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Abstract

Face Recognition (FR) models are vulnerable to adversarial
examples that subtly manipulate benign face images, un-
derscoring the urgent need to improve the transferability of
adversarial attacks in order to expose the blind spots of these
systems. Existing adversarial attack methods often overlook
the potential benefits of augmenting the surrogate model
with diverse initializations, which limits the transferability
of the generated adversarial examples. To address this gap,
we propose a novel method called Diverse Parameters Aug-
mentation (DPA) attack method, which enhances surrogate
models by incorporating diverse parameter initializations,
resulting in a broader and more diverse set of surrogate mod-
els. Specifically, DPA consists of two key stages: Diverse Pa-
rameters Optimization (DPO) and Hard Model Aggregation
(HMA). In the DPO stage, we initialize the parameters of the
surrogate model using both pre-trained and random param-
eters. Subsequently, we save the models in the intermediate
training process to obtain a diverse set of surrogate mod-
els. During the HMA stage, we enhance the feature maps of
the diversified surrogate models by incorporating beneficial
perturbations, thereby further improving the transferability.
Experimental results demonstrate that our proposed attack
method can effectively enhance the transferability of the
crafted adversarial face examples.

1. Introduction

Owing to the relentless progress in deep learning, Face
Recognition (FR) has achieved substantial advancements
[1, 2, 7, 19, 31, 41]. Nevertheless, the susceptibility of
contemporary FR models to adversarial attacks raises a sig-
nificant security concern. Therefore, there is an urgent need
to bolster the resilience of FR models against adversarial
face examples to reveal and address the vulnerabilities.

As a result, numerous research efforts have been focused
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Figure 1. Top: comparison between traditional augmentation-based
adversarial attack methods and our proposed method. The black
pattern filling on the left and right sides of the blue line represents
input-based and parameter-based augmentation, respectively. The
orange pattern filling indicates feature-based augmentation. Bot-
tom: comparison of performance among 4 types of augmentations.

on this area. Several adversarial attacks have been devel-
oped to create adversarial face examples with features like
stealthiness [6, 14, 30, 32, 55], transferability [21, 62–64],
and the capacity for physical attacks [20, 56, 57]. These
initiatives are aimed at improving the effectiveness of ad-
versarial attacks on FR. Nevertheless, the transferability of
these adversarial attacks remains limited. To enhance the
transferability of adversarial attacks, augmentation emerges
as one of the most effective methods. As illustrated in Fig. 1,
augmentation-based adversarial attack consists of three aug-
mentation types: input-based [26, 43, 47, 53], feature-based
[62, 63], and parameter-based [11, 51].

Most augmentation-based adversarial attack methods fo-
cus on input-based augmentation to improve transferability.
Previous research highlights a symmetry between surrogate
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models used in adversarial attacks and input data in train-
ing tasks [8, 23, 63]. In training, data augmentation has
proven effective in enhancing model generalization. Draw-
ing on this symmetry, augmenting models for crafting ad-
versarial examples can yield examples with greater transfer-
ability. Input-based augmentation can be seen as methods
that only augment models at the input layer, demonstrating
significant effectiveness in enhancing transferability. How-
ever, augmenting surrogate models in deeper layers (i.e.,
feature-based and parameter-based augmentation) offers a
more direct form of augmentation. Nevertheless, few studies
explore deep-layer augmentation [11, 51, 63]. As a typical
parameter-based augmentation method in deep layers, LGV
[11] uses a pre-trained surrogate model and collects multiple
parameter sets through additional training epochs with a high,
constant learning rate, thereby enhancing the transferability
of adversarial examples. Although these parameter-based
augmentation methods [11, 51] show promising effective-
ness, they face two problems: (1) Static surrogate model
initializations: these methods solely augment the surrogate
model from pre-trained parameters, limiting the parameter
diversity of the surrogate models and thereby hindering the
transferability of the crafted adversarial examples. (2) Un-
availability of the FR head: modern FR training procedures
typically involve training both a backbone model and a head
model [7, 41]. Following training, inference is conducted
solely with the backbone models, while the head models
are often not released as open-source. Consequently, in the
majority of instances, we are unable to access the pre-trained
parameters for the head models. Traditional parameter-based
augmentation adversarial attacks augment models from pre-
trained parameters [11, 51]. This limitation makes it chal-
lenging to craft adversarial examples on FR models with
numerous open-sourced FR models.

To address these problems, we introduce a novel adver-
sarial attack called Diverse Parameters Augmentation (DPA)
to enhance the transferability of crafted adversarial face
examples. Unlike existing parameter-based augmentation
adversarial attack methods that overlook the use of diverse
parameter initializations [11, 51], we diversify parameter ini-
tializations with both random and pre-trained values, thereby
improving black-box attack capacity.

Technically, our proposed attack method comprises two
stages: Diverse Parameters Optimization (DPO) and Hard
Model Aggregation (HMA). During the DPO stage, we ini-
tiate a subset of the optimization parameters with random
noise, preserving the refined parameters in the intermediate
training process to yield a diverse set of surrogate models,
which is instrumental in bolstering the transferability of the
adversarial examples. In the HMA stage, we add beneficial
perturbations [50] with optimization directions opposite to
those of the adversarial perturbations onto the feature maps
of the parameter-augmented surrogate models, achieving the

effect of hard model augmentation [63] to further enhances
the transferability of the crafted adversarial examples. Our
proposed attack method effectively addresses the challenges
posed by the lack of diverse parameters and the absence of
the FR head. The comparison between traditional adversar-
ial attack methods and our proposed method is illustrated in
Fig. 1. By using diverse initializations for surrogate models,
we can expand the parameter set of these models, thereby
enhancing the transferability of the crafted adversarial exam-
ples.

Our main contributions are summarized as follows:
• We introduce a novel perspective that parameter-based

augmentation adversarial attacks should augment the pa-
rameters of surrogate models by incorporating diverse
initialized parameters. To the best of our knowledge, this
is the first adversarial attack on FR that utilizes parameter
augmentation to enhance transferability.

• We introduce a new adversarial attack method on FR,
called DPA, which comprises DPO and HMA stages. The
DPO stage uses both pre-trained and random initializa-
tions to optimize the model and save the models in the
intermediate training process to diversify the surrogate
model set. The HMA stage adds beneficial perturbations
with optimization directions opposite to those of adversar-
ial perturbations onto the feature maps of the diversified
surrogate models to further enhance transferability.

• Extensive experiments reveal that our proposed method at-
tains superior performance when compared with the state-
of-the-art adversarial attack methods.

2. Related Work
Adversarial Attacks. The primary objective of adversar-
ial attacks is to introduce subtle perturbations into benign
images, thereby deceiving machine learning systems and
inducing them to produce incorrect predictions [10, 39].
The presence of adversarial examples constitutes a substan-
tial security threat to contemporary machine learning sys-
tems. Consequently, significant research efforts have been
expended to investigate adversarial attacks, with the aim of
bolstering system robustness [9, 22, 26, 27, 29, 33, 60, 66].
To enhance the potency of black-box adversarial attacks, DI
[53] incorporates random transformations into adversarial
examples at each iteration, effectively achieving data aug-
mentation. VMI-FGSM [45] harnesses gradient variance
to stabilize the update process, thereby enhancing black-
box attack performance. SSA [26] translates adversarial
examples into the frequency domain and applies spectral
manipulation for augmentation. SIA [47] introduces random
image transformations on each image block, producing di-
verse variations for gradient estimation. BSR [43] segments
the input image into multiple blocks, randomly shuffling and
rotating them to generate a set of new images for gradient
computation. Despite these advancements, these methods
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Figure 2. The framework of the Diverse Parameters Optimization (DPO). We enhance the diversity of the surrogate model parameters by
integrating both pre-trained and random initializations. The method yields a diverse set of surrogate model parameters, which enhances the
parameter diversity of the surrogate FR models and consequently improves transferability of the crafted adversarial examples.

overlook the potential benefit of augmenting the surrogate
model with diverse initializations, which limits the trans-
ferability of the crafted adversarial examples. In contrast,
our proposed method augments surrogate models using both
pre-trained and randomly initialized parameters, producing
a broader and more diverse set of surrogate models.
Adversarial Attacks on Face Recognition. Adversarial
attacks on FR models can be classified based on the con-
straints imposed on the adversarial perturbations. These
attacks are broadly categorized into two types: restricted
attacks [4, 8, 24, 25, 27, 54, 67] and unrestricted attacks
[3, 5, 34, 37, 40, 48, 49, 58]. Restricted attacks create adver-
sarial examples that adhere to a specified perturbation limit,
such as an Lp norm bound. Our proposed attack method
is a restricted attack. Consequently, we will delve into the
specifics of restricted attacks in detail. To enhance the trans-
ferability of adversarial attacks on FR, Zhong and Deng [62]
introduced DFANet, which employs dropout on the feature
maps of convolutional layers to achieve an ensemble-like
effect. Zhou et al. [63] proposed BPFA, enhancing attack
transferability by integrating beneficial perturbations [50]
onto the feature maps of FR models, resulting in the effect of
hard model augmentation. Li et al. [21] leveraged additional
information from FR-related tasks and applied a multi-task
optimization framework to further improve the transferabil-
ity of adversarial examples. Unrestricted adversarial attacks
conversely generate adversarial examples without the limita-

tions of a predefined perturbation bound. These attacks are
primarily focused on physical attacks [20, 52, 56], attribute
editing [17, 30], and adversarial example generation through
makeup transfer [14, 32, 36, 57]. Both restricted and unre-
stricted adversarial attacks on FR models have substantially
advanced the capabilities of these attacks. However, existing
methods for generating adversarial attacks on FR often rely
on surrogate models with fixed parameters, which limits the
transferability of the crafted adversarial examples. In con-
trast, our proposed attack method addresses this limitation by
diversifying the surrogate model parameters, using models
with varying parameters across different epochs.

3. Methodology
3.1. Problem Formulation and Framework
Problem Formulation. Let Fvctpxq P Rr denote the FR
model employed by the victim to extract the embedding
from a face image x. We denote xs and xt as the source and
target images, respectively. The objective of the adversarial
attacks explored in our research is to manipulate Fvctpxq to
misclassify the adversarial example xadv as the target image
xt, while ensuring that xadv bears a close visual resemblance
to xs. For clarity and brevity, the detailed optimization
objective is presented in the supplementary.

In practical attack scenarios, the attacker typically cannot
access the model owned by victim, denoted as Fvct. A com-
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monly used method to overcome this limitation is to employ
a surrogate model F to generate adversarial examples and
then transfer the crafted adversarial examples to the victim
model [45, 63]. Consequently, the transferability becomes
a critical factor in the success of the adversarial attack and
constitutes the key problem studied in this research.
Framework Overview. To enhance the transferability of
adversarial examples, we propose a novel method called
Diverse Parameters Augmentation (DPA). DPA augments
surrogate models by incorporating both pre-trained and ran-
domly initialized parameters, resulting in a more diverse
and expansive set of surrogate models. Specifically, DPA
consists of two key stages: Diverse Parameters Optimization
(DPO) and Hard Model Aggregation (HMA). In the DPO
stage, we diversify the surrogate model parameters by com-
bining pre-trained and random initializations, as illustrated in
Fig. 2. In the HMA stage, we apply beneficial perturbations
to the feature maps of the diversified surrogate models and
combine them to achieve a higher degree of augmentation,
as shown in Fig. 3. In the following, we will introduce our
proposed DPA attack method in detail.

3.2. Diverse Parameters Optimization
The parameter diversity of surrogate models is crucial for
the transferability of crafted adversarial examples. Previous
parameter-based augmentation adversarial attack methods
solely initialize parameters with pre-trained values, thereby
limiting the parameter diversity of surrogate models [11, 51].
In contrast, the key innovation of the stage of our proposed
attack method is the diversification of initialized parameters
using both pre-trained and randomly initialized parameters.
Following initialization, we augment the parameters of the
surrogate models using the parameters in the intermediate
training process to diversify the surrogate models, thereby
improving the transferability of the adversarial examples.

Let x be a batch of face images, w P Rsˆr be the pa-
rameters of the FR head, b be the batch size of x, and s be
the class number in the training dataset. To calculate the
loss function, we should first calculate the cosine similarity
matrix m P Rbˆs between F pxq and the parameters of the
FR head wJ using the following formula:

m “ cosa “ seswJ (1)

where se “
Fpxq

}Fpxq}
, sw “ w

}w}
and a is the angle between

F pxq and wJ. After obtaining the cosine similarity matrix
by Eq. (1), we can get the sine similarity between F pxq and
w using the following equation:

sina “
a

1.0 ´ cos2 a (2)

Using the cosine and sine similarity matrix, the formula
to get the additive angular margin cosine similarity matrix

can be expressed as:

cos pa ` mq “ cosa cosm ´ sina sinm (3)

where m is the margin value for increasing the discrimination
of the FR model [7]. Let y P Rb be the labels of the current
batch. By utilizing y, we can calculate its one-hot encoded
matrix using the following formula:

ph “ Ψ pyq P Rbˆs (4)

where Ψ p¨q is the one-hot encode operation. Next, we use
the following function to calculate the output of the head:

q “ d
´

ph d p `

´

1 ´ ph
¯

d m
¯

p “

"

cos pa ` mq s.t. a ă π ´ m,
cosa ´ m sinm s.t. a ě π ´ m,

(5)

where d is a pre-defined scale factor. Using the output of
the head, the formula to calculate the loss function can be
expressed as the following:

L px,yq “ ´
1

b

b
ÿ

i“1

log
eqi,yi

řs
j“1 e

qi,j
(6)

Let c and v be the number of the training epoch and the
parameters of the FR model, respectively. Utilizing Eq. (6),
we can get the parameters set [7]:

vi,wi “ φ

ˆ

argmin
v,w

L px,yq , i

˙

i P t1, 2, ..., cu

Vc “ tv1,v2, ...,vc´1,vcu Wc “ tw1,w2, ...,wc´1,wcu

(7)
where φ p¨, iq is the operation that obtain the v and w param-
eters in the ith epoch. We denote v0 and w0 as the initialized
parameters of the FR model and head, respectively. If v0

and w0 are fixed, Vc and Wc become deterministic aside
from minor random factors in the training process of Eq. (7).
Therefore, there exists a mapping between tVc,Wcu and
tv0,w0u that can be expressed as:

tVc,Wcu “ 𭟋 ptv0,w0u , iq (8)

Existing adversarial attack methods based on parameter
augmentation typically initialize the parameters tv0,w0u

solely with pre-trained values [11, 51]. This constraint di-
minishes the diversity within the augmented surrogate model
set. In contrast, we opt to initialize tv0,w0u with diverse pa-
rameters to enhance the diversity of the augmented surrogate
model set, thereby improving transferability. The tVc,Wcu

of our proposed attack can be expressed as:

tVp
c ,W

p
cu “ 𭟋 ptvp

0,w
p
0u , iq

tVa
c ,W

a
c u “ 𭟋 ptva

0 ,w
a
0u , iq

(9)
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Figure 3. The framework of the Hard Model Aggregation (HMA). After acquiring a surrogate model set with diverse parameters (i.e., Vq
c ),

we introduce beneficial perturbations with the optimization direction opposite to that of adversarial perturbations onto the feature maps of
these diversified surrogate models, transforming them into hard models and aggregate the hard models to increase the transferability.

where vp
0 represents the pre-trained parameters, while wp

0 ,
va
0 and wa

0 are randomly initialized. Using Eq. (9), we can
obtain the more diverse parameters for the FR model and
head. After obtaining Vp

c and Va
c , we use the following set

of the parameters to craft the adversarial examples:

Vq
c “

␣

vp
0,v

p
1,v

p
j1
, ...,vp

c

(

ď

␣

va
1 ,v

a
j1 ,v

a
j2 , ...,v

a
c

(

s.t.j P t1, 2, ..., c|j mod κ “ 1u
(10)

where κ “ t
?
cu determine the epoch interval to select the

parameters. The overall framework and pseudo-code of the
DPO stage is illustrated in Fig. 2 and Algorithm 1, respec-
tively.

Algorithm 1 Diverse Parameters Optimization (DPO)

Input: Diverse initial parameters vp
0 , wp

0 , va
0 , and wa

0 , the
number of epochs c, the optimizer T, the FR training
dataset ζ, loss function L.

Output: Augmented parameter set Vq
c .

1: P “ tvp
0,w

p
0u, A “ tva

0 ,w
a
0u, Vq

c “ tvp
0u

2: for J P tP,Au do
3: tv,wu “ J
4: F “ Ψ pvq Ź Map the parameters to the models.
5: for i “ 1, ..., c do
6: for x P ζ do
7: Calculate L using Eq. (6).
8: Backward(T, L) Ź Backpropagation using T.
9: Update the parameters v,w.

10: end for
11: if the v satisfies the condition outlined in Eq. (10)

then
12: Add(Vq

c , v) Ź Incorporate v into Vq
c .

13: end if
14: end for
15: end for

3.3. Hard Model Aggregation

Crafting adversarial examples solely using vanilla models
can limit the transferability. Different from the conventional
method, the key innovation of the stage of our proposed
attack method is the addition of beneficial perturbations [50]
with the opposite optimization direction with the adversarial
perturbations onto the pre-defined feature maps of the surro-
gate models to transform the surrogate models with diverse
parameters into hard models [63] and aggregate the hard
models to enhance the transferability.

In the following, we will provide a detailed introduction to
the HMA stage. Let Ψ be the mapping from the parameters
to the corresponding models that can be expressed as:

F “ Ψ pVq
cq “ tF1,F2, ...,Fgu (11)

where g “ |Vq
c |. Hard sample augmentation has demon-

strated significant effectiveness in enhancing model general-
ization [38, 61]. Based on the relationship between adversar-
ial attack tasks and training tasks [8, 23], using hard models
for augmentation can lead to improved transferability [63].
Consequently, by transforming vanilla parameter-augmented
surrogate models into hard parameter-augmented surrogate
models, we can achieve more transferable results. To accom-
plish this transformation, we use the following formula to
calculate the loss function:

rLt “
1

g

g
ÿ

i“0

›

›ϕ
`

Hi

`

T
`

xadv
t

˘˘˘

´ ϕ
`

Fi

`

xt
˘˘
›

›

s.t. Fi P F t P t1, 2, ..., nu

(12)

where xadv
t denotes the adversarial example generated dur-

ing the tth iteration, the variable n represents the maximum
number of iterations allocated for crafting the adversarial
examples, ϕ p¨q denotes the normalization operation, T sig-
nifies the input transformation, and H is the corresponding
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hard model [63] of F , which can be expressed as:

H
`

xadv
t

˘

“

"

F
`

xadv
t

˘

s.t. t “ 1,
χ
`

F
`

xadv
t

˘

,Ω
˘

s.t. t ą 1,
(13)

where χ is the mapping for adding beneficial perturbations
on the feature maps in the forward propagation whose for-
mula can be expressed as:

χ
`

F
`

xadv
t

˘

,Ω
˘

: ω “ ω ` ηsign
´

∇ω
rLt´1

¯

s.t. ω P Ω
(14)

where Ω is the pre-defined set of layers for adding beneficial
perturbations. Let ϵ be the maximum allowable perturbation.
Utilizing rLt, we can craft the adversarial face examples
using following formula:

xadv
t`1 “

ź

xs,ϵ

´

xadv
t ´ βsign

´

∇xadv
t

rLt

¯¯

(15)

where β denotes the step size used to construct the adver-
sarial examples, while

ś

represents the clipping operation
that confines the pixel values of the generated adversarial
examples within the range rxs ´ ϵ,xs ` ϵs. The framework
of the HMA is illustrated in Fig. 3.

In the following, we present the pseudo-code for the
HMA. For the sake of clarity, we focus on neural networks
with a single branch in their computational graphs. In the
case of neural networks with multiple branches, the HMA
algorithm remains largely unchanged, except for the incor-
poration of mechanisms to handle multiple branches. Before
proceeding, we introduce some necessary definitions. Let Φ
denote the index set of pre-selected layers to which beneficial
perturbations will be added:

Φ “ κ pΩq (16)

where κ represents the mapping from the pre-defined set of
layers for adding beneficial perturbations Ω, to their corre-
sponding layer set. Let f i denote the ith layer within the
model F , and let z represent the total number of layers in
F . We define the segment of F from layer f i to layer f j as
follows:

F i,j “ f i ˝ f i`1 ˝ ... ˝ f j´1 ˝ f j (17)

The pseudo-code for the HMA stage of our proposed
method is presented in Algorithm 2.

4. Experiments
4.1. Experimental Setting
Datasets. We opt to use the LFW [15], and CelebA-HQ
[18] for our experiments to verify the effectiveness of our
proposed attack method. LFW serves as an unconstrained

Algorithm 2 Hard Model Aggregation (HMA)

Input: The source image xs, the target image xt, the map-
ping from the parameters to the corresponding models
Ψ, the maximum number of iterations n, the index set of
pre-selected layers to be added beneficial perturbations
Φ, the step size of the beneficial perturbations η, the step
size of the adversarial perturbations β, the maximum
permissible magnitude of perturbation ϵ, the parameter
set Vq

c , the total number of layers in a single surrogate
model z, normalization operation ϕ.

Output: An adversarial example xadv
n

1: xadv
0 “ xs, u “ |Φ|, s1 “ 1, g “ |Vq

c |

2: F “ Ψ pVq
cq Ź Acquire the diversified models set.

3: for t “ 1, ..., n do
4: for i “ 1, ..., g do
5: F “ Fi Ź Derive the parameter-augmented

model.
6: ωt,0 “ T

`

xadv
t´1

˘

7: for j “ 1, ..., u do
8: s2 “ Φj

9: ωt,j “ Fs1,s2
`

ωt,j´1
˘

10: s1 “ s2
11: if t ‰ 1 then
12: ωt,j “ ωt,j ` ηsign

´

∇ωt´1,j rLt´1

¯

13: end if
14: end for
15: rLi “ }ϕ

`

FΦu,z pωt,uq
˘

´ ϕ pF pxtqq }22
16: end for
17: rLt “ 1

g

řg
i“1

rLi Ź Compute the loss function
utilizing the parameter-augmented models.

18: xadv
t “

ś

xs,ϵ

´

xadv
t´1 ´ βsign

´

∇xadv
t´1

rLt

¯¯

19: end for

face dataset for FR. CelebA-HQ consists of face images with
high visual quality. The LFW and CelebA-HQ utilized in
our experiments are identical to those employed in [63–65].
For the parameter augmentation process, we select BUPT-
Balancedface [44] as our training dataset.
Face Recognition Models. The normal trained FR mod-
els employed in our experiments encompass IR152 [12],
IRSE50 [13], FaceNet [31], MobileFace [7], Curricular-
Face [16], MagFace [28], ArcFace [7], CircleLoss [35],
MV-Softmax [46], and NPCFace [59]. Specifically, IR152,
FaceNet, IRSE50, and MobileFace are the same models uti-
lized in [14, 57, 63, 64]. CurricularFace, MagFace, ArcFace,
CircleLoss, MV-Softmax, and NPCFace are the official mod-
els provided by FaceX-ZOO [42]. Furthermore, we integrate
adversarial robust FR models into our experiments, denoted
as IR152adv, IRSE50adv, FaceNetadv, and MobileFaceadv,
which correspond to the models used in [63].
Attack Setting. We set the maximum allowable perturbation
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Table 1. Comparisons of black-box ASR (%) results for attacks
using IRSE50 as the surrogate model on the LFW dataset. I, S, F,
M denote IR152, IRSE50, FaceNet, and MobileFace, respectively

Attacks I F M Iadv Sadv Fadv Madv

FIM 32.3 15.5 79.1 9.8 17.5 5.5 5.7
DI 59.9 47.5 97.7 25.9 41.5 15.6 23.8

DFANet 44.3 26.7 96.9 15.3 28.0 8.6 12.4
VMI 54.0 34.0 96.4 22.5 37.6 13.1 20.3
SSA 58.8 37.1 97.3 22.4 38.5 12.3 18.1
SIA 58.4 41.4 98.2 22.2 37.6 13.9 23.3

BPFA 54.4 27.5 94.6 17.6 29.4 8.1 12.8
BSR 28.7 18.4 84.5 9.2 16.3 6.5 7.6
Ours 74.4 89.8 98.3 57.9 68.2 38.3 59.7

magnitude ϵ to 10, based on the L8 norm bound, without
any specific emphasis. In addition, we specify the maxi-
mum number of iterative steps as 200. More detailed attack
settings are provided in the supplementary.
Evaluation Metrics. We utilize Attack Success Rate (ASR)
as the metric to assess the efficacy of various adversarial at-
tacks. The ASR represents the ratio of adversarial examples
that successfully evade the victim model to the total number
of adversarial examples generated. In calculating the ASR,
we determine the threshold based on a FAR@0.001 on the
entire LFW dataset for each victim model.
Compared methods. Our proposed attack is a form of re-
stricted adversarial attack designed to expose vulnerabilities
within FR systems. It would be inequitable to juxtapose our
method with unrestricted attacks, which do not impose limits
on the magnitude of adversarial perturbations. Consequently,
we opt to benchmark our approach against other restricted
attacks on FR systems that are explicitly malicious at attack-
ing the systems [62] [63], as well as state-of-the-art transfer
attacks [53] [26] [11] [47] [43].

4.2. Comparison Studies
DPA achieves the best black-box attack results on both
normally trained and adversarial robust models. To ver-
ify the effectiveness of our proposed attack method, we
craft the adversarial examples on the LFW and CelebA-HQ
dataset. The black-box performance with IRSE50, FaceNet,
MobileFace, and IR152 as the surrogate models on the LFW
dataset are demonstrated in Tab. 1, Tab. 2, Tab. 3, and Tab. 4,
respectively. Some of the adversarial examples are demon-
strated in Fig. 4. The results on the CelebA-HQ dataset are
in the supplementary. These results demonstrate that our
proposing method consistently outperforms the baseline at-
tack, thereby highlighting its effectiveness in improving the
transferability of adversarial examples.
DPA achieves superior black-box performance under
JPEG compression. JPEG compression is a widely adopted
method for image compression during transmission, and it
also serves as a defense mechanism against adversarial ex-

Source Target
Adversarial ExampleAdversarial Example

SIA BPFA BSR Ours

Figure 4. The Illustration of adversarial examples crafted by various
attacks. First column: some source images. Last column: the
corresponding target images. The second to fifth columns exhibit
the corresponding adversarial face examples crafted by SIA [47],
BPFA [63], BSR [43], and Our proposed attack, respectively.

Table 2. Comparisons of black-box ASR (%) results for attacks
using FaceNet as the surrogate model on the LFW dataset. I, S, F,
M denote IR152, IRSE50, FaceNet, and MobileFace, respectively

Attacks I S M Iadv Sadv Fadv Madv

FIM 7.8 12.5 5.4 7.5 6.9 17.2 2.5
DI 18.6 32.2 18.5 18.0 15.8 30.2 9.9

DFANet 12.1 22.2 11.7 11.3 10.4 25.1 5.5
VMI 24.4 35.1 20.7 24.4 23.2 36.3 15.2
SSA 21.6 44.8 30.8 17.7 17.0 31.9 10.9
SIA 29.1 42.9 26.2 28.7 23.9 38.3 16.7

BPFA 17.3 31.6 14.7 13.4 13.0 22.6 7.8
BSR 28.6 42.4 25.9 26.2 24.3 34.2 16.0
Ours 42.6 65.0 56.9 47.3 45.4 54.0 31.1

Table 3. Comparisons of black-box ASR (%) results for attacks
using MobileFace as the surrogate model on the LFW dataset. I, S,
F, M denote IR152, IRSE50, FaceNet, and MobileFace, respectively

Attacks I S F Iadv Sadv Fadv Madv

FIM 5.3 73.4 7.5 2.5 4.5 2.8 10.9
DI 18.4 97.3 32.9 10.6 18.2 10.2 38.6

DFANet 7.0 86.4 11.9 3.6 6.4 3.9 16.8
VMI 13.6 96.0 20.2 7.6 12.8 7.6 32.3
SSA 13.8 96.4 19.6 5.5 13.1 7.2 31.5
SIA 15.7 96.8 26.7 8.1 14.5 9.1 35.3

BPFA 15.8 95.5 17.8 5.9 11.0 5.1 28.4
BSR 5.4 74.2 9.5 2.9 5.9 4.9 11.4
Ours 67.7 98.2 90.8 55.4 66.4 42.6 71.6

amples. To evaluate the effectiveness of our proposed attack
under JPEG compression, we employ MobileFace as the sur-
rogate model and IRSE50 as the victim model. We assess the
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Table 4. Comparisons of black-box ASR (%) results for attacks
using IR152 as the surrogate model on the LFW dataset. I, S, F, M
denote IR152, IRSE50, FaceNet, and MobileFace, respectively

Attacks S F M Iadv Sadv Fadv Madv

FIM 29.0 9.3 5.6 13.8 6.8 3.6 2.4
DI 46.9 21.7 14.4 28.0 12.4 7.9 6.1

DFANet 50.7 15.5 12.5 25.6 11.0 5.8 3.2
VMI 49.7 23.9 18.7 30.1 18.3 12.8 11.2
SSA 55.0 21.9 24.0 28.8 14.2 9.0 6.1
SIA 52.6 26.3 19.6 29.8 18.3 11.0 9.5

BPFA 46.7 12.9 9.2 20.1 8.9 4.7 3.1
BSR 35.3 14.7 7.3 19.2 9.9 6.6 4.3
Ours 99.4 90.3 96.4 74.0 69.9 42.0 57.7
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Figure 5. Performance of ASR across various JPEG Q values: (a)
Results on the LFW dataset. (b) Results on the CelebA-HQ dataset.

Table 5. Comparison of black-box ASR (%) results using the
parameter-based augmented adversarial attack method as the base-
line on the LFW dataset. ASRadv represents the average attack
success rate on adversarial robust models.

IR152 IRSE50 FaceNet ASRadv

Baseline 4.8 19.6 15.7 7.2
Ours 67.7 98.2 90.8 59.0

attack performance on the LFW and CelebA-HQ datasets,
with the results presented in Fig. 5. These results indicate
that our proposed attack method consistently outperforms
the baseline attack methods across varying levels of JPEG
compression, thereby underscoring the robustness of our
proposed attack method under such conditions.
DPA demonstrates better black-box performance com-
pared to the parameter-based augmented adversarial
attack. The LGV method is an effective parameter-based
augmented adversarial attack technique designed to enhance
transferability. Our proposed attack incorporates parameter
augmentation, making LGV an appropriate baseline. We
selected MobileFace as the surrogate model and generated
adversarial examples on the LFW dataset. The results are
presented in Tab. 5. Tab. 5 clearly shows that our proposed
attack outperforms the baseline, further validating the effec-
tiveness of our method.
DPA achieves superior black-box performance on FR
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Figure 6. ASR on victim models trained with various algorithms,
using FaceNet as the surrogate model on the LFW dataset.

models trained with various algorithms. In order to sub-
stantiate the effectiveness of our proposed attack method
across various FR models, we conducted additional exper-
iments using BSR [43] as the Baseline and FaceNet as the
surrogate model. These experiments adhered to the same
settings detailed in Tab. 2. The ASR across multiple FR mod-
els is illustrated in Fig. 6. As shown in Fig. 6, the ASR of
the adversarial examples generated by our proposed method
exceeds that of the Baseline, thereby reinforcing the efficacy
of our proposed attack method.

4.3. Ablation Studies

The hyper-parameter analysis on the c value. The value
of c determines the number of ensembles in our proposed
attack method, which significantly affects its performance.
Hence, we conduct ablation studies on c using the LFW
dataset with MobileFace as the surrogate model. To further
verify the effectiveness of diverse parameters in enhancing
transferability, we select two types of attack methods for
comparison. Firstly, we use MobileFace models fine-tuned
by a pre-trained backbone and a randomly initialized head in
each epoch to generate adversarial examples. We term this
adversarial attack method ’Single’. Secondly, we choose the
models trained by ‘Single’ and MobileFace models trained
by a randomly initialized backbone and head in each epoch
to create adversarial examples, implying that the parameters
of the trained models are more diverse. We term this attack
method ‘Diverse’. The average ASR on IR152, IRSE50,
FaceNet, and MobileFace is demonstrated in the left plot
of Fig. 7. The left plot of Fig. 7 shows that the ASR in-
creases and then converges as c increases. To analyze the
reason, we need to consider the property of c. c determines
the number of models to be aggregated. If more models are
aggregated in each training epoch, the aggregation capacity
will increase. If c continues to increase, due to the similarity
of the aggregated models in the later epochs, the ASR con-
verges. Moreover, the left plot of Figure 7 demonstrates that
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Figure 7. The hyper-parameter analysis on the (a) c and (b) η.

the performance of ‘Diverse’ is higher than that of ‘Single’,
which verifies the effectiveness of parameter diversity in
improving transferability of crafted adversarial examples.
The hyper-parameter analysis on the η value. The η value
is the step size of beneficial perturbations, which is a key
hyperparameter in our proposed attack method. We will
conduct ablation studies on this parameter using the LFW
dataset with MobileFace as the surrogate model. The aver-
age ASR on IR152, IRSE50, FaceNet, and MobileFace is
shown in the right plot of Fig. 7. To assess the effectiveness
of hard models in enhancing the transferability of adversarial
examples, we use the Diverse Model Aggregation (DMA)
as a baseline for comparison. DMA replaces the hard mod-
els in our method with their corresponding vanilla models.
From the right plot of Fig. 7, we observe that as the step
size of beneficial perturbations increases, the ASR initially
rises and then declines. To understand this behavior, we
should consider the nature of beneficial perturbations. These
perturbations are added to the feature maps of FR models to
increase loss when crafting adversarial examples, effectively
transforming FR models into hard models. Increasing the
step size initially boosts transferability by strengthening the
transition to hard models. However, further increasing the
step size can degrade the features in the feature maps during
forward propagation, ultimately reducing overall attack per-
formance. Additionally, the right plot of Fig. 7 demonstrates
that the optimal performance of our proposed method sur-
passes that of DMA, further validating the effectiveness of
the hard model ensemble in our attack method.
The ablation studies on each stage of our proposed attack
method. Our proposed attack method consists of two stages.
To verify the effectiveness of each stage, we conduct ablation
studies on the stages. Initially, we craft adversarial exam-
ples using only the surrogate model, which we denote as
‘Vanilla’. Next, we generated adversarial examples using the
ensemble of surrogate models obtained in the DPO stage (i.e.
F), denoted as DPO. After incorporating the HMA stage,
the complete attack method is denoted as ‘DPO + HMA’.
The results are presented in Tab. 6. Tab. 6 demonstrates

Table 6. Ablation study of black-box ASR (%) results on the LFW
dataset using MobileFace as the surrogate model. ASRadv denotes
the average attack success rate on adversarial robust models.

Attacks IR152 IRSE50 FaceNet ASRadv

Vanilla 5.3 73.4 7.5 5.2
DPO 35.9 91.3 67.9 32.9

DPO + HMA 67.7 98.2 90.8 59.0

Table 7. Ablation study of black-box ASR (%) results to verify
the effectiveness of multiple surrogate models at different epochs
in improving transferability. ASRadv denotes the average attack
success rate on adversarial robust models.

Attacks IR152 IRSE50 FaceNet ASRadv

Fm 20.3 86.7 33.6 17.8
F (Ours) 35.9 91.3 67.9 32.9

that the addition of the DPO stage results in an increase in
black-box ASR, showcasing the effectiveness of the DPO
stage in enhancing transferability. Further incorporation of
the HMA stage leads to an additional improvement in attack
performance, underscoring the effectiveness of the HMA
stage in boosting black-box performance. These results col-
lectively demonstrate the effectiveness of each stage in our
proposed attack method in improving the transferability.
The ablation studies on the effectiveness of multiple sur-
rogate models at different epochs in improving transfer-
ability. Since our proposed attack method utilizes models
from intermediate training epochs to craft adversarial exam-
ples, it is essential to verify the effectiveness of this approach
compared to using only models from the final training epoch.
We conduct ablation experiments on these two approaches
using the LFW dataset and MobileFace as the surrogate
model. We employ the DPO process to obtain the parameter
sets Vq

c and Vm
c “ tvp

0,v
p
c ,v

a
c u. Next, we map Vm

c into
its corresponding model set Fm “ Ψ pVm

c q. We then craft
adversarial examples by ensembling the models from Vq

c

(i.e. F) and Fm, respectively. The results are presented in
Tab. 7. Tab. 7 shows that the performance of the ensemble
of F surpasses that of the ensemble of Fm, demonstrating
the effectiveness of using models from intermediate training
epochs to enhance the transferability.

5. Conclusion
We presents a innovative advancement in the field of
adversarial attacks on FR through the introduction of the
Diverse Parameters Augmentation (DPA) attack method. By
addressing the problems of traditional adversarial attacks,
particularly the lack of diverse parameters and the exclusion
of the FR head, DPA enhances the transferability of adver-
sarial face examples. The extensive experimental results
demonstrate the effectiveness of our proposed DPA attack.
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6. Appendix
Overview. The supplementary includes the following sec-
tions:
• Sec. 6.1. Optimization Objective of Adversarial Attacks

in Our Research.
• Sec. 6.2. Computation Methodology for Attack Success

Rate.
• Sec. 6.3. More Detailed Attack Settings.
• Sec. 6.4. Comparison Studies on CelebA-HQ.
• Sec. 6.5. Visual Quality Study.

6.1. Optimization Objective of Adversarial Attacks
in Our Research

The objective of adversarial attack as delineated in this paper
is as follows:

xadv “ argmin
xadv

`

D
`

Fvct
`

xadv
˘

,Fvct
`

xt
˘˘˘

s.t.}xadv ´ xs}p ď ϵ
(18)

where the symbol D denotes a predefined distance metric
employed for the optimization of adversarial face examples.

6.2. Computation Methodology for Attack Success
Rate

In our study, the Attack Success Rate (ASR) is determined
using the following formula:

ASR “

řNp

i“1 1
´

rD
`

Fvct
`

xadv
˘

,Fvct pxtq
˘

ă ti
¯

Np

(19)
where the notation rD designates a predefined distance metric
for assessing the performance of adversarial face examples,
Np denotes the total count of face pairs, and ti signifies the
attack threshold.

6.3. More Detailed Attack Settings
In the DPO stage, we set the learning rate to 0.1. In the
HMA stage, we specifically target convolutional layers to
introduce beneficial perturbations. We maintain the step size
for adversarial perturbations β at a fixed value of 1. We have
set the scale factor d to 32.0 and the margin m to 0.5. We
employ the SGD optimizer for model augmentation.

For the tables and figures mentioned—Tab. 1, Tab. 2,
Tab. 3, Tab. 4, Tab. 8, Tab. 9, Tab. 10, Tab. 11, Fig. 8, Fig. 5,
and Fig. 6, we determine setting c to 35, which corresponds
to the optimal value from the left plot in Fig. 7, and setting

Table 8. Comparisons of black-box ASR (%) results for attacks
using IRSE50 as the surrogate model on the CelebA-HQ dataset. I,
S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, respec-
tively

Attacks I F M Iadv Sadv Fadv Madv

FIM 36.3 16.2 80.5 10.5 21.6 5.1 9.5
DI 59.3 42.8 97.6 20.5 39.4 12.0 28.5

DFANet 45.9 25.5 97.0 14.0 30.8 6.6 15.4
VMI 56.7 31.9 96.6 18.5 37.5 9.9 24.3
SSA 58.3 34.8 97.5 19.1 38.2 8.9 22.1
SIA 60.7 40.0 97.9 20.1 40.1 11.5 26.4

BPFA 56.8 27.9 95.3 16.7 32.8 7.5 17.3
BSR 35.7 19.9 86.4 11.2 20.4 5.3 12.0
Ours 68.9 81.7 98.0 40.2 60.6 25.5 53.8

Table 9. Comparisons of black-box ASR (%) results for attacks
using FaceNet as the surrogate model on the CelebA-HQ dataset. I,
S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, respec-
tively

Attacks I S M Iadv Sadv Fadv Madv

FIM 10.7 16.5 9.6 7.2 8.2 13.0 4.4
DI 22.8 30.4 22.9 15.0 19.9 21.7 11.8

DFANet 15.2 24.3 19.7 10.0 14.1 18.0 7.7
VMI 26.4 36.4 25.7 19.5 25.2 25.3 16.4
SSA 23.5 41.5 36.1 14.9 19.4 22.4 13.2
SIA 29.3 44.5 35.7 21.5 26.0 27.6 18.4

BPFA 20.0 31.0 21.7 12.1 14.0 16.8 7.9
BSR 27.8 43.9 34.0 19.2 25.9 26.0 18.3
Ours 35.5 56.9 58.7 29.9 36.2 32.2 28.3

the step size of beneficial perturbations η to 8e-4, as indicated
by the optimal value from the right plot in Fig. 7.

Regarding the bottom portion of Fig. 1, we have config-
ured the settings for LGV according to the same hyperpa-
rameters as specified in Tab. 5. Similarly, the settings for DI,
BPFA, and DPA are aligned with those detailed in Tab. 3.

6.4. Comparison Studies on CelebA-HQ

To validate the efficacy of our proposed attack method, we
create adversarial examples utilizing the CelebA-HQ dataset.
The black-box performance of our approach, which employs
IRSE50, FaceNet, MobileFace, and IR152 as surrogate mod-
els on the CelebA-HQ dataset, is presented in Tab. 8, Tab. 9,
Tab. 10, and Tab. 11, respectively. These results consistently
indicate that our method outperforms the baseline attacks,
thereby highlighting its effectiveness in improving the trans-
ferability of adversarial examples.
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Table 10. Comparisons of black-box ASR (%) results for attacks us-
ing MobileFace as the surrogate model on the CelebA-HQ dataset.
I, S, F, M denote IR152, IRSE50, FaceNet, and MobileFace, re-
spectively

Attacks I S F Iadv Sadv Fadv Madv

FIM 7.2 69.0 8.0 3.3 5.4 2.4 12.0
DI 25.0 97.0 32.0 11.0 21.4 8.2 39.0

DFANet 10.7 85.0 12.6 3.7 9.1 2.9 18.8
VMI 20.2 94.7 19.6 7.8 15.8 4.4 31.5
SSA 22.0 95.4 21.0 7.9 15.2 5.3 33.1
SIA 25.4 96.6 25.9 8.9 18.4 5.9 35.8

BPFA 20.7 94.7 17.5 6.7 13.8 4.5 29.7
BSR 10.8 77.1 11.9 3.8 8.1 2.8 15.1
Ours 59.6 97.2 83.5 37.1 57.5 27.4 61.7
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Figure 8. Comparison of LPIPS values across various attacks, with
lower values signifying superior visual quality.

Table 11. Comparisons of black-box ASR (%) results for attacks
using IR152 as the surrogate model on the CelebA-HQ dataset. I, S,
F, M denote IR152, IRSE50, FaceNet, and MobileFace, respectively

Attacks S F M Iadv Sadv Fadv Madv

FIM 39.2 14.1 12.6 18.3 12.1 4.3 4.9
DI 57.6 27.6 27.0 30.1 20.5 8.5 10.8

DFANet 61.2 21.5 22.4 26.6 17.0 5.7 7.9
VMI 56.9 26.4 27.7 32.4 26.1 12.6 16.6
SSA 62.1 23.3 30.7 30.6 19.4 9.1 10.3
SIA 60.8 26.9 30.4 30.4 24.3 12 14.2

BPFA 54.6 15.8 16.4 22.0 14.2 5 5.4
BSR 42.9 17.3 15.0 21.1 15.4 6.6 6.8
Ours 98.0 82.4 95.1 53.5 61.5 27.6 52.8

6.5. Visual Quality Study
Furthermore, we evaluate the visual quality of our proposed
method against that of previous attack methods. We choose
FIM, DI, DFANet, VMI, SSA, SIA, BPFA, and BSR as
comparative baselines and generate adversarial examples
using MobileFace as the surrogate model on the LFW dataset.
The experimental configuration is consistent with the one

detailed in Tab. 3. The outcomes are depicted in Fig. 8.
As shown in Fig. 8, our proposed method achieves visual
quality performance on par with other methods. Notably, the
transferability of the adversarial examples generated by our
method significantly exceeds that of the baselines, which
further underscores the superiority of our proposed attack
method.
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