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Abstract

State-space models are a popular statistical framework for analysing sequential data. Within

this framework, particle filters are often used to perform inference on non-linear state-space

models. We introduce a new method, StateMixNN, that uses a pair of neural networks to learn

the proposal distribution and transition distribution of a particle filter. Both distributions are

approximated using multivariate Gaussian mixtures. The component means and covariances of

these mixtures are learnt as outputs of learned functions. Our method is trained targeting the

log-likelihood, thereby requiring only the observation series, and combines the interpretability

of state-space models with the flexibility and approximation power of artificial neural networks.

The proposed method significantly improves recovery of the hidden state in comparison with the

state-of-the-art, showing greater improvement in highly non-linear scenarios.
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1. Introduction

In many fields of science and engineering, it is common to process sequential data resulting

from the observation of dynamical systems. These systems appear in fields such as target track-

ing, [1], finance [2], epidemiology [3], ecology [4], and meteorology [5]. We can describe these

systems and their observations mathematically, utilising the state-space model (SSM) framework.

SSMs represent a dynamical system via a latent state and a series of related, noisy, observations,

encoding the system via a pair of distributions describing the latent state dynamics and its rela-

tionship to the observation. Within state-space modelling, it is common to compute the distribu-

tion of the state conditional on the distribution of the previous state and the current observation,

a problem known as the filtering problem.

In the case of linear dynamics with Gaussian noise, the Kalman filter (KF) provides the op-

timal solution to the filtering problem via a sequence of closed form estimates. However, if the
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system is more complex, the KF can no longer be used directly. A number of extensions to the

KF to non-linear systems have been proposed, such as the extended Kalman filter (EKF) [6] and

the unscented Kalman filter (UKF) [7]. These methods approximate the state posterior via a

Gaussian distribution, which is not always appropriate. The particle filter (PF), also known as se-

quential Monte Carlo (SMC), is an alternative method for the general SSM, which approximates

the state posterior via a series of Monte Carlo samples [8, 9, 10].

In PFs, we must evaluate the likelihood of the distribution of the state given the previous

state, known as the transition distribution, which is in general unknown. If the form of the tran-

sition distribution is known, with only the parameters unknown, then several methods exist to

estimate the system parameters, and hence estimate the transition distribution [11, Chapter 12].

Furthermore, learning parameters in the PF has been greatly eased with the advances in differen-

tiable particle filters (DPFs) [12, 13, 14, 15], which allow the use of gradient-based optimisation

methods for parameter estimation.

Differentiable particle filters (DPFs) modify the resampling step of the PF to be differentiable,

and therefore, when combined with differentiable transition and observation likelihoods, makes

the overall particle filter differentiable. There exist a number of differentiable particle filters,

which utilise many different methods for making the resampling step differentiable, such as soft

resampling [16], stop-gradient operators [13], or optimal transport schemes [12].

If the form of the transition distribution is unknown, current methods require one to be as-

sumed. In addition to the transition distribution, in the PF we must provide a proposal distribution

to generate Monte Carlo samples. The diversity of the samples, which is critically important to

the method’s ability to represent the system, is heavily dependent on the proposal distribution.

One approach to choosing the proposal distribution is to use the bootstrap particle filter (BPF)

[8], which uses the state transition distribution as the proposal. However, the bootstrap proposal

does not incorporate the observation, and therefore does not utilise all available information at

each time step. Not using observation information can cause significant issues, for example, if

the state transition is a very diffuse distribution but the observation is very informative, few, if

any, particles will have high posterior probability, and therefore the effective sample size will

be very low. Several methods incorporate the observation in their proposal distribution, such as

the auxiliary particle filter (APF) [17, 18, 19, 20], which adjusts the particle weights based on

both the transition dynamics and the likelihood of the new observation. Deep learning methods

have also been used within the SMC and PF framework to learn the proposal distribution, such

as neural adaptive SMC [21] and the variational SMC [22].

Contribution. In this paper, we propose StateMixNN, a method to approximate the transition

distribution and proposal distribution of a particle filter using a pair of adaptive Gaussian mix-

tures. 1 StateMixNN improves upon methods that learn only the transition dynamics, as we

also estimate the optimal proposal density, and therefore incorporate more information in our

estimates than would otherwise be possible.

StateMixNN learns the mean and covariance parameters of the components of a multivariate

Gaussian mixture as the output of a dense neural network. By estimating both the transition

1A limited version of this work was presented by the authors in the conference paper [23], which presented a version

of this work learning only the proposal distribution. We propose here a more advanced method that can learn both the

proposal distribution and the transition distribution. We include here extensive methodological discussion, and provide

practical guidance for practitioners. Finally, we include a large number of numerical experiments, which were not present

in the prior work.
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and proposal distributions, we can estimate the hidden state from an observation series given

only the observation model, which cannot be estimated here for identifiability reasons. This ap-

proximation allows us to estimate distributions resulting from complex models, becoming more

expressive as the number of mixture components increases.

In order to train the neural networks, we utilise the DPF framework of Ścibior and Wood [13],

allowing gradient propagation through the resampling step of the particle filter, and therefore

the use of gradient-based optimisation schemes. StateMixNN is semi-supervised since it trains

targeting the parameter log-likelihood, which requires the sequence of observations, but does not

require the underlying hidden states.

2. Background

2.1. State-space models (SSMs)

We are interested in state-space dynamical systems, which we can describe by

xt ∼ f (xt|xt−1; θ( f )),

yt ∼ g(yt|xt; θ
(g)),

(1)

where t ∈ {1, . . . , T } denotes discrete time, xt ∈ R
dx is the state of the system at time t, yt ∈

R
dy is the observation associated with xt, θ

(g) and θ( f ) are sets of parameters relating to the

observation and state dynamics respectively, and the distributions f and g encode the transition

and observation model respectively.

In terms of probability densities, f (xt |xt−1; θ( f )) is the conditional density of the state xt given

xt−1, and g(yt|xt; θ
(g)) is the conditional density of the observation yt given the hidden state xt.

The initial value of the state, x0, is distributed as x0 ∼ p(x0|θ(p)). The hidden state sequence x0:T

is not observed, while the related sequence of observations y1:T is observed. In many cases, we

wish to estimate the sequence of hidden states given the observation sequence. If we estimate

the state at time t, given by xt, conditional on observations collected up to and including time

t, given by y1:t, then this we call this the filtering problem, with p(xt|y1:t) being known as the

filtering distribution.

2.2. Particle filtering

Filtering methods for SSMs aim to probabilistically recover the state of the systems described

in Eq. (1) by estimating the posterior probability density function (pdf) of the state xt conditional

on all prior observations y1:t, i.e., p(xt|y1:t; θ
( f )). PFs approximate this pdf utilising a set of K

Monte Carlo samples and associated weights, {x(k)
t , w̃

(k)
t }Kk=1

. The filtering distribution can thus be

approximated by

p(xt|y1:t; θ
( f )) ≈

K
∑

k=1

w̃
(k)
t δx

(k)
t
. (2)

A ubiquitous algorithm for particle filtering is the sequential importance resampling (SIR) al-

gorithm, which we give in Alg. 1. In this method, at time step t, we compute a set of particles and

associated importance weights via the following steps. First, we draw K particles {x(k)
t }Kk=1

from

the proposal distribution π(xt|xt−1, yt; θ
(π)) (line 4). Then, we compute the importance weights

{w(k)
t }Kk=1

(line 5). We next normalise the weights to sum up to 1, obtaining {w̃(k)
t }Kk=1

and perform

resampling (line 7), in which we sample the particle set K times with replacement, with the
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probability of drawing particle x
(k)
t equal to its weight w̃

(k)
t . Resampling is important to avoid the

degeneracy of the filter, as it helps to avoid the weights becoming concentrated in a diminutive

subset of the sampled particles (at the expense of path degeneracy, see for instance [24]).

Algorithm 1 Sequential importance resampling (SIR)

1: Draw x
(k)

0
∼ p(x0|θ(p)), for k ∈ 1, . . . ,K.

2: Set w̃
(k)

0
= 1/K, for k ∈ 1, . . . ,K.

3: for t ∈ 1, . . . , T and k ∈ 1, . . . ,K do

4: Draw x
(k)
t ∼ π(xt|xt−1, yt; θ

(π)).

5: Compute w
(k)
t =

g(yt |x(k)
t ;θ(g)) f (x

(k)
t |x

(k)

t−1
;θ( f ))

π(xt |xt−1,yt ;θ(π))
.

6: Compute w̃
(k)
t = w̃

(k)

t−1
w

(k)
t /
∑

k w̃
(k)

t−1
w

(k)
t .

7: Perform resampling with replacement over {x(k)
t }Kk=1

, sampling x
(k)
t with probability w̃

(k)
t .

8: end for

Given the SIR algorithm, it is apparent that the choice of proposal distribution π(xt|xt−1, yt; θ
(π))

is critical to the success of the estimation; the particles should be concentrated in regions of the

state space with high probability mass. There exist several methods to choose the proposal dis-

tribution.

One such method is the BPF [8], where the proposal distribution is set equal to the transition

distribution of the SSM, with π(xt|xt−1, yt; θ
(π)) = f (xt|xt−1; θ( f )). Such an approach is simple, and

results in less computation due to cancellation in line 5 of Alg. 1, resulting in w
(k)
t = g(yt|x(k)

t θ
(g))

for the bootstrap particle filter. However, the BPF does not incorporate the observation yt in the

proposal distribution, and therefore omits potentially important information. For example, if the

transition distribution is far more diffuse than the observation distribution, then the observation

contains a lot of information relative to the previous state, which the BPF does not use.

The optimal proposal distribution incorporates the observation at the current time step t, i.e.,

π(xt|xt−1, yt; θ
(π)) = p(xt|xt−1, yt). In general distribution is intractable or unknown. Methods

such as the APF and its derivatives [17, 20, 18, 19] incorporate the observation information via a

pre-weighting step.

Gama et al. [25, 26] propose several methods to learn the proposal distribution in a general

setting, such as modelling it as a Gaussian distribution with mean and covariance output by a

neural network, or utilising normalising flows. These methods learn a distinct network for each

time step, and therefore do not generalise outside of a single series of observations.

2.3. Differentiable particle filters

The particle filter as given in Alg. 1 is not differentiable with respect to the weights, and

hence is not differentiable with respect to the parameters θ( f ), θ(π), or θ(g), following from the two

sampling steps on lines 4 and 7. The proposal sampling step on line 4 can often be rewritten to

be differentiable using distribution specific reparameterisations, such as the reparameterisation

trick for Gaussian distributions [27].

The resampling step on line 7 remains, which requires sampling a multinomial distribu-

tion. Resampling a multinomial distribution is non differentiable, as infinitesimal changes in

the weights result in discrete changes in the sampled indices [28]. Therefore, any function of

the weights is non-differentiable, with one such function being the likelihood of the observa-

tions, which is a common target function for parameter estimation in particle filtering. Note that
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the particle trajectories are also functions of the weights, so functions of trajectories are also

non-differentiable if using Alg. 1.

Differentiable particle filtering (DPF) modifies the resampling step to achieve differentiabil-

ity. Therefore, when combined with a differentiable transition step, the overall particle filter is

differentiable [12, 14, 13, 15]. There exist several differentiable particle filtering methods, each

utilising a different method to make the resampling step differentiable. In this work, we use the

stop-gradient differentiable particle filter of [13], which we present in Alg. 2. The stop-gradient

DPF yields unbiased gradient estimates with minimal computational overhead [13].

Algorithm 2 Stop-gradient differentiable particle filter (DPF) [13]

1: Draw x
(k)

0
∼ p(x0|θ(p)), for k ∈ 1, . . . , K.

2: Set w̃
(k)

0
= 1/K, for k ∈ 1, . . . ,K.

3: for t ∈ 1, . . . ,T and k ∈ 1, . . . ,K do

4: Sample a
(k)
t ∼ Categorical(⊥(w̄t−1)).

5: Set w̃
(k)
t =

1
K

w̄
a

(k)
t

t /⊥(w̄
a

(k)
t

t ).

6: Sample x
(k)
t ∼ π(xt |x

a
(k)
t

t−1
, yt; θ

(π)).

7: Compute w
(k)
t =

g(yt |x(k)
t ;θ(g)) f (x

(k)
t |x

a
(k)
t

t−1
;θ( f ))

π(xt |x
a

(k)
t

t−1
,yt ;θ(π))

.

8: Compute w̄
(k)
t = w̃

(k)

t−1
w

(k)
t /
∑K

k=1 w̃
(k)

t−1
w

(k)
t .

9: end for

We can use differentiable particle filters to estimate the gradient of the parameter log-likelihood,

and therefore apply gradient methods to estimate unknown parameters of our state-space model.

However, as the log-likelihood is estimated, we will also have noise in gradients thereof, and

therefore the parameter estimation scheme must be robust to noisy gradients. Noisy gradients

are common in deep learning, as it is typical to compute the gradient of a stochastically selected

subset of the training data, which results in gradient noise due to sampling. Several optimisation

methods have been proposed for use in deep learning, with a common feature being robustness

to stochastic gradients. We can utilise these methods when estimating parameters using differen-

tiable particle filters, with schemes such as ADAM [29], RADAM [30], and Novograd [31, 32],

all being applicable to this problem.

3. Proposed algorithm

We propose StateMixNN, a method to learn the transition and proposal distribution of a

generic state-space model. We approximate the transition distribution and the proposal distribu-

tion by a pair of multivariate Gaussian mixtures parameterised by neural networks. By combining

learnt estimates of both the transition distribution and the proposal distribution, we can learn a

generic state-space model conditional only on knowledge of the observation model.

3.1. Parameterising the Gaussian mixture

StateMixNN learns the transition distribution conditional on only the previous state value,

thus preserving the Markovianity of the SSM. We approximate f (xt |xt−1; θ( f )) by an equally

weighted multivariate Gaussian mixture of S f components with diagonal covariances
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f (xt|xt−1; θ( f )) := (S ( f ))−1

S f
∑

s=1

fs(xt|xt−1; θ( f )), (3)

with s ∈ {1, . . . , S f }, where θ( f ) are the parameters of the state neural network, and fs is given by

fs(xt|xt−1; θ( f )) = N
(

µ
( f )
s (xt−1),Σ

( f )
s (xt−1)

)

. (4)

StateMixNN learns the proposal distribution conditioned on the previous state value and the

current observation, as is the case for the intractable optimal proposal distribution. We parame-

terise π(xt|xt−1, yt; θ
(π)) as an equally weighted mixture of S π multivariate Gaussian distributions

with diagonal covariances

π(xt|xt−1, yt; θ
(π)) := (S (π))−1

S π
∑

s=1

πs(xt|xt−1, yt; θ
(π)), (5)

with s ∈ {1, . . . , S π}, where θ(π) are the parameters of the proposal neural network, and πs is given

by

πs(xt|xt−1, yt; θ
(π)) = N

(

µ(π)
s (xt−1, yt),Σ

(π)
s (xt−1, yt)

)

. (6)

Mixtures of multivariate Gaussians can represent a wide range of possible distributions, of-

fering flexibility and expressiveness that is beneficial for modelling complex systems [33].

3.2. Network architecture and learning

Our method learns the mean functions µ( f )(·), µ(π)(·) and the covariance functionsΣ( f )(·), Σ(π)(·)
for the transition and proposal distributions using a pair of dense neural networks. We denote

these networks by NN( f )(xt−1; θ( f )) for the network associated with the transition distribution and

by NN(π)(xt−1, yt; θ
(π)) for the network associated with the proposal distribution.

The transition network takes as input only the previous particle value, therefore preserving

the Markovianity assumption of the SSM, which is often violated when using neural networks

[34, 35, 36, 37].

The network NN(·; θ) is comprised of L layers, with

NN(·; θ) = zL, zl = ρl(Alzl−1 + bl), (7)

for l ∈ 1, . . . , L. Therefore, θ = {A1, b1, . . . ,AL, bL} are the learned parameters for a network.

For the proposal network the initial value z
(π)

0
= [x

⊺

t−1
, y

⊺

t ]⊺ is the concatenation of the previous

state xt−1 and the current observation yt. Thus, z
(π)

0
has dimension d

(π)

0
= dx + dy. For the state

network the initial value z
( f )

0
= xt−1 is the previous state xt−1. Thus, z

( f )

0
has dimension d

( f )

0
= dx.

For both networks, the dimension of the output

zL = [µ(1)⊺, c(1)⊺, . . . , µ(S )⊺, c(S )⊺]⊺ (8)

is dL := 2S dx, as for each of the mixture components of both distributions, we require a dx-

dimensional mean vector µ(n) and a dx-dimensional covariance scale vector c(n).

In both cases, we construct a Gaussian mixture distribution from a neural network NN(·; θ)
by

GM(NN(·; θ)) =
S
∑

s=1

S −1N(µ(s),C(s)), (9)
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where S is the number of mixture components, with µ(s), c(s), s ∈ 1, . . . , S extracted from zL

by indexing per Eq. (8), where we discard the components of θ that are not relevant to NN,

and C(s) = diag(c(s))2. For example, when constructing f , we use GM(NN( f )(·; [θ( f ), θ(π)])),

discarding θ(π) it is not used in NN( f ). We make use of this property in Alg. 5. The learned

parameters for a neural network are the weights Al and the biases bl, with l ∈ 1, . . . , L. The

number of layers L, the dimension of each layer dl, l ∈ 1, . . . , L, and the activation functions

ρl, l ∈ 1, . . . , L are fixed as part of the network architecture.

We learn separate networks for the transition and proposal distributions, denoted by NN( f )

and NN(π) respectively. Therefore, when learning the transition distribution we estimate θ( f ) :=

{A( f )

1
, b

( f )

1
, . . . ,A

( f )

L( f ) , b
( f )

L( f ) }, and estimate θ(π) := {A(π)

1
, b

(π)

1
, . . . ,A

(π)

L(π) , b
(π)

L(π) } when learning the pro-

posal distribution.

To train the networks we maximise the log-likelihood, given by

ℓ(θ|y1:T ) ∝
T
∑

t=1















K
∑

k=1

log
(

w
(k)
t · w̃

(k)

t−1

)















, (10)

where w
(k)
t and w̃

(k)

t−1
are the unnormalised and normalised weights of the PF in Alg. 1 [11, Chapter

12]. In the case that we perform resampling at every step, Eq. (10) reduces to

ℓ(θ|y1:T ) ∝
T
∑

t=1















K
∑

k=1

log
(

w
(k)
t

)















, (11)

as the previous step normalised weights are identically equal to 1/K. Note that the weights

are dependent on the parameters θ( f ), θ(g), and θ(π), as the weights are computed using densities

dependent on these parameters. In our case, we assume that the observation model g is known,

and hence we omit the dependence on θ(g). The log-likelihood is maximised when all weights

are equal, a desirable property as it reduces weight degeneracy over time [11]. Furthermore,

maximising the log-likelihood does not require knowledge of the true value of the hidden state,

which is often unavailable, requiring only the observation series.

3.3. StateMixNN algorithm

Algorithm 3 StateMixNN algorithm StateMixNN(B, J, A, y,NN( f ),NN(π))

1: Input: Number of batches B, steps per batch J, number of iterations A, observations y,

transition network NN( f ), proposal network NN(π).

2: Initialise θ
(π)

0
:= {A(π)

1
, b

(π)

1
, . . . ,A

(π)

L(π) , b
(π)

L(π) }.
3: Initialise θ

( f )

−1
:= {A( f )

1
, b

( f )

1
, . . . ,A

( f )

L( f ) , b
( f )

L( f ) }.
4: Initialise f−1(xt|xt−1) := GM(NN( f )(xt−1; [θ(f), θ(π)])).

5: for a ∈ 1, . . . , A do

6: Set θ
(π)
a := ConditionalUpdate(B, J, θ

(π)

a−1
, θ

( f )

a−1
, y) using Alg. 4.

7: Set θ
( f )
a := ConditionalUpdate(B, J, θ

( f )

a−1
, θ

(π)
a , y) using Alg. 4.

8: end for

9: return θ
( f )

A
, θ

(π)

A
.

StateMixNN is described in Alg. 3. We first describe the overall algorithm, given in Alg. 3,

and proceed to describe the subordinate algorithms, Alg. 4 and Alg. 5 in turn.
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In Alg. 3, we begin by initialising the network parameters (lines 2-3 of Alg. 3). It is not cru-

cial how these parameters are initialised, but we note that our software implementation utilises

element wise random uniform initialisations for Al and bl, with values in the range ±
√

dl, fol-

lowing [38]. We then learn an initial value for the transition distribution (line 4 of Alg. 3). We

do this by optimising the network parameters of the transition distribution in a bootstrap particle

filter, wherein the transition and proposal distributions are the same.

We then perform A alternating conditional updates. We optimise each of θ( f ) and θ(π) con-

ditional on the other, similar to a coordinate descent method. At iteration a, we first optimise

the proposal distribution parameters θ
(π)
a , conditional on the value of the transition distribution

parameters θ
( f )

a−1
. We then optimise the transition distribution parameters θ

( f )
a conditional on the

value of the proposal distribution parameters θ
(π)
a .

Algorithm 4 Conditional update algorithm ConditionalUpdate(B, J, θ0, θstatic, y)

1: Input: Number of batches B, steps per batch J, initial parameters θ0, static parameters θstatic,

observations y.

2: Initialise θ0,J := θ0.

3: for b ∈ 1, . . . , B do

4: Set y(b) := y1:⌈bT/B⌉.
5: Set θb,0 := θb−1,J.

6: for j ∈ 1, . . . , J do

7: Set θb, j := UpdateStep(θb, j−1, θstatic, y
(b)) using Alg. 5.

8: end for

9: end for

10: return θ
(p)

B,J
.

We now describe the conditional update, given in Alg. 4. The conditional update algorithm

takes an initial value of the parameters of the distribution of interest θ0, and the parameters of

the distribution we are conditioning on θstatic. We split the observation series y1:T into B batches,

with the b-th batch given by y(b) = y1:⌈bT/B⌉. Note that this construction implies y(1) ⊆ y(2) ⊆
· · · ⊆ y(B−1) ⊆ y(B). We construct these telescoping batches of observations to avoid likelihood

issues stemming from unadapted parameters, since the first sampled trajectories often have an

extremely small log-likelihood, which causes numerical errors when computing the weights in

Alg. 1, leaving to the gradients of the log-likelihood exploding [10, 13].

We iterate over each of the b batches, and for each batch perform J optimisation steps. For the

j-th optimisation step of batch b, we run Alg. 5 with θlearn = θb, j−1, θstatic = θstatic and observations

y = y(b) := y1:⌈bT/B⌉. Note that Alg. 4 runs the particle filter a total of JB times, once for each

of the J steps taken in each of the B batches. As we perform 2 runs of Alg. 4 in each of the A

iterative steps of Alg. 3, we run the particle filter a total of 2ABJ times in total.

Finally, we describe a single step of the inner update algorithm, given by Alg. 5. In each

step, we construct the transition distribution (line 2 of Alg. 5) and proposal distribution (line

3 of Alg. 5) corresponding to the parameters at that step. We construct each distribution us-

ing Eq. (9), and thereby discard the parameters not relevant to a given network. In particular,

NN(·)(·; [θlearn, θstatic]) takes as arguments both the static parameter, and the parameter we are

learning when constructing both distributions. However, each distribution takes either the static

parameter, or the parameter we are learning, and we discard the unused parameter for the pur-

poses of constructing that distribution. For example, when learning the the transition distribution

8



Algorithm 5 Update step UpdateStep(θlearn, θstatic, y)

1: Input: Parameters to learn θlearn, static parameters θstatic observations y.

2: Set f (xt|xt−1) := GM(NN( f )(xt−1; [θlearn, θstatic])).

3: π(xt|xt−1, yt) := GM(NN(π)(xt−1, yt; [θlearn, θstatic])).

4: Run a particle filter (Alg. 2) with transition distribution f , proposal distribution π, and

observations y.

5: Obtain ℓ(θlearn) and ∇ℓ(θlearn) from the particle filter via Eq. (10) and automatic differentia-

tion.

6: Obtain θout by applying a gradient based update to θlearn with gradients ∇ℓ(θlearn).

7: return θout.

f , NN( f ) takes both θlearn, corresponding to θ( f ) and θstatic, corresponding to θ(π), in line 2 of

Alg. 5, but discards θstatic as θstatic parameterises the proposal distribution π when learning f .

After constructing the transition distribution f and the proposal distribution π, we run a par-

ticle filter with these distributions (line 4 of Alg. 5), using the observations y, which may be a

subset of the overall series of observations. From the particle filter we obtain an estimate of the

log-likelihood of the parameter θlearn, denoted by ℓ (θlearn), and an estimate of the gradient of the

log-likelihood with respect to θlearn, denoted by ∇ℓ (θlearn) (line 5). We then utilise a gradient

update scheme, such as ADAM [29] or Novograd [31, 32], to apply a gradient update to the

parameter θlearn, and output the result of this update to be used within line 7 of Alg. 4.

3.4. Discussion

Our method approximates the transition and proposal distributions by multivariate Gaussian

mixture distributions. These mixtures are capable of representing complex unknown distribu-

tions, and are in many situations both more interpretable and more reliable than methods com-

mon in machine learning literature such as normalising flows [25, 26, 39, 40]. Furthermore, in the

context of particle filters, normalising flows have been observed to be susceptible to overfitting,

in addition to being less intuitive and harder to train [26, 25].

We note that the particle weights wt depend on the samples x0:t, which are drawn from the

proposal distribution that we are learning. Furthermore, the computation of the weights requires

evaluating the density of the transition distribution. Therefore, we require a way to propagate

gradients through particle resampling and sampling the proposal mixture distribution. We use

the stop-gradient differentiable particle filter of [13], given in Alg. 2, to propagate gradients

through the resampling step of the particle filter. By including resampling in the training using

this method, we remove bias in our gradients, [13], improving the convergence characteristics of

StateMixNN, and allow our method to be utilised to learn complex systems, as weight degeneracy

is addressed in training via the resampling step [16, 14].

In order to sample the multivariate Gaussian mixture distributions f and π, we draw the

component from a categorical distribution, and then sample the associated multivariate Gaussian

distribution. We reparameterise the categorical distribution using the Gumbel-Softmax reparam-

eterisation [41], thereby allowing gradient propagation through the categorical sampling. How-

ever, it is equally valid to use a stop-gradient sampling for the categorical distribution, which

is computationally more efficient. We can propagate gradients through sampling a multivariate

Gaussian using the reparameterisation trick [27], where we externalise the randomness to a input

of an affine transformation, which, crucially, is independent θ( f ) and θ(π), and therefore has zero
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gradient with respect to our learned parameters. The above, in combination with the differen-

tiable particle filter method of [13], allow us to compute the gradient of Eq. (10) with respect to

our parameters θ(p) = {A(p)

1
, b

(p)

1
, . . . ,A

(p)

L(p) , b
(p)

L(p) }, p ∈ {π, f }, and therefore train the proposal and

transition networks using a gradient scheme, such as [29, 30].

4. Discussion about the StateMixNN framework

We now discuss some characteristics of Alg. 3, that will help explain the choices we have

made. First, we discuss the reasoning for using the multivariate Gaussian mixture distribution

for our approximating distributions. Then, we justify the restriction to diagonal covariance and

equal mixture weights. Third, we justify the alternating estimation scheme of Alg.3. Finally,

we discuss how we combat the phenomena of likelihood degeneracy and concentration in our

method.

4.1. Choice of a Gaussian mixture distribution for π and f , and extensions

In this work, we propose in Eq. (9) to use a multivariate Gaussian mixture distribution to

approximate the optimal proposal distribution and the state transition distribution. The Gaussian

mixture is able to approximate a wide range of distributions, whilst retaining computational

speed. Furthermore, Gaussian mixtures are interpretable, and are easier to understand and infer

from than approximating distributions such as normalising flows [42].

Most deep learning frameworks have fast, differentiable implementations of the Gaussian

distribution, and typically will have the capability to combine distributions resulting in a mixture

distribution. Using standard methods such as these allows for rapid, optimised implementation

of our method in a given deep learning framework, for example PyTorch [43], JAX [44], and

Tensorflow [45] are popular frameworks, which all have standard constructs which can be used

to construct efficient multivariate Gaussian mixtures.

We note that our method can be trivially extended to mixture distributions for which the

components can be parameterised by their location and scale parameters, with an example of

such an extension being a mixture of multivariate t distributions with a fixed degree of freedom

ν. To do so, we would replace the N(µ(s),C(s)) mixands in Eq. (9) with tν(µ
(s),C(s)), noting that

ν is fixed. Using the t distribution may capture tail behaviour better; however, the t distribution

is more expensive both to sample from and to evaluate the density of. For example, the density

of the multivariate t distribution requires evaluating the Γ function, whereas the density for the

Gaussian distribution requires only exponentiation and standard linear algebra operations.

4.2. Restriction to diagonal covariance and equal weights in the approximating mixture

In Section 3.2 we present our method, restricting the covariance of mixture components, C(s),

to a diagonal form, and the mixture weights to be uniformly equal to S −1 in Eq. (9). We present

our reasoning for these restrictions below.

Covariances As we estimate both the state and proposal distributions f and π, we infer com-

plex dependencies between state dimensions in the interaction between the distributions, and

therefore do not need to estimate full covariance matrices. We assume the form form of the co-

variance matrices in order to reduce the number of parameters required; we can parameterise a N

dimensional distribution by 2N parameters, whereas estimating the full covariance matrix would

require N + N(N + 1)/2 parameters, N for the mean µ(s), and N(N + 1)/2 for the covariance C(s),
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as covariance matrices are positive semi-definite and are therefore symmetric. Furthermore, in-

creasing the number of estimated parameters also increases the required dimension of the output

of each network, zL, and therefore increases the dimension of the hidden layers parameters, Al

and bl, l ∈ 1, . . . , L, required to obtain a comparable estimation power, drastically increasing the

number of network parameters that must be learnt at each step.

A diagonal covariance also allows for a efficient implementation of the multivariate Gaussian

distribution. For example, we do not need to compute a full matrix inverse C(s)−1
when com-

puting the density of a multivariate Gaussian distribution; if we know that the covariance C(s) is

diagonal, we can simply invert the diagonal element-wise, as C(s)−1
= diag(1/c(s)) for diagonal

C(s).

Mixture weights In Eq. (9) we impose that the mixture weights are uniformly equal to S −1,

where S is the number of mixture components. We can loosen this restriction and learn the mix-

ture weights, but this is a difficult task. Much of this difficulty comes from the fact that changes

in the log-likelihood can now be brought about by changing either the component parameters µ(s)

and C(s), or the mixture weights, which we denote here by m(s).

For each mixture component, the mean parameter µ(s) and the covariance parameter C(s) are

vector valued and matrix valued, although we restrict the covariance to be diagonal as Eq. (9).

The mean and covariance of each component are thus determined by 2dx values; however, the

mixture weight m(s) is a single value, which has a far larger impact on the likelihood than any sin-

gle element of the mean or covariance. Therefore, the gradient of the log-likelihood, computed

via Eq. (10) with backpropagation, with respect to the network parameters θ(π) and θ( f ), will

be primarily attributable to the effect these parameters have on the mixture weight, which will

result in convergence issues as only the mixture weights will meaningfully change between iter-

ations. Identifiability would also be a problem, as changes in the likelihood could be attributed

to changes in either the mean/covariance, or changes to the mixture weights.

The parameters would thus be significantly more difficult to train, and the method given in

Alg. 3 would not be sufficient. A potential solution would be to introduce two more networks,

each outputting only the mixture weights for the transition and proposal distributions respectively,

and then to train these networks as part of the iterative step of Alg. 4, thereby training 4 networks

in an alternating scheme. For the sake of brevity, and for the clarity of this paper, we utilise the

equal weighted mixture, which we note can well approximate arbitrarily weighted mixtures with

a sufficiently large number of components.

4.3. Use of an alternating scheme when estimating network parameters

In order to learn the network parameters θ( f ) and θ(π), Alg. 3 uses an alternating scheme to

learn each parameter conditional on the value of the other. Learning one parameter conditional

on the other stabilises inference, as the parameters heavily influence each other given that the

proposal and transition interact in the weighting step of Alg. 2. Learning in such a manner may

lead to identifiability issues, as any change in the weights or particles, and hence in the log-

likelihood, can be attributed to either a change in the transition distribution, or a change in the

proposal distribution. Furthermore, changes in one distribution should be reflected by changes

in the other distribution, as both are tightly linked in interpretation and usage within the filter.

However, if we were to update networks NN( f ) and NN(π) simultaneously, i.e., we replace

Alg. 4 with a gradient update of both θ( f ) and θ(π) at the same time, we cannot attribute changes in

the likelihood to a specific network, nor can we update each network conditional on the changes

made to the other network. In addition, learning both networks at the same time can lead to
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divergence, as each network may change in such a way that they yield numerically incompati-

ble distributions; in such distributions the transition distribution has near zero probability mass

where the proposal has large probability mass, thereby leading to numerically zero weights when

computed in line 7 of Alg. 2.

In Alg. 3 we learn each distribution conditional on the other, and therefore do not suffer from

an identifiability problem, as any changes are attributable only to the learned distribution. Further,

we learn the effects the changes made to each distribution have on the other, hence stabilising

the learning, as the distributions do not adapt at the same time. Alternating between learning and

conditioning on each distribution allows the distribution to adapt to each other, and mitigates the

potential problem of distributions diverging in density.

4.4. Combating likelihood degeneracy when estimating parameters using the particle filter

Our method learns θ( f ) and θ(π) by maximising the estimated log likelihood, ℓ([θ( f ), θ(π)]),

using an alternating scheme. We estimate the log-likelihood using Eq. (10), which, in turn, uses

the particle weights w
(k)
t , t = 1, . . . , T , k = 1, . . . ,K, from all iterations of the filter. Therefore, the

success of our method hinges on the accurate and stable computation of these weights, which is a

challenge in particle filtering, as the weight w
(k)
t of a given particle x

(k)
t can be very close to zero.

One way to numerically stabilise weight computations is to use log weights [11]. Implementing

log weights is a simple change, as we need only rewrite the weight calculation in line 7 of Alg. 2

to use log likelihoods, and rewrite the normalisation to remain on the log scale.

We define logsumexp([x1, x2, . . . , xN]) := log
(

∑N
n=1 exp(xn)

)

.2 Note that

log
(

w
(k)
t

)

= log



















g(yt|x(k)
t ; θ(g)) f (x

(k)
t |x

a
(k)
t

t−1
; θ( f ))

π(xt|xa
(k)
t

t−1
, yt; θ(π))



















,

= log
(

g
(

yt|x(k)
t ; θ(g)

))

+ log

(

f

(

x
(k)
t |x

a
(k)
t

t−1
; θ( f )
))

− log

(

π

(

xt|xa
(k)
t

t−1
, yt; θ

(π)
))

.

(12)

By writing p
(k)
t = w̃

(k)

t−1
w

(k)
t , and noting that log

(

p
(k)
t

)

= log
(

w̃
(k)

t−1

)

+ log
(

w
(k)
t

)

, we have

w̄
(k)
t =

p
(k)
t

∑K
k=1 p

(k)
t

=
exp
(

log
(

p
(k)
t

))

∑K
k=1 exp

(

log
(

p
(k)
t

)) ,

log
(

w̄
(k)
t

)

= log
(

p
(k)
t

)

− log















K
∑

k=1

exp
(

log
(

p
(k)
t

))















,

= log
(

p
(k)
t

)

− logsumexp

(

[

log
(

p
(k)
t

)]K

k=1

)

,

= log
(

w̃
(k)

t−1

)

+ log
(

w
(k)
t

)

− logsumexp

(

[

log
(

w̃
(k)

t−1

)

+ log
(

w
(k)
t

)]K

k=1

)

,

(13)

and can construct the log-likelihood estimator following Eq. (10) directly using the log weights.

The use of log weights significantly improves numerical stability; nevertheless, it does not ad-

dress the issue of likelihood concentration, nor does it mitigate the problem of learning parame-

ters with initial value having very low likelihood.

2The logsumexp can be additionally stabilised by observing that logsumexp([xn]N
n=1

) = max([xn]N
n=1

) +

logsumexp([xn − max([xm]N
m=1

)]N
n=1

), which helps to avoid numerical overflow when evaluating logsumexp. Note that

this modification is typically already present in pre-existing implementations of logsumexp such as those present in

[43, 44, 45].
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State-space models in general suffer from likelihood concentration, where ℓ(θ|y1:T ), which

we estimate by Eq. (10), becomes increasing concentrated around a single value of θ as T in-

creases. Likelihood concentration thereby results in vanishingly small likelihoods for parameter

values that are not well adapted to the system, leading to the gradient of the parameter values

being numerically zero, and the parameter is hence unable to be learnt, without careful initial-

isation near a value with high likelihood. The issue is therefore that we must choose an initial

parameter that has high likelihood, but we assume we do not know the parameter beforehand;

these statements contradict each other.

We address likelihood concentration, and hence the problem of learning parameters under

random initialisation, using observation batching. We infer our parameters, θ( f ) and θ(π), in

Alg. 5 using B increasingly large batches y(b), b ∈ {1, . . . , B}, of the observation series, where

y(1) ⊆ y(2) ⊆ · · · ⊆ y(B−1) ⊆ y(B), choosing y(B) := y. Warming up the θ( f ) and θ(π) parameters

before learning on the entire series mitigates the effect of likelihood concentration for unadapted

parameters, and, when combined with log weights, allows our method to be used on long obser-

vation series for complex problems.

We initially learn our parameters, θ( f ) and θ(π), on a small subset, y(1), of the observation

series y. Thereby, we obtain a relatively diffuse parameter likelihood function compared to that

obtained with a longer observation series. Therefore, we can initialise the parameters of the

neural networks, Al, bl, l ∈ 1, . . . , L, randomly, as the likelihood and its gradient will not be

numerically zero for unadapted parameters, due to the relatively diffuse parameter likelihood

function. Further, under the above method, our estimated f and π distributions incorporate in-

formation from the observation series y in sequence, adapting to one batch of observations y(b)

before taking in more. Sequentially incorporating observation information into our estimation

prevents behaviour where the start and end of the series are well represented by the learnt pa-

rameters, but the middle is not; this is a common problem when using neural networks to learn

between-step dynamics in time series models [46, 47, 48].

5. Numerical Experiments

We will now illustrate the performance of our proposed method on two systems. First, we

will test our method on a non-linear polynomial system: the Lorenz 96 chaotic oscillator. We

will then apply our method to a non-linear non-polynomial system: the Kuramoto oscillator. In

both instances we compare our method to the improved auxiliary particle filter (IAPF) [20] and

the bootstrap particle filter (BPF) [8].

5.1. Lorenz 96 model

We consider a stochastic version of the Lorenz 96 model [49], a dynamical system known to

exhibit chaotic behaviour. We insert additive noise terms to obtain a stochastic system to use for

testing, and discretise using the Euler-Maruyama scheme, resulting in the system

xi,t+1 = xi,t + ∆t(xi−1,t(xi+1,t − xi−2,t) − xi,t + F) +
√
∆t · vi,t+1,

yi,t+1 = xi,t+1 +
√
∆t · ri,t+1,

(14)

for i ∈ {1, . . . , dx} and t ∈ {0, . . . , T }, where we define x−1 := xdx−1, x0 := xdx
, and xdx+1 := x1,

vt ∼ N(0,Σv), rt ∼ N(0,Σr), and F is a forcing constant; we use F = 8.

We set ∆t = 0.05 in Eq. (14). Unless explicitly stated otherwise, we choose the dimension

of the system as dx = dy = 20, and set Σv = 0.25Idx
and Σr = 0.1Idx

. We initialise the hidden
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state at x0 such that x1,0 = 1, with all other elements equal to 0. We assess the proposed method

in terms of relative mean square error (MSE), showing the accuracy of the method as a fraction

of the MSE obtained with the BPF [8]. We compare our method with the improved auxiliary

particle filter (IAPF) [20], to illustrate the performance of a standard improved proposal. The

MSE compares the weighted mean of the samples (the estimated state) with the true underlying

hidden state. Note that the MSE is not targeted for optimisation. For both the IAPF and the BPF,

we assume the state transition model is known. We compute the MSE for 200 independent runs

of the filter, and plot the mean and symmetric 95% intervals.

We test the proposed method using a variable number of mixture components, with S ∈
{1, 6, 10}. All variants utilise the same network architecture, with 3 layers of output sizes d1 =

128, d2 = 256, d3 = 2S dx for both networks. For the activation function ρl in Eq. (7), we set

ρ1:2(x) = relu(x) = max(0, x), and ρ3(x) = x, with this applying to both the proposal and tran-

sition networks. We train StateMixNN using the ADAM optimiser [29], using a fixed learning

rate of 3 · 10−3, and setting the parameters of Alg. 3 to B = ⌈T/5⌉, J = 50, A = 20. We train

the method using a series of observations distinct from those on which we test StateMixNN;

however, all series are instances of the Lorenz 96 system.

Variable number of particles. We test StateMixNN for a variable number of particles K, with

K ∈ {30, 50, 100, 200}. We use a fixed series length T = 100. Fig. 1 shows that StateMixNN out-

performs the BPF for all given values of K, obtaining at most 0.9 times the MSE of the BPF,

and typically less than 0.75 the MSE. StateMixNN with S = 10 components suffers with few

particles, performing worse than the other parameterisations of StateMixNN, as few samples are

taken from each component, therefore the gradient estimates are more dispersed, making train-

ing less reliable. Our method outperforms the IAPF at all tested numbers of particles, by an

increasingly large margin as the number of particles increases.
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Figure 1: Comparison of StateMixNN with the BPF and IAPF over variable numbers of particles. Quantities are divided

by the MSE of the corresponding BPF. The lines denote mean performance, with bands denoting symmetric 95% inter-

vals.

Variable series length. Next, we test StateMixNN with a variable series length T , with T ∈
{30, 60, 100, 200, 500}. In this case we fix the number of particles K = 100. We show in Fig. 2

that the proposed method obtains lower values of MSE than the BPF and IAPF for all given

values of T . The S = 10 component method slightly outperforms the S = 6 component method,

which significantly outperforms the S = 1 component method.

14



30 60 100 200 500
0.25

0.5

0.75

1

Series length

R
el

at
iv

e
M

S
E

10 components 6 components 1 component

IAPF BPF

Figure 2: Comparison of StateMixNN with the BPF and IAPF over variable series length. Quantities are divided by the

MSE of the corresponding BPF. The lines denote mean performance, with bands denoting symmetric 95% intervals.

Variable state noise. We now test StateMixNN for a variable state noise Σv = σ
2
v I20, with

σ2
v ∈ {0.05, 0.1, 0.25, 0.5, 1}. In this case, we fix the number of particles K = 100 and the series

length T = 100. Fig. 3 shows that StateMixNN is superior to the BPF for all given values of

σ2
v . The improvement in accuracy is lesser for small noise variances, as small perturbations give

a concentrated distribution of the state values at the next time step. However, the performance

improves for larger values of σ2
v . This is due to the chaotic behaviour of the system, which leads

to multimodal distributions for the next state, as the state follows one of several diverging paths.

The mixture in the proposed method captures this behaviour, with components representing dif-

ferent modes, thereby outperforming both the BPF and the IAPF.
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Figure 3: Comparison of StateMixNN with the BPF and IAPF over variable state noise magnitude. Quantities are

divided by the MSE of the corresponding BPF. The lines denote mean performance, with bands denoting symmetric 95%

intervals.

Variable system dimension.
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Figure 4: Comparison of StateMixNN with the BPF and IAPF over variable system dimension. Quantities are divided by

the MSE of the corresponding BPF. The lines denote mean performance, with bands denoting symmetric 95% intervals.

Finally, we test StateMixNN over variable state and observation dimension dx = dy, with

dx ∈ {5, 10, 20, 40, 60}. We fix the number of particles K = 100, and the series length T = 100.

Fig. 4 shows that StateMixNN is superior to the BPF for all given values of dx. We observe

that the margin of out-performance decreases as the state dimension increases, but seems to

stabilise after dx = 40. This is due to the static number of iterations used in training, as the

state-space is easier to learn for smaller dx, and therefore requires fewer iterations to achieve

the same level of performance. We observe that StateMixNN performs well at all tested values

of dx, and does not rapidly deteriorate in performance when increasing dx without changing the

training regime. Furthermore, the filters with a larger number of components in the learned

distributions outperform those with a smaller number of components at all times, displaying the

mixture distributions ability to approximate complex systems.

5.2. Kuramoto oscillator

The Kuramoto oscillator [50] is a mathematical model that describes the behavior of a system

of dx phase-coupled oscillators. The model is described by

dθi

dt
= ωi + d−1

x

dx
∑

n=1

K sin(θi − θ j), (15)

where θi denotes the phase of the ith oscillator, and K ∈ R is the coupling constant between

oscillators. This does not restrict θ however, which will, in general, diverge to an infinity as

t → ∞. To address this, we transform Eq. (15) by introducing derived parameters R ∈ R and

φ ∈ R such that

R exp(
√
−1φ) = d−1

x

dx
∑

j=1

exp
(√
−1θ j

)

,

dθi

dt
= ωi + KR sin(φ − θi),

(16)

16



which restricts θ ∈ [−π, π]dx . We insert additive Gaussian noise to Eq. (16), and discretise using

the Euler-Maruyama scheme, yielding the NLSSM

R exp(
√
−1φ) = d−1

x

dx
∑

j=1

exp
(√
−1x j,t

)

,

xi,t+1 = xi,t + ∆t (ωi + KR sin(φ − xi)) +
√
∆t · vi,t+1,

yi,t+1 = xi,t+1 +
√
∆t · ri,t+1,

(17)

for i ∈ {1, . . . , dx}. We choose dx = 20, and K = 0.8. We set Σv = σ
2
vId20,Σr = σ

2
r Id20, with

σv = 1, σr = 0.05 unless stated otherwise, which tests the performance of our method in the case

that the observation is much more informative than the state, where the standard BPF is known

to suffer. We discretise this model with a time step of ∆t = 0.05. We sample ωi ∼ N(0.5, 0.52),

and xi,0 ∼ U(−π, π). We run the system until t = 10, and then begin collecting observations.

Variable series length. We test StateMixNN with a variable series length T , with T ∈
{30, 60, 100, 200, 500} on the Kuramoto oscillator In this case we fix the number of particles

K = 100. We show in Fig. 5 that the proposed method obtains lower values of MSE than the

BPF and IAPF for all given values of T . The S = 10 component method outperforms the S = 6

component method, which in turn outperforms the S = 1 component method.
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Figure 5: Comparison of StateMixNN with the BPF and IAPF over variable series length on the Kuramoto oscillator.

Quantities are divided by the MSE of the corresponding BPF. The lines denote mean performance, with bands denoting

symmetric 95% intervals.

Variable number of particles. We test StateMixNN for a variable number of particles K, with

K ∈ {30, 50, 100, 200}. We use a fixed series length T = 100. Fig. 6 shows that StateMixNN out-

performs the BPF and IAPF for all given values of K. StateMixNN with S = 10 components

suffers with few particles, performing worse than the other parameterisations of StateMixNN, as

few samples are taken from each component, therefore the gradient estimates are more dispersed,

making training less reliable.
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Figure 6: Comparison of StateMixNN with the BPF and IAPF over variable number of particles on the Kuramoto

oscillator. Quantities are divided by the MSE of the corresponding BPF. The lines denote mean performance, with bands

denoting symmetric 95% intervals.

6. Conclusion

This work proposes a novel method, called StateMixNN, which simultaneously learns the

transition and proposal distributions of a particle filter. We utilise a pair of multivariate Gaussian

mixture distributions to approximate the transition and proposal distributions, with the means and

covariances of the mixands given by the output of a dense neural network. The proposed method

does not require knowledge of the hidden state, as we optimise the observation likelihood, which

requires only the observations to be known. We show some numerical results for a stochastic

Lorenz 96 model, which has highly chaotic behaviour. We observe that our method outperforms

the bootstrap particle filter, a standard method, as well as the improved auxiliary particle filter, a

state-of-the-art method for improving the proposal distribution.
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