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Abstract

The Gaussian and Laguerre orthogonal ensembles are fundamental to random matrix theory,
and the marginal eigenvalue distributions are basic observable quantities. Notwithstanding
a long history, a formulation providing high precision numerical evaluations for N large
enough to probe asymptotic regimes, has not been provided. An exception is for the largest
eigenvalue, where there is a formalism due to Chiani which uses a combination of the Pfaffian
structure underlying the ensembles, and a recursive computation of the matrix elements.
We augment this strategy by introducing a generating function for the conditioned gap
probabilities. A finite Fourier series approach is then used to extract the sequence of marginal
eigenvalue distributions as a linear combination of Pfaffians, with the latter then evaluated
using an efficient numerical procedure available in the literature. Applications are given
to illustrating various asymptotic formulas, local central limit theorems, and central limit
theorems, as well as to probing finite size corrections. Further, our data indicates that the
mean values of the marginal distributions interlace with the zeros of the Hermite polynomial
(Gaussian ensemble) and a Laguerre polynomial (Laguerre ensemble).

1 Introduction

1.1 Background

Let Gn,N denote an n×N rectangular standard real Gaussian matrix, meaning that each entry is
chosen independently as a standard normal random variable. With AN = GN,N and Bn,N = Gn,N

(n ≥ N) being particular square and rectangular real Gaussian matrices, introduce the real
symmetric matrices

XN =
1

2
(AN +AT

N ), Yn,N = BT
n,NBn,N . (1.1)
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Random matrices with the construction of XN are said to form the Gaussian orthogonal ensemble
(GOE) [28, §1.1]. Random matrices with the construction of YN are examples of uncorrelated
real Wishart matrices from multivariate statistics [28, §3.2], and through their eigenvalue PDF
relate to the Laguerre orthogonal ensemble (LOE); see below.

Standard results in random matrix theory [28, Prop. 1.3.4 and 3.2.2] give that the eigenvalue
probability density functions (PDFs) for the random matrices (1.1) are

PG(x1, . . . , xN ) =
1

ZG
N

N∏
l=1

e−x2
l /2

∏
1≤j<k≤N

|xk − xj | (1.2)

PL(x1, . . . , xN ) =
1

ZL
N

N∏
l=1

xal e
−xl/21xl>0

∏
1≤j<k≤N

|xk − xj |, a = (n−N − 1)/2, (1.3)

with normalisations

ZG
N =

N∏
j=1

Γ(1 + j/2), ZL
n,N = N !π−N/22Nn/2

N∏
j=1

Γ(j/2)Γ((j + n−N)/2). (1.4)

In the above, we have used the subscripts G (L) in relation to the GOE (LOE). One should
mention at this stage that the terminology LOE applies more generally when the exponent
a = (n − N − 1)/2 in each factor xal of (1.3) is regarded as a continuous parameter a > −1.
Random matrices that realise this more general eigenvalue PDF are known [23], but they cannot
be constructed out of matrices with standard Gaussian entries.

Our interest in this paper is in the computation of the individual eigenvalue marginals
corresponding to (1.2) and (1.3), and the underlying conditioned gap probabilities. The eigenvalue
marginals are the PDFs f (·)N (k; s) for the k-th largest eigenvalue (k = 1, . . . , N). As is well known
[28, §8.1], these PDFs can be expressed in terms of {E(·)

N (j; (s,∞))}k−1
j=0 , where E(·)

N (j; (s,∞))
denotes the conditioned gap probability that there are exactly j eigenvalues in the interval (s,∞),
and which themselves specify the distribution of the random variable

∑N
l=1 1xl>s corresponding

to the number of eigenvalues in the half interval (s,∞). Specifically, one has the recursive formula

f
(·)
N (k; s) =

d

ds
E

(·)
N (k − 1; (s,∞)) + f

(·)
N (k − 1; s) (1.5)

subject to the initial condition f (·)N (0; s) = 0, telling us that

f
(·)
N (k; s) =

d

ds

k−1∑
l=0

E
(·)
N (l; (s,∞)). (1.6)

Regarding motivation, one notes that the individual eigenvalue marginals for the GOE appear
explicitly in formulas relating to critical points of isotropic Gaussian random fields [2, 3]. Further,
associated with individual eigenvalues, and for the conditioned gap probabilities, are various limit
laws. While for the former these are best known at the spectrum edge [27, 57], there are also limit
laws of individual eigenvalues in the bulk, and moving inwards from the edge with the matrix
size [39, 48]. This is similarly true of the conditioned gap probabilities, or more specifically the
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random variable for the number of eigenvalues in an interval, in the setting that the number of
eigenvalues in the interval tends to infinity [19, 54, 41].

Results in the literature have addressed the computation of (1.5) for the eigenvalue PDFs
(1.2) and (1.3) in two distinct, fundamental ways. The first line of study aimed to give exact
functional forms for small values of N . The tool for this was the discovery by Davis [20, 21]
that associated with {f (·)N (k; s)} is an (N + 1)× (N + 1) first order matrix differential equation,
which allows for a recursive computational scheme. In [21, Appendix B] there is a listing of exact
functional forms of {fLN (k; s)}Nk=1 up to N = 5. These ideas were developed in the Gaussian
case (1.2) in the PhD thesis of Eckert [25] (this reference is available in electronic form on the
internet), which contains the evaluations of {fGN (k; s)}Nk=1 up to N = 7.

Another of the results of [25], was the identification of a transcendental basis for the PDF
fGN (0; s) (a summary is given in [40]). To specify this basis, write ϕ(s) = e−s2/2, Φ1(s) =∫ s
−∞ ϕ(y) dy, Φ2(s) =

∫ s
−∞(ϕ(y))2 dy, and define functions {Ωj(s)}

Ω2k+1(s) = Φ1(s)(Φ2(s))
k (k = 0, 1, . . . ), Ω2k(s) = (Φ2(s))

k (k = 0, 1, . . . ). (1.7)

With this notation, it is established in [25, after the change of variables s 7→
√
2s] that

fGN (1; s) =
N−1∑
j=0

πj(s)(ϕ(s))
N−1−jΩj(s) (1.8)

for some polynomials {πj(s)}. Moreover, a family of linear operators {Tp}N−1
p=1 was identified

with an explicit action on any functional form with the structure of the right hand side of (1.8),
and which allows for each member of {fGN (n; s)}Nn=2 to be deduced using knowledge of (1.8).
For the Laguerre case (1.3) it was shown in [31] for k = 1, and subsequently in [32] for general
k (k = 1, . . . , N), that with a := (n −N − 1)/2 a non-negative integer, there are polynomials
qj(s; k,N, a) of degree j(a+N − j) such that

fLN (k; s) =

N∑
j=n

qj(s; k,N, a)e
−js/2; (1.9)

see too [45]. In addition, the references [31] and [32] implement in Mathematica notebooks the
recursive method of Davis which provides for the exact evaluation of the polynomials. Regarding
efficiency, in the case k = 1 and a = 0, N = 40 the evaluation of {qj(s; k,N, a)}Nj=1 takes around
21 minutes using a 2017 model IMac machine. However the recurrence is such that to compute
{fLN (k; s)}mk=1 requires having first computed {fLM (k; s)}max{m,M}

k=1 for M = 1, . . . , N − 1. While
the algorithm is only cubic in N , with three main loops, there are overheads associated with the
intermediate computer algebra specific operations. This limits the practical use of the code with
respect to the size of N and M ; for example with a = 0 and N =M = 11 the run-time is around
93 minutes using the same machine.

A special functional form has also been identified in the case that a+ 1/2 is a non-negative
integer [32]. This is most conveniently written in terms of the cumulative distribution FL

N (1;x) =∫ x
0 f

L
N (1; s) ds, and depends too on the parity of N . Setting N even for convenience, it was

exhibited in [32] for small values of N and conjectured to hold in general that there are polynomials
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pel,1(x), p
e
l,2(x) such that

FL
N (1;x) =

N/2+1∑
l=1

(
e−(l−1)xpel,1(x) +

√
xerf(

√
x/2)e−(l−1/2)xpel,2(x)

)
. (1.10)

The second fundamental approach to the computation of f (·)N (k; s) available in the literature
— albeit presented only in the case k = 1 — is due to Chiani [18]. The starting point for this is
the classical knowledge in random matrix theory due to Mehta [46], that computing averages
with respect to (1.2) gives rise to a Pfaffian structure, and which moreover remains true in the
Laguerre case (1.3). This is a consequence of the method of integration over alternate variables,
which can be traced back to de Bruijn [13]. For the average corresponding to E

(·)
N (0; (s,∞))

in both the Gaussian and Laguerre cases it was shown in [18] that the matrix elements of the
Pfaffian, which at first are given as double integrals, can be calculated recursively starting from
a particular special function (error function in the Gaussian case, incomplete gamma function
in the Laguerre case). This allows for an efficient computation of the matrix elements to high
precision, with the later feature carrying over to the numerical evaluation of the Pfaffian, and
leading via an application of (1.5) in the case n = 1 to a high precision evaluation of f (·)N (1; s).
The advantage of this approach relative to the one based on exact functional forms is that larger
values of N can be accessed. For example, in Chiani [18] a run-time of just 5 seconds is reported
for the Laguerre case with a = 0, N = 200, albeit for a fixed value of s.

1.2 Specific aims and paper outline

As already stated, our primary concern in this paper is with the computation of the individual
eigenvalue marginals for the joint PDFs (1.2) and (1.3), and the underlying conditioned gap
probabilities. We will proceed using the (well known — recall the final paragraph above) Pfaffian
structure, combined with the insight from [18] that the matrix elements can be computed by
recurrence. The computer algebra system Mathematica allows for a high precision computation
of these matrix elements. Essential too is use of the Mathematica code of Wimmer [59] for the
efficient numerical evaluation of a Pfaffian.

The details of the recurrences for the Gaussian and Laguerre cases differ, necessitating that
they be treated separately. Also, the feature of the GOE of being independent of a parameter
beyond the matrix size gives rise to unique marginal probability density functions. For these,
following on from work began in the thesis of Eckert [25], there is interest in providing high
precision statistical data relating to the cumulants. Eckert provides such a tabulation up to
and including N = 7. Using our exact (internally stored within Mathematica) functional forms
obtained from the Pfaffian formulation allows this tabulation to be extended up to and including
N = 12 (Appendix A). Unlike the LOE, the GOE is symmetrical about the origin, which
distinguishes the conditioned probabilities {E(G)

N (k; (0,∞))}∞k=0, which determine the number
of positive eigenvalues. References relating to the interest in this quantity are given in the first
paragraph of §3.1. This provides motivation to investigate the large N form of the variance of
the number of positive eigenvalues, and also the accuracy of a known local central limit theorem.
In the literature the case k = 0 of these conditioned probabilities. In particular, there is a known
large N asymptotic formula which we are able to illustrate. As two extra applications of our
numerics in the Gaussian case, we consider the rate of convergence to a known central limit law
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for the marginal probability density function near the centre of the spectrum, and also interlacing
properties of the mean of the marginal distributions (for the latter see Appendix A). Analogous
asymptotic questions are probed in the Laguerre case in Section 3.2, with an interlacing property
of the means of the marginal densities considered in Appendix A.

2 Pfaffian formulation and exact evaluations

Fundamental to our working is the generating function

Ξ
(·)
N ((s,∞); ζ) :=

N∑
k=0

ζkE
(·)
N (k; (s,∞)) =

〈 N∏
l=1

(
1xl<s + ζ1xl>s

)〉(·)
, (2.1)

where the average is with respect to one of the joint PDFs (1.2) or (1.3). A Pfaffian form of the
average in (2.1) can be written down for any joint PDF structurally identical to (1.2) and (1.3),
although the details depend on the parity of N [28, Prop. 6.3.4 and Exercises 6.3 q.1]. To specify
the Pfaffian, introduce

HG
0 (j, k; s) =

1

Γ(j/2)Γ(k/2)

∫ s

−∞
dxxj−1e−x2/2

∫ s

−∞
dy yk−1e−y2/2sgn(y − x)

HG
1 (j, k; s) =

1

Γ(j/2)Γ(k/2)

∫ ∞

s
dxxj−1e−x2/2

∫ s

−∞
dy yk−1e−y2/2 − (j ↔ k)

HG
2 (j, k; s) =

1

Γ(j/2)Γ(k/2)

∫ ∞

s
dxxj−1e−x2/2

∫ ∞

s
dy yk−1e−y2/2sgn(y − x) (2.2)

and

HL
0 (j, k; s) =

1

Γ(a+ j)Γ(a+ k)

∫ s

0
dxxa+j−1e−x

∫ s

0
dy ya+k−1e−ysgn(y − x)

HL
1 (j, k; s) =

1

Γ(a+ j)Γ(a+ k)

∫ ∞

s
dxxa+j−1e−x

∫ s

0
dy ya+k−1e−y − (j ↔ k)

HL
2 (j, k; s) =

1

Γ(a+ j)Γ(a+ k)

∫ ∞

s
dxxa+j−1e−x

∫ ∞

s
dy ya+k−1e−ysgn(y − x). (2.3)

Note that in our notation HL
µ (j, k; s) the dependence on the parameter a has been suppressed.

Further introduce the column vector [ν
(·)
j (s)]N+1

j=1 , where ν(·)N+1(s) = 0 and

νGj (s) =
1

Γ(j/2)

(∫ s

−∞
dxxj−1e−x2/2 + ζ

∫ ∞

s
dxxj−1e−x2/2

)
(2.4)

νLj (s) =
1

Γ(a+ j)

(∫ s

0
dxxa+j−1e−x + ζ

∫ ∞

s
dxxa+j−1e−x

)
, (2.5)

for j = 1, . . . , N , where here the dependence on ζ has been suppressed in the notation for both
quantities, as well as the dependence on a in νLj .
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Proposition 2.1. For N even

ΞG
N ((s,∞); ζ) = 2N/2Pf

[
HG

0 (j, k; s) + ζHG
1 (j, k; s) + ζ2HG

2 (j, k; s)
]N
j,k=1

,

ΞL
N ((s,∞); ζ) =

N∏
j=1

π1/2Γ(a+ j)

Γ(j/2)Γ(a+ (j + 1)/2)

× Pf
[
HL

0 (j, k; s/2) + ζHL
1 (j, k; s/2) + ζ2HL

2 (j, k; s/2)
]N
j,k=1

. (2.6)

In the case of N odd, the size of the matrices that its Pfaffian is being computed in (2.6) must be
increased from N to N + 1 by the bordering of the existing matrix by an additional column with
entries [νGj (s)]N+1

j=1 and [νLj (s/2)]
N+1
j=1 in the Gaussian and Laguerre cases respectively.

Remark 2.1. For both (1.2) and (1.3) there are what may referred to as Fredholm Pfaffian
formulas for Ξ

(·)
N ((s,∞); ζ) [42, Eq. (180)], which relate to some specific 2 × 2 anti-symmetric

integral kernel; see also [7, §2.2.2 and §2.2.3]. In the circumstance that the integral kernel is
an analytic function, such Fredholm expressions offer powerful computational properties [6, 7].
However, as noted in [7, §2.2.3], for the matrix integral kernel that results from the Pfaffian point
processes with orthogonal symmetry such as (1.2) and (1.3) one of the matrix entries contains
the non-analytic additive factor sgn(x− y), which nullifies its computational value.

The computational scheme for the matrix elements depends on the details of the weight
function and so differs in the Gaussian and Laguerre cases. Therefore each will be considered
separately.

2.1 Gaussian case

Define

ΨG(j;x) :=
1

Γ(j/2)

∫ x

−∞
tj−1e−t2/2 dt, IG(j, k;x) :=

1

Γ(j/2)

∫ x

−∞
tj−1e−t2/2ΨG(k; t) dt

Ψ̃G(j;x) :=
1

Γ(j/2)

∫ ∞

x
tj−1e−t2/2 dt, ĨG(j, k;x) :=

1

Γ(j/2)

∫ ∞

x
tj−1e−t2/2Ψ̃G(k; t) dt. (2.7)

Using this notation, the quantities in the Gaussian cases of (2.2) and (2.4) can be written

HG
0 (j, k; s) = −IG(j, k; s) + IG(k, j; s), HG

1 (j, k; s) = −Ψ̃G(j; s)ΨG(k; s) + Ψ̃G(k; s)ΨG(j; s)

HG
2 (j, k; s) = ĨG(j, k; s)− ĨG(k, j; s), νGj (s) = ΨG(j; s) + ζΨ̃G(j; s). (2.8)

By writing Ψ̃G in terms of ΨG, the expression for HG
1 can be further simplified to read

HG
1 (j, k; s) = −ujΨG(k; s) + ukΨ

G(j; s), (2.9)

where ul = 0 for l even and ul = 2l/2 for l odd. Following Chiani [18], using straightforward
integration by parts, each of the functions in (2.7) can be determined by second order recurrences
and appropriate initial conditions, thus allowing for the determination of the HG

i .
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Proposition 2.2. We have the recurrences

ΨG(j;x) = − xj−2

Γ(j/2)
e−x2/2 + 2ΨG(j − 2;x), Ψ̃G(j;x) =

xj−2

Γ(j/2)
e−x2/2 + 2Ψ̃G(j − 2;x),

IG(j + 2, k;x) = 2IG(j, k;x)− xje−x2/2

Γ(j/2 + 1)
ΨG(k;x) +

2−(j+k)/2Γ((j + k)/2)

Γ(j/2 + 1)Γ(k/2 + 1)
ΨG(j + k;

√
2x),

ĨG(j + 2, k;x) = 2ĨG(j, k;x) +
xje−x2/2

Γ(j/2 + 1)
Ψ̃G(k;x)− 2−(j+k)/2Γ((j + k)/2)

Γ(j/2 + 1)Γ(k/2 + 1)
Ψ̃G(j + k;

√
2x),

(2.10)

where in the first line j ≥ 2, while in the second and third line j ≥ 0. Associated initial conditions
are

ΨG(0;x) = 0, ΨG(1;x) =
1√
2

(
1 + erf(x/

√
2)
)
,

Ψ̃G(0;x) = 0, Ψ̃G(1;x) =
1√
2

(
1− erf(x/

√
2)
)
,

IG(0, k;x) = IG(j, 0;x) = 0, ĨG(0, k;x) = ĨG(j, 0;x) = 0, j, k ≥ 1,

IG(1, 1;x) =
1

2

(
ψG(1;x)

)2
, ĨG(1, 1;x) =

1

2

(
ψ̃G(1;x)

)2
. (2.11)

For a given (even) value of N , the recurrences in the first line of (2.10) are to be iterated for
j = 2, 3, . . . , 2N using the initial conditions in the first line of (2.11). Thus we have available the
values of

{ΨG(j;x), Ψ̃G(j;x)}2Nj=0, (2.12)

which are required to implement the recurrences for IG, ĨG. In relation to the latter, as a start
the initial conditions in the third line of (2.11) with k = 1 and in the final line, are to be used in
the recurrences of the second and third line of (2.10), allowing for the computation of

{IG(j, 1;x), ĨG(j, 1;x)}Nj=2. (2.13)

The quantities IG and ĨG also satisfy the symmetry relations

IG(j, k;x) = ψG(j;x)ψG(k;x)−IG(k, j;x), ĨG(j, k;x) = ψ̃G(j;x)ψ̃G(k;x)−ĨG(k, j;x), (2.14)

the derivation of which is an appropriate integration by parts (in the case of IG(j, k;x) for
example, the starting point is to note that IG(j, k;x) =

∫ x
−∞

(
d
dxψ

G(j;x)
)
ψG(k;x) dx). Setting

j = 1 and using knowledge of the values of (2.13) provides the values of

{IG(1, k;x), ĨG(1, k;x)}Nk=2. (2.15)

This, together with the k-dependent initial conditions in the third line of (2.11), provide initial
conditions to use the recurrences of the second and third line of (2.10) to compute

{IG(j, k;x), ĨG(j, k;x)}Nj=2 (2.16)
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for each k = 2, . . . , N . Combining then the evaluations in the final line of (2.11) with (2.15) and
(2.16) we have the evaluation of the full N ×N array

{IG(j, k;x), ĨG(j, k;x)}Nj,k=1. (2.17)

We see from (2.8) that knowledge of the values of (2.12) and (2.16) makes explicit all the
matrix elements in the Pfaffian formula of Proposition 2.1 for ΞG

N ((s,∞); ζ). It is well known
that for A a 2n× 2n anti-symmetric matrix [aj,k]

2n
j,k=1, one has for the corresponding Pfaffian the

Laplace type expansion

Pf(A) =

2n−1∑
r=1

(−1)r+1ar,2nPfr,2n(A), (2.18)

where Pfr,2n is the Pfaffian of the (2n− 2)× (2n− 2) anti-symmetric matrix obtained by deleting
rows and columns r, 2n; see e.g. [28, Exercises 6.1]. Iterative use of this allows for the (2n− 1)!!
terms (each a degree n monomial in the matrix elements {aj,k}) in the fully expanded form of
Pf(A) to be made explicit (a brief code in the computer algebra system Mathematica for this
purpose is given in [55]). From (2.1), in relation to the first Pfaffian in (2.6) this is a polynomial
in ζ, the coefficients of which are the probabilities {EG

N (k; s)}Nk=1. With knowledge of the latter,
application of the formula (1.5) gives {fGN (k; s)}Nk=1. The symmetry of the GOE spectrum upon
reflection about the origin implies

fGN (k; s) = fGN (N + 1− k;−s), (2.19)

and so it suffices to extract only {EG
N (k; s)}⌈N/2⌉

k=1 .
Code has been written in the computer algebra system Mathematica to carry out the above

steps. Most time consuming is the need to use the command Simplify on the coefficients of ζ
obtained by the expansion of the Pfaffian. Without applying this command, as N increases it is
not possible to make use of the output for purposes of characterising the statistical properties of
the fGN (k; s), due to the subsequent failure of the command NIntegrate. Such overheads have
limited our exact determination (albeit stored electronically)2 to N no bigger than 12.

Denote by κp(N, k) the p-th cumulant of fGN (k; s), where in particular κ1(N, k) = µ is the
mean and κ2(N, k) = σ2 is the variance. Starting from the third cumulant, define too their scaled
form by introducing

γp−2 = κp(N, k)/σ
p; (2.20)

here γ1 is the skewness and γ2 the kurtosis. In [25, Appendix 4], a table of {µ, σ, γ1, γ2, γ3, γ4}
accurate up to and including the 7th decimal place is presented for N = 2, . . . , 7 and k =
1, . . . , ⌈N/2⌉, although an adjustment is required due to a different scale3. In Appendix A below,
using the exact functional form obtained from our code, we extend this data by providing the
same table, now for N = 8, . . . , 12.

2The use of the Mathematica command Simplify does not identify the factors (Φ2(s))
j = πj/2(1 + erf(x))j as

present in the functional form (1.8) of {fG
N (1; s)} but rather presents them in a binomial expansion of such factors.

This remains true of using FullSimplify in the cases N > 6.
3In [25] the GOE eigenvalue PDF has each xl replaced by xl/

√
2 relative to our (1.2), implying that the

corresponding values of µ presented in [25, Appendix 4] must be multiplied by
√
2 to match our results, and

similarly the values of σ.
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2.2 Laguerre case

Relevant here are the quantities

ΨL(α;x) :=
1

Γ(α)

∫ x

0
tα−1e−t dt, IL(α, β;x) :=

1

Γ(α)

∫ x

0
tα−1e−tΨL(β; t) dt

Ψ̃L(α;x) :=
1

Γ(α)

∫ ∞

x
tα−1e−t dt, ĨL(α, β;x) :=

1

Γ(α)

∫ ∞

x
tα−1e−tΨ̃L(β; t) dt. (2.21)

They allow (2.3) and (2.5) to be written

HL
0 (j, k; s) = −IL(a+ j, a+ k; s) + IL(a+ k, a+ j; s),

HL
1 (j, k; s) = −Ψ̃L(a+ j; s)ΨL(a+ k; s) + Ψ̃L(a+ k; s)ΨL(a+ j; s)

= −ΨL(a+ k; s) + ΨL(a+ j; s)

HL
2 (j, k; s) = ĨL(a+ j, a+ k; s)− ĨL(a+ k, a+ j; s), νLj (s) = ΨL(a+ j; s) + ζΨ̃L(a+ j; s).

(2.22)

Chiani’s [18] strategy of integration by parts used in relation to ΨL and IL allows all the functions
in (2.21) to be determined by first order recurrences and appropriate initial conditions.

Proposition 2.3. We have the recurrences

ΨL(α;x) = −x
α−1

Γ(α)
e−x +ΨL(α− 1;x), Ψ̃L(α;x) =

xα−1

Γ(α)
e−x + Ψ̃L(α− 1;x),

IL(α+ 1, β;x) = IL(α, β;x)− xαe−x

Γ(α+ 1)
ΨL(β;x) +

2−(α+β)Γ(α+ β)

Γ(α+ 1)Γ(β)
ΨL(α+ β; 2x),

ĨL(α+ 1, β;x) = ĨL(α, β;x) +
xαe−x

Γ(α+ 1)
Ψ̃L(β;x)− 2−(α+β)Γ(α+ β)

Γ(α+ 1)Γ(β)
Ψ̃L(α+ β; 2x). (2.23)

Using the recurrences (2.23), together with the symmetry relations

IL(α, β;x) = ψL(α;x)ψL(β;x)− IL(β, α;x), ĨL(α, k;x) = ψ̃L(α;x)ψ̃L(β;x)− ĨL(β, α;x)
(2.24)

(as with (2.14), these follow by an appropriate integration by parts), the formulas of (2.22) imply
recurrences for HL

0 and HL
2 , the first of which can be found in [18, Eq. (18)].

Corollary 2.1. We have

HL
0 (j, k + 1; s) = HL

0 (j, k; s)−
xa+k

Γ(a+ k + 1)
e−xΨL(a+ j;x)

+ 2−(2a+j+k−1) Γ(2a+ j + k)

Γ(a+ k + 1)Γ(a+ j)
ΨL(2a+ j + k; 2x) (2.25)

and

HL
2 (j, k + 1; s) = HL

2 (j, k; s)−
xa+k

Γ(a+ k + 1)
e−xΨ̃L(a+ j;x)

+ 2−(2a+j+k−1) Γ(2a+ j + k)

Γ(a+ k + 1)Γ(a+ j)
Ψ̃L(2a+ j + k; 2x). (2.26)
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To compute {Hµ(j, k; s)}Nj=k (µ = 0, 1, 2) we see from (2.25), (2.26) and the formula for H1

in (2.22) that it suffices to have knowledge of {ΨL(a + j;x), Ψ̃L(a + j;x)}Nj=1 and {ΨL(2a +

j;x), Ψ̃L(2a+ j;x)}2N−1
j=1 (note that the initial conditions for the recurrences (2.25) and (2.26) are

HL
0 (j, j; s) = HL

2 (j, j; s) = 0). If the aim is to obtain exact functional forms involving a minimal
basis in the sense of (1.9) and (1.10), these functions are to be computed using the recurrences
on the first line of Proposition 2.3, together with the initial conditions

ΨL(0;x) = 1, ΨL(1/2;x) = erf(
√
x), Ψ̃L(0;x) = 0, Ψ̃L(1/2;x) =

(
1− erf(

√
x)
)
. (2.27)

The latter are relevant to the setting of PL in (1.3) that the parameter a is a non-negative integer,
or a half integer no less than −1/2. But if the aim is numerical evaluation using Mathematica,
the facts that

ΨL(α;x) = 1− Γ(α;x)

Γ(α)
, Ψ̃L(α;x) =

Γ(α;x)

Γ(α)
, (2.28)

where Γ(α;x) :=
∫∞
x tα−1e−t dt is the incomplete gamma function, implies that there is no need

for the use of a recurrence, as the special function Γ(α;x) is part of the package. Note too that a
in (1.3) can take continuous values from this viewpoint.

3 Pfaffian formulation and numerical evaluations

The use of the symbol ζ in (2.1) can be replaced by the use of complex roots of unity according
to the Fourier sum formula

(N + 1)E
(·)
N (k; (s,∞)) =

N∑
l=0

e−2πikl/(N+1)Ξ
(·)
N ((s,∞); e2πil/(N+1))

=

{
(1 + 2Re

∑N/2
l=1 e

−2πikl/(N+1)Ξ
(·)
N ((s,∞); e2πil/(N+1)), N even

1 + (−1)kΞ
(·)
N ((s,∞);−1) + 2Re

∑(N−1)/2
l=1 e−2πikl/(N+1)Ξ

(·)
N ((s,∞); e2πil/(N+1)), N odd,

(3.1)

where to obtain the second line use has been made of the normalisation requirement that
Ξ
(·)
N ((s,∞); 1) = 1. The significance of this is that with ζ a specific (complex) value, for a given

value of s, the matrix elements in the Pfaffian formulas for Ξ
(·)
N in Proposition 2.1 can all be

calculated numerically rather than symbolically, thus allowing for a numerical determination of
E

(·)
N (k; (s,∞)).

For A a general 2n × 2n anti-symmetric matrix, there is the standard result (see e.g. [28,
Eq. (6.12)]) that

(Pf(A))2 = det(A). (3.2)

In the case that A has numerical entries and one has prior knowledge that the Pfaffian is positive,
by taking the square root this formula can be used to provide an efficient computation of Pf(A).
However, when the Pfaffian is a general complex number as in (3.1) for l ̸= 0, a decision has to
be made about the correct branch of the square root. For the present setting, by noting from
(2.1) that for large s we have Ξ

(·)
N ((s,∞), ζ) ∼ E

(·)
N (0; (s,∞)) ∼ 1 independent of ζ, a possible

way to proceed using (3.2) would be to start computing Ξ
(·)
N ((s,∞), ζ) for a fixed complex ζ

10
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Figure 1: Plotted parametrically are the values in the complex plane of ΞG
N ((s,∞); e2πil/(N+1))

(left panel) and (ΞG
N ((s,∞); e2πil/(N+1)))2 (right panel) for N = 6 and l = 3 The parameter is

the variables s, which is taken in the range s = 5 (at this value of s the curve (graphically) is at
the real value 1 in the complex plane) and decreased down to s = −4 (which corresponds to the
other end of the curve).

with s large, for which its value is approximately 1, and then to reduce s in small intervals. The
branch of the square root required by (3.2) is to be chosen by the requirement of approximate
(with respect to the small interval size) continuity in values. In Figure 1 this task is illustrated
in a particular Gaussian case with N = 6, l = 3, by comparing the values in the complex plane
of ΞG

N ((s,∞); e2πil/(N+1)) obtained by decreasing s from s = 5 to s = −4 with the values of
(ΞG

N ((s,∞); e2πil/(N+1)))2. Increasing the size of N , analogous plots are observed but with more
and tighter rotations about the origin, making the task of choosing the correct branch of the
square root for discrete increments in s a delicate task.

Fortunately, since the 2012 work on Wimmer [59] and in particular the software provided as
part of the corresponding arXiv posting, it is now possible to efficiently compute Pf(A) for A a
general 2n× 2n anti-symmetric matrix with numerical entries directly, independent of (3.2) and
the associated square root issue. This is based on unitary conjugations reducing A to a skew
symmetric tridiagonal form. For given N, l, s it is the Mathematica code by Wimmer, applied
to the Pfaffian formulas of Proposition 2.1, which we use to compute Ξ

(·)
N ((s,∞); e2πil/(N+1)) in

(3.1).
There is an important point to make in relation to the loss of conditioning with respect to

increasing values of N . This point is that the computation of determinants and Pfaffians is, in
general, ill-conditioned with respect to truncations of the values of the entries [56]. Thus it is
necessary to increase the number of digits in the floating point arithmetic with N , which is simple
to do using Mathematica.

3.1 Gaussian case

We will consider first the sequence of conditioned gap probabilities {EG
N (k; (s,∞))}Nk=0} de-

termining the random variable N(s,∞) :=
∑N

l=1 χxl∈(s,∞) for the number of eigenvalues in the
semi-infinite interval (s,∞)). The specific case s = 0 corresponds to the number of positive
eigenvalues, which has attracted particular interest for its relevance to stability questions in
disordered systems [17], landscape based string theory [1], quantum cosmology [47], among other
examples; see the introduction to [43] for more references.

On the basis of some approximate analysis, it was predicted in [17] that in a neighbourhood
of the mean µN := ⟨N(0,∞)⟩ = N/2, and for large N , the random variable N(0,∞) satisfies the

11



local central limit theorem

Pr
(
(N(0,∞) − µN ) = k

)
→ 1√

2πσ2N

e−k2/(2σ2
N ), σ2N =

1

π2
logN ; (3.3)

see also [43]. Note that for this to be a meaningful limit law one must have k/σN to be of
order unity as N → ∞; also, for convenience, in (3.3) it is assumed that N is even. A rigorous
determination of the leading order variance σ2N can be found in [52] (see the review [29, Remark
3.1.3] for related references). Our computational scheme applied to {EG

N (k; (0,∞))}Nk=0} can test
the prediction (3.3) and moreover probe correction terms in a large N expansion.

Before doing so, some remarks along these lines in relation to the random variable N(0,∞)

for the Gaussian unitary ensemble (GUE) of complex Hermitian matrices (see e..g. [28, §1.3.1])
are in order. Up to the scaling xl 7→

√
2xl, the eigenvalue PDF for the GUE is given by (1.2)

with the product therein now squared. Whereas the eigenvalue PDF for the GOE is an example
of a Pfaffian point process, the eigenvalue PDF for the GUE is an example of a determinantal
point process, which is a simpler structure with additional integrability properties. Leveraging
the latter, it was proved in [60, Eq. (143)] (see also [43] for the first two leading orders)

Var
(
NGUE

(0,∞)

)
=

log 4N + γ + 1

2π2
− log 4N + γ

4π2N
+

7

96π2N2
+

24 log 4N + 24γ − 41

192π2N3

− 219

5120π2N4
+O(N−5 logN), (3.4)

where γ denotes Euler’s constant and for convenience N is assumed even (the analogue for N odd
was also derived, as were the explicit form of the terms up to O(N−7 logN)). The determinantal
structure implies that the generating function ΞGUE

N ((0,∞); ζ), defined as in (2.1), has all its
zeros on the negative real axis in the complex ζ-plane. This, combined with knowledge of a
central limit theorem for NGUE

(0,∞) [19, 54], implies the validity of the local central limit theorem
(3.3) in the GUE case, now with σ2N = 1

2π2 logN [33].
Returning now to the consideration of {EG

N (k; (0,∞))}Nk=0}, we first list in Table 1 our
computed values of

Var
(
NGOE

(0,∞)

)
:=

N∑
k=0

(k −N/2)2EG
N (k; (0,∞)) (3.5)

for N starting at 10 and finishing at 100, with increments of 10.

N Var(NGOE
(0,∞))

10 0.4735719613
20 0.5464313214
30 0.5883873972
40 0.6179704941
50 0.6408395677

N Var(NGOE
(0,∞))

60 0.6594853769
70 0.6752272387
80 0.6888489801
90 0.7008544880
100 0.7115869419

Table 1: 10 decimal place accurate variances (3.5)
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Guided by (3.4) and knowledge of the leading term as given by σ2N in (3.3), we make the
ansatz

π2Var(NGOE
(0,∞))− logN = c1 +

c2 logN

N
+
c3
N

+ · · · (3.6)

to fit to the data of Table 1. We do this by choosing various combinations of 3 rows of the
tables, which results in the values c1 ≈ 2.4229, c2 ≈ 0.006, c3 ≈ −0.52. The small value of
c2 relative to c3 puts in doubt the correctness of (3.6), which may then be distinct to (3.4) in
the second leading term. On the other hand, the value of c1 is available in the literature as
3 log 2 + γ + 1− π2

8 = 2.42295 . . . [53, Eq. (40) with a = 0, β = 1], thus providing evidence for
the accuracy of our numerical values.

Next we make some remarks relating to correction terms to the local central limit law (3.3).
As already remarked, the appropriate scaling variable is k/σN . But with k taking on integer
values only, and σN = 1

π (logN)1/2, numerical tabulation for moderate values of N (say between
50 and 100) are aways probing only the tails of the limiting distribution. Even a value of N = 1000
(which is out of reach for the practical implementation of our numerical methods due to the
ill-conditioning), the value of σN is 0.91..., which implies varying k by 1 is more than one unit of
standard deviation.4 The expansion for the variance (3.5) suggests the scaled large N expansion

Pr
(
(NGOE

(0,∞) − µN ) = k
)
∼ 1√

2πσ2N

e−k2/(2σ2
N ) +

1

σ2N
P1(k/σN ) + · · · (3.7)

for some functional form P1. A question in keeping with recent literature [38, 10, 15] relates to
(3.7) identifying the optimal rate of convergence, meaning can σ2N herein be replace by a function
of N with leading large N form σ2N and with the effect of eliminating the correction term in
(3.7)? This will happen when P1 is related to the leading term by a derivative operation [50, 37].

As far as illustrating (3.3) goes (where we replace σ2N by Var(NGOE
(0,∞)) as is usual in stating

a local central limit theorem), in Table 2, where we compare pexactN (k) := Pr(NGOE
(0,∞) − µN = k)

against

papproxN (k) :=
1√

2πVar(NGOE
(0,∞))

e
−k2/(2Var(NGOE

(0,∞)
))
. (3.8)

We remark that a theoretical justification of such a relation can, following [33], be undertaken
by knowledge of the location of the zeros of the generating function (2.1); see the numerically
evidenced discussion in [32, §3.5].

In applications to the stability questions cited in the beginning paragraph of this section,
there is specific interest in the large N form of Pr(N(0,∞) = 0), which is in the large deviation
regime with respect to (3.3). For the GUE, it has been proved [12, 22] that

log Pr
(
NGUE

(0,∞) = 0
)
= c1N

2 + c2 logN + c3 + · · · (3.9)

4The problem of the distribution of the length of the longest increasing subsequence of a random permutation,
which has well known relationships to random matrix theory [4, 5]. Here σN ∼ N1/6, and is an example where
large N data has successfully been generated for the numerical determination of the leading correction [35, 8],
leading in turn to its analytic determination [9]. Another example is in relation to the local central limit theorem
satisfied by the real zeros of elliptic GinOE matrices [30]; see the recent book [14] for more on this class of random
matrix ensemble.
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k pexact70 (k) papprox70 (k) δ70(k)

0 0.4838115 0.4854953 −0.0016838
1 0.2325255 0.2315227 0.0010028
2 0.0250092 0.0251084 −0.0000992
3 0.0005570 0.0006192 −0.0000622

k pexact100 (k) papprox100 (k) δ100(k)

0 0.4714611 0.4729291 −0.0014681
1 0.2350801 0.2342270 0.0008531
2 0.0284044 0.0284550 −0.0000506
3 0.0007803 0.0008479 −0.0000676

Table 2: Here δN (k) := pexactN (k)− papproxN (k)

with c1 = −1
2 log 3, c2 = − 1

12 , c3 =
1
8 log 3−

1
6 log 2 + ζ ′(−1). In fact the results of [12] apply to

the GOE case well, telling us that

log Pr
(
NGOE

(0,∞) = 0
)
= c̃1N

2 + c̃2N + c̃3 logN + c̃4 + · · · (3.10)

with c̃1 = −1
4 log 3, c̃2 = −1

2 log(1+
2√
3
), c̃3 = − 1

24 , c̃4 = − 1
12 log 2−

1
16 log 3+

1
4 log(1+

2√
3
)+ 1

2ζ
′(1).

Our high precision evaluation of EG
N (0; (0,∞)) (which by definition is equal to Pr(NGOE

(0,∞) = 0))
for various N is used in Table 3 to illustrate the accuracy of the asymptotic expansion (3.10).

N logEG
N (0; (0,∞)) log ẼG

N (0; (0,∞)) δN
10 −31.4183282 −31.4167301 −0.0015980
20 −117.6805735 −117.6797917 −0.0007817
30 −258.8619980 −258.8614809 −0.0005170

Table 3: Here log ẼG
N (0; (0,∞)) is defined as the asymptotic expansion on the right hand side of

(3.10), and δN := logEG
N (0; (0,∞))− log ẼG

N (0; (0,∞)). Notice that δN is decreasing at the rate
1/N as N increases.

We turn our attention now to the marginal eigenvalue PDFs in the bulk, choosing for simplicity
fGN ((N + 1)/2; s) with N odd, this (by symmetry) being an even function of s. We use our
computational scheme to compute the sum in (1.5) for discrete values of s, small with respect
to the scale of σN . An interpolating function connecting these values is then formed within the
Mathematica software, which allows for the derivative operation required in (1.5) to be carried out.
As mentioned in the Introduction, there are limit laws available for the individual eigenvalues,
moving inwards from the edge with the matrix size. Such limit laws were first derived in the GUE
case by Gustavsson [39], with the main tool being the determinantal structure and its knowledge
of a central limit theorem for the counting statistic N(s,∞) from [54]. Subsequently, it was realised
by O’Rourke [48] that the use of the inter-relation even(GOEN ∪GOEN+1) = GUEN from [36]
(here the operation GOEN ∪ GOEN+1 denotes the random superposition of the spectrum of
a GOE ensemble with N eigenvalues, and a GOE ensemble of N + 1 eigenvalues, while the
operation even(·) denotes observing only the even labelled eigenvalues when reading from either
edge with the eigenvalues labelled successively) allows the results of [39] to be extended to the
GOE case. Specifically, for a GOE eigenvalue xk near or at the centre of the spectrum (for us
x(N−1)/2 with N odd), we have from [48, Remark 8] that

lim
N→∞

( 2N

logN

)1/2
xk

d
= N[0, 1], (3.11)
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where N[0, 1] denotes the standard normal distribution. (An alternative derivation of this result,
extended to the Gaussian β ensemble, has recently been given in [26].) One remarks that in this
formula the factor of

√
N can be interpreted as resulting from the value of the density of the

GOE at the origin, which to leading order is a scaled semi-circle; see [28, Eq. (1.52)].
In keeping with (3.11), introduce the scaled eigenvalues

Xk =
( 2N

logN

)1/2
xk. (3.12)

Denote by fGN (k;X) the PDF of Xk, as is consistent with the notation used in (1.6). Our interest
is in using our ability to compute this PDF, with k = (N − 1)/2 for a sequence of N values, to
probe the leading rate of convergence to the limit law (3.11). Thus we seek the function of N ,
α(N) say, with α(N) → 0 as N → ∞, and the function of X, h(X) say, such that for large N
one has the asymptotic expansion( 2N

logN

)1/2
fGN ((N − 1)/2;X) ∼ 1√

2π
e−X2/2 + α(N)h(X) + · · · , (3.13)

where terms not written decay at a rate fast than α(N). A numerical approach can access the
difference ( 2N

logN

)1/2
fGN ((N − 1)/2;X)− 1√

2π
e−X2/2, (3.14)

which is only an approximation to α(N)h(X) as it contains all the higher order terms in the
expansion (3.13) as well. Nonetheless, one is lead to the prediction that α(N) = 1

logN , and to
(an approximation of) the graphical form of h(X) after computing (3.14) for just the two values
of N , N = 21 and N = 41. Moreover, inspection of the graphical form shows that it closely
resembles (but is not equal to)

c
(
1−X

d

dX

)
e−X2/2 (3.15)

for a certain constant c; see Figure 2.

Suppose now that instead of the scaling (3.12) one was to introduce X̃k :=
(
logN
2N

)1/2
(1 +

α(N))xk. Taylor expanding with respect to the small variable α(N) to reclaim the variable (3.12)
shows( 2N

logN

)1/2
(1 + c̃α(N))fGN ((N − 1)/2; X̃)

∼ 1√
2π
e−X2/2 + α(N)

(
c̃
(
1−X

d

dX

)
e−X2/2 + h(X)

)
+ · · · , (3.16)

Thus, if it were to be that (3.15) was proportional to h(X) it would be possible to choose c̃ to
improve the rate of convergence by eliminating the term proportional to α(N); see [50, 38] for
some examples. However, in the present situation, while the functional forms are very similar,
they are not exactly the same, so such an improvement is not possible. On the other hand, from
the viewpoint of numerical values rather than the rate of convergence, it follows that the PDF for
the scaled eigenvalue X(N−1)/2/Var(X(N−1)/2), rather than for (3.12), more accurately follows
N[0, 1] in distribution for finite N (cf. (3.8)).
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Figure 2: [color online] Plot of the difference (3.14) for N = 41 (blue solid curve), superimposed
with the approximation (3.15) (red dashed curve) for c chosen for a matching at the origin. The
graphs are shown for X ≥ 0 only, as both are symmetrical about the origin.

Remark 3.1. A question of much interest (see e.g. [11] for motivation), but not accessible via
our present results, is the finite size corrections for the scaled spacing distribution of two GOE
eigenvalues near the centre of the spectrum (say xN/2 and x(N/2)+1 for N even). In the case of
the circular version of the GOE — the circular orthogonal ensemble (COE) (see [28, §2.2.2]) —
the leading correction term to the large N limit law is proportional to 1/N2 [34].

3.2 Laguerre case

Relevant to the consideration of large N limit laws in the Laguerre case is the limiting eigenvalue
density (the limiting eigenvalue density is also relevant in the Gaussian case, but didn’t appear
in our discussion since our consideration of the bulk was restricted to the neighbourhood of the
origin for simplicity of presentation — in the Laguerre case such a simplification is not possible
as the spectrum has no such point of symmetry). First, scale the LOE eigenvalues by writing
Λj = λj/N . Set n

N = 1
c , where n ≥ N is defined as in (1.1). The density of {Λj}, normalised to

integrate to unity, is given by the Marchenko-Pastur law [49]

ρMP(x) =
1

2π

√
(c+ − x)(x− c−)

cx
1x∈(c−,c+), (3.17)

with c± = (1 ±
√
c)2. By definition of the density, for large N the expected number of the

scaled eigenvalues in the interval (s̃, c+) is Nµs̃, µs̃ =
∫ c+
s̃ ρMP(x) dx. With N L

(s̃,c+)({Λj}) the
random variable for the number of scaled eigenvalues in (s̃, c+), considerations from the topic of
principal component analysis motivated a study in [44] of the fluctuation VarN L

(s̃,c+)({Λj}). This
quantity was shown to exhibit the asymptotic form 1

π2 logN (which is the same as σ2N in (3.3))
independent of the value of s̃ (c− < s̃ < c+), and moreover it was argued that a local central
limit theorem quantitatively the same as (3.3) holds true.
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Our ability to compute {EL
N (k; (s,∞))}Nk=0 from §2.2 allows for the above predictions to be

illustrated and checked. First we consider〈
N(s̃,∞)({Λj}

〉
=

∞∑
k=1

kEL
N (k; (s,∞)) (3.18)

in the specific case that the Laguerre parameter a in (1.3) is equal to 1 and s̃ = 1 (which implies
µ̃ = 0.391 . . . ). in Table 4 we compare our high precision numerical evaluations of (3.18) against
the leading order theoretical value Nµ̃, for a sequence of N values, tabulating too their difference.
The latter shows evidence of converging to a constant value at a rate proportional to 1/N .

N
〈
N(s̃,∞)({Λj}

〉
Nµ̃ δN

20 8.711490 7.8200 0.8914
40 16.543998 15.6401 0.9039
60 24.368259 23.4601 0.9081
80 32.190428 31.2802 0.9102

Table 4: 8 digit accurate means (3.18), their leading order theoretical value Nµ̃, and the difference
δN .

For definiteness we take the Laguerre parameter a in (1.3) equal to 1, which implies c =
1, c− = 0 and c+ = 4, and we take s = N (i.e. s̃ = 1 which implies µs̃ = 2

π

∫ 1
1/4 x

−1/2(1− x)1/2 dx.
The variance can be computed from the formula

Var
(
N L

(s̃,c+)({Λj}
)
:=

N∑
k=0

(k −Ms̃)
2EL

N (k; (Ns̃,∞)), Ms̃ :=
〈
N(s̃,∞)({Λj}

〉
(3.19)

(cf. (3.5)), which we do in Table 5 for the same parameters as in Table 4. We compare these
values against the leading order theoretical prediction 1

π2 logN , and display too the difference,
which shows evidence of tending to a constant.

N Var(N L
(s̃,c+))

1
π2 logN δN

20 0.5096148748 0.3035 0.2060
40 0.5779495211 0.3737 0.2041
60 0.6182432846 0.4148 0.2033
80 0.6469688861 0.4439 0.2029

Table 5: 10 decimal place accurate variances (3.5) against their leading order theoretical value,
and the difference δN

It is easy to check from the definitions that Var
(
N L

(s̃,c+)({Λj}
)
= Var

(
N L

(c−,s̃)({Λj}
)
. The

significance of this is the prediction that in the case c− = 0 [53, Eq. (48) with β = 1, ã =
√
s̃/4,

γ̃ = 0],

lim
N→∞

(
Var

(
N L

(c−,s̃)({Λj}
)
− 1

π2
logN

)
=

1

π2

(
3 log 2+γ− π2

8
+1+log(s̃1/2(1− s̃/4)3/2)

)
. (3.20)
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Substituting s̃ = 1 gives the numerical value 0.20177 . . . which is consistent with the values of
δN in Table 5.

In addition we have carried out numerical computations comparing

pexact,LN (k) := Pr
(
(N L

(s̃,c+)({Λj} − ⌊⟨N L
(s̃,c+)({Λj}⟩⌋) = k

)
(3.21)

against the prediction from the validity of a local central limit theorem

papprox,LN (k) :=
1√

2πVar(N L
(s̃,c+)({Λj})

e
−k2/(2Var(NL

(s̃,c+)
({Λj})

. (3.22)

Note that both these quantities are functions of s̃, which has been suppressed in our notation.
Some results of our computations, which were carried out with s̃ = 1, are presented in Table 6.
The accuracy of (3.22) is evident.

k pexact,L60 (k) papprox,L60 (k) δL60(k)

0 0.4536364 0.4546717 −0.0010352
1 0.3676810 0.3674131 0.00026781
2 0.0591954 0.0589041 −0.00029126
3 0.0017303 0.0018735 −0.00014319

k pexact,L90 (k) papprox,L90 (k) δL90(k)

0 0.4860010 0.4877209 −0.0017198
1 0.2671577 0.2662165 0.0009412
2 0.0318105 0.0318451 −0.0000346
3 0.0007564 0.0008348 −0.0000784

Table 6: Here δLN (k) := pexact,LN (k)− papprox,LN (k)

As for the GOE, and after fixing a value of the Laguerre parameter a as well as N , we have
access to a tabulation of the marginal eigenvalue PDFs in the bulk. On the theory side, using a
very different set of ideas than those used to prove (3.11), now based on the tridiagonal model of
[23] and martingale arguments, it is established in [51] that

lim
N,l→∞

πρMP(γl)

logN

(
xl −Nγl

)
d
= N[0, 1], (3.23)

where γl is such that
∫ c+
γl
ρMP(x) dx = l/N . We recognise Nγl as the leading order of the mean

(3.18), and π2/ logN as being the reciprocal of the leading order of the variance (3.19). We
can therefore substitute the mean and variance into (3.23). With this done, and l = 2

5N (then
γl = 0.9677 . . . ) we have computed the PDF for the scaled random variable, s say, on the LHS
of (3.23) for various values of N . Accurate agreement with the PDF of the standard normal is
found in all cases. For example, with N = 60, the absolute difference is no greater that 3× 10−3

in the range of s between −4 and 4.

Ancillary Mathematica files

The various tables and graphs in the text were produced by implementing the specified com-
putational schemes as Mathematica notebooks. The symbolic computations of the marginal
distributions for the GOE reported in Appendix A use GOEsymbolic.nb. Numerical calcula-
tions for the probabilities {EG

N (k; (s,∞)}Nk=0 with s fixed as required to produce Tables 1–3 use
GOEnumeric1.nb, while the numerical computation of the marginal distributions in the Gaussian
case, which were required to produce Figure 2 use GOEnumeric2.nb. The Tables 4–6 in relation
to the Laguerre case use LOEnumeric.nb. Table 7 in Appendix A relates to the LOE, and uses
LOEsymbolic.nb.
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Appendix A

In Section 2.1 a formalism to compute the exact functional forms of the independent marginal
individual eigenvalue PDFs {fGN (k; s)}⌊N/2⌋

k=1 has been presented. Here, extending results in [25,
Appendix 4], the results of using these exact functional forms to compute the corresponding
statistical quantities {µ, σ, γ1, γ2, γ3, γ4} (recall (2.20)) is presented in tabular form, where in
keeping with [25, Appendix 4] the decimals are truncated after the 7th place.

N k µ σ γ1 γ2 γ3 γ4
8 1 3.2451029 0.6431706 0.2175978 0.0866120 0.0161454 −0.0388095
8 2 2.1372504 0.5423684 0.0972884 0.0126373 −0.0059766 −0.00572405
8 3 1.2367953 0.5064137 0.0468383 −0.0040771 −0.0046966 0.0017507
8 4 0.4060264 0.4926050 0.0142245 −0.0089303 −0.0015978 0.0039260

9 1 3.5094346 0.6296768 0.2232643 0.0913421 0.0201166 −0.0370827
9 2 2.4308448 0.5285622 0.1033451 0.0148436 −0.0054812 −0.0062513
9 3 1.5608761 0.4908939 0.0542856 −0.0028530 −0.0051481 0.0011737
9 4 0.7660494 0.4741134 0.0241204 −0.0085843 −0.0026359 0.0036123
9 5 0 0.4691792 0 −0.0100241 0 0.0042217

10 1 3.7575287 0.6179386 0.2279701 0.0953997 0.0236601 −0.0352918
10 2 2.7037563 0.5168106 0.1082262 0.0167597 −0.0049572 −0.0066215
10 3 1.8588219 0.4780208 0.0600734 −0.0017051 −0.0054038 0.0006890
10 4 1.0923667 0.4592937 0.2109507 0.0314529 −0.0080085 −0.0033338
10 5 0.3607214 0.4513082 0.0098626 −0.0102013 −0.0011011 0.0041399

11 1 3.9920188 0.6075750 0.2319524 0.0989270 0.0268408 −0.0335013
11 2 2.9597112 0.5066156 0.11225752 0.0184367 −0.0044339 −0.0068800
11 3 2.1358866 0.4670738 0.0647201 −0.0006566 −0.0055397 0.0002862
11 4 1.3926567 0.4470071 0.0371329 −0.0073705 −0.0038169 0.0029094
11 5 0.6881186 0.4369907 0.0171500 −0.0100138 −0.0018800 0.0039388
11 6 0 0.4339162 0 −0.0107352 0 0.0042171

12 1 4.2148992 0.5983148 0.2353747 0.1020278 0.0297125 −0.0317470
12 2 3.2014467 0.4976369 0.1156525 0.0199163 −0.0039259 −0.0070582
12 3 2.3957884 0.4575857 0.0685453 0.0002926 −0.0056002 −0.0000490
12 4 1.6720878 0.4365640 0.0416807 −0.0067366 −0.0041593 0.0026001
12 5 0.9897011 0.4251242 0.0227820 −0.0096782 −0.0024465 0.0037082
12 6 0.3278102 0.4199860 0.0072728 −0.0108093 −0.0008020 0.0041287

We take this opportunity to draw attention to some inequalities associated with the means
µ = µN,k. In relation to this, we require the fact that upon appropriate Householder similarity
transformations, GOE matrices can be demonstrated to be similar to certain symmetric random
tridiagonal matrices TN [58]. The TN have independent standard Gaussian entries on the diagonal,
and leading off diagonal entries given by the random variables {χ̃N−j}j=1,...,N−j , where χ̃k is
the square root of the usual χ2

k random variable, scaled by 1/
√
2. In particular ETN is the

20



symmetric tridiagonal matrix with zero on its diagonal entries and leading off diagonal entries
equal to { 1√

2

√
N − j}j=1,...,N−1. From the implied three term recurrence one can check that

det(xIN −ETN ) ∝ HN (x), where HN (x) denotes the Hermite polynomial of degree N , telling us
that eigenvalues of ETN are equal to the zeros of this Hermite polynomial.

On the other hand, for general random real symmetric matrices TN a theorem of Cacoullos
and Olkin [16, Corollary 2.8] gives that

Eλ1(TN ) + · · ·+ Eλk(TN ) ≥ λ1(ETN ) + · · ·+ λk(ETN ). (A.1)

By computing the zeros of the Hermite polynomials, and comparing with the µN,k in the table,
we can readily verify (A.1). In fact in doing so, one observes the stronger interlacing inequality

Eλk(TN ) > λk(ETN ) > Eλk−1(TN ), (k = 1, . . . , ⌊N/2⌋) (A.2)

exhibited by the listed µN,k.
An analogous property is observed in the Laguerre case. The tridiagonal matrix TN similar

to a LOE matrix has the property that det(xIN − ETN ) ∝ L2a−1
N (x), where L2a−1

N (x) denotes
the Laguerre polynomial of degree N with parameter 2a− 1 [24, Table 2(a) with γ 7→ 2a]. The
following table presents the means of the marginal eigenvalue PDFs {fLN (k; s)}Nk=1 obtained by
numerical integration of its exact functional form, which is computed according to the formalism
in Section 2.2. By comparing the means with the zeros of L2a−1

N (x), one can verify the validity of
the interlacing (A.2) for each k = 1, . . . , N .

N 2 3 4 5 6
a k

4 1 15.0634920 19.4986342 23.7003816 27.7874859 31.8100369
4 2 6.9365079 10.9999999 14.7379489 18.3726752 21.9688258
4 3 5.5013657 8.9489690 12.2197905 15.4601777
4 4 4.6127004 7.6273247 10.5502764
4 5 3.9927234 6.6808343
4 6 3.5298487

7/2 1 13.8656315 18.1848768 22.3053570 26.3308207 30.3044360
7/2 2 6.1343684 10.0000000 13.6136374 17.1577682 20.6833885
7/2 3 4.8151231 8.0729350 11.2189206 14.3657513
7/2 4 4.0080704 6.8422317 9.6424231
7/2 5 3.4502585 5.9670831
7/2 6 3.0369177

Table 7: Means of the LOE marginal density fLN (k; s)
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