with adaptive padding

strategies across different data dimensions (1D, 2D, 3D),

we conducted comparative experiments on multi-dimensional

adaptive padding strategies. This verified that the strategy

automatically adjusts padding methods for various input sizes

to ensure dimensional consistency and efficient computation.

As seen in Table IV, the model demonstrates excellent

flexibility under the adaptive padding strategy. Especially in

2D and 3D data processing, the adaptive padding proves

particularly important. It effectively improves computational

efficiency while maintaining high accuracy across different

input sizes. This shows that Nd-BiMamba2 has strong adapt-

ability in processing multi-dimensional data, adjusting itself

according to the different characteristics of the data.

TABLE IV
PERFORMANCE OF MULTI-DIMENSIONAL ADAPTIVE PADDING STRATEGY

ACROSS DIFFERENT FEATURE SIZES

Dim. Input Auto-Padding Mamba2 Equal

1024 1024 1024 TRUE
1D 1029 1088 1088 FALSE

1001 1024 1024 FALSE

128× 128 128× 128 16384 TRUE
2D 129× 127 136× 128 17408 FALSE

113× 128 120× 128 15360 FALSE

32 × 32× 32 32× 32× 32 32768 TRUE
3D 27 × 33× 32 28× 32× 36 32256 FALSE

37 × 29× 31 40× 32× 32 40960 FALSE

D. Conclusion

Through the analysis and experiments on the nd-BiMamba2

model, several significant advantages have been identified:

• Bidirectional Modeling: Bidirectional modeling signifi-

cantly enhances the model’s ability to perceive features,

especially in capturing long-range dependencies and local

characteristics.

• Modular Design: The modular design provides flexibility

and adaptability, allowing the model to automatically ad-

just input sizes and padding strategies based on different

data dimensions, ensuring computational efficiency and

model flexibility.

• Efficient Performance: Despite the increased computa-

tional overhead from bidirectional modeling and adap-

tive padding, the model still performs excellently across

multiple data dimensions, demonstrating its advantage in

processing complex data.

Overall, nd-BiMamba2 exhibits strong performance in high-

dimensional data processing, feature extraction accuracy, and

computational efficiency, proving its effectiveness in complex

data analysis, long-range dependency modeling, and large-

scale data handling.

APPENDIX

Algorithm 1 Nd-BiMamba2 Algorithm

Input: X ∈ R
c×d1×d2×···×dn

Output: Houtput ∈ R
c′×d′

1
×d′

2
×···×d′

n

Step 1: Data Preprocessing

• Xpadded ← Pad(X) Padding input data

• Xreshaped ← Reshape(Xpadded) Adjusting dimensions

• Xmapped ← FCin(Xreshaped) Mapping the channel count

Step 2: Bidirectional Modeling

• Hforward ← Mamba2for(Xmapped) Forward feature

extraction

• Hbackward ← Flip(Mamba2back(Flip(Xmapped))) Back-

ward feature extraction

• Hfused ← Hforward +Hbackward Fusing features

Step 3: Output Generation

• Hfc out ← FCout(Hfused) Restoring the channel count

• Houtput ← Trim(Hfc out) Removing padded parts

Return: Houtput
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