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ON THE HOCHSCHILD COHOMOLOGY FOR FROBENIUS KERNELS

TEKİN KARADAĞ AND DANIEL K. NAKANO

Abstract. In this paper the authors investigate the structure of the Hochschild cohomol-
ogy for Frobenius kernels. The authors first establish some fundamental constructions to
compute Hochschild cohomology by using spectral sequences. This enables us to provide a
complete description of the G-algebra structure of the Hochschild cohomology for the first
Frobenius kernel G1 where G = SL2. This computation heavily relies on the calculation
of the adjoint action on the restricted enveloping algebra.

1. Introduction

1.1. Let G be a affine algebraic group scheme defined over Fp and F : G → G be the
Frobenius morphism. The scheme theoretic kernels, Gr, are obtained by taking the kernel
of the rth iteration of F . The infinitesimal group schemes Gr are of major interest in the
study of the representation theory of G, and the representation theory of Gr is equivalent
to studying the modules for the finite-dimensional Hopf algebra Dist(Gr) (cf. [Jan03, I. Ch.
9].

A natural question is to determine the Hochschild cohomology of Dist(Gr) which will be
denoted by HH•(Gr). Through a series of isomorphisms one has

HH•(Gr) ∼= H•(Gr,Dist(Gr)ad).

where Dist(Gr)ad is the Gr-module obtained by using the adjoint action of Gr.
Friedlander and Suslin [FS97] proved that the cohomology ring R = H•(Gr, k) is a finitely

generated k-algebra. One also has that the Hochschild cohomology HH•(Gr) is a finitely
generated module over R. Furthermore, HH•(Gr) is also a finitely generated k-algebra. A
natural question to ask is what is the structure of HH•(Gr) as a G-algebra?

1.2. The computation of R = H•(Gr, k) is still an open for problem for r ≥ 2 and for r = 1
when p < h− 1 (cf. [BNPP14]). The reader is referred to the survey article by Bendel [B24]
for details pertaining to the history and related problems surrounding this computation. For
r = 1 and p > h, the odd degree cohomology of R is zero and the even degree cohomology
identifies with the ring of regular functions on the nilpotent cone of g = Lie G [AJ84, FP86].
A natural starting point for computing the Hochschild cohomology is to first understand
this case.

The main ingredient in our work will be the use of spectral sequences to compute
Hochschild cohomology. Historically, this has not been the standard approach and many
authors have involved the use of resolutions to make explicit calculations [N13, W19]. In our
work, we will later see one of the main obstacles will be to understand the G-structure of
Dist(G1) which identifies with a truncated polynomial algebra S

•
(g). For quantum groups,
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the adjoint action on the small quantum groups is much more complicated, and this is the
main reason why we will only focus on Frobenius kernels in this paper.

1.3. The paper is organized as follows. In Section 2, the notation and conventions for the
paper are introduced. The relevant spectral sequences are described and will be used for
the computations throughout the paper. We also include a subsection on how these spectral
sequences will be used to make the key calculations in the paper.

In the following section, Section 3, we provide a computation of the B-algebra structure of
the Hochschild cohomology for HH(B1) for the rank one case, where B is a Borel subgroup
of G. This computation is important to see because it demonstrates the power in using
spectral sequences and Kostant’s theorem for Lie algebra cohomology to obtain the results
efficiently. Prior computations by others have involved explicit resolutions (cf. [N13]).

The main section of the paper, Section 4, is devoted to providing a complete answer to
the G-algebra structure of HH(G1) when G = SL2. The computation is quite involved due
to the fact that one needs knowledge about the action action on Dist(G1). We provide
a complete answer to this question for all primes by using results about tilting modules
and good filtrations. In the appendix (Section 5), we provide tables for p = 2, 3, 5, 7 that
indicate the intricacies of the G-module structure on Dist(G1).

2. Preliminaries

2.1. Notation. In this paper we will generally follow the standard conventions in [Jan03].
Throughout this paper, k is an algebraically closed field of characteristic p > 0. Let

• G be a connected semisimple algebraic group scheme defined over Fp.
• T be a fixed split maximal torus in G.
• Φ be the root system associated to (G,T ).
• Φ± be the set of positive (resp. negative) roots.
• ∆ = {α1, . . . , αl} be the set of simple roots determined by Φ+.
• B be the Borel subgroup given by the set of negative roots, U be the unipotent
radical of B.

• W be the Weyl group associated with Φ.
• h denote the Coxeter number for the root system associated toG, i.e., h = 〈ρ, α∨

0 〉+1.
• X := X(T ) be the integral weight lattice spanned by the fundamental weights
{ω1, . . . , ωl}.

• X+ denote the dominant weights for G.
• Xr be the pr-restricted weights.
• ≤ be the order relation defined on X via µ ≤ λ iff λ−µ =

∑

α∈∆ nαα for nα ∈ Z≥0.

For λ ∈ X+, there are four fundamental families of finite-dimensional rational G-modules:

• L(λ) (simple),
• ∇(λ) (costandard/induced),
• ∆(λ) (standard/Weyl),
• T (λ) (indecomposable tilting).

Let F r : G → G be the rth iteration of the Frobenius morphism, and Gr be the scheme
theoretic kernel of this map which is often called the rth Frobenius kernel. One can restrict
F to the subgroups B, T and U to obtain Br, Tr and Ur. Set GrT = (F r)−1(T ).
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Let Mod(G) be the category of rational G-modules. Given M ∈ Mod(G), one can

compose the representation map with F r to obtain a module M (r) where Gr acts trivially
and the G action is obtained via inflation. Moreover, if N is a G/Gr

∼= G(r)-module then

one can untwist the action N (−1) to obtain a G-module.
The category of Gr-modules is equivalent to the category of modules for Dist(Gr) which

is a finite-dimensional cocommutative Hopf algebra. Let Qr(λ) denote the projective cover
(equivalently, injective hull) of L(λ) as a Gr-module, λ ∈ Xr.

2.2. Spectral Sequences. In this section, we will present the spectral sequences that will
be used for our computational purposes for HH(Gr). Note that the spectral sequences hold
in higher generality for different algebraic group schemes and more general modules. For
this paper, we have chosen to state the theorem for specific modules that are germane to
our situation. Throughout this section, G will be a reductive algebraic group scheme and
B will be a Borel subgroup scheme in G.

The first two spectral sequences hold for all r ≥ 1 and all primes p > 0.

Theorem 2.2.1. Let G be a reductive algebraic group scheme and B be a Borel subgroup
scheme. There exists a first quadrant spectral sequence

Ei,j
2 = Ri indGB H•(Br,Dist(Gr)ad) ⇒ HHi+j(Gr)

Theorem 2.2.2. Let B be a Borel subgroup scheme with B = T ⋉U where T is a maximal
torus and U is the unipotent radical of B.

(a) There exists a spectral sequence

Ei,j
2 = Hi(Tr,H

j(Ur,Dist(Gr)ad)) ⇒ Hi+j(Br,Dist(Gr)ad).

(b) One has an isomorphism of B=modules,

H•(Br,Dist(Gr)ad) ∼= H•(Ur,Dist(Gr)ad)
Tr .

There is a spectral sequence that can be used to compute H•(Ur,Dist(Gr)ad) when p ≥ 3.
However, when r > 2, the spectral sequence cannot be regraded to make it in the first
quadrant. This causes difficulties in making explicit computations. We state the case when
r = 1 where the spectral sequence is in the first quadrant, allowing us to make explicit
computations. Also included in the discussion is an outline of the strategy for the use of
the spectral sequence machinery.

Theorem 2.2.3. Let G be a reductive algebraic group scheme, with r = 1 and p ≥ 3.

(a) There exists a first quadrant spectral sequence

E2i,j
2 = Si(u∗)(1) ⊗Hj(u,Dist(G1)ad) ⇒ Hi+j(U1,Dist(G1)ad).

(b) There exists a first quadrant spectral sequence

E2i,j
2 = Si(u∗)(1) ⊗Hj(u,Dist(G1)ad)

T1 ⇒ Hi+j(B1,Dist(G1)ad).
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2.3. Strategy for the Computations. The spectral sequences in Section 2.2 will be
used as the primary apparatus to make computations for HH•(Gr). When one replaces
Dist(G1)ad by k, the cohomology ring H•(G1, k) for p > h was determined using the strategy
below by Andersen-Jantzen [AJ84].

Ideally, one would like to prove that

HH•(Gr) ∼= indGB H•(Br,Dist(Gr)ad). (2.3.1)

Note that this is related to the induction conjecture stated in [B24, Section 2.3].
Set r = 1 and p ≥ 3. In order to prove (2.3.1), one starts with analyzing the spectral se-

quence in Theorem 2.2.3(b). The key idea is to understand the structure of H•(u,Dist(G1)ad)
T1 .

With enough information, one hopes to show that the spectral sequence in Theorem 2.2.3(b)
collapses for p > h. This would yield the isomorphism

H•(B1,Dist(G1)ad) ∼= S•(u∗)(1) ⊗H•(u,Dist(G1)ad)
T1 . (2.3.2)

This is true when Dist(G1)ad is replaced by k. However, we will show that (2.3.3) does not
hold for G = SL2. In fact, the spectral sequence Theorem 2.2.3(b) collapses at E3, and one
can show that

H•(B1,Dist(G1)ad) ∼= [S•(u∗)(1) ⊗H•(u,Dist(G1)ad)
T1 ]/Ip. (2.3.3)

See Theorem 4.4.2 for a description of Ip. Note that at this point of stopping one could only

conclude that this isomorphism holds as S•(u∗)(1)-modules. In order to deduce that this
is a ring isomorphism one needs to degrade the spectral sequence and use the techniques
given by Drupieski, Nakano and Ngo (cf. [DNN12]).

The final step involves using a Grauert-Riemenschnieder type vanishing result, namely
RjindGB S•(u∗) ⊗ λ = 0 for λ ∈ X+ and j > 0. If one can show that the weights of
H•(B1,Dist(G1)ad) have factors of the form S•(u∗) ⊗ λ (λ ∈ X+), along some additional
dominant weights then it would follow that (2.3.1) holds and as rings for p > h,

HH•(G1) ∼= indGB [S•(u∗)(1) ⊗H•(u,Dist(G1)ad)
T1 ]/Ip. (2.3.4)

3. Taft algebra computations

In this section, we will compute the Hochschild cohomology for B1 for G = SL2. Our
approach will utilize spectral sequences and we note that prior calculations of this type for
the Taft algebra used techniques involving resolutions. [cite]

3.1. First note that the Hochschild cohomology HH•(Br) identifies with H•(B1,Dist(B1)ad).
The same arguments given in Section 2.2 can be used to construct the following spectral
sequence.

Theorem 3.1.1. Let p ≥ 3 and let B be a Borel subgroup of G corresponding to the negative
roots. Then there exists a first quadrant spectral sequence

E2i,j
2 = Si(u∗)(1) ⊗Hj(u,Dist(B1)ad)

T1 ⇒ HHi+j(B1).
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3.2. Rank One Case, p ≥ 3. When G = SL2, one has an isomorphism of B1-modules
under the adjoint representation:

Dist(B1)ad ∼= u(b)ad ∼= S(b).

A basis for S
n
(b) is given by 〈hiej : i+ j = n, 0 ≤ i, j ≤ p− 1〉. The monomial hiej has

weight −2j. One can check that S
n
(b) is a cyclic u(b)-module that is generated by hn for

n = 0, 1, . . . , p− 1 and en−p+1hp−1 for n = p, p+1, . . . , 2p− 2. The highest weight of S
n
(b)

is 0 for n = 0, 1, . . . , p− 1 and −2(n− p+ 1) for n = p, p+ 1, . . . , 2p − 2.
These facts imply that one can write,

S
n
(b) ∼= L(n)⊗−n n = 0, 1, 2, . . . , p− 1 (3.2.1)

as a Dist(B1)-module where L(n) is a Dist(G1) simple module of highest weight n. Now
one has an isomorphism of Dist(B1)-modules:

S
n
(b) ∼= S

2p−2−n
(b)⊗−2(n− p+ 1) (3.2.2)

for n = p, p+ 1, . . . , 2p − 2. By using (3.2.1), this translates to

S
n
(b) ∼= L(2p− 2− n)⊗−n n = p, p+ 1, 2p − 2 (3.2.3)

The next step is to focus on the calculation of Hj(u,Dist(B1)ad)
T1 . First note that

dim u = 1, so Hj(u,Dist(B1)ad)
T1 = 0 for j ≥ 2. For j = 0, one can see that the lowest

weight of S
n
(b) is −2n for n = 0, 1, . . . , p− 1 and −2(p− 1) for n = p, p+1, . . . 2p− 2. This

implies that
H0(u,Dist(B1)ad)

T1 ∼= Homu(k, S(b))
T1 ∼= k. (3.2.4)

Now Kostant’s theorem (cf. [UGA09, Theorem 4.1.1]) for g = sl2 says that as a T -module:

H1(u, L(λ)) ∼= −sα · λ = λ+ 2 (3.2.5)

for λ = 0, 1, . . . , p − 1 where sα ∈ W . One can now apply this to (3.2.1) and (3.2.3) to
deduce that as T -module

H1(u,Dist(B1)ad)
T1 ∼= H1(u, S(b∗))T1 ∼= H1(u, S(b∗))T1 ∼= k (3.2.6)

One can now use this information to calculate HH•(B1).

Theorem 3.2.1. Let p ≥ 3 and let B be a Borel subgroup of SL2. Then as a k-algebra and
as T/T1-module,

HH•(B1) ∼= S•(u∗)(1) ⊗ Λ•(x).

where the generators consisting of elements in u∗ are of degree 2, and x has degree 1 and
has weight 0.

Proof. One has a spectral sequence which is a slightly modified version of the one in Theo-
rem 2.2.3(b),

E2i,j
2 = Si(u∗)(1) ⊗Hj(u,Dist(B1)ad)

T1 ⇒ Hi+j(B1,Dist(B1)ad).

This spectral sequence lies on two lines for j = 0, 1.
The first observation is that this spectral sequence collapses. One can see this by using

the multiplicative structure of the spectral sequence. Since the spectral sequence is in the

first quadrant, the terms Ei,0
2 must be all sent to zero under d2. On the other hand, the

E2 terms is also generated by E0,1
2

∼= H1(u, S((b))T1 , and d2 : E0,1
2 → E2,0

2 . Now one
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uses the fact the differentials in the spectral sequence are T -module homomorphism, and
weights of E0,1

2 are 0, and the weights of E2,0
2 are 2p. One can now conclude that d2 = 0

and the spectral sequence collapses. Therefore, one has an isomorphism of B-algebras for
the associated graded algebra obtained from filtration used in constructing the spectral
sequence,

gr HH•(B1) ∼= S•(u∗)(1) ⊗H•(u, S(b))T1 ∼= S•(u∗)(1) ⊗ Λ•(x) (3.2.7)

where x is in degree 1.
In order to “ungrade” the spectral sequence, one can use the ideas from [DNN12, proof of

Theorem 3.1.1]. One needs to show that one can find a subalgebra in HH•(B1) represented
by elements of the form 1⊗x in 1⊗H•(u, S(b))T1 . But, as mentioned beforehand the elements
in 1⊗H•(u, S(b))T1 all have weight zero and the product of any two of these elements cannot

be represented in Sn(u∗)(1) ⊗ H•(u, S(b))T1 for n > 0 due to weight considerations. The
statement of the theorem now follows and the proof is complete. �

3.3. Case when p = 2. Note that in this case that U1 acts trivially on S
•
(b). This shows

that as rings

H•(U1, S
•
(b)) ∼= H•(U1, k)⊗ S

•
(b) ∼= H•(U1, k)⊗Dist(B1)ad.

In characteristic 2, all the T -modules involved above have weights in the root lattice, so
everything is T1-invariant. One has H•(B1, k) ∼= S•(u∗)(1), therefore we can conclude the
following result.

Theorem 3.3.1. Let p = 2 and let B be a Borel subgroup of SL2. Then as a k-algebra and
as T/T1-module,

HH•(B1) ∼= S•(u∗)(1) ⊗Dist(B1)ad

where the generators consisting of elements in u∗ are of degree 1.

3.4. Computation of HH•(Ur). Once again assume that U is the unipotent radical of B
in G = SL2. The group U is abelian and the adjoint action of Ur on Dist(Ur)ad is trivial.
Therefore, one has the following isomorphism as a T -algebra.

HH•(Ur) ∼= H•(Ur, k)⊗Dist(Ur)ad. (3.4.1)

Since Ur is abelian, the structure of H•(Ur, k) can be deduced from [Jan03, I 9.14 Proposi-
tion]. In particular for the r = 1 case, one has the following.

Proposition 3.4.1. Let G = SL2. One has the isomorphisms as a ring and T -module.

(a) For p = 2,

HH•(U1) ∼= S•(u∗)(1) ⊗Dist(U1)ad

where the generators in the symmetric algebra are in degree one.
(b) For p ≥ 3,

HH•(U1) ∼= S•(u∗)(1) ⊗ Λ•(u∗)⊗Dist(U1)ad

where the generators in the symmetric algebra are in degree two, and the generators
in the exterior algebra are in degree one.
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4. SL2 computations

4.1. Symmetric powers. Let g = Lie G where G is a semisimple simply connected alge-
braic group. If the characteristic of the field k is good then S•(g∗) has a good filtration
[AJ84, 4.4 Proposition]. Note when p ≥ 3 for g = sl2, one has g∗ ∼= g, thus S•(g) has a
good filtration. Furthermore, if g is a tilting module then Sn(g) is a tilting module for
0 ≤ n ≤ p − 1 [AJ84, 4.1(5)]. In the following theorem, we analyze these decompositions
when G = SL2.

Proposition 4.1.1. Let G = SL2, g = sl2 and p ≥ 3.

(a) In the Grothendieck group, one has

[Sn(g)] = [∇(2n)] + [∇(2n − 4)] + [∇(2n− 8)] + · · ·+ [∇(2n− 4q)]

where q is the largest integer such that 2n− 4q ≥ 0
(b) Let p ≥ 3.

(i) For 0 ≤ n ≤ p−1
2 , there exists an isomorphism of G-modules

Sn(g) ∼= T (2n) ∼= L(2n).

(ii) For p−1
2 < n ≤ p− 1, there exists an isomorphism of G-modules

Sn(g) ∼= T (2n)⊕T (2n−4)⊕· · ·⊕T (2n−4r)⊕T (2n−4s)⊕T (2n−4(s+1)), · · ·⊕T (2n−4t)

where r is the largest integer with 2n−4r ≥ p, s is the largest integer such that
2n− 4s < 2p − 2− 2n and t is the largest integer such that 2n − 4t ≥ 0.

Proof. (a) Fix n ≥ 0, then Sn(g) has a good filtration since p ≥ 3. One can show by
induction that the character of Sn(g) is the sum of the characters of Sn−2(g) and ∇(2n).
This can be seen as follows. One can multiply the elements of Sn−2(g) by h2 and this does
not change the character, and yields a T -submodule of Sn(g) with monomials of the form
en1hmfn2 where n1 = n2 and n = n1 + n2 +m with m ≥ 2. One can then prove directly
that the other monomials where m = 0, 1 form a T -submodule with character ∇(2n). This
proves the first statement.

(b) For p ≥ 3, g is a tilting module for G. Therefore, Sn(g) is a tilting module for G

when 0 ≤ n ≤ p− 1. For (i), when 0 ≤ n ≤ p−1
2 , the highest weight is restricted (and in the

bottom alcove), so Sn(g) ∼= T (2n) = L(2n).
The tilting module T (λ) when p ≤ λ ≤ 2p−2 has a good filtration with two factors ∇(λ)

and ∇(µ) where λ+ µ = 2p− 2. This fact uses the linkage principle for G. In case (ii), one
can use (a), to see that Sn(g) will have tilting factors T (2n), T (2n−4), . . . , T (2n−4r) where
r is the largest integer with 2n − 4r ≥ p. Moreover, there will be possibly other simple
tilting module factors T (2n − 4s), T (2n − 4(s + 1)), . . . T (2n − 4t) where s is the largest
integer such that 2n− 4s < 2p − 2− 2n and t is the largest integer such that 2n− 4t ≥ 0.

�

4.2. Structure of Truncated Symmetric Powers. Let a be an arbitrary restricted Lie
algebra over k with S(a) := S

•
(a) be the truncated symmetric algebra which is obtained

by taking the quotient of the ordinary symmetric algebra S•(a) with the ideal generated
by pth powers. The Lie algebra a acts on S(a) via the adjoint representation. The highest
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degree term S
N
(a) is one-dimensional and occurs when N = (p − 1) dim a. Let χ denote

this one-dimensional u(a)-module.
For each i = 0, 1, . . . , N , there exists a u(a) homomorphism

(−,−) : S
i
(a) ⊗ S

N−i
(a) → χ (4.2.1)

given by (f, g) = f · g. This pairing is non-degenerate in both variables so there exists an
isomorphism of u(a)-module

S
i
(a) ∼= S

N−i
(a)∗ ⊗ χ. (4.2.2)

One can upgrade this to an A-module isomorphism when a = Lie A.
For the case when G = SL2, χ is the trivial module. Therefore, for i = 0, 1, 2, . . . , N , one

has an isomorphism as G-module:

S
i
(g) ∼= S

N−i
(g)∗. (4.2.3)

4.3. The G-module structure of HH•(G1). Assume that p ≥ 3. For G = SL2, the
weights of S(g) are less than 2(p− 1) = 2p− 2. So we can consider the truncated category
Cπ which is the full subcategory of G-modules whose composition factor have highest weights
in π = {λ ∈ X+ : 0 ≤ λ ≤ 2(p − 1)}.

Let S(g)0 be the projection of S(g) onto the principal block for G. This will be the
same as the projection onto the G1-block because p is odd and all the weights of S(g) are
even. The G-module, Sn(g) has a good filtration and the induced modules in the principal
G-block are ∇(0), ∇(2p − 2) for 0 ≤ n ≤ 3(p − 1). Now one can use Proposition 4.1.1 and
(4.2.3) to obtain the following calculation.

Proposition 4.3.1. Let p ≥ 3. The G-module structure on S
•
(g)0 is given by

(a) S
n
(g)0 ∼= k for n even, 0 ≤ n < p− 1, 2(p − 1) < n ≤ 3(p − 1).

(b) S
n
(g)0 ∼= 0 for n odd, 0 ≤ n < p− 1, 2(p − 1) < n ≤ 3(p − 1).

(c) S
n
(g)0 ∼= T (2p− 2) for n even, p− 1 ≤ n ≤ 2(p − 1).

(d) S
n
(g)0 ∼= L(2p− 2) for n odd, p− 1 ≤ n ≤ 2(p − 1).

We now review the cohomological calculations given in [AJ84]. First note that

T (2p − 2)|G1

∼= Q1(0) (4.3.1)

where Q1(0) is the G1- projective cover of the trivial module. Hence,

Hn(G1, T (2p − 2))(−1) =

{

k for n = 0

0 else.
(4.3.2)

Moreover, from [AJ84, Corollary 3.7, Section 3.9], one has the computation of the cohomol-
ogy ring for G1 for p ≥ 3:

Hn(G1, k)
(−1) =

{

k[N ]n
2

for n even

0 for n odd.
(4.3.3)
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One has by Steinberg’s tensor product formula: L(2p− 2) ∼= L(p− 2)⊗ L(1)(1). Moreover,
∇(p− 2) ∼= L(2p − 2), so by [AJ84, Corollary 3.7],

Hn(G1, L(2p − 2))(−1) =

{

indGB [S
n−1

2 (u∗)⊗ ω]⊗ L(1) for n odd

0 for n even
(4.3.4)

We are now ready to provide the G-module structure for the Hochschild cohomology groups
HH•(G1) for G = SL2.

Theorem 4.3.2. Let G = SL2 with p ≥ 3. As a G-module, the Hochschild cohomology is
isomorphic to the following modules.

(a) HH0(G1)
(−1) ∼= k⊕

p−1

2 ;

(b) HH2•(G1)
(−1) ∼= k[N ]

⊕(p−1)
• for • > 0;

(c) HH2•+1(G1)
(−1) ∼= [indGB[S

•(u∗)⊗ ω]⊗ L(1)]⊕
p−1

2 for • ≥ 0.

Proof. First recall that

HH•(G1) = Ext•G1
(k, S(g)) ∼= H•(G1, S(g)) ∼= H•(G1, S(g)0). (4.3.5)

From Proposition 4.3.1, the possible non-zero G-summands of S(g)0 are k, T (2p − 2) and
L(2p − 2), and the G1-cohomology for these summands is given in (4.3.2), (4.3.3), and
(4.3.4). The statement of the theorem now follows by keeping track of the multiplicities of
the G-factors which can be found in Proposition 4.3.1. �

The case when p = 2 requires a slightly different argument.

Theorem 4.3.3. Let G = SL2 with p = 2. As a G-module, the Hochschild cohomology is
isomorphic to the following modules.

(a) HH0(G1)
(−1) ∼= k⊕3 ⊕ L(1);

(b) HH•(G1)
(−1) ∼= k[N ]⊕2

• ⊕ indGB [S
•(u∗)(−1) ⊗ ω]⊕ indGB [S

•(u∗)(−1) ⊗−ω] for • > 0.

Proof. The structure of S̄(g) for p = 2 is given in the first table in the Appendix. The
possible G-factors are k, ∇(2) and ∆(2) which can be obtained by using Proposition 4.1.1
and (4.2.3).

We now look at the B1-cohomology groups, H•(B1, S̄(g))
(−1) as a B-module. First, one

has as a B-module,
H•(B1, S̄

n(g))(−1) ∼= S•(u∗)(−1) (4.3.6)

for n = 0, 3 by [AJ84, 2.4(3)]. Next, observe that ∇(2) as a B1T -module is the direct sum of
the one-dimensional module of weight 2 and the projective indecomposable B1T -module for
the weight −2. Similarly, ∆(2) as a B1T -module is the direct sum of the one-dimensional
module of weight −2 and the projective indecomposable B1T -module for the weight 0.
From this information one can deduce that for • > 0, one has the following isomorphisms
as T -modules:

H•(B1,∇(2))(−1) ∼= S•(u∗)(−1) ⊗ ω (4.3.7)

H•(B1,∆(2))(−1) ∼= S•(u∗)(−1) ⊗−ω. (4.3.8)

Finally, we need to handle the case for H0(B1,∇(2)) and H0(B1,∆(2)). As a B1T -
modules, one has

H0(B1,∇(2))(−1) ∼= ω ⊕−ω. (4.3.9)
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H0(B1,∆(2))(−1) ∼= −ω ⊕ k. (4.3.10)

In order to obtain the B-module structure, one can use the isomorphism:

HomB(µ,H
0(B1, N)(−1)) ∼= HomB(2µ,N) ∼= HomG(∆(−2µ), N). (4.3.11)

Plugging in N = ∇(2) and ∆(2), one obtains the following isomorphisms as B-modules:

H0(B1,∇(2))(−1) ∼= L(1). (4.3.12)

H0(B1,∆(2))(−1) ∼= −ω ⊕ k. (4.3.13)

Since the weights of H•(B1, S̄
n(g))(−1) ∼= S•(u∗)(−1) are greater than or equal to −1, one

has by using [Jan03, II 4.5 Proposition, 5.4 Proposition]

H•(G1, S̄(g)) ∼= indGB H•(B1, S̄(g)). (4.3.14)

The statement of the theorem now follows by using this isomorphism with the calculations
of the B1-cohomology. �

4.4. The G-algebra structure of HH•(G1). We first describe the ring structure of the
u-cohomology for S̄(g)0 under the T1-invariants.

Proposition 4.4.1. Let p ≥ 3 and G = SL2. Then

(a) H•(u, S̄•(g)0)
T1 has a k-basis with elements

(i) {1, x, x2, . . . , xs} where x has bidegree (0,2), and s = 3(p−1)
2 ,

(ii) {y, yx, yx2, . . . , yxt} where y has bidegree (1, p − 1), and t = p−1
2 ,

(iii) {z, zx, . . . , zxu} where z has bidegree (1, p), and u = p−3
2 .

(iv) {z′, z′x, . . . , z′xu} where z′ has bidegree (1, p), and u = p−3
2 .

(b) The element x is represented by 1 ⊗ [ef − h], y is represented by e∗ ⊗ fp−1, and z
is represented by e∗ ⊗ fp−1h.

(c) The multiplication is given by the following.
(i) The elements in (i)-(iv) in (a) commute.
(ii) The product of the elements in (ii)-(iv) in (a) are zero.

(d) The weights of the elements in (i), (ii), and (iv) are 0, and in (iii) are 2p.

Proof. In order to verify (b), (c), and (d), we observe that H•(u, S̄•(g)0)
T1 is a subquotient

of

H•(u, k) ⊗ S̄•(g)0)
T1 ∼= [Λ•(u∗)⊗ S̄•(g)0]

T1 .

The bigraded ring structure of Λ•(u∗) ⊗ S•(g)0 arises directly from the ring structures on
the graded rings, Λ•(u∗) and S•(g). One has dimΛn(u∗) = 0 for n ≥ 2, and dimΛn(u∗) = 1
for n = 0, 1. The T -module Λ0(u∗) is spanned by {1}, and Λ1(u∗) is spanned by {e∗}.

Next we describe a basis for H•(u, S̄•(g)0)
T1 to justify part (a). According to Proposi-

tion 4.3.1, the G-summands of S̄•(g)0 are k, T (2p−2), and L(2p−2). For (i), the element x
is represented by 1⊗ [ef −h2], and the powers of x are a basis for terms involving H0(u, k)T1

and H0(u, T (2p − 2))T1 . Note that H1(u, k)T1 = 0.
For (ii), y is represented by e∗ ⊗ fp−1. The elements in (ii) form a basis for the terms

involving H1(u, T (2p − 2))T1 . Finally, note that

H0(u, L(2p − 2))T1 ∼= H0(u, L(p − 2))T1 ⊗ L(1)(1) = 0.



ON THE HOCHSCHILD COHOMOLOGY FOR FROBENIUS KERNELS 11

A basis for H1(u, L(2p − 2))T1 ∼= H1(u, L(p − 2))T1 ⊗ L(1)(1) is given by the elements listed
in (iii) and (iv). �

We remark that the element z′ for p = 3 can be represented by e∗⊗ [eh2−e2f ]. For p ≥ 5
this expression becomes more complicated. Next, we need to understand the ring structure
of H•(B1, S̄(g)0).

Theorem 4.4.2. Let G = SL2. As a B-algebra, one has the following isomorphisms.

(a) For p ≥ 3,

H•(B1, S̄(g)0) ∼= [S•(u∗)(1) ⊗H•(u, S̄(g)0)
T1 ]/Ip

where elements in u∗ have degree 2 and

Ip = 〈

(p−1)/2
⊕

i=0

S•(u∗)(1) ⊗ fp−1xi,

p−1
⊕

j=(p−1)/2

S•(u∗)
(1)
+ ⊗ xj〉.

(b) For p = 2,
H•(B1, S̄(g)0) ∼= [S•(u∗)⊗ S̄(g)]/I2

where the elements in u∗ have degree 1, and

I2 = 〈S•(u∗)(1) ⊗ ef, S•(u∗)(1) ⊗ f, S•(u∗)
(1)
+ ⊗ h, S•(u∗)

(1)
+ ⊗ fh〉.

Proof. Let p ≥ 3. For any B1-module N , one has a spectral sequence (cf. Theorem 2.2.3):

E2i,j
2 = Si(u∗)(1) ⊗Hj(u, N)T1 ⇒ Hi+j(B1, N). (4.4.1)

We will apply this spectral sequence to the G-summands of S̄(g)0 which are k, L(2p − 2),
and T (2p− 2).

For N = k, H•(u, k)T1 ∼= k. The spectral sequence collapses (4.4.1) at E2, and

H•(B1, k)
(−1) ∼= S•/2(u∗). (4.4.2)

For N = L(2p− 2), observe that L(2p− 2) = L(p− 2)⊗L(1)(1) ∼= ∇(p− 2)⊗L(1)(1), thus
by [AJ84, Corollary 3.7]

H•(B1, L(2p − 2))(−1) ∼= [S(•−1)/2(u∗)⊗ ω]⊗ L(1). (4.4.3)

In this case the spectral sequence (4.4.1) when N = L(2p − 2) collapses at E2. For N =
T (2p − 2), one has T (2p − 2)|G1

∼= Q1(0) which is projective as a G1-module, thus also as
a B1-module. Observe that Hj(B1, N) = 0 for j > 0 and H0(B1, N) ∼= k. Therefore, the
spectral sequence (4.4.1) cannot collapse at E2. Indeed, by considering the differentials, the
spectral sequence must stop at E3, for these terms.

Now one can put this all together for N = S̄•(g)0. The spectral sequence will stop at E3,
and yield an isomorphism:

gr H•(B1, S̄(g)0) ∼= [S•(u∗)(1) ⊗H•(u, S̄(g)0)
T1 ]/Ip.

The terms in Ip arise as the elements in the first and second rows in the spectral sequence
which are eliminated by the differentials δ2 for the summands T (2p − 2) in N .

We need to degrade the spectral sequence. First note as a ring

H•(U1, k) ∼= S•(u∗)(1) ⊗H•(u, k). (4.4.4)
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For G = SL2 and p ≥ 3, this is not hard to verify. However, for general reductive groups
G, this is known to hold when p ≥ 2h − 1 and requires an argument to degrade a spectral
sequence. Using this fact, one has as a B/B1-algebra:

H•(B1, S̄(g)0) ∼= [H•(U1, k) ⊗ S̄(g)0)]
T1

∼= S•(u∗)(1) ⊗ [H•(u, k)⊗ S̄(g)0]
T1

Now the ring structure of H•(u, S̄(g)0)
T1 arises from that of [H•(u, k)⊗ S̄(g)0]

T1 . Therefore,
one can ungrade the spectral sequence and we can deduce that as a B/B1-algebra:

H•(B1, S̄(g)0) ∼= [S•(u∗)(1) ⊗H•(u, S̄(g)0)
T1 ]/Ip.

For the p = 2 case, observe that S̄•(g) ∼= S̄•(g)0 and

H•(B1, S̄(g)) ∼= H•(U1, S̄(g))
T1 ∼= H•(U1, , k)

T1 ⊗ S̄(g) ∼= H•(B1, , k) ⊗ S̄(g).

Note that all modules above are T1-invariant. This shows that the ring H•(B1, S̄(g)) is

a subquotient of the ring S•(u∗)(1) ⊗ S̄(g). Now one can use the B-module structure of

H•(B1, S̄(g))
(−1) given in the proof of Theorem 4.3.3, to see that

H•(B1, S̄(g)0) ∼= [S•(u∗)⊗ S̄(g)]/I2.

�

We can now provide a description of the ring structure of HH•(G1) via the induction
functor and the explicit description of H•(B1, S̄(g)) provided in Theorem 4.4.2.

Theorem 4.4.3. Let p ≥ 2 and G = SL2. Then there exists an isomorphism of rings

HH•(G1)
(−1) ∼= indGB H•(B1, S̄(g)0)

(−1).

Proof. According to Theorem 2.2.1, there exists a spectral sequence:

Ei,j
2 = Ri indGB H•(B1, S̄(g)0)

(−1) ⇒ HHi+j(G1)
(−1).

From Theorem 4.3.3, it follows that as a B-module, H•(B1, S̄(g)0)
(−1) is a direct sum of

B-module factors isomorphic to k, and S•(u∗), ω, and −ω (when p = 2). From Kempf’s

vanishing theorem, and [Jan03, II Proposition 5.4], the higher cohomologies, Rj indGB(−)
vanish on these factors. Hence, the spectral sequence collapses and yields the result. �

5. Appendix

The following tables give the G-module structure of HH•(G1) for G = SL2 for p =

2, 3, 5, 7. Note that Dist(G1)ad ∼=
⊕3(p−1)

n=0 S
n
(g), and as G-module

HH•(G1) ∼=

3(p−1)
⊕

n=0

H•(G1, S
n
(g)).

In the tables in the last column, if a copy of the trivial module k occurs then the trivial
module is located in degree zero of H•(G1, S

n
(g))(−1). Here ω is the first fundamental weight

and L(1) is the 2-dimensional natural representation.
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5.1. p = 2 case.

n S
n
(g) H•(G1, S

n
(g))(−1)

0 T (0) k[N ]•
1 ∆(2) indGB[S

•(u∗)(−1) ⊗−ω] for • > 0
1 ∆(2) k for • = 0

2 ∇(2) indGB [S
•(u∗)(−1) ⊗ ω] for • > 0

2 ∇(2) L(1) for • = 0
3 T (0) k[N ]•

5.2. p = 3 case.

n S
n
(g) H•(G1, S

n
(g))(−1)

0 T (0) k[N ] •
2

1 T (2) 0
2 T (4) k

3 L(4)⊕ T (2) indGB [S
•−1

2 (u∗)⊗ ω]⊗ L(1)
4 T (4) k
5 T (2) 0
6 T (0) k[N ] •

2

5.3. p = 5 case.

n S
n
(g) H•(G1, S

n
(g))(−1)

0 T (0) k[N ] •
2

1 T (2) 0
2 T (4)⊕ T (0) k[N ] •

2

3 T (6) 0
4 T (8)⊕ T (4) k

5 L(8)⊕ T (6) indGB [S
•−1

2 (u∗)⊗ ω]⊗ L(1)
6 L(6)

⊕

T (8)
⊕

T (4) k

7 L(8)⊕ T (6) indGB [S
•(u∗)⊗ ω]⊗ L(1)

8 T (8)⊕ T (4) k
9 T (6) 0
10 T (4)⊕ T (0) k[N ] •

2

11 T (2) 0
12 T (0) k[N ] •

2
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5.4. p = 7 case.

n S
n
(g) H•(G1, S

n
(g))(−1)

0 T (0) k[N ] •
2

1 T (2) 0
2 T (4)⊕ T (0) k[N ] •

2

3 T (6)⊕ T (2) 0
4 T (8)⊕ T (0) . k[N ] •

2

5 T (10) ⊕ T (6) 0
6 T (12) ⊕ T (8) k

7 L(12) ⊕ T (10)⊕ T (6) indGB[S
•−1

2 (u∗)⊗ ω]⊗ L(1)
8 L(10) ⊕ T (12)⊕ T (8) k

9 L(8) ⊕ L(12)⊕ T (10) ⊕ T (6) indGB[S
•−1

2 (u∗)⊗ ω]⊗ L(1)
10 L(10) ⊕ T (12)⊕ T (8) k

11 L(12) ⊕ T (10)⊕ T (6) indGB[S
•−1

2 (u∗)⊗ ω]⊗ L(1)
12 T (12) ⊕ T (8) k
13 T (10) ⊕ T (6) 0
14 T (8)⊕ T (0) k[N ] •

2

15 L(6)⊕ T (2) 0
16 L(4)⊕ T (0) k[N ] •

2

17 L(2) 0
18 T (0) k[N ] •

2
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