
A Scalable Approach to Covariate and Concept Drift Management
via Adaptive Data Segmentation

Vennela Yarabolu∗
Computer Science

Indian Institute of Technology, Bombay
Mumbai, India

210050168@iitb.ac.in

Govind Waghmare
Mastercard

Gurugram, India
govind.waghmare@mastercard.com

Sonia Gupta
Mastercard

Gurugram, India
sonia.gupta@mastercard.com

Siddhartha Asthana
Mastercard

Gurugram, India
siddhartha.asthana@mastercard.com

Abstract
In many real-world applications, continuous machine learning (ML)
systems are crucial but prone to data drift—a phenomenon where
discrepancies between historical training data and future test data
lead to significant performance degradation and operational inef-
ficiencies. Traditional drift adaptation methods typically update
models using ensemble techniques, often discarding drifted histori-
cal data, and focus primarily on either covariate drift or concept
drift. These methods face issues such as high resource demands,
inability to manage all types of drifts effectively, and neglecting the
valuable context that historical data can provide. We contend that
explicitly incorporating drifted data into the model training process
significantly enhances model accuracy and robustness. This paper
introduces an advanced framework that integrates the strengths
of data-centric approaches with adaptive management of both co-
variate and concept drift in a scalable and efficient manner. Our
framework employs sophisticated data segmentation techniques
to identify optimal data batches that accurately reflect test data
patterns. These data batches are then utilized for training on test
data, ensuring that the models remain relevant and accurate over
time. By leveraging the advantages of both data segmentation and
scalable drift management, our solution ensures robust model ac-
curacy and operational efficiency in large-scale ML deployments.
It also minimizes resource consumption and computational over-
head by selecting and utilizing relevant data subsets, leading to
significant cost savings. Experimental results on classification task
on real-world and synthetic datasets show our approach improves
model accuracy while reducing operational costs and latency. This
practical solution overcomes inefficiencies in current methods, pro-
viding a robust, adaptable, and scalable approach to maintaining
high-performance ML systems across various applications.

∗Work done during an internship at Mastercard, India

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1124-4/24/12
https://doi.org/10.1145/3703323.3703337

CCS Concepts
• Information systems → Data management systems; • Com-
puting methodologies→Machine learning.

Keywords
Concept Drift, Covariate Shift, Data Segmentation
ACM Reference Format:
Vennela Yarabolu, GovindWaghmare, Sonia Gupta, and Siddhartha Asthana.
2024. A Scalable Approach to Covariate and Concept Drift Management
via Adaptive Data Segmentation. In 8th International Conference on Data
Science and Management of Data (12th ACM IKDD CODS and 30th COMAD)
(CODS-COMAD Dec ’24), December 18–21, 2024, Jodhpur, India. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3703323.3703337

1 Introduction
In the rapidly evolving landscape of modern technology, ML sys-
tems have become indispensable for various applications. However,
these systems are frequently challenged by data drift—a phenome-
nonwhere discrepancies between historical training data and future
test data cause significant performance degradation and operational
inefficiencies. Addressing data drift is critical to maintaining the
reliability and efficiency of ML systems, yet traditional methods
often fall short in several respects. Data drift is classified into two
main categories: covariate shift and concept drift [17, 18, 34, 38].
Covariate shift is a type of data drift where the distribution of the
input features (covariates) changes between the training and test
datasets, but the relationship between the input features 𝑋 and the
target variable 𝑦 (the conditional distribution 𝑃 (𝑦 |𝑋)) remains the
same. Concept drift refers to a phenomenon where the relationship
between the input data (features) and the target variable changes
over time. This change affects the conditional distribution 𝑃 (𝑦 |𝑋),
meaning the way the output is generated from the input features
evolves. Concept drift can significantly degrade model performance
if not properly managed. Common methods like periodic retraining
and re-weighting recent data are often ineffective, leading to ac-
curacy drops and performance variations. Traditional approaches
usually focus on either covariate or concept drift, often neglecting
comprehensive solutions and discarding valuable historical data.
This paper argues for incorporating drifted data into the training
process to enhance model accuracy and robustness. We propose
a scalable framework that combines data-centric approaches with

ar
X

iv
:2

41
1.

15
61

6v
1

 [
cs

.L
G

]
 2

3
N

ov
 2

02
4

https://doi.org/10.1145/3703323.3703337
https://doi.org/10.1145/3703323.3703337

CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India Yarabolu et al.

adaptive management of both covariate and concept drift. Our so-
lution uses sophisticated data segmentation to select optimal data
batches for training, ensuring models remain accurate over time.

Our framework integrates data segmentation and drift manage-
ment to enhance model accuracy and efficiency in large-scale ML
deployments. By focusing on relevant data subsets, we reduce re-
source use, lowering costs and latency. Experimental results show
improved accuracy, reduced costs, and adaptability to evolving data.
The framework addresses both covariate shift and concept drift,
maintaining model performance over time, and easily integrates
with existing ML pipelines for smooth transitions and tracking.
This approach enables organizations to maintain high-quality pre-
dictions and informed decisions in dynamic data environments.
The summary of our contributions is as follows:

• Scalability and Efficiency: We introduce a robust frame-
work designed to handle data drift, including both concept
drifts and covariate shifts. Our approach is scalable and effi-
cient, combining the strengths of data-centric methods with
multiple drift management techniques.

• Adaptive Data Subset Selection: We develop an efficient
data subset selection algorithm that initially identifies core
data segments while discarding those affected by concept
drift. Subsequently, it selects core data batches from these
segments that are similar to the test set, thereby mitigat-
ing covariate shift. These steps reduce the amount of data
required for training leading to operational efficiencies.

• Optimal Performance: Extensive experiments on synthetic
and real datasets demonstrate that our method achieves
better results while maintaining efficiency. Ablation on the
trade-off between the % of data used and prediction accuracy
underscore the cost benefits for practical deployments.

2 Related Work
Drift detection is crucial in the environments where data distribu-
tions evolve. When drifts occur, the model performance can drop.
Various drift detection techniques ([17, 29, 30, 45]) have been de-
veloped to identify drifts by pinpointing change points or time
intervals [2]. Effective drift detection methods ensure that models
remain accurate and relevant by signaling the need for retraining
or adjustments, thereby allowing the model to adapt to the new
data distribution. These techniques are broadly classified into su-
pervised methods, such as DDM [15], EDDM [1], and ADWIN [3],
and unsupervised methods, like HDDDM [8] and DAWIDD [21].

Model-centric and data-centric approaches address data drift dif-
ferently. Model-centric methods, like retraining and online learning,
adapt models to changing patterns, enhancing adaptability but at
high cost and complexity [4, 10, 12, 16, 19, 39]. Data-centric strate-
gies, such as subset selection and reweighting, ensure training data
remains relevant, improving efficiency. Combining both manages
drift effectively, balancing accuracy and resource use to maintain
model reliability and performance in dynamic environments. This
hybrid approach ensures models stay robust against evolving data
trends over time.

In addition to model-centric methods, data-centric approaches
have been developed to adapt to concept drift. Data reduction tech-
niques [37] focus on cleaning data by removing noisy samples and

features. Drift understanding techniques [11] filter out obsolete
data using the newest data segment as a pattern, based on cumula-
tive distribution function comparisons. Once filtered out, samples
are not reselected, even if they could be beneficial later. A notable
technique in this category is CVDTE [13], which aims to select sam-
ples that do not yield conflicting predictions between previous and
current models. However, these techniques share a fundamental
limitation: they lack mechanisms to validate if the data preprocess-
ing steps genuinely enhance model accuracy. In comparison, we
take a more data-driven approach by explicitly evaluating models
on selected data segments, while minimizing computational costs.

The issue of data drift, which refers to the variation in model
accuracy over time, has been a significant area of research in the ML
community. It arises when the model encounters test data that differ
substantially from the training data, leading to reduced prediction
accuracy. Numerous studies have explored this challenge, partic-
ularly in the context of streaming or continuously arriving data,
and have proposed various approaches to address it [5, 34, 42, 43].
In supervised learning tasks, where features 𝑋 are used to predict
labels 𝑦, data drift is commonly caused by two factors [34]: (1)
Covariate shift, which occurs when the distribution of features
𝑋 changes, such as when new types of incidents with previously
unseen feature values arise; and (2) Concept drift, which happens
when the underlying relationship between features 𝑋 and labels 𝑦
shifts, for example, due to changes in a system and its dependencies,
leading to different causal relationships between symptoms and
components. To tackle the problem of data drift, existing methods
can be categorized into three main types: (a) Window-based ap-
proaches [18], which employ a sliding window of recent data for
training updated models; (b) Shift detection methods [36], which
utilize statistical tests to identify the occurrence of data drift and
trigger model retraining only when such shifts are detected; and (c)
Ensemble-based strategies [6], which create ensembles of models
trained on previous data, combining their predictions through a
weighted average to maintain accuracy.

3 Background
3.1 Covariate Shift
Covariate shift occurswhen the distribution of input features changes
between training and test datasets, while their relationship with
the target variable remains the same [22, 38]. This shift can result
from environmental changes, data collection methods, or sampling
procedures. Addressing covariate shift involves reweighting train-
ing data or using domain adaptation methods to maintain model
accuracy on new data. Most approaches focus on training and test
datasets without considering continuous time [9], addressing the
issue by modifying training objectives or adjusting the importance
of training data to improve test accuracy [20, 32, 38, 40, 46]. For
input features 𝑋 , the covariate shift is defined as follows:

𝑃𝑇𝑟𝑎𝑖𝑛 (𝑋) ≠ 𝑃𝑇𝑒𝑠𝑡 (𝑋) (1)

3.2 Concept Drift
Concept drift occurs when the relationship between input features
and the target variable evolves over time [44]. This shift can happen

A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India

gradually or suddenly, altering the underlying data patterns. Con-
cept drift challengesMLmodels by potentially decreasing their accu-
racy and reliability if not detected and addressed. To handle concept
drift effectively, it’s essential to continuously monitor model perfor-
mance and update themodel to adapt to new data patterns, ensuring
sustained accuracy and relevance. Broadly, there are three solution
categories to handle concept drift as window-based [18, 27, 28],
detection-methods [5, 15, 23, 35, 36, 43] and ensemble methods
[6, 12, 41, 47]. For input features 𝑋 and target 𝑦, the concept drift
is defined as follows:

𝑃𝑇𝑟𝑎𝑖𝑛 (𝑦 |𝑋) ≠ 𝑃𝑇𝑒𝑠𝑡 (𝑦 |𝑋) (2)

4 Overview
The overall process of our method is shown in Figure 3. Our ap-
proach tackles the two primary causes of data drift: covariate shift
and concept drift. The idea is to select the most relevant batches
from the training data segments based on their relationship to the
test samples, and use those batches to train the model for accurate
inference. Inline with [31], this method is based on two conjectures:
(1) If the decline in accuracy is due to the training and test data
residing in different regions of the data space (covariate shift), it
is logical to prioritize the training batch 𝑡 whose features (𝑋𝑡) are
closest to those of the test data (𝑥∗).
(2) If the accuracy drop results from changes in the 𝑥 → 𝑦 rela-
tionship over time (concept drift), then it is prudent to exclude
data segments that exhibit concept drift relative to the current data
segment, as indicated by gradient scores.

To address covariate shift, a random forest 𝑅 is trained meticu-
lously on all labeled training batches {(𝑋1, 𝑦1), . . . , (𝑋𝑇 , 𝑦𝑇)}. This
sophisticated technique partitions the training data space, harness-
ing the random forest’s prowess in organizing complex data distri-
butions [7, 31]. During testing, we rank the training batches based
on their similarity to the test sample by analyzing the leaf nodes
in 𝑅 where the test sample is mapped. Batches are then ranked
according to the concentration of training points that fall within
these leaf nodes, ensuring that the most pertinent data is utilized to
refine model accuracy. This process is highlighted in the Figure 1.

We build on top of concept drift approach Quilt [26]. The con-
cept drift detection component monitors each sample in the data
stream to identify potential changes in data patterns. Various drift
detection methods can be employed, based on shifts in data distri-
bution or model performance. When a drift is detected, a new data
segment is created from the drift point and becomes the current
segment. The data segment selection component then updates the
model using selected segments. If no drift is detected, the sample is
added to the existing segment. The framework performs two main
operations for selecting data segments: (1) discarding segments that
no longer align with the current data pattern, and (2) selecting a
core subset of stable segments for efficient model training. This
approach leverages gradient-based disparity and gain scores as
described in the [26], which are computationally efficient and inde-
pendent of specific data characteristics, unlike traditional statistical
distance measures that can struggle with high-dimensional data
and scalability issues. This method allows for adaptive handling of
data drift without needing ground truth labels for retraining.

Figure 1: Covariate shift ranking of training batches 1,2,3,4
and 5 with respect to test point shown in yellow. In the leaf
node, batches are ranked as 3,4,1,5 and 2. Here, batch 3 has
lowest covariate shift.

5 Data Selection
5.1 Covariate Shift Ranking
To prioritize training data segments based on covariate shift, we fo-
cus on their proximity to test points in the data space. Although one
might consider ranking training batches by their average Euclidean
distance from the test point, this method has limitations. Euclidean
distance computation becomes expensive with larger batches, is
prone to outliers [14], and struggles with high-dimensional data.
Instead, we recommend using decision trees and random forests
for ranking batches, similar to [31]. This approach scales well, is
more robust to outliers, and handles high-dimensional data more
effectively, making it a practical choice for complex datasets. We
rely on methods described in MatchMaker [31] to rank batches
using decision trees and random forest as follows:

Covariate Shift Ranking of the Batches. Decision trees classify
data by partitioning it at feature thresholds that optimize predic-
tion accuracy, grouping similar samples into the same leaf nodes.
When a new sample is tested, it is routed to a leaf node, and its
label is predicted based on the majority label within that node.
We use this mechanism to evaluate training batches for covari-
ate shift, prioritizing those that are closer to the test sample. Let
{(𝑋1, 𝑦1), . . . , (𝑋𝑇 , 𝑦𝑇)} denote training batches. Once decision tree
is constructed on these batches, let 𝑁 [𝑘] [𝑡] indicate the number
of samples from batch 𝑡 that fall into leaf node 𝑘 . Now, for a test
point that is assigned to leaf node 𝑘∗, one has to calculate covariate
shift ranking Rank𝑐𝑜𝑣_𝑠ℎ𝑖 𝑓 𝑡 of the training batches. This ranking
is computed by ordering 𝑁 [𝑘∗] [𝑡] starting from lowest covariate
shift to highest as shown:

Rank𝑐𝑜𝑣_𝑠ℎ𝑖 𝑓 𝑡 = argsort{𝑁 [𝑘∗] [1], . . . , 𝑁 [𝑘∗] [𝑇]} (3)

As random forest are capable of modeling high-dimensional data,
this approach is extended to the random forests for better perfor-
mance. The visual summary of covariate-ranking of the batches is
shown in the Figure 1.

CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India Yarabolu et al.

5.2 Concept Drift
To tackle the concept drift, our approach employs a robust frame-
work Quilt [26], centered on two key tasks: (1) removing data
segments that show concept drift compared to the current segment,
and (2) selecting a core set of stable data segments to train the
model efficiently while maintaining accuracy. This method utilizes
disparity and gain scores, calculated from gradient values on train-
ing and validation sets, ensuring minimal computational cost. In
the next sections, we discuss the gradient computation along with
disparity and gain score formulation as defined in the Quilt [26].
Gradient Computation: The last layer of the neural network
calculates the logits for each class. Let 𝑋 ′

𝑖
∈ R𝑑 ′

be the embedding
feature of the 𝑖th input data 𝑋𝑖 with a hidden layer dimension of
𝑑′, and 𝑧𝑖 ∈ R𝑐 be the logit outputs computed by 𝑧𝑖 = 𝑤 · 𝑋 ′

𝑖
+ 𝑏

using the last layer weights𝑤 ∈ R𝑑 ′×𝑐 and bias 𝑏 ∈ R𝑐 . To convert
a logit 𝑧𝑖 into a probability vector 𝑦𝑖 , softmax function is used
as follows: 𝑦𝑖 = softmax(𝑧𝑖) = 𝑒

𝑧𝑖 𝑗∑𝑐
𝑗=1 𝑒

𝑧𝑖 𝑗 . We can also rewrite the
model output 𝑦𝑖 as a function of the model parameters 𝜃 and input
data 𝑋𝑖 as 𝑦𝑖 = 𝑓𝜃 (𝑋𝑖). Given the model output 𝑦𝑖 and the true
label 𝑦𝑖 , the cross-entropy loss between them is 𝐿𝑖 = 𝐿(𝑦𝑖 , 𝑦𝑖) =

−∑𝑐
𝑗=1 𝑦𝑖 𝑗 log(𝑦𝑖 𝑗). The last layer gradient approximation is given

as 𝑔 = (∇𝑏𝐿,∇𝑤𝐿) where gradients of the front layers are not used.
Using the chain rule, on can compute the gradient of the 𝑖th sample
as follows: 𝑔 = (∇𝑏𝐿,∇𝑤𝐿) =

(
𝑦𝑖 − 𝑦𝑖 , (𝑦𝑖 − 𝑦𝑖) · 𝑋 ′

𝑖

)
.

Disparity Score: The disparity score (𝐷), is a measurement of
dissimilarity between two data distributions. It detects segments ex-
hibiting concept drift. Concept drift is characterized by a change in
the posterior distribution 𝑃 (𝑦 |𝑋) while the data distribution 𝑃 (𝑋)
remains constant. Essentially, it reflects variations in the predicted
labels 𝑦 for the same input data. To quantify this change, one can
use the measure E[∥𝑦𝑡 − 𝑦𝑣 ∥], which represents the expected label
difference between a training subset and a validation set, where
𝑦𝑡 and 𝑦𝑣 denote the true labels from the training and validation
sets, respectively. This measure is analogous to the concept drift
severity [33]. Direct computation of this measure is computation-
ally expensive as it requires identifying similar samples across the
training and validation sets and comparing their label differences.
To overcome this, Quilt [26] proposed a gradient-based score as
an efficient approximation as follows. The disparity score 𝐷 of a
training subset 𝑇 with respect to a validation set 𝑉 is defined as:

𝐷 (𝑇,𝑉) =

 1
|𝑇 |

|𝑇 |∑︁
𝑡=1

𝑔𝑡 −
1
|𝑉 |

|𝑉 |∑︁
𝑣=1

𝑔𝑣

 = ∥E[𝑔𝑡] − E[𝑔𝑣] ∥ , (4)

where |𝑉 | denotes the size of the validation set. Also, the 𝐷 score
measures the 𝐿2-norm distance between two gradient vectors.
Gain Score: The gain score is built on top of methods introduced
in [24, 25]. Consider historical data for both training and validation.
Studies indicate that selecting a subset where the inner product of
the average gradients between the subset and the validation set
(known as the gain) is positive can lower the model’s validation
loss during training. Essentially, gradient vectors represent the
direction and size of updates in gradient descent, and aligning these
gradients between the training and validation sets helps improve
model performance. The gain score 𝐺 for a training subset 𝑇 with

Concept drift
detectionX,y

Figure 2: Subsegment selection approach using gradient
based disparity and gain scores

respect to a validation set 𝑉 is:

𝐺 (𝑇,𝑉) = 1
|𝑇 |

|𝑇 |∑︁
𝑡=1

𝑔𝑡 ·
1
|𝑉 |

|𝑉 |∑︁
𝑣=1

𝑔𝑣 = E[𝑔𝑡] · E[𝑔𝑣], (5)

where · represents the dot product of the gradient vectors. The
subsegment selection procedure based on gradient based disparity
and gain score is highlighted in the Figure 2.

6 Data Subset Selection Algorithm
Algorithm 1 provides a method for detecting covariate shift by
examining how sample distributions vary across different batches
through the lens of a trained model’s decision trees. Initially, the
entire training data segments are utilized to train the model 𝑅. For
each individual decision tree 𝑇𝑖 within the model, the algorithm
computes a score 𝑆 [𝑘] [𝑡] for every batch 𝑡 across each leaf node
𝑘 . This score quantifies how many other batches within the same
leaf node contain fewer samples 𝑁 [𝑘] [𝑡] compared to the batch
𝑡 under consideration. By evaluating these scores, the algorithm
can detect shifts in feature distributions among different batches,
which may signal potential covariate shifts.

Algorithm 2 outlines the procedure for selecting data segments
to optimize model training. The process starts by initializing the
model parameters and proceeds through a series of epochs. For each
epoch, the algorithm initializes an empty training subset 𝑆 . It then
calculates the average gradient over the validation set𝑑𝑉𝑁

. Next, the
algorithm iterates over previous data segments to compute their
gradient averages and evaluates their gain and disparity scores.
Data segments with a positive gain score and a disparity score
below a specified threshold are added to the training subset 𝑆 . The
current training da 𝑑𝑇𝑁 is always included in 𝑆 to ensure recent
data is used in training.

Additionally, the algorithm initializes an empty set for the best
batches𝐵best. For each sample 𝑣 in the validation set𝑑𝑉𝑁

, it retrieves
the rankings of the batches that we had from algorithm 1 based on
the mapped leaf of 𝑣 in a random forest (rf). The algorithm then
iterates through these ranked batches and adds them to 𝐵best if
they are part of the selected segments 𝑆 , breaking the loop once a
suitable batch is found. This ensures that the best batches from the
validation set, which are also part of the selected training segments,
are prioritized.Themodel parameters are updated using the learning
rate 𝜂 and the computed gradients from the best batches 𝐵best. This
process is repeated for 𝑇 epochs. Finally, the algorithm returns the
updated model parameters 𝜃𝑇 .

A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India

Figure 3: Complete architecture of our method. The top branch focuses on concept drift while bottom branch ranks train
batches based on covariate shift.

Algorithm 1: Covariate Shift Scoring
Input: Training data batches{(𝑋1, 𝑦1), . . . , (𝑋𝑇 , 𝑦𝑇)}
Output: Stored values 𝑆 [𝑘] [𝑡] for each tree 𝑇
Train model 𝑅 on entire data (𝑋1, 𝑦1), . . . , (𝑋𝑇 , 𝑦𝑇);
for each tree 𝑇𝑖 ∈ 𝑅 do

Store 𝑆𝑖 [𝑘𝑖] [𝑡] = ∑
(𝑡≠𝑡 ′) {1 if 𝑁 [𝑘𝑖] [𝑡] > 𝑁 [𝑘𝑖] [𝑡 ′]};

7 Experiments
7.1 Datasets
We conducted experiments using a varied selection of datasets, in-
cluding five synthetic and five real-world datasets. Table 1 provides
detailed descriptions and summary statistics for each dataset used
in our research. The synthetic datasets were deliberately crafted
to represent different forms of concept drifts, as outlined by [30].
All datasets expect Covcon are taken and preprocessed inline with
[26] while Covcon is taken and preprocessed as done in [31].
• SEA: Streaming Ensemble Algorithm (SEA) is a standard dataset
for simulating sudden concept drifts. The samples are in a 3D
feature space with random numeric values between 0 and 10.

• RandomRBF: Random Radial Basis Function is used to make a
number of random centroids and new samples are generated by
selecting the center of centroids.

• Sine: It contains four numerical features with values that range
from 0 to 1. Two of the features are relevant to a given binary
classification task, while the two other features simulate noise.

• Hyperplane: Here, hyperplanes are viewed as concepts and
varied orientiations are used to simulate drifts. A hyperplane is
defined by feature weights, and weights are drifted over time.
There are ten relevant features including two drift features.

Algorithm 2: Data Selection Algorithm
Input: Previous data segments 𝐷prev = {𝑑1, . . . , 𝑑𝑁−1},

current segment 𝑑𝑇𝑁 , validation set 𝑑𝑉𝑁
, loss

function 𝐿, learning rate 𝜂, maximum epochs 𝑇 ,
disparity threshold 𝑇𝑑 , batch size 𝐵, number of
estimators 𝑛estimators, maximum depth 𝑑max

Output: Final model parameters 𝜃𝑇
for epoch 𝑡 in [1, . . . ,𝑇] do

Initialize training subset 𝑆 = ∅;
𝑔𝑉 = 1

|𝑑𝑉𝑁 |
∑ |𝑑𝑉𝑁 |

𝑗=1 𝑔 𝑗 ;

for segment 𝑑 in 𝐷prev do
𝑔𝑑 = 1

|𝑑 |
∑ |𝑑 |
𝑘=1 𝑔𝑘 ;

𝐺𝑑 = 𝑔𝑑 · 𝑔𝑉 ;
𝐷𝑑 = ∥𝑔𝑑 − 𝑔𝑉 ∥;
if 𝐺𝑑 > 0 and 𝐷𝑑 < 𝑇𝑑 then

𝑆 = 𝑆 ∪ 𝑑 ;

𝑆 = 𝑆 ∪ 𝑑𝑇𝑁 ;
Initialize best batches 𝐵best = ∅;
for each sample 𝑣 in 𝑑𝑉𝑁

do
Get the rankings of the batches based on the
mapped leaf of 𝑣 in rf;
for each batch in the rankings do

if batch is in 𝑆 then
𝐵best = 𝐵best ∪ batch;
break ;

Update 𝜃𝑡 = 𝜃𝑡−1 − 𝜂 1
𝐵best

∑
𝑒∈𝐵best ∇𝜃𝐿(𝑒);

return final model parameters 𝜃𝑇

CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India Yarabolu et al.

• Covcon and Covcon_5M: A 2-dimensional dataset to have co-
variate shift and concept drift. The decision boundary at each
point is given by 𝛼 ∗ sin(𝜋𝑥1) > 𝑥2.

• Electricity [48] : This is Australian New South Wales Electricity
Market data from 1996 to 1998, measured every 30 minutes.

• Weather : Points measures the weather in Bellevue NE during
the period of 1949–1999.

• Spam : It is consists of email messages from the Spam Assassin
Collection. There are 9,324 samples of messages and a message is
represented by 499 features of boolean bag-of-words. The labels
denote whether a message is spam or not.

• Usenet1 & 2 : Two real datasets are based on the 20 news group
collection with three topics: medicine, space, and baseball. Each
sample contains messages about different topics, and a user labels
them sequentially by personal interests whether the topic of a
message is interesting (1) or junk (0).

• Covertype [31]: This dataset contains 581K samples describing
7 forest cover types for 4 region in the Roosevelt National Forest.

7.2 Model Training and Hyperparameters
Our approach involves employing two main strategies for training
ourmodels. First, we utilize a Random Forest to partition (Algorithm
1) and rank batches of the data segment based on a specified batch
size. It addresses covariate shift. Then, we employ a simple neural
network classifier trained using cross-entropy loss to deal with con-
cept drift (Algorithm 2). For a random forest, we use grid search over
batch size [grid over 3-5 values], number of estimators 𝑛estimators,
maximum depth 𝑑max. For all experiments, 𝑛estimators = 50 and
maximum depth 𝑑max = 20. Batch size is reported in Table 1. In
Algorithm 2, a neural network classifier with a single hidden layer
with 256 nodes is employed. The value of disparity threshold for
each data segment is calculated using Bayesian optimization with
the search interval interval in (0,2) inline with [26]. The learning
rate is set to 1 × 10−3 and early stopping with patience 10 is used
for termination with maximum number of epochs limited to 2000.
For computation, we have used RTX Quadro with 24 GB of VRAM
and 32 GB of RAM on Linux machine. Codebase is developed using
PyTorch. The subset selection method discards the segments based
on gain and disparity scores. Further, only relevant batches from
the remaining segments are selected leading to reduction in data
used for training. This value for each dataset is reported in Table 2
and 3 on the last line ’% of data used’.

7.3 Baseline Algorithms
• Naïve Methods:
– Full Data and Current Segment: Full data uses all data
segments for training, ensuring maximum information but
ignoring the relevance of older data. Current segment trains
only on the latest data, assuming it to be the most relevant.

• Model-centric Methods:
– HAT [3]: Trains a Hoeffding Adaptive Tree classifier online
using the full dataset, adapting to data distribution changes by
incrementally updating its structure.

– ARF [19]: Implements an Adaptive Random Forest classifier
on each sample, leveraging the entire dataset. ARF combines
multiple decision trees to improve prediction accuracy.

– Learn++.NSE [12]: Constructs an ensemble of models trained
on previous data segments and adjusts their weights based on
their performance on the current data segment.

– SEGA [39]: Ensembles models trained from equal-length seg-
ments of historical data and selects segments with minimum
kNN-based distributional discrepancy with the current data.

• Data-centric Method:
– CVDTE [13]: This method trains a Cross-Validation Decision
Tree Ensemble classifier on individual samples that do not have
conflicting predictions caused by shifted decision boundaries
due to concept drifts.

• Data Subset Selection Methods:
– GLISTER [25]: Trains a neural network classifier based on data
subset selection, ranking data subsets by gains and selecting
the top-k subsets within a predefined budget.

– GRAD-MATCH [24]: Trains a neural network classifier via
data subset selection, simultaneously selecting data subsets
and adjusting their weights to minimize gradient error.

• Quilt [26]: A data-centric framework designed to identify and
select data segments that maximize model accuracy, utilizing
gradient-based scores for efficient data segment selection.

7.4 Experimental Results
For each dataset, we report accuracy, F1 score and runtime results
of our method by setting the last (latest) segment as the current
segment. This means that we use the most recent segment of data
to evaluate how well our method performs in a real-world scenario
where data is continuously evolving. We compare our method with
other baseline methods across all ten datasets, as shown in Table
2 and 3. Our results indicate that our method consistently outper-
forms all the baselines in terms of accuracy. This superior perfor-
mance is attributed to our method’s effective utilization of drifted
data, which allows it to maintain high accuracy even when the data
distribution changes over time. We have used the public codebase
of Quilt [26] to get the results of all baselines.

In comparison, the Full Data method, which uses all available
data including drifted data, does not perform as well because it is
forced to incorporate data that may no longer be relevant to the
current segment. On the other hand, the Current Segment method,
which only uses the most recent segment of data, fails to leverage
valuable historical data, leading to lower accuracy. HAT, another
baseline, performs worse than our method because it adaptively
learns from recent data without using previous models or historical
data, limiting its ability to adapt effectively to data drift. The ensem-
ble methods, including ARF, Learn++.NSE, and SEGA, also under
perform compared toour method. ARF, for example, can lose useful
previous knowledge when replacing an obsolete tree for drift adap-
tation, which negatively impacts its performance. Learn++.NSE and
SEGA attempt to save all past models or a buffer’s worth of them
and use the current data segment to create ensembles. However,
these models, trained on previous data segments, struggle to fit the
current data segment accurately with simple ensemble techniques.
CVDTE, another baseline, performs worse than our method because
it simply collects samples that do not have conflicting predictions,
regardless of whether these samples actually benefit model accu-
racy. This method overlooks the importance and effectiveness of

A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India

Table 1: Dataset statistics.

Type Dataset Size Features Classes Num. Segments Segment size Num. batches
per segment Batch size

Synthetic

SEA 16K 3 2 8 2K 20 100
Random RBF 16K 10 2 8 2K 20 100

Sine 16K 4 2 8 2K 20 100
Hyperplane 16K 10 2 8 2K 20 100
Covcon 10K 2 2 5 2K 2 1K

Covcon_5M 5M 2 2 10 500K 10 50K

Real

Electricity 43.2K 6 2 10 4.32K 20 216
Weather 18K 8 2 10 1.8K 20 90
Spam 9.3K 499 2 9 1.036K 14 74

Usenet1 1.5K 99 2 5 300 2 150
Usenet2 1.5K 99 2 5 300 3 100
Covertype 581K 54 7 10 58.1K 10 5.81K

Table 2: Accuracy, F1 score and runtime (sec) on synthetic datasets. % of data used indicates how much data is used compared to
Quilt with 100% data to get best performance. Best numbers are in bold. "-" indicates either memory error or time limit error.

Methods SEA RandomRBF Sine Hyperplane Covcon Covcon_5M

Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time

Full Data .849 .881 3.36 .821 .820 9.43 .449 .436 2.25 .843 .844 2.41 .561 .576 1.57 .401 .444 800
Current segment .864 .888 0.20 .679 .673 0.56 .899 .898 0.94 .893 .894 0.46 .941 .540 2.11 .904 .551 30

HAT .825 .862 1.38 .514 .519 2.35 .293 .305 1.67 .862 .862 2.23 .83 .674 .733 - - -
ARF .825 .863 23.49 .645 .642 44.64 .821 .823 21.40 .793 .793 26.86 .873 .89 9.689 - - -
Learn++.NSE .804 .836 6.65 .611 .612 5.68 .925 .925 5.73 .755 .755 7.05 .690 .671 6.007 - - -
SEGA .797 .842 4.37 .825 .825 4.47 .253 .260 4.35 .851 .851 4.49 .786 .601 0.67 - - -

CVDTE .806 .810 0.02 .614 .621 0.05 .857 .835 0.02 .752 .752 0.04 .940 .540 0.06 - - -

GLISTER .857 .885 25.89 .794 .794 63.73 .879 .876 14.93 .905 .905 21.64 - - - - - -
GRAD-MATCH .853 .884 2.13 .790 .790 6.66 .547 .529 0.80 .845 .845 1.40 - - - - - -

Quilt .893 .909 .993 .833 .833 2.836 .938 .936 3.909 .911 .912 1.810 .988 .918 .95 .923 .415 27

Our Method .899 .912 1.457 .839 .838 3.382 .955 .949 4.369 .924 .922 2.681 .988 .922 1.44 .968 .603 731
% of data used (89.14%) (93.43%) (94.25%) (87.94%) (62.28%) (68.49%)

Table 3: Accuracy, F1 score and runtime (sec) on real datasets. % of data used indicates how much data is used compared to Quilt
with 100% data to get best performance. Best numbers are in bold. "-" indicates either memory error or time limit error.

Methods Electricity Weather Spam Usenet1 Usenet2 Covertype

Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time Acc F1 Time

Full Data .694 .758 7.42 .800 .641 4.33 .970 .973 1.17 .576 .512 0.23 .701 .413 0.18 .642 .650 105
Current segment .709 .756 0.52 .756 .509 0.26 .955 .963 0.16 .752 .716 0.16 .745 .613 0.18 .598 .584 1.76

HAT .691 .743 6.43 .729 .452 2.10 .888 .847 25.67 .622 .558 0.87 .730 .472 0.87 .536 .538 250
ARF .713 .762 57.36 .775 .542 30.51 .921 .931 44.83 .629 .616 4.12 .682 .31 4.04 .483 .398 1843
Learn++.NSE .698 .734 17.26 .703 .523 7.86 .928 .942 3.81 .433 .412 0.35 .637 .251 0.33 - - -
SEGA .637 .697 10.26 .777 .602 4.11 .858 .851 6.67 .403 .318 0.84 .630 .207 0.84 .513 .488 553

CVDTE .689 .736 0.04 .731 .497 0.03 .917 .918 0.12 0.718 .624 0.01 .689 .523 0.01 .604 .6 2.013

GLISTER .698 .741 77.46 .793 .649 40.79 .971 .974 14.52 .771 .736 2.07 .744 .603 1.89 - - -
GRAD-MATCH .686 .748 5.97 .795 .622 3.51 .968 .972 1.13 .630 .591 0.13 .679 .420 0.12 - - -

Quilt .831 .775 3.613 .776 .635 3.284 .988 .976 2.498 .892 .782 .324 .771 .640 1.03 .622 .615 115

Our Method .833 .825 2.528 .778 .696 1.302 .992 .996 .89 .904 .841 .119 .879 .794 .147 .689 .665 120
% of data used (92.10%) (56.28%) (79.56%) (81.48%) (73.33%) (53.42%)

CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India Yarabolu et al.

the gathered samples in enhancing the model’s accuracy on the
present data segment. Among the data subset selection methods,
GLISTER’s targeted sample selection demonstrates more consistent
results compared to GRAD-MATCH’s random batch selection. How-
ever, the substantial computational overhead of GLISTER renders it
less feasible for use in real-time scenarios. In contrast,our method’s
approach of adaptively selecting suitable data segments with ex-
plicit model evaluations demonstrates the advantage of taking a
data-centric approach. By explicitly evaluating and selecting the
most relevant data segments,our method achieves better accuracy
and efficiency, highlighting its effectiveness in managing data drift
in ML systems.

7.5 Ablation Study

Figure 4: Trade-off between % of data used vs accuracy.

In our experiments with the Usenet2 and Weather dataset, we
evaluated the effect of varying the proportion of data used for
training on the model’s accuracy. The goal was to determine the
minimal amount of data required to achieve optimal performance.
The first graph for Usenet2 (red line in Figure 4) presents this
relationship, where we see a significant increase in accuracy when
utilizing 32% of the data, reaching approximately 87%. This initial
boost suggests that even a smaller subset of the data can capture
the essential patterns necessary for effective model training. As we
continue to use more data, the accuracy sees a gradual increase
and then stabilizes, indicating that the additional data provides
diminishing returns. The highest accuracy is observed around 87%
data utilization, after which the performance slightly decreases,
reinforcing the notion that more data does not always equate to
better accuracy and might even introduce noise or redundancy.

In the second graph forWeather (green line in Figure 4), depicting
the weather dataset, the highlighted points mark a significant in-
sight into data efficiency. At 58% data utilization, the model reaches
its peak accuracy of 78.5%, which is higher than the accuracy ob-
tained using the entire dataset. This indicates an optimal subset of
data that maximizes the model’s performance while minimizing
the computational resources required. Notably, the accuracy drops
when nearing 100% data utilization, which underscores the impor-
tance of strategic data selection over sheer volume. The pattern

Table 4: For each dataset, we show the runtime results for our
method, including random forest (RF) training time (Algo-
rithm 1), Model training time (Algorithm 2), and total time in
seconds. We also provide an ablation when only Algorithm 1
is used against both algorithms are used.

Dataset RF
train time

Model
train time

Total
train time

Only Alg.
1

Alg.
1 and 2

Accuracy

SEA 1.213 0.244 1.457 .784 .899
Random RBF 1.360 2.022 3.382 .704 .839
Sine 1.238 3.131 4.369 .274 .955
Hyperplane 1.252 1.429 2.681 .733 .924
Covcon 0.710 0.303 1.441 .421 .988
Covcon_5M 707 24 731 .709 .968
Electricity 1.437 1.476 2.528 .718 .833
Weather 0.590 0.712 1.302 .775 .778
Spam 0.276 0.614 0.890 .883 .992
Usenet1 0.035 0.084 0.119 .808 .904
Usenet2 0.037 0.056 0.147 .771 .879
Covertype 46 74 120 .647 .689

observed here suggests that careful curation of training data seg-
ments, focusing on the most relevant subsets, can lead to superior
model performance and operational efficiency. Our ablation study
on both the Usenet2 and weather datasets reveals that optimal per-
formance can be achieved with significantly less data than the full
dataset. By focusing on the most relevant data, we can maintain or
even improve model accuracy, making the training process more
resource-efficient and effective. These findings highlight the impor-
tance of strategic data selection in developing robust and scalable
ML models. The ablation of using just Algorithm 1 and training
time across the modules is shown in the Table 4.

8 Limitations & Conclusion
In this paper, we addressed the critical issue of data drift in ML
systems by introducing a novel, scalable, and flexible framework. It
integrates data-centric approaches with adaptive management of
both covariate and concept drift. Our framework employs advanced
data segmentation techniques to identify optimal data batches that
reflect test data patterns, ensuring models remain relevant and
accurate over time. This approach enhances model robustness by
including drifted data into the training process, minimizes resource
consumption, and reduces computational overhead, leading to sig-
nificant cost savings. Our results on synthetic and real datasets
demonstrate significant improvements in accuracy, operational
cost reduction, and faster ML inference compared to state-of-the-
art solutions. However, limitations such as challenges in identifying
and segmenting data batches in dynamic environments and compu-
tational complexity in real-time data segmentation remain. Future
work will refine segmentation techniques for better drift detection
and model adaptation, conduct extensive tests on diverse datasets,
and develop systems to adjust data segment and model importance
based on temporal performance. Enhancements will include ad-
vanced similarity metrics using deep feature representations and
temporal patterns for improved model selection. We aim to inspire
further research into effective data drift solutions, enhancing the
practicality and reliability of ML systems across applications.

A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation CODS-COMAD Dec ’24, December 18–21, 2024, Jodhpur, India

References
[1] Manuel Baena-Garcıa, José del Campo-Ávila, Raul Fidalgo, Albert Bifet, Ricard

Gavalda, and Rafael Morales-Bueno. 2006. Early drift detection method. In Fourth
international workshop on knowledge discovery from data streams, Vol. 6. Citeseer,
77–86.

[2] Michele Basseville, Igor V Nikiforov, et al. 1993. Detection of abrupt changes:
theory and application. Vol. 104. prentice Hall Englewood Cliffs.

[3] Albert Bifet and Ricard Gavalda. 2007. Learning from time-changing data with
adaptive windowing. In Proceedings of the 2007 SIAM international conference on
data mining. SIAM, 443–448.

[4] Albert Bifet and Ricard Gavaldà. 2009. Adaptive Learning from Evolving Data
Streams. In Advances in Intelligent Data Analysis VIII, Niall M. Adams, Céline
Robardet, Arno Siebes, and Jean-François Boulicaut (Eds.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 249–260.

[5] Albert Bifet and Ricard Gavaldà. 2007. Learning from Time-Changing Data with
Adaptive Windowing. Proceedings of the 7th SIAM International Conference on
Data Mining.

[6] Dariusz Brzezinski and Jerzy Stefanowski. 2014. Reacting to Different Types of
Concept Drift: The Accuracy Updated Ensemble Algorithm. IEEE Transactions
on Neural Networks and Learning Systems (2014).

[7] Alex Davies and Zoubin Ghahramani. 2014. The random forest kernel and other
kernels for big data from random partitions. arXiv preprint arXiv:1402.4293 (2014).

[8] Gregory Ditzler and Robi Polikar. 2011. Hellinger distance based drift detec-
tion for nonstationary environments. In 2011 IEEE symposium on computational
intelligence in dynamic and uncertain environments (CIDUE). IEEE, 41–48.

[9] Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. 2015. Learning in
nonstationary environments: A survey. IEEE Computational Intelligence Magazine
10, 4 (2015), 12–25.

[10] Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[11] Fan Dong, Jie Lu, Yiliao Song, Feng Liu, and Guangquan Zhang. 2021. A Drift
Region-Based Data Sample Filtering Method. IEEE Transactions on Cybernetics
(2021).

[12] Ryan Elwell and Robi Polikar. 2011. Incremental Learning of Concept Drift in
Nonstationary Environments. IEEE Transactions on Neural Networks (2011).

[13] Wei Fan. 2004. Systematic data selection to mine concept-drifting data streams.
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Association for Computing Machinery.

[14] Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM (1981).

[15] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. 2004. Learning
with drift detection. InAdvances in Artificial Intelligence–SBIA 2004: 17th Brazilian
Symposium on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-
Ocotber 1, 2004. Proceedings 17. Springer, 286–295.

[16] João Gama, Ricardo Rocha, and Pedro Medas. 2003. Accurate decision trees for
mining high-speed data streams. Association for Computing Machinery.

[17] João Gama, Indrundefined Žliobaitundefined, Albert Bifet, Mykola Pechenizkiy,
and Abdelhamid Bouchachia. 2014. A survey on concept drift adaptation. ACM
Comput. Surv. 46, 4, Article 44 (mar 2014), 37 pages. https://doi.org/10.1145/
2523813

[18] Widmer Gerhard and Kubat Miroslav. 1996. Learning in the presence of concept
drift and hidden contexts. Machine Learning (1996).

[19] Heitor Murilo Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enem-
breck, Bernhard Pfahringer, Geoff Holmes, and Talel Abdessalem. 2017. Adaptive
random forests for evolving data stream classification. Machine Learning (2017).

[20] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borg-
wardt, and Bernhard Schölkopf. 2008. Covariate shift by kernel mean matching.
(2008).

[21] FabianHinder, André Artelt, and BarbaraHammer. 2020. Towards non-parametric
drift detection via dynamic adapting window independence drift detection (daw-
idd). In International Conference on Machine Learning. PMLR, 4249–4259.

[22] Mark G Kelly, David J Hand, and Niall M Adams. 1999. The impact of changing
populations on classifier performance. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining. 367–371.

[23] Daniel Kifer, Shai Ben-David, and Johannes Gehrke. 2004. Detecting Change in
Data Streams.

[24] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir
De, and Rishabh Iyer. 2021. Grad-match: Gradient matching based data subset
selection for efficient deep model training. In International Conference on Machine
Learning. PMLR, 5464–5474.

[25] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and
Rishabh Iyer. 2021. GLISTER: Generalization based Data Subset Selection for
Efficient and Robust Learning. arXiv:2012.10630 [cs.LG] https://arxiv.org/abs/
2012.10630

[26] Minsu Kim, Seong-Hyeon Hwang, and Steven Euijong Whang. 2024. Quilt:
Robust Data Segment Selection against Concept Drifts. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 38. 21249–21257.

[27] Ralf Klinkenberg. 2004. Learning drifting concepts: Example selection vs. example
weighting. Intelligent Data Analysis 8 (2004).

[28] Ivan Koychev and Robert Lothian. 2006. Tracking Drifting Concepts by Time
Window Optimisation. In Research and Development in Intelligent Systems XXII.

[29] B. Krawczyk, Leandro L. Minku, João Gama, Jerzy Stefanowski, and Michal
Wozniak. 2017. Ensemble learning for data stream analysis: A survey. Inf. Fusion
37 (2017), 132–156. https://api.semanticscholar.org/CorpusID:1372281

[30] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. 2018.
Learning under concept drift: A review. IEEE transactions on knowledge and data
engineering 31, 12 (2018), 2346–2363.

[31] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri Joshi. 2022. Matchmaker:
Data Drift Mitigation inMachine Learning for Large-Scale Systems. In Proceedings
of Machine Learning and Systems.

[32] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. 2008. Domain
adaptation with multiple sources. Advances in neural information processing
systems 21 (2008).

[33] Leandro L Minku, Allan P White, and Xin Yao. 2009. The impact of diversity on
online ensemble learning in the presence of concept drift. IEEE Transactions on
knowledge and Data Engineering 22, 5 (2009), 730–742.

[34] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V. Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classification.
Pattern Recognition (2012).

[35] Ali Pesaranghader and Herna L. Viktor. 2016. Fast Hoeffding Drift Detection
Method for Evolving Data Streams. InMachine Learning and Knowledge Discovery
in Databases.

[36] Ali Pesaranghader, Herna L Viktor, and Eric Paquet. 2018. McDiarmid drift
detection methods for evolving data streams. In 2018 International joint conference
on neural networks (IJCNN). IEEE, 1–9.

[37] Sergio Ramírez-Gallego, Bartosz Krawczyk, Salvador García, Michal Wozniak,
and Francisco Herrera. 2017. A survey on Data Preprocessing for Data Stream
Mining: Current status and future directions. (2017).

[38] Hidetoshi Shimodaira. 2000. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical planning and
inference 90, 2 (2000), 227–244.

[39] Yiliao Song, Jie Lu, Anjin Liu, Haiyan Lu, and Guangquan Zhang. 2021. A
Segment-Based Drift Adaptation Method for Data Streams. IEEE Transactions on
Neural Networks and Learning Systems (2021).

[40] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert Müller. 2007. Covariate
shift adaptation by importance weighted cross validation. Journal of Machine
Learning Research 8, 5 (2007).

[41] Yu Sun, Ke Tang, Zexuan Zhu, and Xin Yao. 2018. Concept drift adaptation
by exploiting historical knowledge. IEEE transactions on neural networks and
learning systems 29, 10 (2018), 4822–4832.

[42] Abhijit Suprem, Joy Arulraj, Calton Pu, and Joao Ferreira. 2020. Odin: Automated
drift detection and recovery in video analytics. arXiv preprint arXiv:2009.05440
(2020).

[43] Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and Phillip B.
Gibbons. 2020. DriftSurf: A Risk-competitive Learning Algorithm under Concept
Drift. arXiv:2003.06508 [cs.LG] https://arxiv.org/abs/2003.06508

[44] Alexey Tsymbal. 2004. The problem of concept drift: definitions and related work.
Computer Science Department, Trinity College Dublin 106, 2 (2004), 58.

[45] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petitjean.
2016. Characterizing concept drift. Data Mining and Knowledge Discovery 30, 4
(2016), 964–994.

[46] Keisuke Yamazaki, Motoaki Kawanabe, Sumio Watanabe, Masashi Sugiyama,
and Klaus-Robert Müller. 2007. Asymptotic bayesian generalization error when
training and test distributions are different. In Proceedings of the 24th international
conference on Machine learning. 1079–1086.

[47] Peng Zhao, Le-Wen Cai, and Zhi-Hua Zhou. 2020. Handling concept drift via
model reuse. Machine Learning (2020).

[48] Indre Zliobaite. 2013. How good is the electricity benchmark for evaluating
concept drift adaptation. arXiv preprint arXiv:1301.3524 (2013).

https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://arxiv.org/abs/2012.10630
https://arxiv.org/abs/2012.10630
https://arxiv.org/abs/2012.10630
https://api.semanticscholar.org/CorpusID:1372281
https://arxiv.org/abs/2003.06508
https://arxiv.org/abs/2003.06508

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Covariate Shift
	3.2 Concept Drift

	4 Overview
	5 Data Selection
	5.1 Covariate Shift Ranking
	5.2 Concept Drift

	6 Data Subset Selection Algorithm
	7 Experiments
	7.1 Datasets
	7.2 Model Training and Hyperparameters
	7.3 Baseline Algorithms
	7.4 Experimental Results
	7.5 Ablation Study

	8 Limitations & Conclusion
	References

