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Abstract

This paper concerns an inverse problem for fluorescence diffuse optical tomography (FDOT) recon-

structing locations of multiple point targets from the measured temporal response functions. The targets

are multiple fluorescent point objects with a nonzero fluorescence lifetime at unknown locations. Peak

time, when the temporal response function of the fluorescence reaches its maximum, is a robust param-

eter of the temporal response function in FDOT because it is most less suffered by the artifacts, such

as noise, and is easily determined by experiments. We derive an approximate peak time equation based

on asymptotic analysis in an explicit way in the case of nonzero fluorescence lifetime when there are

single and multiple point targets. The performance of the approximation is numerically verified. Then,

we develop a bisection algorithm to reconstruct the location of a single point target from the algorithm

proposed in [4] for the case of zero fluorescence lifetime. Moreover, we propose a boundary-scan algorithm

for the reconstruction of locations of multiple point targets. Finally, several numerical experiments are

implemented to show the efficiency and robustness of the addressed algorithms.
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1 Introduction

Fluorescence diffuse optical tomography (FDOT) is one of the imaging techniques using fluorescence light

from fluorophores in highly scattering media. In particular, this technique is essential in biological or medical

applications for tissues in vivo to visualize specific diseases and biological activities using fluorescent probes

by reconstructing their unknown regions from the measurements outside tissue [17, 19, 20]. Although the

importance of imaging inside tissue is well understood, the problems caused by the highly scattering media

do not allow using standard imaging techniques, requiring a special imaging technique, FDOT. This imaging

technique is also called fluorescence molecular tomography (FMT) and is categorized as a kind of diffuse

optical tomography (DOT) using fluorescence. In highly scattering media like biological tissue, the light

path is not straight anymore, and the repeating scattering makes the light propagation an energy dissipation

process approximately described by a diffusion equation. Eventually, a reconstruction method based on the

light propagation model is required to visualize the three-dimensional fluorescence distribution, recovering the

quantitative information by measurements on the boundary of the medium [12, 13]. The FDOT is categorized

by the measurement data types [9, 11], such as the steady-state fluorescence intensity (CW method)[3, 8],

the temporal response function of the fluorescence intensity (time-domain method)[15, 23], the phase and

demodulation of the fluorescence intensity (frequency-domain method)[1, 18] and a hybrid method of them

[22]. We choose the time-domain method because the temporal response function has direct information

on the distribution of optical paths determined by the geometry, the position of the injection point of the

excitation light, the distribution of the fluorophores, and the detection point of the fluorescence.

In this paper, we analyze the temporal response function. The measured temporal response function is a

set of the intensities of detected light in a certain time period at certain times after the instantaneous light

injection like a delta function, and the time reflects the optical path length of a trajectory in the medium

[10], and it delays, in our case, by the staying time at the excited state of fluorophore determined by the

fluorescence lifetime. Namely, the measured temporal response function is a discretized temporal response

function, which is given by the solution of the light propagation model and reflects the optical path length

distribution function associated with the target location. Then, we focus on the peak time, which will be

defined as the time when the function becomes maximum, to characterize the temporal response function for

the inputs of the reconstruction of targets. The maximum position of the temporal response function is least

affected by the noises and artifacts due to environmental contamination and should be robustly determined.

In addition, the peak position reflects the most likely optical path length for the light in the variety of travels

from the source to the detector, which is determined by the distances between the source, the target, and

the detector.

Next, we start to formulate our inverse problem. We first consider the measurements of the fluorescence

targets in tissue like the human chest, which is considerably larger than the measurable distances, resulting

in the boundary being an approximately infinite plane. Thus, we consider a medium Ω := R
3
+ with boundary

∂Ω. Let ue and Um be excitation and emission light for the fluorescence process, respectively. These two

processes can be modeled as the following coupled diffusion equations [16]:







(

v−1∂t −D∆+ µa

)

ue = 0, (x, t) ∈ Ω× (0,∞),

ue = 0, (x, t) ∈ Ω̄× {0},
∂νue + βue = δ (x− xs) δ(t), (x, t) ∈ ∂Ω× (0,∞)

(1.1)

and






(

v−1∂t −D∆+ µa

)

Um = µ(fℓ ∗ ue), (x, t) ∈ Ω× (0,∞),

Um = 0, (x, t) ∈ Ω̄× {0},
∂νUm + βUm = 0, (x, t) ∈ ∂Ω× (0,∞).

(1.2)

Here, ∂ν := ν · ∇ is the exterior normal derivative, v is the speed of light in the medium, D is the diffusion

constant, µa is the absorption coefficient, and β = b/D > 0 is a positive constant coming from the Fresnel

reflection at the boundary, b ∈ [0, 1], due to the refractive index mismatch at the boundary. Also, δ(·) denotes
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the delta function, and xs ∈ ∂Ω is the position of the point source where the excitation light is injected.

Further, the source term, which corresponds to the fluorescence emission from the fluorophores, for Um on

the right-hand side of (1.2) is given as

µ(fℓ ∗ ue)(x, t) := µ(x)

∫ t

0

ℓ−1e−
t−s
ℓ ue(x, s;xs) ds, (1.3)

where µ(x) > 0 is the absorption coefficient of a fluorophore, and fℓ ∗ ue is the convolution of ue and the

fluorescence decay function, fℓ(t) := ℓ−1e−t/ℓ, t ≥ 0, with the fluorescence lifetime ℓ > 0. Note that if ℓ→ 0,

it is easy to see that µ(fℓ ∗ ue)(x, t) = µ(x)ue(x, t;xs). Hence, we extend the definition of (1.3) to the case

that the zero fluorescence lifetime (ℓ = 0) by defining its right-hand side by µ(x)ue(x, t;xs).

Then, our inverse problem is formulated as follows.

Inverse Problem: Let

µ(x) =
J
∑

j=1

cjδ(x− x(j)
c ), (1.4)

where each x
(j)
c is the location of j-th unknown target, and each unknown cj is the absorption strength

committed fluorescence by the target at x
(j)
c . Then, reconstruct each x

(j)
c from the measured peak times

given as

t
(n)
peak := tpeak(x

(n)
d , x(n)

s ) = argmax
t>0

Um(x
(n)
d , t; x(n)

s ), n = 1, 2, · · · , N,

where
{

{x(n)
d , x

(n)
s }

}N

n=1
are N sets of S-D pairs consisting of detector points {x(n)

d }Nn=1 and source points

{x(n)
s }Nn=1 located on ∂Ω. For J = 1 and J ≥ 2, we call µ single point target and multiple point targets,

respectively.

Now, we briefly review some related works to the mentioned inverse problem in historical order, where

the peak time of the time-domain data is studied or further used to solve the inverse problem. In [6, 7],

the authors considered the case of ℓ > 0 and β = 0. They reconstructed the depth of the point target

by numerically calculating the peak time without giving any of the formulas derived in a mathematically

rigorous way. Then in [5], the authors considered the case of ℓ = 0. By using the asymptotic analysis for the

formula of the solution to (1.2), they derived explicit expressions of the approximate peak time equations

for the cases β = 0, β > 0, and β = ∞ in (1.1) and (1.2). Further, in [4], the authors of this paper gave a

better expression for the asymptotic behavior of the mentioned solution for the case ℓ = 0, β > 0 and derived

an approximate peak time equation. Also, this equation led them to propose a bisection reconstruction

algorithm to reconstruct the location of the point target and verify its accuracy and robustness.

We provide an asymptotic behavior of the solution Um to (1.2) and derive an approximate peak time

equation in the case of nonzero fluorescence lifetime, ℓ > 0. Since the effect from the fluorescence decay

function fℓ in (1.3) is not negligible in the practical range of ℓ > 0, resulting in a clear difference in the

peak times between zero lifetime solution and nonzero fluorescence lifetime solution Um, we consider the case

ℓ ≫ 1, i.e. large enough fluorescence lifetime. Then, the asymptotic behavior of the solution Um is written

in terms of the integral (See (2.2))
∫ t

0

um(s) ds,

where um is the solution to (1.2) with zero fluorescence lifetime ℓ = 0. We can approximate the above integral

by replacing um as ua
m, where ua

m is the asymptotic profile of um when the depth of the point target is large

enough (See Lemma 2.1). In Theorem 2.3, we provide the asymptotic behavior for

∫ t

0

ua
m(s) ds ∼ k−

3
4 (πλ)

1
2 ua

m(λk−
1
2 ), λ≫ 1 with k := µav, λ2 :=

|xd − xc|2 + |xs − xc|2
2vD

, (1.5)
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which enables us to derive the asymptotic behavior for the solution Um to (1.2) and define approximate peak

time t > 0 as a solution of

λe−
(
√

kt−λ)2

t = π
1
2 ℓ−1t

3
2 . (1.6)

Here, we note that λ > 0 is an important parameter, which is a constant times the square root of the sum of

two squares of distances which are the distances from the target xc to the detector xd and the source xs.

The advantage of the proposed approximate peak time equation (1.6) is that it has an explicit and simple

form, which is derived from the asymptotic analysis of the solution Um to (1.2). As far as we know, there is

less study on the asymptotic of the peak time in a rigorous way in the case of nonzero fluorescence lifetime

ℓ > 0. Then, it is verified numerically that the approximate peak time has an excellent accuracy to the peak

time of the solution Um in (1.2) under the practical range of optical parameters µa, D, ℓ, and the depth of

target xc3 (see Figure 3.1). Next, we apply the approximate peak time for FDOT. When there is a single

point target, we can develop the bisection reconstruction algorithm for the case ℓ > 0, where the algorithm

itself has been already given in [4] for the case ℓ = 0 and see that the algorithm is less time-consuming,

efficient, potentially robust, and accurate. Even the equation (1.6) is written in the case of a single point

target, it can be generalized for the case of multiple point targets depending on the parameter λ > 0 (See

(3.8)). Finally, a boundary-scan algorithm is proposed to reconstruct multiple point targets, and it is verified

numerically.

The rest of this paper is organized as follows. In Section 2, we introduce the asymptotic behavior of zero

fluorescence lifetime solution and obtain the asymptotic behavior of its time integration. In Section 3, we

derive the approximate peak time equation and define the approximate peak time. The performance of the

approximation is numerically verified. In Section 4, the mathematical properties between the peak time and

the location of a target are rigorously studied. Based on this, we propose the bisection reconstruction algo-

rithm and the boundary-scan reconstruction algorithm for the cases of single point and multiple point targets,

respectively. In Section 5, several examples are tested to show the efficiency of the proposed reconstruction

algorithms. Finally, we conclude in Section 6.

2 Asymptotic behavior of solution

In this section, we consider the asymptotic behavior of the solution Um to (1.2) for single point and

multiple point targets, respectively.

2.1 Single point target

In this subsection, we focus on the single point target case, i.e., J = 1 in (1.4). For simplicity, we suppress

the superscript (1) of x
(1)
c and subscript 1 of c1 in (1.4). By (1.3), the solution Um to (1.2) is given as

Um = K ∗ (µfℓ ∗ ue) = fℓ ∗ (K ∗ [µue]) , (2.1)

where K is the Green function associated with (1.2). Here we denote um := K ∗ [µue] by the zero lifetime

solution, which is independent of fluorescence lifetime ℓ > 0. For any given xd, xs ∈ ∂Ω, the solution Um to

(2.1) becomes

Um(xd, t;xs) =

∫ t

0

ℓ−1e−
t−s
ℓ um(xd, s;xs) ds

= ℓ−1

∫ t

0

um(xd, s;xs) ds−
∫ t

0

ℓ−2e−
t−s
ℓ

[
∫ s

0

um(xd, δ;xs) dδ

]

ds

= ℓ−1

∫ t

0

um(xd, s;xs) ds− ℓ−2

∫ t

0

[
∫ s

0

um(xd, δ;xs) dδ

]

ds+O
(

ℓ−3
)

(2.2)
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as ℓ≫ 1. We define the approximate solution of Um by

Ua
m(t) := ℓ−1

∫ t

0

um(s) ds− ℓ−2

∫ t

0

∫ s

0

um(δ) dδ ds

= ℓ−1

∫ t

0

um(s) ds− ℓ−2

∫ t

0

(t− s)um(s) ds.

(2.3)

Now, our aim is to study the asymptotic behaviors of um and its time integration. We first give the

expression for um. The Green function K is represented by

K(x, y; t) = ve−vµat

(4πvDt)
3
2

e−
(x1−y1)2+(x2−y2)2

4vDt K3(x3, y3; t), (2.4)

where K3 satisfies the Robin boundary condition, which is







K3(x3, y3; t) = e−
(x3+y3)2

4vDt + e−
(x3−y3)2

4vDt − 2β
√
πvDteβ(x3+y3)+β2vDt erfc

(

x3+y3+2βvDt√
4vDt

)

,

erfc(η) = 2√
π

∫∞
η

e−s2 ds, η ∈ R,

where xj denotes j-th component of the three dimensional vector x. For the zero lifetime solution um, since

the solution of ue to (1.1) is given as ue = D ×K, we have the following expression

um(xd, t;xs) =
ce−vµat

16π3D2v

∫ t

0

(

(t− s)s
)− 3

2 e−
|xd−xc|2
4vD(t−s) e−

|xs−xc|2
4vDs

× K̂3(xc3 ; t− s)K̂3(xc3 ; s) ds,

(2.5)

where

K̂3(xc3 ; t) := 1− β
√
πvDt exp

(

(

xc3 + 2βvDt√
4vDt

)2
)

erfc

(

xc3 + 2βvDt√
4vDt

)

.

Here |x|2 = x2
1 + x2

2 + x2
3 for x = (x1, x2, x3) ∈ R

3.

The next lemma describes the asymptotic behavior of um for xc3 ≫ 1 (see [4, Theorem 2.2 and Remark

2.3]).

Lemma 2.1. Let xd, xs ∈ ∂Ω, and assume that

∣

∣

∣|xd − xc|2 − |xs − xc|2
∣

∣

∣ ≤ Ct for some C > 0. (2.6)

Then, um satisfies

um(t) = ua
m(t) +O

(

ua
m(t)x−1

c3

)

, xc3 ≫ 1, (2.7)

where

ua
m(t) :=

c exp (−µavt)

8π
5
2 v

1
2D

3
2

(

1

|xd − xc|
+

1

|xs − xc|

)

t−
3
2

× exp

(

−|xd − xc|2 + |xs − xc|2
2vDt

)(

xc3

xc3 + βvDt

)2

. (2.8)

In the next lemma, we provide asymptotic behaviors of some integrals, which will be used to derive the

asymptotic behavior of
∫ t

0
ua
m(s) ds for λ≫ 1.

5



Lemma 2.2. Let λ > 0. Assume fλ ∈ C1[δ1,∞) for some δ1 > 0, and there exists C > 0 such that

|∂sfλ(s)| ≤ Cλ−1|fλ(s)| for s ≥ δ1. (2.9)

Then, for any δ2 > δ1,

i)

∫ δ2

δ1

e−ληfλ(η) dη = λ−1fλ(δ1)e
−λδ1 +O

(

λ−3fλ(δ1)e
−λδ1

)

as λ≫ 1,

ii)

∫ δ2

δ1

e−λη(η − δ1)
− 1

2 fλ(η) dη = π
1
2λ− 1

2 fλ(δ1)e
−λδ1 +O

(

λ− 5
2 fλ(δ1)e

−λδ1
)

as λ≫ 1.

(2.10)

Proof. By (2.9), we obtain for any δ2 > δ1

∫ δ2

δ1

e−ληfλ(η) dη = λ−1fλ(δ1)e
−λδ1 − λ−1e−λδ2fλ(δ2) + λ−1

∫ δ2

δ1

e−λη∂ηfλ(η) dη

= λ−1fλ(δ1)e
−λδ1 +O

(

λ−3fλ(δ1)e
−λδ1

)

as λ≫ 1, which implies i) in (2.10). On the other hand, we obtain

∫ δ2

δ1

e−λη(η − δ1)
− 1

2 fλ(η) dη = e−λδ1

∫ δ2−δ1

0

e−ληη−
1
2 fλ(η + δ1) dη

= e−λδ1

[

∫ δ2−δ1

0

e−ληη−
1
2 fλ(δ1) dη +

∫ δ2−δ1

0

e−ληη
1
2 ∂ηfλ(η̃δ1) dη

]

:= I1 + I2

(2.11)

for some η̃δ1 > δ1. Since

I1 = fλ(δ1)e
−λδ1

∫ δ2−δ1

0

e−ληη−
1
2 dη = fλ(δ1)e

−λδ1

[
∫ ∞

0

−
∫ ∞

δ2−δ1

]

e−ληη−
1
2 dη

= 2λ− 1
2 fλ(δ1)e

−λδ1

∫ ∞

0

e−η2

dη +O
(

λ−1fλ(δ1)e
−λδ2

)

as λ≫ 1,

and by (2.9), we obtain

|I2| ≤ Cλ−1|fλ(δ1)|e−λδ1

∫ δ2−δ1

0

e−ληη
1
2 dη

= C|fλ(δ1)|λ−1e−λδ1

[

−λ−1e−λ(δ2−δ1)(δ2 − δ1)
1
2 +

λ−1

2

∫ δ2−δ1

0

e−ληη−
1
2 dη

]

= O
(

λ− 5
2 fλ(δ1)e

−λδ1
)

as λ≫ 1.

This together with (2.11) implies

∫ δ2

δ1

e−λη(η − δ1)
− 1

2 fλ(η) dη = π
1
2λ− 1

2 fλ(δ1)e
−λδ1 +O

(

λ− 5
2 fλ(δ1)e

−λδ1
)

as λ≫ 1, and the proof of Lemma 2.2 is complete.

We are ready to derive the asymptotic behavior of the time integration for ua
m in (2.8), which is closely

related to the behavior of the solution Um to (1.2). In the next Theorem 2.3, we obtain the asymptotic of

∫ t

0

ua
m(s) ds =

∫ t

0

e−ks−λ2

s f(s) ds as λ≫ 1,

6



where

k := µav, λ2 :=
|xd − xc|2 + |xs − xc|2

2vD
,

f(s) :=
c

8π
5
2 v

1
2D

3
2

(

1

|xd − xc|
+

1

|xs − xc|

)

s−
3
2

(

xc3

xc3 + βvDs

)2

.

(2.12)

Theorem 2.3. Assume t > λk−
1
2 . Then ua

m of (2.8) satisfies

∫ t

0

ua
m(s) ds = k−

3
4 (πλ)

1
2 ua

m(λk−
1
2 ) +O

(

λ− 3
2ua

m(λk−
1
2 )
)

(2.13)

as λ≫ 1, where k > 0 and λ are as in (2.12).

Proof. Since t > λk−
1
2 , we separate the integral into two parts

∫ t

0

ua
m(s) ds =

∫ t

0

e−ks− λ2

s f(s) ds =

∫ t
λ

0

e−λ(kζ+ζ−1)λf(λζ) dζ

= λ





∫ k− 1
2

0

+

∫ t
λ

k− 1
2



 e−λ(kζ+ζ−1)f(λζ) dζ.

(2.14)

Set a new variable η := kζ + ζ−1 having

ζ± :=
η ±

√

η2 − 4k

2k
with dζ± =

1

2k

[

1± η(η2 − 4k)−
1
2

]

dη.

We obtain
∫ t

0

ua
m(s) ds = −λ

∫ ∞

2
√
k

e−ληf(λζ−) dζ− + λ

∫ η( t
λ
)

2
√
k

e−ληf(λζ+) dζ+

= − λ

2k

∫ ∞

2
√
k

e−ληf(λζ−) dη +
λ

2k

∫ ∞

2
√
k

e−ληf(λζ−)η(η
2 − 4k)−

1
2 dη

+
λ

2k

∫ η( t
λ
)

2
√
k

e−ληf(λζ+) dη +
λ

2k

∫ η( t
λ
)

2
√
k

e−ληf(λζ+)η(η
2 − 4k)−

1
2 dη.

(2.15)

We apply Lemma 2.2 with fλ(s) = f(λs) for s ≥ δ1 = 2
√
k to obtain

∫ t

0

ua
m(s) ds = − 1

2k
f(λk−

1
2 )e−2λ

√
k +

π
1
2λ

1
2

2k
f(λk−

1
2 )2
√
k(4
√
k)−

1
2 e−2λ

√
k +

1

2k
f(λk−

1
2 )e−2λ

√
k

+
π

1
2 λ

1
2

2k
f(λk−

1
2 )2
√
k(4
√
k)−

1
2 e−2λ

√
k +O

(

λ− 3
2 f(λk−

1
2 )e−2λ

√
k
)

= k−
3
4 (πλ)

1
2 f(λk−

1
2 )e−2λ

√
k +O

(

λ− 3
2 f(λk−

1
2 )e−2λ

√
k
)

(2.16)

as λ ≫ 1. We remark ζ±(2
√
k) = k−

1
2 , and by (2.12), fλ satisfies the condition (2.9). Since ua

m(λk−
1
2 ) =

f(λk−
1
2 )e−2λ

√
k, we obtain (2.13), and the proof of Theorem 2.3 is complete.

2.2 Multiple point targets

In this subsection, we turn to consider the asymptotic behavior of Um defined by (2.1) for the multiple

point targets x
(1)
c , x

(2)
c , · · · , x(J)

c ∈ Ω. By using the principle of superposition, the zero lifetime solution, still

denoted by um, can be defined by

um(xd, t; xs) =
J
∑

j=1

u(j)
m (xd, t; xs), (2.17)

7



where xd, xs ∈ ∂Ω, each u
(j)
m , j = 1, 2, · · · , J, is defined by (2.5) replacing xc with x

(j)
c .

The following Corollary gives the asymptotic behaviors of um and its time integration.

Corollary 2.4. Let xd, xs ∈ ∂Ω and x
(1)
c , x

(2)
c , · · · , x(J)

c ∈ Ω. Assume that there exists some x
(l)
c , l =

1, 2, · · · , J, such that

|xd − x(l)
c |2 + |xs − x(l)

c |2 < |xd − x(j)
c |2 + |xs − x(j)

c |2, 1 ≤ j 6= l ≤ J, (2.18)

and
∣

∣

∣
|xd − x(l)

c |2 − |xs − x(l)
c |2

∣

∣

∣
≤ C(l)t for some C(l) > 0.

Then, we have the asymptotic formula of um

um(t; x(1)
c , x(2)

c , · · · , x(J)
c ) = ua,(l)

m (t)
[

1 + o(1)
]

(2.19)

as x
(l)
c3 ≫ 1, where u

a,(l)
m can be defined by (2.8) replacing xc with x

(l)
c .

Moreover, assuming that t > λ(l)k−
1
2 , then

J
∑

j=1

∫ t

0

ua,(j)
m (s) ds = k−

3
4

(

πλ(l)
)

1
2

ua
m(λ(l)k−

1
2 )
[

1 + o(1)
]

(2.20)

as λ(l) ≫ 1, where λ(l) can be defined by (2.12) replacing xc with x
(l)
c .

Proof. As generalizations of Lemma 2.1, for each x
(j)
c , j = 1, 2, · · · , J such that

∣

∣

∣
|xd−x

(j)
c |2−|xs−x

(j)
c |2

∣

∣

∣
≤

C(j)t for some C(j) > 0, then u
(j)
m satisfies

u(j)
m (t) = ua,(j)

m (t) +O
(

ua,(j)
m (t)(x(j)

c3 )−1
)

, x(j)
c3 ≫ 1.

It is obvious that the dominant part of each u
a,(j)
m is the exponentially small term exp

(

− |xd−x(l)
c |2+|xs−x(l)

c |2
2vDt

)

.

Under the condition (2.18), we obtain

J
∑

j=1

ua,(j)
m (t) = ua,(l)

m (t)
[

1 + o(1)
]

,

which implies (2.19). Based on this and by the same proof of Theorem 2.3, we obtain (2.20).

Remark 2.5. The asymptotic behaviors (2.19) and (2.20) are related to x
(l)
c due to (2.18). In other words,

we can derive the same asymptotic behaviors of um and its time integration for each x
(l)
c , l = 1, 2, · · · , J , if

there always exist xd, xs ∈ ∂Ω such that (2.18) for each x
(l)
c , l = 1, 2, · · · , J .

3 Approximate peak time

In this section, we derive approximate peak time equations and define approximate peak times for the

cases of single point and multiple point targets, respectively. The accuracy of the approximate peak times is

numerically verified.

By (2.3), we look for an approximate peak time for Um as t, which satisfies

∂tU
a
m(t) = ℓ−1um(t)− ℓ−2

∫ t

0

um(s) ds = 0. (3.1)

In the following, approximating um by (2.7) and (2.19), we consider the cases of single point and multiple

point targets, respectively.
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3.1 Approximate peak time for single point target

For the single point target, replacing um with ua
m in (3.1) leads to

∫ t

0

ua
m(s) ds = ℓua

m(t), (3.2)

where ua
m is as in (2.8). By (2.12) and Theorem 2.3, (3.2) becomes

ℓe−
kt2+λ2

t f(t) = ℓua
m(t) ∼ k−

3
4 (πλ)

1
2 f(λk−

1
2 )e−2λ

√
k,

and from
(

xc3 + βvDt

xc3 + βvDλk−
1
2

)2

→ 1 as xc3 ≫ 1,

we can approximate (3.2) by

λe−
(
√

kt−λ)2

t = π
1
2 ℓ−1t

3
2 . (3.3)

Based on (3.3), we first define the approximate peak time as the root of the approximate peak time equation

P (t;λ) = 0, (3.4)

where P (t;λ) is given as

P (t; λ) := λe−
(
√

kt−λ)2

t − π
1
2 ℓ−1t

3
2 , t > λk−

1
2 . (3.5)

Then, we study the unique existence of the approximate peak time and numerically test its applicability to

different physical situations.

Theorem 3.1. Let xc ∈ Ω and xd, xs ∈ ∂Ω, which are assumed to satisfy the constraint (2.6), xc3 ≫ 1, and

ℓ > π
1
2 k−

3
4 λ

1
2 . Then, there exists a unique root tapeak of P (t) such that

P (t) > 0, λk−
1
2 < t < tapeak and P (t) < 0, t > tapeak.

Proof. To show the unique existence of tapeak, let us first examine the monotonicity of P (t; λ) for t > λk−
1
2 .

Consider

∂tP = λe−
(
√

kt−λ)2

t ×
(

− (kt2 − λ2)

t2

)

− 3

2
π

1
2 ℓ−1t

1
2 .

Then, we have ∂tP < 0 for t > λk−
1
2 , which means that P (t; λ) is a monotonically decreasing function for

t > λk−
1
2 . Hence, we only need to show that P (t; λ) > 0 at t = λk−

1
2 and lim

t→∞
P (t;λ) < 0. The second one

is obvious, and the first one follows from

P (λk−
1
2 ; λ) = λ

(

1− π
1
2 ℓ−1k−

3
4λ

1
2

)

.

The proof of Theorem 3.1 is complete.

Next, we numerically examine the performance of the approximate peak time for different physical pa-

rameters D, µa, ℓ, and the depth of the target, xc3 . We evaluate the relative error of the approximate peak

time as

RelErrt :=
|tpeak − tapeak|

tpeak
, (3.6)

where the peak time tpeak and the approximate peak time tapeak are computed from (2.1) and (3.4), respec-

tively. Here, we compute Um(xd, t; xs) using a numerical integration with a time step 0.1 ps, then find the

peak time tpeak from the discretized time point, which gives the maximum of Um(xd, t; xs). Both tpeak, t
a
peak

9



and RelErrt depend on the physical parameters v, D, µa, ℓ, β and the depth xc3 . The parametersD, µa, and

v depend on the biological tissue types and conditions. Since there is a large variety of the reported values of

D and µa[2, 25], we choose some representative values for evaluating how the approximation performs under

the practical ranges of these parameters. We assume that the refractive index is a fixed value of 1.37 because

biological tissues dominantly consist of water, resulting in β only depending on D and the fixed light speed of

0.219 mm/ps. The fluorescence lifetime ℓ depends on the fluorophore molecule and its environment, but the

value is usually less than a few nano-seconds for typical organic fluorophore molecules [14]. The target depth

xc3 is limited by a detection limit of about 30mm [24]. If no otherwise specified, we always set xc3 = 20mm

and

v = 0.219mm/ps, D = 1/3mm, µa = 0.1mm−1, β = 0.5493mm−1, ℓ = 1000 ps, (3.7)

which are typical values in biological tissues. In Figure 3.1, we show the numerical results for fixed S-D

pair {xd, xs} = {(14, 10, 0), (6, 10, 0)}, the projected location of the target xc = (10, 10, xc3) and changed

xc3 , D, µa, ℓ.

Figures 3.1 (a) and (d) indicate that both the peak time and approximate peak time are increasing, while

the differences are decreasing with the fluorescence lifetime ℓ > 0. The decrease of the relative errors of the

approximated peak time is consistent with our approximation based on large ℓ ≫ 1 as in (2.2). Figures 3.1

(b) and (e) show that both the peak time, approximate peak time, and the relative errors of the approximate

peak time are decreasing with respect to absorption coefficient µa > 0. For fixed µa, the relative error

becomes smaller for smaller D, which is consistent with our approximation based on large λ≫ 1 as in (2.13).

Figure 3.1 (c) shows that both the peak time and approximate peak time are increasing with respect to the

depth of point target xc3 > 0 because the distance to the target becomes large. Interestingly, the increase is

almost linear with the depth, and this observation is consistent with other studies [6, 7]. However, Figure 3.1

(f) indicates no decrease in the relative error in spite of using the approximation given in (2.7). This is the

counterpart to our previous result on the approximation peak time for the case of zero fluorescence lifetime

ℓ = 0.

(a) (b) (c)
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Figure 3.1: Peak time, approximate peak time, and relative error for different physical parameters
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3.2 Approximate peak time for multiple point targets

For multiple point targets x
(j)
c , j = 1, 2, · · · , J , recall Corollary 2.4. Let xd, xs ∈ ∂Ω satisfying (2.18)

for some x
(l)
c , l = 1, 2, · · · , J . Hence, we can define the approximate peak time t

a,(l)
peak to x

(l)
c as the root of

the approximate peak time equation

P (l)(t, λ(l)) = 0, (3.8)

where P (l)(t, λ(l)) can be defined by (3.5) replacing λ with λ(l) :=
(

|x̂d−x(l)
c |2+|x̂s−x(l)

c |2
2vD

)
1
2

. From Theorem

3.1, there exists a unique root of P (l)(t; λ(l)) for t ∈ (λ(l)k−
1
2 , ∞). As mentioned by Remark 2.5, we can

define the unique approximate peak time t
a,(l)
peak for each x

(l)
c , l = 1, 2, · · · , J , if xd, xs ∈ ∂Ω satisfy (2.18).

Next, we numerically verify the accuracy of each approximate peak time t
a,(l)
peak, l = 1, 2, · · · , J, for dif-

ferent S-D pairs. Let us assume there are two point targets, i.e., J = 2 in (1.4), with locations x
(1)
c =

(5, 10, 20), x
(2)
c = (15, 10, 20). Setting the physical parameters as (3.7), the peak time tpeak and its approx-

imations t
a,(l)
peak, l = 1, 2, can be calculated for any S-D pair by using (2.1) and (3.8), respectively. Define a

set of S-D pairs as

{

{x(m,n)
d , x(m,n)

s } := {(1 +m, n, 0), (−1 +m, n, 0)}, m, n = 0, 1, · · · , 20
}

. (3.9)

Figure 3.2 (a), (b) and (c) plot the values of the peak time tpeak(x
(m,5)
d , x

(m,5)
s ) and the approximate peak

times t
a,(1)
peak(x

(m,5)
d , x

(m,5)
s ), t

a,(2)
peak(x

(m,5)
d , x

(m,5)
s ) at m = 0, 1, · · · , 20, respectively. We find that t

a,(1)
peak and

t
a,(2)
peak have symmetric shapes, and give a good approximation to tpeak for m < 10 and m > 10, respectively,

since the condition (2.18) is satisfied for m < 10 and m > 10 to x
(1)
c and x

(2)
c , respectively. In other words, as

long as the chosen S-D pair satisfies (2.18) to some x
(l)
c , l = 1, 2, · · · , J , the defined t

a,(l)
peak can approximate

tpeak very well.

Let us define the approximate peak time for these two point targets as follows:

tapeak(x
(m,n)
d , x

(m,n)
d ) :=

{

t
a,(1)
peak(x

(m,n)
d , x

(m,n)
d ), m = 0, 1, · · · , 10, n = 0, 1, · · · , 20,

t
a,(2)
peak(x

(m,n)
d , x

(m,n)
d ), m = 11, 12, · · · , 20, n = 0, 1, · · · , 20.

(3.10)

which is plotted for all S-D pairs (3.9) in Figure 3.2 (d). Comparing with tpeak shown in Figure 3.2 (e), they

have the same shape. The relative error between tpeak and tapeak defined by (3.10) is shown in Figure 3.2 (f),

which implies the accuracy of tapeak defined by (3.10).

4 Reconstruction algorithm

In this section, we study the mathematical properties of the approximate peak time and then numerically

verify them. Based on the properties of the peak time, we develop a bisection reconstruction algorithm

and a boundary-scan reconstruction algorithm for single point and multiple point targets, respectively, both

of which include two stages. In the first stage, we reconstruct the first two coordinates of each target by

using the properties of peak time. Then, the third coordinate of each target is reconstructed by solving the

approximate peak time equation.

4.1 Properties of peak time related to target location

In this subsection, we rigorously prove some properties of the approximate peak time related to the

distance between the target location and the S-D pair, which are also numerically verified to the peak time.

We first state the following monotonicity of P (λ; t) defined by (3.5) with respect to λ.
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Figure 3.2: Peak time, approximate peak time, and relative error for different S-D pairs

Lemma 4.1. For t > 0, P (λ; t) is a monotonically increasing function for λ ∈ (0, tk
1
2 ).

Proof. Let us examine the monotonicity of P (λ; t) by considering

∂λP =

(

1 +
2λ(
√
kt− λ)

t

)

e−
(
√

kt−λ)2

t .

Due to the assumption λ < tk
1
2 given in Theorem 2.3, we have ∂λP > 0 for λ ∈ (0, tk

1
2 ).

By showing the properties of tapeak related to λ, we can obtain the solvability of (xc1 , xc2) under additional

assumptions on S-D pairs as follows.

Theorem 4.2. For S-D pairs x
(n)
d , x

(n)
s ∈ ∂Ω, n = 1, 2, we have the following equivalence

t
a,(1)
peak ≥ t

a,(2)
peak ⇐⇒ λ(1) ≥ λ(2), (4.1)

where t
a,(n)
peak := tapeak(x

(n)
d , x

(n)
s ; xc) and λ(n) := λ(x

(n)
d , x

(n)
s ; xc), n = 1, 2. If we assume that S-D pairs

satisfy

|x(1)
d − x(1)

s | = |x
(2)
d − x(2)

s |, (4.2)

t
a,(2)
peak attains its unique minimum when x

(2)
d and x

(2)
s satisfy

xc1 =
x
(2)
d1

+ x
(2)
s1

2
, xc2 =

x
(2)
d2

+ x
(2)
s2

2
. (4.3)

where x
(2)
dj

and x
(2)
sj , j = 1, 2, denote the j-th coordinate of x

(2)
d and x

(2)
s , respectively.

If we further assume that S-D pairs satisfy

x(1)
s1 − x(2)

s1 = x
(1)
d1
− x

(2)
d1

, x(1)
s2 = x(2)

s2 , x
(1)
d2

= x
(2)
d2

, (4.4)
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then, t
a,(1)
peak = t

a,(2)
peak implies

xc1 =
x
(1)
s1 + x

(2)
d1

2
. (4.5)

Similarly, if

x(1)
s2 − x(2)

s2 = x
(1)
d2
− x

(2)
d2

, x(1)
s1 = x(2)

s1 , x
(1)
d1

= x
(2)
d1

, (4.6)

then, t
a,(1)
peak = t

a,(2)
peak implies

xc2 =
x
(1)
s2 + x

(2)
d2

2
. (4.7)

Proof. By Theorem 3.1 and for λ(n), there exists a unique t
a,(n)
peak satisfying λ(n) < t

a,(n)
peak k

1
2 such that

P (t
a,(n)
peak ; λ

(n)) = 0, n = 1, 2. (4.8)

We divide the proof of the equivalence (4.1) into two steps. We first prove the equivalence t
a,(1)
peak > t

a,(2)
peak ⇔

λ(1) > λ(2). Suppose that t
a,(1)
peak > t

a,(2)
peak . Hence, we have

λ(2) < t
a,(2)
peakk

1
2 < t

a,(1)
peakk

1
2 . (4.9)

By the proof of Theorem 3.1, we have

t
a,(2)
peak = t

a,(2)
peak = t

a,(2)
peak , (4.10)

where

t
a,(2)
peak := sup{t > 0 : P (t′; λ(2)) > 0 (λ(2)k−

1
2 < t′ < t)},

t
a,(2)
peak := inf{t > 0 : P (t′; λ(2)) < 0 (t′ > t)}.

(4.11)

Then, t
a,(1)
peak > t

a,(2)
peak implies

0 = P (t
a,(2)
peak ; λ

(2)) > P (t
a,(1)
peak ; λ

(2)). (4.12)

Combining this with P (t
a,(1)
peak ; λ

(1)) = 0, we have

P (t
a,(1)
peak ; λ

(1)) > P (t
a,(1)
peak ; λ

(2)).

By Lemma 4.1 together with (4.9), we obtain λ(1) > λ(2).

Conversely, we assume that λ(1) > λ(2), which also gives the condition

λ(2) < λ(1) < t
a,(1)
peakk

1
2 .

Combining this with Lemma 4.1, we have

0 = P (t
a,(1)
peak , λ

(1)) > P (t
a,(1)
peak , λ

(2)).

Since P (t
a,(2)
peak , λ

(2)) = 0, we arrive at (4.12). Due to

λ(2) < λ(1) < t
a,(1)
peakk

1
2 and λ(2) < t

a,(2)
peakk

1
2 ,

the relation (4.12) implies t
a,(1)
peak > t

a,(2)
peak from the proof of Theorem 3.1.

Next, we prove the equivalence t
a,(1)
peak = t

a,(2)
peak ⇔ λ(1) = λ(2). Assuming that λ(1) = λ(2), it is obvious that

t
a,(1)
peak = t

a,(2)
peak by using the uniqueness of the approximate peak time. On the other hand, we assume that

t
a,(1)
peak = t

a,(2)
peak . From (4.8), we have

t
a,(1)
peak(ln λ

(1) − lnλ(2)) = (
√
kt

a,(1)
peak − λ(1))2 − (

√
kt

a,(1)
peak − λ(2))2. (4.13)
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For fixed λ(1), the left hand side of (4.13) increases as λ(2) ∈ (0, t
a,(1)
peakk

1
2 ) increases, monotonically. Similarly,

the right-hand side of (4.13) decreases monotonically. Hence, there must be λ(1) = λ(2) in (4.13).

The value λ(2) has a unique smallest value whenever x
(2)
d and x

(2)
s satisfy the condition (4.3). That is,

(4.3) gives the condition of taking the minimal approximate peak time. The uniqueness has been proven in

Theorem 3.1.

With an additional assumption (4.4), let L := x
(1)
s1 − x

(2)
s1 = x

(1)
d1
− x

(2)
d1

. We have proved the fact that

t
a,(1)
peak = t

a,(2)
peak implies λ(1) = λ(2), which gives

(x
(1)
d1
− xc1)

2 + (x(1)
s1 − xc1)

2 = (x
(2)
d1
− xc1)

2 + (x(2)
s1 − xc1)

2. (4.14)

Substituting x
(1)
d1

= L+ x
(2)
d1

and x
(1)
s1 = L+ x

(2)
s1 into above equation, there is a unique solution

xc1 =
x
(2)
d1

+ x
(2)
s1 + L

2
=

x
(1)
s1 + x

(2)
d1

2
.

Under the assumption (4.6), xc2 can be uniquely determined from (4.14).

In the following, we numerically verify that the peak time possesses the same properties given in Theorem

4.2.

Let xc = (10, 10, 20) and the physical parameters be (3.7). We compute the peak time, the approximate

peak time, and the relative error for a set of S-D pairs defined as
{

{x(m,n)
d , x(m,n)

s } = {(4 +m, n, 0), (−4 +m, n, 0)} , m, n = 0, 1, · · · , 20
}

, (4.15)

which are plotted in Figure 4.1. For simplicity, we write

t
(m,n)
peak := tpeak(x

(m,n)
d , x(m,n)

s ; xc), t
a,(m,n)
peak := tapeak(x

(m,n)
d , x(m,n)

s ; xc),

λ(m,n) := λ(x
(m,n)
d , x(m,n)

s ; xc), RelErr
(m,n)
t := RelErrt(x

(m,n)
d , x(m,n)

s ; xc).

Here, the relative error RelErr
(m,n)
t has a similar definition given in (3.6). We mention that each grid point

(m, n) in Figure 4.1 (a), (b) and (c) corresponds to t
(m,n)
peak , t

a,(m,n)
peak and RelErr

(m,n)
t , respectively.

(a) (b) (c)

Figure 4.1: (a) peak time, (b) approximate peak time, and (c) relative error for S-D pairs defined by (4.15)

We have the following observations of the peak time from the results shown in Figure 4.1:

(i) Uniqueness: there always exists only one peak time for each S-D pair defined by (4.15).

(ii) Order relation: t
(m,n)
peak decreases as (m,n) → (10, 10), since λ(m,n) decreases as (m,n) → (10, 10). We

obtain the smallest peak time at {x(10,10)
d , x

(10,10)
s }, which satisfies x

(10,10)
d1

+ x
(10,10)
s1 = 2xc1 , x

(10,10)
d2

+

x
(10,10)
s2 = 2xc2 , i.e., (4.3).
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(iii) Symmetry: for any (m1, n1) and (m2, n2) satisfying λ(m1,n1) = λ(m2,n2), we observe t
(m1,n1)
peak = t

(m2,n2)
peak

from the circular contour shape of the peak times as shown in the bottom plot of Figure 4.1 (a). It

is easy to verify the solvability of (xc1 , xc2) given in (4.5) and (4.7), since the center of the circular

contour shape is (xc1 , xc2).

(iv) Accuracy: the relative error shown in Figure 4.1 (c) indicates a good approximation of the approximate

peak time.

Despite the limited numerical results, it is reasonable to use the approximate peak time equation and the

properties of the approximate peak time to formulate a scheme reconstructing the location of the unknown

point target. Hence, unless specified, we do not distinguish the peak time and the approximate peak time in

the following parts. Here, we remark that we will set S-D pairs satisfying the assumption (4.4) or (4.6) in

the scheme since (4.4) and (4.6) directly imply (4.2).

4.2 Bisection reconstruction algorithm for reconstructing single point target

For the single point target xc, the properties of the peak time in Theorem 4.2 only depend on (xc1 , xc2).

Hence, we divide the reconstruction scheme into the following two stages:

Stage 1: Let (xc1 , xc2) be inside of a rectangular region of interest (ROI). By using the peak time as an

index, we use the bisection method to gradually shrink ROI and stop by some criterion. We let the

center of the updated ROI be the reconstruction (xinv
c1 , xinv

c2 ).

Stage 2: Substituting a set of parameters xd, xs ∈ ∂Ω, t = tpeak(xd, xs; xc) and (xc1 , xc2) = (xinv
c1 , xinv

c2 )

into (3.5), the depth xc3 can be reconstructed by finding the positive root of (3.4).

Now, we give a detailed explanation of Stage 1. Let ROI := (xl, xr) × (xb, xt) ⊂ ∂Ω. We define four

S-D pairs with L > 0 as

{x(1)
d , x

(1)
s } :=

{

(xl +
L
2 , xb, 0), (xl − L

2 , xb, 0)
}

, {x(2)
d , x

(2)
s } :=

{

(xl +
L
2 , xb, 0), (xr − L

2 , xb, 0)
}

,

{x(3)
d , x

(3)
s } :=

{

(xr +
L
2 , xt, 0), (xr − L

2 , xt, 0)
}

, {x(4)
d , x

(4)
s } :=

{

(xl +
L
2 , xt, 0), (xl − L

2 , xt, 0)
}

.
(4.16)

By comparing the order relation of four corresponding peak times t
(n)
peak := tpeak(x

(n)
d , x

(n)
d ; xc), n = 1, 2, 3, 4,

we halve the current ROI and obtain an updated ROI, still denoted by ROI = (xl, xr) × (xb, xt). Then,

we repeat to set four S-D pairs as (4.16) and compare the order relation of the peak times. The algorithm

breaks out if a criterion is satisfied. We refer to this scheme as Algorithm 1. Here, we will use the symbol

“←” to represent the update.

It is obvious that there exists a unique reconstruction (xinv
c1 , xinv

c2 ) in Stage 1. We state the following

unique existence of reconstruction xinv
c3 from given tpeak.

Theorem 4.3. Let x∗
c be the true location. Assume that ℓ > π

1
2 k−

3
4 (λ∗)

1
2 with λ∗ := λ(xd, xs, x

∗
c).

For given peak time tpeak, there exists a unique positive reconstruction xinv
c3 such that λinv < tpeakk

1
2 and

P (λinv; tpeak) = 0, where λinv := λ(xd, xs, x
inv
c ) and P (λ; t) are defined by (2.12) and (3.5), respectively.

Proof. Due to xc3 > 0, proving the uniqueness of xinv
c3 is equivalent to proving the uniqueness of λinv.

From Lemma 4.1, we obtain that P (λ; tpeak) is monotonically increasing for λ ∈ (0, tpeakk
1
2 ). Due to

P (0; tpeak) < 0, we only need to compute the value P (λ; tpeak) at λ = tpeakk
1
2 ,

P (tpeakk
1
2 ; tpeak) = tpeakk

1
2 − π

1
2 ℓ−1t

3
2

peak > tpeakk
1
2 + k

3
4 (λ∗)−

1
2 t

3
2

peak > 0,

which implies the unique existence of λinv. From (2.12), we obtain that there exists a unique xinv
c3 .
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Algorithm 1 Reconstruct (xc1 , xc2) by using the bisection method

Input: ROI = (xl, xr)× (xb, xt), tolerances ǫ1, ǫ2 > 0 and distance L.

Step 1 Define four S-D pairs by (4.16).

Step 2 Compute t
(n)
peak, n = 1, 2, 3, 4, and update ROI.

1a) If t
(1)
peak = t

(2)
peak = t

(3)
peak = t

(4)
peak, break the loop and output xinv

c1 = xl+xr

2 , xinv
c2 = xb+xt

2 .

2a) If t
(1)
peak = t

(2)
peak < t

(3)
peak = t

(4)
peak, output x

inv
c1 = xl+xr

2 , update xt ← xb+xt

2 , ROI ← (xb, xt), break

the loop and go to Algorithm 2.

2b) If t
(1)
peak = t

(2)
peak > t

(3)
peak = t

(4)
peak, output x

inv
c1 = xl+xr

2 , update xb ← xb+xt

2 , ROI← (xb, xt), break

the loop and go to Algorithm 2.

2c) If t
(1)
peak = t

(4)
peak < t

(2)
peak = t

(3)
peak, output x

inv
c2 = xb+xt

2 , update xr ← xl+xr

2 , ROI← (xl, xr), break

the loop and go to Algorithm 2.

2d) If t
(1)
peak = t

(4)
peak > t

(2)
peak = t

(3)
peak, output x

inv
c2 = xb+xt

2 , update xl ← xl+xr

2 , ROI← (xl, xr), break

the loop and go to Algorithm 2.

3a) If t
(1)
peak < {t(2)peak, t

(3)
peak, t

(4)
peak}, update xr ← xl+xr

2 , xt ← xb+xt

2 , ROI← (xl, xr)× (xb, xt).

3b) If t
(2)
peak < {t(1)peak, t

(2)
peak, t

(4)
peak}, update xl ← xl+xr

2 , xt ← xb+xt

2 , ROI← (xl, xr)× (xb, xt).

3c) If t
(3)
peak < {t(1)peak, t

(2)
peak, t

(4)
peak}, update xl ← xl+xr

2 , xb ← xb+xt

2 , ROI← (xl, xr)× (xb, xt).

3d) If t
(4)
peak < {t(1)peak, t

(2)
peak, t

(3)
peak}, update xr ← xl+xr

2 , xb ← xb+xt

2 , ROI← (xl, xr)× (xb, xt).

Step 3 Compute Err1 := xr − xl, Err2 := xt − xb and check stop criterion.

If Err1 ≤ ǫ1, Err2 ≤ ǫ2, stop and output xinv
c1 = xl+xr

2 , xinv
c2 = xb+xt

2 .

If Err1 > ǫ1, Err2 ≤ ǫ2, output x
inv
c2 = xb+xt

2 , go to Algorithm 2 with ROI := (xl, xr).

If Err1 ≤ ǫ1, Err2 > ǫ2, output x
inv
c1 = xl+xr

2 , go to Algorithm 2 with ROI := (xb, xt).

If Err1 > ǫ1, Err2 > ǫ2, go to Step 1.

Algorithm 2 Reconstruct xc1 or xc2 after the dimensionality reduction

Input: Reconstruction xinv
c2 , ROI=(xl, xr), tolerance ǫ1 and distance L.

Step 1 Define S-D pairs {x(n)
d , x

(n)
s }, n = 1, 2, by (4.16).

Step 2 Compare t
(1)
peak and t

(2)
peak and update ROI.

If t
(1)
peak = t

(2)
peak, break the loop and output xinv

c1 = xl+xr

2 .

If t
(1)
peak < t

(2)
peak, update xr ← xl+xr

2 , ROI← (xl, xr).

If t
(1)
peak > t

(2)
peak, update xl ← xl+xr

2 , ROI← (xl, xr).

Step 3 Compute Err1 = xr − xl and check stop criterion.

If Err1 ≤ ǫ1, break the loop and output xinv
c1 = xl+xr

2 . Otherwise, go to Step 1.

(Note: The case of inputting xinv
c1 , ROI = (xb, xt), ǫ2 and L can be done in the same way.)

16



4.3 Boundary-scan algorithm for reconstructing multiple point targets

In this subsection, we propose a boundary-scan method for reconstructing the locations of the multiple

point targets x
(1)
c , x

(2)
c , · · · , x(J)

c , which are assumed to be well-separated.

For each x
(l)
c , l = 1, 2, · · · , J , the relation between x

(l)
c and the approximate peak time t

a,(l)
peak defined by

(3.8) must be the same as described in Theorem 4.2, if we further assume that the S-D pair {xd, xs} also

satisfies (2.18). In this case, t
a,(l)
peak becomes smaller and smaller as {xd, xs} gets closer and closer to x

(l)
c ,

where the distance between xd and xs is fixed. Furthermore, it reaches its minimum when

x(l)
c1 =

xd1 + xs1

2
, x(l)

c2 =
xd2 + xs2

2
. (4.17)

As S-D pair {xd, xs} moves, if there is another target x
(k)
c , 1 ≤ k 6= l ≤ J, such that

|xd − x(k)
c |2 + |xs − x(k)

c |2 < |xd − x(j)
c |2 + |xs − x(j)

c |2, 1 ≤ j 6= k ≤ J,

we can define its approximate peak time t
a,(k)
peak by (3.8), which will have the same properties of t

a,(l)
peak as

described above when we move {xd, xs}.
For the peak time tpeak, recall the numerical verification given in Subsection 3.2. From Figure 3.2

(d) and (e), we can observe that both tapeak and tpeak become smaller and smaller as (m, n) approaches

(5, 10) or (15, 10). They reach local minima at (m, n) = (5, 10) and (m, n) = (15, 10), because the S-

D pairs {x(5,10)
d , x

(5,10)
s } and {x(15,10)

d , x
(15,10)
s } are the nearest S-D pairs of (3.9) to targets x

(1)
c and x

(2)
c ,

respectively. Furthermore, {x(5,10)
d , x

(5,10)
s } and {x(15,10)

d , x
(15,10)
s } satisfy (4.17) for x

(1)
c and x

(2)
c , respectively.

From the relative error between tapeak and tpeak shown in Figure 3.2 (f), we reasonably speculate that tpeak

approximately satisfies the approximate peak time equation (3.8) to any x
(j)
c , j = 1, 2, where the chosen S-D

pair satisfies (2.18).

From the above discussion, the key point of reconstructing the first two coordinates of the targets is

to search for the locally minimal peak time. Before proposing the reconstruction algorithm, we define the

well-separated multiple point targets as follows.

Definition 4.4. Let x
(j)
c ∈ Ω, j = 1, 2, · · · , J, be the locations of unknown point targets, where (x

(j)
c1 , x

(j)
c2 ) ∈

ROI := (xl, xr)× (xb, xt). We define a set Ξ of S-D pairs as

Ξ :=
{

{x(m,n)
d , x(m,n)

s } : {(xl +
L

2
+m

xr − xl

M
, xb + n

xt − xb

N
, 0), (xl −

L

2
+m

xr − xl

M
, xb + n

xt − xb

N
, 0)}

m = 0, 1, · · · , M, n = 0, 1, · · · , N, L > 0
}

. (4.18)

Let us further assume that there is a unique peak time for each {x(m,n)
d , x

(m,n)
s } ∈ Ξ. Then, there exists a

set P of the peak times corresponding to Ξ. We say that these J unknown point targets are well-separated if

there are J local minimums in P for J multiple point targets

t
min,(j)
peak := tmin

peak(x
min,(j)
d , xmin,(j)

s ; x(1)
c , · · · , x(J)

c ), j = 1, 2, · · · , J, (4.19)

where the S-D pair {xmin,(j)
d , x

min,(j)
s } ∈ Ξ is the S-D pair of the smallest distance from the j-th target in Ξ.

We propose a boundary-scan reconstruction algorithm to reconstruct well-separated multiple point targets

x
(j)
c , 1 ≤ j ≤ J, as in Algorithm 3.
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Algorithm 3 Boundary-scan reconstruction algorithm for reconstructing multiple point targets

Input: ROI=(xl, xr)× (xb, xt), distance L of S-D pair.

Step 1 Scan ROI by using S-D pairs (4.18) and record the peak times tpeak(x
(m,n)
d , x

(m,n)
s ), m =

0, 1, · · · , M, n = 0, 1, · · · , N.

Step 2 Reconstruct (x
(j)
c1 , x

(j)
c2 ), j = 1, 2, · · · , J, by

x(j),inv
c1 :=

x
min,(j)
s1 + x

min,(j)
d1

2
, x(j),inv

c2 :=
x
min,(j)
s2 + x

min,(j)
d2

2
, (4.20)

where {xmin,(j)
d , x

min,(j)
s } is a S-D pair of Ξ at which peak time takes the local minimum t

min,(j)
peak .

Step 3 Reconstruct x
(j)
c3 , j = 1, 2, · · · , J, by solving (3.8) for given {xd, xs} = {xmin,(j)

d , x
min,(j)
s }, t =

t
min,(j)
peak and (x

(j)
c1 , x

(j)
c2 ) = (x

(j),inv
c1 , x

(j),inv
c2 ).

5 Numerical experiments

In this section, we apply the proposed bisection reconstruction algorithm and boundary-scan reconstruc-

tion algorithm to the numerical experiments of single point and multiple point targets, respectively. In all

experiments, we set the physical parameters as (3.7).

Usually, noise, specifically time jitters, is unavoidable in the measurements. We perturb tpeak by

tδpeak :=
(

1 + δ̂ × (2 × rand(1)− 1)
)

× tpeak, (5.1)

where δ̂ is the relative noise level, and rand(1) generates a uniformly distributed random number on the

interval (0, 1). We compute the relative error of the reconstruction by the following formula:

RelErr =

J
∑

j=1

|x(j)
c − x

(j),inv
c |

|x(j)
c |

, (5.2)

where x
(j)
c and x

(j),inv
c are the actual and reconstructed location of the j-th target, respectively.

Let us first consider the single point target case and suppress the superscript (j) of x
(j)
c . We denote by

ROIinv the final ROI when the stop criteria of Algorithm 1 and Algorithm 2 are satisfied.

Example 5.1. Let xc = (7, 17, 20). By setting ROI=(0, 20)× (0, 20), L = 8 and ǫ1 = ǫ2 = 0.1 in Algorithm

1, we show the results of numerical reconstructions for different noise levels in Table 1.

Table 1: Reconstructions for different noise levels and fixed tolerances ǫ1 = ǫ2 = 0.1

xc δ̂ xinv
c RelErr ROIinv

(7, 17, 20)

0 (7.03, 17.03, 19.83) 6.46e-03 (6.88, 7.19)× (16.88, 17.19)

0.1% (6.76, 17.30, 19.79) 1.62e-02 (6.72, 6.80)× (17.27, 17.34)

1% (7.54, 16.99, 19.68) 2.31e-02 (7.50, 7.58)× (16.95, 17.03)

5% (7.85, 17.30, 19.08) 4.74e-02 (7.81, 7.89)× (17.27, 17.34)

For noise-free peak time (δ̂ = 0), the reconstruction is very close to the actual location, and its first two

coordinates are also included in ROIinv, which shows that the proposed algorithm is accurate. Considering
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the case of δ̂ > 0, although the first two coordinates of the reconstructions are not included in ROIinv, they

are still close to the true coordinates. The relative errors of these reconstructions from the noisy peak time

are still marginal, less than a few percent.

We mention that the maximum number of shrinks is 8 times for ǫ1 = ǫ2 = 0.1 in Stage 1. Next, we

reduce the number of shrinks by setting larger tolerances ǫ1 = ǫ2 = 1.25 in Example 5.1. We can still have

reasonable numerical results, which are shown in Table 2.

Table 2: Reconstructions for different noise levels and fixed tolerances ǫ1 = ǫ2 = 1.25

xc δ̂ xinv
c RelErr ROIinv

(7, 17, 20)

0 (6.88, 16.88, 19.81) 9.51e-03 (6.25, 7.50)× (16.25, 17.50)

0.1% (6.88, 16.88, 19.85) 8.06e-03 (6.25, 7.50)× (16.25, 17.50)

1% (8.13, 16.88, 20.07) 4.38e-02 (7.50, 8.75)× (16.25, 17.50)

5% (8.13, 16.88, 20.56) 4.65e-02 (7.50, 8.75)× (16.25, 17.50)

For ǫ1 = ǫ2 = 1.25, the number of shrinks reduces to 4 times in Stage 1. Compared with the results

shown in Table 1, we obtain that a finite number of shrinks can also give a good result. Now, ROIinv contains

the true location of target for δ̂ = 0.1%. In this case, the relative error is smaller than the one shown in

Table 1. However, the true location of the target is not included in ROIinv for δ̂ = 1% and δ̂ = 5%. It is

easy to reason that there is a false shrink occurred at the third shrink. Even in this case, we can get the

reconstructions similar to Table 1. In short, larger tolerances for larger noise levels may result in a much

better reconstruction of the first two coordinates (xinv
c1 , xinv

c2 ). Moreover, the reconstruction of the depth xinv
c3

is less affected by the reconstruction (xinv
c1 , xinv

c2 ).

The next experiment is to verify the proposed algorithm for a deeply embedded target.

Example 5.2. Let xc = (6, 11, 30). We show the results of numerical reconstructions for different noise

levels in Table 3 with the same inputs as Example 5.1.

Table 3: Reconstructions for different noise levels and fixed tolerances ǫ1 = ǫ2 = 0.1

xc δ̂ xinv
c RelErr ROIinv

(6, 11, 30)

0 (6.09, 10.78, 30.17) 9.06e-03 (5.94, 6.25)× (10.63, 10.94)

0.1% (5.66, 11.37, 30.17) 1.62e-02 (5.63, 5.70)× (11.33, 11.41)

1% (7.54, 11.99, 30.02) 5.63e-02 (7.50, 7.58)× (11.95, 12.03)

5% (7.85, 17.30, 29.79) 2.02e-01 (7.81, 7.89)× (17.27, 17.34)

For δ̂ = 0, we obtain a similar result as Example 5.1, that the reconstruction is very close to the true

location. For δ̂ = 0.1% and δ̂ = 1%, the reconstructions approximate the actual location within small relative

errors. The reconstruction becomes worse for δ̂ = 5%, since the peak time is more delayed as the target depth

increases, causing an increase in the order of noise. Comparing the results shown in Example 5.1, even for a

deeper unknown target, the reconstruction xinv
c3 is less affected by the noise.

Next, we use the following numerical example to verify the performance of Algorithm 3 for reconstructing

the locations of two unknown point targets.

Example 5.3. Let x
(1)
c = (3.3, 5.2, 16), x

(2)
c = (17.4, 16.7, 18) and ROI := (0, 20)× (0, 20). We choose the

S-D pairs as (4.18) for M = N = 20, L = 2. The numerical results are shown in Table 4 for different noise

levels.

From Figure 5.1, there exist two local minima t
min,(1)
peak = 546.1 and t

min,(2)
peak = 603.5 measured by S-D

pairs {x(3,5)
d , x

(3,5)
s } and {x(17,17)

d , x
(17,17)
s }, respectively, where the scanning S-D pairs are defined by (4.18).
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Table 4: Reconstructions for different noise levels in Example 5.3

x
(1)
c , x

(2)
c δ̂ x

(1),inv
c x

(2),inv
c RelErr

(3.3, 5.2, 16), (17.4, 16.7, 18)

0 (3.00, 5.00, 15.67) (17.00, 17.00, 17.72) 4.75e-02

0.1% (3.00, 5.00, 15.71) (17.00, 17.00, 17.79) 4.51e-02

1% (3.00, 6.00, 15.70) (18.00, 17.00, 17.84) 7.58e-02

Hence, we can reconstruct these two point targets by using Algorithm 3. For the measured peak times

containing noise, we first apply the moving average method with a 3× 3 grid to smooth the noisy peak times

since the algorithm will fail due to the presence of several local minimal peak times. For instance, looking at

the cross-section of the peak time, the noisy peak time, and the smoothed noisy peak time shown in Figure

5.2, several local minimal peak times in tδpeak(x
(m,5)
d , x

(m,5)
s ) and tδpeak(x

(m,17)
d , x

(m,17)
s ) for m = 0, 1, · · · , 20

are clearly visible. After smoothing the noisy peak times, we can distinguish two local minima in the noisy

peak times tδpeak(xd, xs), {xd, xs} ∈ Ξ. Then, we can reconstruct the locations of targets with a similar

discussion for the noise-free peak times. The numerical results verify that the proposed algorithm is feasible

to reconstruct the locations of multiple point targets.
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Figure 5.1: Noise-free peak times measured by different S-D pairs (4.18) in Example 5.3: (a) 3D contour plot

of peak times for m, n = 0, 1, · · · , 20, (b) peak times for m = 0, 1, · · · , 20, n = 4, 5, 6, 16, 17, 18

6 Conclusions and future work

In this paper, we studied the reconstruction of the locations of unknown point targets from peak times,

which is the time when the temporal response function Um(xd, t; xs) reaches its maximum for a given S-D

pair {xd, xs} on the measurement surface. Further, we considered the peak time for the nonzero lifetime

ℓ > 0 as an extension of our previous paper [4]. Analyzing the asymptotic behavior of Um, we derived the

approximate peak time equation as a nonlinear equation and could define the approximate peak time by its

positive root. We proved the properties of approximate peak time (uniqueness, order relation, symmetry,

and accuracy) and provided numerical verification of them. Based on these analyses, we proposed bisection

reconstruction and boundary-scan algorithms to reconstruct the location of the point targets. We remark on

the advantage of considering the peak time. The peak time is uniquely and visibly identified. It is the least

noisy data point in Um(xd, t; xs), making it potentially robust for reconstruction.
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Figure 5.2: Peak times, noisy peak times (δ̂ = 0.1%) and smoothed noisy peak times for m = 0, 1, 2, · · · , 20
and n = 5, 17

The novelties of this paper can be summarized as follows

• The case of ℓ > 0 makes the mathematical model (1.1)–(1.2) better fit the physical processes of FDOT.

• We found no other theoretical study considering the effect of ℓ on the peak time and defining the

approximate peak time. The obtained analytical result is reliable and convenient to be applied to our

inverse problem.

• The proposed bisection reconstruction and boundary-scan algorithms are less time-consuming, efficient,

robust, and accurate for identifying the locations of the point targets without any regularization.

We can further say that based on our asymptotic analysis, we have established reconstructing the locations

of multiple points targets using the relation between the peak time and the S-D pairs. In the analysis, the

distance function d(xc, t) := (|xd − xc|2 + |xs − xc|2)/t plays the most important role, where {xd, xs} is the
S-D pair. Actually, the nearest point target xc to {xd, xs} is on the sphere centered at (xd + xs)/2 with the

radius depending on t which is the level surface of the distance function, and we have used this to define the

well-separated multiple point targets.

As for much more practical situations, we will consider the following cases in our next FDOT study. They

are the cases where the targets are not point targets, and the measurement surface ∂Ω is curved. The first

task to start this study will be to have the Green function for the FDOT under the setup, including these

cases. This is available by easily modifying the argument in one of our coauthors’ papers [21] giving the

Green function for the interior transmission problem. The advantage of the mentioned argument is based on

using the parabolic scaling which immediately gives the dominant part of the Green function. In relation to

this, we note that the distance function is invariant under the parabolic scaling. Assuming the targets are

well-separated convex domains and looking at the dominant part of the Green function, we speculate that

we will find a similar situation as for the point target case in a neighborhood of the point that the mentioned

sphere touches the target.
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