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The dynamics of capillary rise under different geometric and fluid conditions have the common
signatures of rapid rise followed by an equilibrium state that describe the underlying competing
forces. We present a new interpretation of capillary dynamics using a linear damped system where
modulation of damping and forcing characteristics are achieved using axisymmetric channels with
sinusoidal variation in radius. The complete axisymmetric design space ranging from hydrophilic
channels that enable spontaneous imbibition to hydrophobic channels, that required external pres-
sure mechanisms is modeled and the force dynamics is split into simultaneous damping and forcing
characteristics. We introduce the product of damping and forcing terms as the new parameter that
effectively characterizes rise dynamics across various geometric and flow conditions, encompassing
both flow-enhancing and flow-inhibiting scenarios. The monotonic nature of this parameter enables
the development of a stochastic optimization method that can determine optimal channel geometries
for controlled capillary rise.

The wicking dynamics of fluid through narrow spaces
is affected by the physical interactions with the bound-
ing surfaces. This phenomenon is observed in natural
as well as architected systems where the fluid moves
through confinements in an attempt to minimize the free
energy of the system. The representation of flow through
porous media has been simplified as a capillary imbibi-
tion model and the Lucas-Washburn equation describes
the vertical rise in such capillary channels [1, 2]. Capil-
lary phenomenon is observed in a wide range of scenar-
ios from biological applications [3] to three-dimensional
porous media [4] where channels often feature irregular
cross-sections and varying geometries. In non-cylindrical
capillaries, interfacial flow relies on the local contact an-
gle, when the presence of localized curvature in such
channels introduces additional complexities to the flow
regime [5, 6]. Geometric parameters have been utilized
as “passive” mechanisms to expedite liquid rise through
capillaries [7, 8]. Similarly, the slower rise of liquid in
sinusoidal channels have been observed using numerical
simulations [9]. While viscous dissipation typically slows
liquid rise, channel geometry can be strategically ma-
nipulated to control flow behavior [10]. Constricted sec-
tions have been demonstrated to act as global flow resis-
tors, while enlarged sections create localized resistance,
making them valuable for regulating capillary flow veloc-
ity in architected biological applications [11]. Addition-
ally, flexible walls in 2-D microfluidic channels have been
shown to accelerate imbibition as the passing meniscus
pulls on the wall and increases curvature [12]. Tapering
of channels have been observed to improve flow rates up
to a critical tapering angle, beyond which liquid cannot
reach the channel tip [7] - a geometry naturally observed
in plant xylems that transport liquid over large distances
[13]. Despite the diversity in capillary geometries, New-
tonian liquids generally exhibit characteristic power-law
behavior (h ∝ tβ) during wicking. At shorter time scales,
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the flow progresses through two distinct regimes: an ini-
tial inertial phase where h ∝ t, followed by viscous dif-
fusion where h ∝

√
t. However, at longer time scales,

it has been shown that capillary geometry can signif-
icantly influence these power-law dynamics, leading to
deviations from classical scaling exponents [14]. Interest
in channel geometries that promote wicking is driven by
the aim of enhancing passive fluid transport [15]. Prior
studies optimizing the rise times in capillaries have fo-
cused on maximizing the volume of liquid passing in a
given time or minimizing the rise times over a defined
distance [7]. Such methods impose these parameters on
the desired cost function but the commonality in the un-
derlying physics is not explored.
In this letter, we seek to uncover the universal frame-

work behind such modulation, offering a new perspective
on flow control that encompasses both wicking enhance-
ment and retardation that represents the anti-wicking
tendency of the system. We present a universal descrip-
tion of capillary rise dynamics under a broad design space
and have identified a parameter that accounts for both
the flow and geometric contributions, enabling optimiza-
tion of channels that can enhance or inhibit wicking.
We model a capillary with a cross section radius of

R(x), where x represents the axial position along the
length of the capillary, and length l. The liquid front is
at height h, with air in the remainder of the channel. The
density and viscosity of the liquid and gas are denoted by
ρ, µ and ρg, µgrespectively. The contact areas between
the solid-liquid pair and the liquid-gas pair contributes to
the total free surface energy, which are then balanced by
the changes in gravitational potential energy and viscous
dissipation. To describe axisymmetric capillary flows, we
write the rate of change of the free surface energy as:

δĖ = 2πσ

RdR

dt
− cos θ

d

dt

∫ h

0

R

√
1 +

(
dR

dx

)2

dx

 , (1)

where the local contact angle is θ and surface tension σ.
The area integral is evaluated over the contact surface
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between the wall and the liquid, as well as the cross-
sectional area at the meniscus, with local curvature ef-
fects due to the contact angle being neglected. The lubri-
cation approximation is valid with the approximation of
a parabolic velocity profile at the liquid front for chan-
nels exhibiting gradual changes in cross-section, where
dR/dx ≪ 1. The change in total energy is reflected
through the changes in gravitational potential energy and
the viscous work done by the fluids as they move through
the channel. We can write the total change in energy of
the fluids as:

δĖ =
(ρ− ρg)gδĖ

2σ
R cos

(
θ + tan−1

(
dR
dh

))h
−8πR(h)4

[∫ h

0

µ

R(x)4
dx+

∫ l

h

µg

R(x)4
dx

]
ḣ2.(2)

The final governing equation of capillary rise is derived by
equating Eq. (1) and (2). We then non-dimensionalize
the resulting equation. To generalize the description
to include channels resisting spontaneous imbibition, we
consider a typical contact angle that can be either hy-
drophilic (θ < π/2) or hydrophobic (θ > π/2). An
external pressure is introduced to drive the flow under
hydrophobic conditions, defined as a linear time-varying
pressure ramp, given by P = PA + PBt. The system
is non-dimensionalized using the following parameters:
h̄ = h/l, R̄ = R/R0, P̄ = P/(σ/R0), t̄ = t/(l2µ/σR0).
The non-dimensional viscosity µ̄, which combines the vis-
cous response from both liquid and gas phases, is defined
as:

µ̄ =

∫ h̄

0

1

R̄(x̄)4
dx̄+

µg

µ

∫ 1

h̄

1

R̄(x)4
dx̄. (3)

The continuously changing channel radius leads to a local
angle α(h) = tan−1(dRdh ). This angle quantifies the slope
of the channel wall at any given height, reflecting the
gradual variation in the channel’s cross-sectional shape.
We use the simplifications described above to represent
Eqs. (1), (2) and (3) in a dimensionless compact form
as:

dh̄

dt̄
= −D(h̄)h̄+ F (h̄). (4)

The above equation closely represents a linearly damped
system without inertial contributions. The two key pa-
rameters: the damping coefficient D causes the system
to decay and forcing function F drives the system are
defined as:

D = 1
8µ̄Bo

(
l
R̄

) (
1− ρg

ρ

)
cos(θ)−sin(α)

cos(α) cos(θ+α) ,

F = 1
8µ̄

(
P̄ + 2 cos(θ)−sin(α)

R̄ cos(α)

)
, (5)

where the Bond number Bo =
(ρ−ρg)gR

2
0

σ captures the
balance between gravitational and surface tension forces.

These parameters highlight the universal nature of cap-
illary rise dynamics: a rapid initial rise followed by vis-
cously dominated equilibration.
To understand the significance of this representation,

we see the behavior of a simple linear damped system
with constant damping factor D and constant forcing
factor F . The differential equation can be written as:
˙̄h = −Dh̄ + F . We solve for this system for different
values of D and F , as shown in Fig. 1, which illustrates
the behavior of a damped system that “rises” faster and
begins damping earlier to reach the equilibrium for larger
values of the parameter η = D · F . Such universal be-
havior of a linearly damped system hints at the impor-
tance of D and F in governing the solution of Eq. (4)
for capillary rise for different geometries. The general

solution to the equation ˙̄h = −Dh̄+F can be written as
h̄(t) = F

D (1 − e−Dt) + h0e
−Dt, where h0 represents the

initial condition at t = 0. The steady-state solution is
obtained by taking the limit as: h̄eq = limt→∞ h̄(t) = F

D .
This equilibrium height represents the balance between
forcing and damping effects. Furthermore, the initial rise
rate can be computed by evaluating the time derivative
as: dh

dt

∣∣
t=0

= F − Dh0. For h0 ≪ F/D, the initial dy-
namics are dominated by the forcing term F where the
initial acceleration of the system is ∝ η. For higher val-
ues of η, the time to attain equilibrium is also reduced
while achieving a faster initial rise. Such a system is also
present in electrical circuits where η defines the circuit’s
dynamic response and determines how quickly the cur-
rent can change, which affects the power distribution be-
tween components. The relative values determine the ini-
tial inductive losses along with the increased resistive dis-
sipation increases as current builds. This demonstrates
that despite the apparently opposing nature of damping
and forcing effects, their product emerges as a natural
parameter controlling system behavior.
Next, we introduce a radius profile that enables mod-

eling of diverse channel geometries, including straight,
sinusoidal, divergent, convergent, and power-law. The
linearly varying component is defined as R̂(x) = R1 +
(R2 − R1)x/l, and the amplitude of the sinusoidally

varying component R̃(x) = R3 + (R4 − R3)x/l, com-
bined with the wavelength of variation λ to obtain R =
R̂ + R̃cos(nπ/2 − 2πx/λ) where n ∈ [0, 1] introduces an
additional phase shift.
We have calibrated the parameters R̂, R̃, and λ to fit

the power-law form R(h) = (1 − h/l)5/6, matching the
optimal rise predicted in [7]. In the system defined in
Eq. (4), the damping and forcing coefficients exhibit a
weak dependence on the height of the liquid as it rises.
Analogous to the constant damping and forcing factor

analysis involving the η parameter, we introduce a more
general parameter ζ = ⟨D⟩ · ⟨F ⟩ where the damping and
forcing terms are height averaged. The governing integro-
differential equation Eq. (4) is solved numerically using
the fourth-order Runge-Kutta method for liquid height,
coupled with a trapezoidal method for evaluating non-
dimensional viscosity. We normalize ζ using the maxi-
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FIG. 1. Solution of ˙̄h = −Dh̄ + F shown for different values
of the parameter η = D · F . The regions of initial rise and
equilibrium are shown at constant t̄ and h̄ respectively to
highlight their relative onset based on different η.

mum value such that ζ̄ ∈ [0, 1] and use it to interpret
the solution of h̄(t) obtained without averaging D and
F . Our solution shows strong agreement with previous
studies on purely sinusoidal channels with contact angle
0◦ [16]. While our formulation excludes kinetic energy
contributions, this approximation is justified by the low
Reynolds number regime and negligible fluid mass under
the given geometric constraints. This approach aligns
with standard methods in capillary rise analysis, even for
varying cross-sectional areas and geometry optimization
studies [4, 15].

The complete solution of Eq. (4) reveals the temporal
evolution of non-dimensionalized rise height across vari-
ous geometric and flow parameters, as illustrated in Fig.
2(a). The different curves correspond to channels charac-
terized by radius variation, hydrophobic and hydrophilic
surface wettability (θ ∈ [0◦, 104.5◦]) and external pres-
sure conditions. The different curves are observed to ex-
hibit unique ζ̄ values which are used to define the col-
ormap. The non-dimensional viscosity is also shown for
different scenarios in Fig. 2(c). We observe different vis-
cosity curves for different rise dynamics with distinct ζ̄
as well. Our analysis includes validation and comparison
with previously studied channel geometries, specifically
those exhibiting a power-law relationship between the ra-
dius and axial position, defined as R(h) = (1−h/l)5/6 [7],
and those following a polynomial relationship [15]. These
scenarios are found in the leftmost region of the curves,
characterized by higher values of ζ̄, which aligns with the
expected enhancement in wicking dynamics. These ge-
ometric configuration, characterized by a gradually de-
creasing radius, demonstrate notably faster rise rates
compared to uniform channels. The height evolution
curves exhibit behavior characteristic of linear damped
systems, where ζ̄ serves as a key parameter governing

both rise rate and equilibrium attainment. Specifically,
higher values of ζ̄ correlate with accelerated initial rise
rate and earlier equilibration which lead to overall en-
hanced wicking performance. Of particular interest is the
rightmost region corresponding to inhibited rise. These
cases typically correspond to hydrophobic surface condi-
tions (contact angles approaching 104.5◦), with a non-
zero external pressure and overall higher flow resistance.
This highlights the capability of ζ̄ to encapsulate un-
derlying differences in flow responses through a singular
value. The monotonic relationship between rise height
and ζ̄ across the entire design space further strengthens
its analogy with linear damped systems, aligning with
the monotonic behavior of the parameter η observed at
varying heights prior to equilibrium, as shown in Fig. 1
The variation in the non-dimensional viscosity µ̄ across

different scenarios, as shown in Fig.2(c), indicates that
faster-rising flows begin with lower values of µ̄, which in-
crease as viscous effects dominate near equilibrium. From
Fig.2(a), we observe that faster rises transition to the vis-
cous regime earlier, reaching equilibrium sooner and cor-
responding to higher ζ̄. Conversely, in the rightward re-
gion of Fig.2(a), lower ζ̄ values are associated with slower
rises and higher “effective viscosity”, indicating flow in-
hibition. Near equilibrium, Fig.2(c) shows a reduction
in viscous effects. Among the configurations studied, the
geometries proposed in [7, 15] exhibit the lowest µ̄, re-
flecting minimal flow resistance that serves as a key un-
derlying response to enhance wicking.
The manual exploration of various geometries, external

pressures, and contact angles revealed solutions with a
consistent monotonic dependence on ζ̄. These solutions,
spanning both flow inhibition and expedited rise, were
compared to geometries proposed in [7, 15], demonstrat-
ing that ζ̄ encompasses the entire spectrum from wicking
to anti-wicking. To leverage the flexibility of our para-
metric channel geometry, we implemented an optimiza-
tion routine targeting enhanced rise rates, assuming a
contact angle of 0◦ and no external pressure. The mono-
tonic dependence on ζ̄ underscores its importance as a
key parameter distinguishing wicking from anti-wicking
rise dynamics.
A genetic algorithm-based [17] stochastic optimizer

was developed to iteratively evolve the geometry vari-
able population based on flow solution fitness. The op-
timization results, aimed at maximizing ζ̄ as defined in
Eq.(6), are compared with existing capillary dynamics,
and illustrated in Fig.2(b) and (d).

max
x

J(x) = ⟨D(x)⟩ · ⟨F (x)⟩ : x = h̄(R̄(x), R̃(x), n, λ)

xmin
i ≤ xi ≤ xmax

i , i = 1, . . . , 4 (6)

The resulting channel geometry R(x) from Eq.(6), shown
in Fig. 3, evolves from an initial diverging channel design
and iterates to yield an optimized geometry. The shapes
are evolved until convergence is achieved, minimizing the
variation in the cost function over 1000 generations, with
∆J(x) < 1e− 6.
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FIG. 2. Non-dimensional height ((a) and (b)) and viscosity ((c) and (d)) as function of time for capillaries with varying shapes
and contact angles. Colors represent the parameter ζ̄, which combines damping and forcing contributions arising from channel
properties, as defined by Eq. (5). Capillaries designed for flow enhancement, as proposed by Gorce et al. [7] and Figliuzzi
and Buie [15], are evaluated using our framework for comparison. Capillaries optimized for flow enhancement using Eq. (6)
are shown to enhance wicking in (b) and reduced “effective viscosity” in (d), beyond the state-of-the-art. These solutions are
characterized by higher ζ̄ values.

The optimized height solution, h̄, from Eq. (4), ob-
tained using the genetic algorithm in Eq. (6), is pre-
sented in Fig. 2(b) alongside previous results. The opti-
mized geometries demonstrate significantly enhanced liq-
uid rise, characterized by both an earlier onset of the
viscous regime and faster overall rise rates. The mono-
tonic nature of ζ̄ is used to predict channels that en-
hance liquid rise, which is reflected in the colormap,
where the new curves from the optimized geometries are
placed in sequence with earlier designs. The values of
ζ̄ for the optimized geometries exceed 1, using the same
non-dimensionalization as before, indicating a ∼ 30% in-
crease. These optimized rise solutions surpass the heights
predicted by [7, 15]. As observed in the previous analysis
of faster rise cases, the onset of viscous effects occurs ear-
lier, with an earlier transition to the ∝

√
t regime from

the inertial regime of ∝ t.

The analysis of non-dimensional viscosity evolution

provides a quantitative measure of the underlying inter-
play of forces in optimized capillaries. Fig. 2(d) shows
that the newly proposed geometries minimize the effec-
tive viscous resistance in the system, enabling faster liq-
uid rise. The early onset of the viscous regime is evi-
denced by a rapid increase in µ̄, surpassing the results
simulated using the geometries from [7, 15]. The en-
hanced rise is characterized by an initially low µ̄, which
increases to a peak value, reflecting the growing viscous
effects as the liquid accelerates. After gaining momen-
tum in the initial rise phase, the liquid begins to slow
down as it approaches equilibrium, causing a subsequent
drop in µ̄.

The emergence of a singular parameter ζ̄ as a univer-
sal descriptor for capillary rise dynamics represents a
significant advancement in understanding fluid transport
through confined axisymmetric geometries that can
differentiate rise dynamics across multiple configura-
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FIG. 3. Evolution of the channel surface through Genetic
Algorithm iterations, leading to the maximization of ζ̄. A
truncated version of the shape evolution is shown, highlight-
ing the initial and final shapes.

tions. We have demonstrated that ζ̄ can define the
spectrum ranging between wicking and anti-wicking.
Our findings demonstrate that this phenomenon can be
effectively modeled as an approximate linear damped
system, where the liquid rise is governed by the interplay
between forcing and damping in the system. This param-
eter effectively captures the complex interplay between
channel geometry, surface wettability, and competing

forces, providing a unified framework for characterizing
diverse rise behaviors. The channel geometry, which
strongly influences liquid behavior, is approximated by
a linear combination of a linearly varying mean radius
and a sinusoidal waveform with a varying amplitude
and phase. This geometric representation encapsulates
most axisymmetric shapes studied in literature and
can be extended through additional truncation terms,
analogous to a Fourier series expansion. The genetic
algorithm developed to utilize this parameter to discover
new geometries has been able to outperform previously
proposed optimal shapes for wicking, thereby expanding
the design space for capillary systems. Furthermore,
the systematic relationship between the “effective
viscosity” evolution and rise performance offers new
insights into understanding the underlying response of
the system that yields enhanced liquid transport. The
wide flow response obtained through hydrophobic and
hydrophilic channels could be particularly valuable in
designing microfluidic systems where precise control
over fluid transport rates is crucial. Furthermore, this
damped system framework enables the formulation of
an optimization routine, with a cost function incor-
porating both averaged damping and forcing effects.
This approach opens new possibilities for controlling
liquid flow in capillaries, offering both enhancement
and tempering strategies that can work synergistically
to achieve optimal control across diverse geometric
configurations.

This work was supported in part by the Cornell
Atkinson Center for Sustainability. We acknowledge
valuable discussions with Joshua Krsek and Giancarlo
D’Orazio.

[1] R. Lucas, Kolloid-Zeitschrift 23, 15 (1918).
[2] E. W. Washburn, Physical review 17, 273 (1921).
[3] M. Tani, D. Ishii, S. Ito, T. Hariyama, M. Shimomura,

and K. Okumura, Plos One 9, e96813 (2014).
[4] H. Czachor, Journal of Hydrology 328, 604 (2006).
[5] Y. Tsori, Langmuir 22, 8860 (2006).
[6] B. Ma, D. Li, and H. Yang, Physics of Fluids 34 (2022).
[7] J.-B. Gorce, I. J. Hewitt, and D. Vella, Langmuir 32,

1560 (2016).
[8] N. A. Dudukovic, E. J. Fong, H. B. Gemeda, J. R.

DeOtte, M. R. Cerón, B. D. Moran, J. T. Davis, S. E.
Baker, and E. B. Duoss, Nature 595, 58 (2021).

[9] M. E. A. B. Amara, P. Perre, and S. B. Nasrallah, Jour-
nal of Porous Media 19 (2016).

[10] D. Erickson, D. Li, and C. Park, Journal of colloid and

interface science 250, 422 (2002).
[11] J. Berthier, D. Gosselin, A. Pham, G. Delapierre, N. Bel-

gacem, and D. Chaussy, Langmuir 32, 915 (2016).
[12] R. Anoop and A. Sen, Physical Review E 92, 013024

(2015).
[13] T. Anfodillo, V. Carraro, M. Carrer, C. Fior, and

S. Rossi, New Phytologist 169, 279 (2006).
[14] M. Reyssat, L. Courbin, E. Reyssat, and H. A. Stone,

Journal of Fluid Mechanics 615, 335 (2008).
[15] B. Figliuzzi and C. Buie, Journal of Fluid Mechanics 731,

142 (2013).
[16] See Supplemental Material for explanation of numerical

method and validation.
[17] J. H. Holland, Scientific american 267, 66 (1992).


	From wicking to anti-wicking: A universal framework for capillary dynamics
	Abstract
	References


