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Abstract

Recently, inspired by the concept of sparsity,
Mixture-of-Experts (MoE) models have gained
increasing popularity for scaling model size
while keeping the number of activated param-
eters constant. In this study, we thoroughly
investigate the sparsity of the dense LLaMA
model by constructing MoE for both the at-
tention (i.e., Attention MoE) and MLP (i.e.,
MLP MoE) modules in the transformer blocks.
Specifically, we investigate different expert con-
struction methods and granularities under the
same activation conditions to analyze the im-
pact of sparsifying the model. Additionally,
to comprehensively evaluate the model’s capa-
bilities across various domains (e.g., conver-
sation, code, math) after sparsification, we ap-
ply sparsity to the instructed large language
models (LLMs) and construct instructed MoE
models. To counteract the performance degra-
dation resulting from increased sparsity, we
design a two-stage post-training strategy to
enhance model performance. Experiments
on the LLaMA3 model demonstrate the po-
tential effectiveness of this approach for fu-
ture developments of instructed MoE models.
The source codes and models are available
at: https://github.com/OpenSparseLLMs/
LLaMA-MoE-v2.

1 Introduction

Since the introduction of Mixtral (Jiang et al.,
2024), Deepseek (DeepSeek-AI, 2024), and Gem-
ini (Reid et al., 2024), Mixture-of-Experts (MoE)
have surged in popularity across the academic and
industrial spheres. It contains multiple experts but
only activates a small part of experts, thus effec-
tively scaling the model parameter while keeping
the activation constant.

In this paper, we aim to explore the sparsity of
the large language model by converting it to the
MoE model. Previous works (Komatsuzaki et al.,
2022; He et al., 2024; Zhu et al., 2024b; Team,
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Figure 1: (a) Previous works construct MLP MoE mod-
els based on pre-trained LLMs and rely on continual
pre-training to recover model performance. (b) In con-
trast, our work builds sparse Attention MoE and MLP
MoE models by applying sparsification to the instructed
LLM. Furthermore, we utilize post-training to refine the
instructed MoE models.

2024; Wei et al., 2024) construct the MoE mod-
els from the dense pre-trained LLMs by convert-
ing the Multi-Layer Perceptron (MLP) parameters
into experts. Subsequently, these MoE models
need continual pre-training to improve their per-
formance which consumes huge computation re-
sources. However, such paradigms lead to two
significant concerns. First, these works do not take
into account the sparsity present in the attention
module, and not all attention heads hold equal sig-
nificance. Second, as shown in Figure 1(a), previ-
ous constructed MoE models need two-stage train-
ing including both continual pre-training and post-
training to build the instructed MoE, which is both
resource-consuming and complex.

In this paper, we aim to study the above two is-
sues. Firstly, we comprehensively study the expert
construction strategies for both MLP and attention
modules in the Transformer block as shown in Fig-
ure 1(b). Considering that the attention module
naturally possesses a sparsification property, where
different attention heads in LLMs exhibit heteroge-
neous attention patterns (Fu et al., 2024), therefore
we integrate multiple attention heads to form a sin-
gle expert conceptually. To group attention heads
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as experts, we take into account the characteristics
of grouped query attention (Ainslie et al., 2023)
and the expert granularity. Instead, the knowledge
stored in the MLP is highly mixed. An intuitive
approach to building experts is directly dividing the
MLP into multiple experts (Zhu et al., 2024b). Con-
sidering there is shared knowledge between differ-
ent downstream tasks, in this work, we also explore
the residual version of MLP MoE (DeepSeek-AI,
2024; Rajbhandari et al., 2022), which extracts the
common knowledge from the MLP layers to serve
as shared experts, while the remaining parts of the
MLP will activate a portion.

With the above sparsity scheme, we can con-
struct both Attention MoE and MLP MoE mod-
els. To thoroughly explore the relationship between
model performance and sparsity, as shown in Fig-
ure 1(b), we make the first attempt to apply this
sparsification strategy to the instructed dense LLM,
thereby building an instructed MoE model. How-
ever, a significant performance drop is observed be-
tween the MoE models and the original dense LLM,
due to the reduced number of activated parameters
and the introduction of gate networks for expert
routing. As a result, the newly obtained MoE mod-
els require further training to recover performance.
Instead of relying on the costly process of contin-
ual pre-training, we utilize post-training techniques,
such as instruction tuning (IT), to enhance the per-
formance of the instructed MoE models. Specifi-
cally, we devise a two-stage training paradigm to
improve the model’s performance across conver-
sational, coding, and mathematical tasks. To vali-
date the effectiveness of our approach, we sparsify
the LLaMA-3 8B model into both MLP-MoE and
Attention-MoE models. Experimental results on
multiple benchmarks demonstrate the effectiveness
and efficiency of our framework.

To sum up, our main contributions are summa-
rized as follows:

• We comprehensively explore the sparsity of
the LLaMA model from both the attention
and MLP modules by building correspond-
ing MoE models, considering different expert
construction strategies and expert granularity.

• We make the first attempt to build MoE mod-
els from the instructed dense LLM and recover
model performance from the post-training
data. Moreover, we devise a two-stage post-
training pipeline to imporve the model’s capa-
bilities across various aspects.

• To verify the effectiveness of our framework,
we sparsify the LLaMA3-8B model into MoE
models. The performance on ten benchmarks
demonstrates the effectiveness of our frame-
work for building instructed MoE models.

2 Related Work

Mixture-of-Experts (MoE). Recently, Mixture-of-
Experts (MoE) (Zhang et al., 2024; Lu et al., 2024;
Zhu et al., 2024a) have surged in popularity across
the academic and industrial spheres. MoE (Fedus
et al., 2022; Rajbhandari et al., 2022; Lepikhin
et al., 2020) is designed to enhance the capacity of
deep neural networks while keeping computational
costs low. In this paradigm, only a selected subset
of parameters, referred to as experts, is activated
for each input. Shazeer et al. (2017) are the first to
integrate an MoE layer between LSTM layers. The
Switch Transformer (Fedus et al., 2022) enhances
this by simplifying the gating mechanism to select
only the top-1 expert for each token. Gshard
(Lepikhin et al., 2020) advances this by refining
the top-2 expert routing strategy. Recently, a
large number of MoE models have been designed
(Jiang et al., 2024; DeepSeek-AI, 2024; Shen et al.,
2024; Team, 2024). Among them, Deepseek-MoE
(DeepSeek-AI, 2024) introduces shared experts
which are dedicated to capturing and consolidating
common knowledge across varying contexts.
Meanwhile, it designs fine-grained experts and
substantially enhances the combinatorial flexibility
of activated experts. JetMoE (Shen et al., 2024)
is composed of sparse attention and feedforward
experts.

Expert Construction from Dense Models. Pre-
vious work on obtaining an MoE model from a
dense model typically employs duplication or par-
titioning methods. One intuitive method is to build
an MoE by replicating the MLP layer. Sparse up-
cycling (Komatsuzaki et al., 2022) first explores
this idea based on the T5 model. Recently, follow-
ing this line, Wei et al. (2024) experiment on the
decoder-only models and copy the MLP of the orig-
inal dense model, forming a 16-expert MoE and
selecting the top-2 experts. Within this paradigm,
the MoE model’s total parameters become much
larger than those of the dense model, and there is
also an increase in the number of parameters being
activated. There is another line of work that splits
the parameters of the FFNs. Zhu et al. (2024b)
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Figure 2: (a) We explore the sparsity of LLaMA by building MoE layers for both the attention and MLP modules. (b)
For attention MoE, the attention heads are grouped as experts. (c) For MLP MoE, we extract the shared knowledge
as a residual expert and then divide the other parts into multiple independent experts.

splits the parameters of MLP modules and then
continues pretraining this converted MoE model. It
explores different splitting strategies for the MLP
layer. More recently, some work (Team, 2024; He
et al., 2024) involves splitting the MLP first and
then duplicating it to create fine-grained experts.

3 Methodology

In this paper, we explore the sparsity of the LLaMA
model by building MoE models based on it, which
construct experts for both the attention and MLP
modules. The overall framework is illustrated in
Figure 2. After converting to MoE models, only a
part of the model parameters will be activated dur-
ing the training and inference stage. Subsequently,
we devise a two-stage post-training strategy to fur-
ther improve the model performance. Finally, the
constructed MoE models can handle different tasks.

3.1 Expert Construction of Attention

Before introducing our expert construction method
for attention, we first review the standard multi-
head self-attention mechanism (Vaswani, 2017).
For an input token X ∈ Rdh , the self-attention is
as follows:

Attn(Q,K, V ) = Softmax

(
QKT

√
dk

)
V, (1)

Q = XWQ, K = XWK , V = XWV , (2)

where WQ,WK ,WV ∈ Rdh×dk are projection
matrics, dh is the hidden size, and dk is the pro-
jected dimension in attention.

To improve the representation capability of
the self-attention layer, the multi-head attention
(MHA) calculates h distinct low-dimensional pro-
jections of (Q,K, V ) and concatenates the outputs
of them, and finally performs a projection on the
concatenated result. The concatenated form of
multi-head attention can be represented as:

MHA(X) = Concat(H1, . . . ,Hh)WO, (3)

H i = Attn(Qi,Ki, Vi), (4)

Qi = XW i
Q, Ki = XW i

K , Vi = XW i
V , (5)

where we have W i
Q,W

i
K ,W i

V ∈ Rdh×
dk
h and

WO ∈ Rdk×dh . By considering WO as a matrix
aggregated from h heads W i

O, there exists a one-to-
one correspondence between the query, key, value,
and output heads, respectively.

Recently, the grouped query attention (GQA)
(Ainslie et al., 2023) has been widely used in large
language models, e.g. LLaMA3 (AI@Meta, 2024)
and LLaMA2 (Touvron et al., 2023), to replace the
standard MHA, which can effectively reduce the
size of the KV cache during inference. In GQA,
multiple query heads correspond to a single key
head in Eq. 4. For instance, in the LLaMA3-8B
model, there are 32 query heads but only 8 key
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and value heads. Thus, the query heads in GQA
have stronger constraints compared to MHA, as
consecutive query heads in GQA compute with the
same key and value head.

In this work, we convert the attention module
into multiple experts to explore the sparsity of
the attention module. For an attention module
H = {H1, . . . ,Hh} containing h heads, we group
these heads into multiple experts Ei in order, each
containing several heads. Finally, a router network
will activate the top-K experts. Thus, given the
input tokens X , the output of the attention MoE is
the weighted sum of the outputs from the selected
experts:

AttnMoE(X) =

h∑
i=1

giHiW
i
O, (6)

where gi denotes the importance score of the router
assigned to a specific attention expert.

3.2 Expert Construction of MLP

Different from the attention module, which is com-
posed of structured heads, the MLP module is
more flexible and fine-grained. Formally, the MLP
in LLaMA consists of three parts: an up projec-
tion Wup ∈ Rdh×n, a gate projection Wgate ∈
Rdh×n, and a down projection Wdown ∈ Rn×dh ,
where dh is the hidden size, and n is the num-
ber of intermediate neurons in MLP. Therefore,
each MLP module can be formulated as a set
of neurons S = {n1, . . . ,nn}, and each neu-
ron corresponds to a series of parameter vectors
ni := {Wup:,i,Wgate:,i,Wdowni,:}. In this paper,
we treat the expert construction in MLP as a parti-
tion problem of its intermediate neurons. Given the
neurons set S and the number of experts NE, we
aim to obtain a series of subsets S1, . . . ,SNE ∈ S,
with each forming an individual expert.

To study the sparsity of the MLP module, we in-
vestigate two kinds of MLP MoE models, namely
standard MLP MoE and residual MLP MoE. To
build the standard MLP MoE, we evenly divide the
parameters of the MLP into multiple experts. The
following section describes the process of building
the residual MLP MoE, which includes router ini-
tialization and importance-based neuron partition.

Router Initialization. The performance of MoE
models significantly lies in the router representa-
tion (Li and Zhou, 2024). To this end, we pro-
pose a clustering method to initialize the router

weights WR ∈ Rdh×NE using hidden features ex-
tracted from the original dense model. Specifically,
we prepare a validation data set Dval and feed the
data into the dense model, obtaining sets of hidden
features input to the MLP modules for all layers,
i.e., F1, . . . ,Fl and f ∈ Rdh ,∀ f ∈ Fi∈[1,l], where
l is the number of layers. Then, we perform a
balanced k-means clustering (Malinen and Fränti,
2014) using the L2 distance metric with NE cen-
troids on each Fi and get corresponding centroid
vectors Ci = {c1,i, . . . , cNE,i ∈ Rdh}. The ob-
tained centroid vectors are subsequently initialized
as the router weights, denoted as WRi ← Ci. This
design ensures that all router weights are both rep-
resentative as each stands for a set of nearest hidden
features, and balanced as all clustered sets are of
equal size.

Importance-Based Neuron Partition. Follow-
ing Zhu et al. (2024b), we retain NE function-
ally similar neuron sets to form the routed experts
ER1 , . . . ,ERNE

, and set aside the most-shared neu-
rons to form an always-activated shared expert ES.
The total number of experts is NE + 1. The main
adjustments we make to the partitioning strategy
are two-fold. First, the token labels are assigned
by the classification result from routers instead of
pre-clustered data clusters. Second, all neurons are
independent, i.e., there are no overlapped neurons
across different experts.

To be specific, we maintain a set of score vectors
V = {v1, . . . ,vNE ∈ Rn} initialized as zeros for
each layer, recording the importance of the interme-
diate neurons for all experts. Here we neglect the
layer index for simplicity. Given a hidden feature f ,
we calculate its importance sf ∈ Rn for all neurons
S by sf :=

∣∣f⊙∇fL(f)
∣∣, which measures the loss

change ∆L for each intermediate neuron when it
gets pruned (Lee et al., 2018; Zuo et al., 2022). We
then update the corresponding score vector vI by
vI := NI

NI+1vI + 1
NI+1sf , where I is the index

of the nearest expert for f determined by router
weights WR, and NI is the total number of features
assigned to expert I . This process assigns the to-
ken to the expert with the highest routing score,
which is denoted as I ← argmax(f ·WR). We
forward the whole validation set Dval to improve
the estimation precision.

After obtaining the importance of neurons for ex-
perts, we treat the partition of neurons as a balanced
assignment problem and follow the implementation
of Zhu et al. (2024b) to get the neuron subsets for
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routed experts ERi ← Si, i ∈ [1, NE], as well as
for the shared expert ES ← (S−

⋃
Si∈[1,NE]).

3.3 Load Balance and Total Training
Objective

Directly training an MoE model may face load im-
balance issues (Muennighoff et al., 2024), namely,
there is the risk of routing collapse, where the
model consistently chooses only a limited number
of experts, thereby hindering the adequate training
of other experts and limiting the overall perfor-
mance of the model.

Following previous works (Fedus et al., 2022),
we utilize load balancing loss to penalize the model
if it is unbalanced. To calculate it, we multiply the
fraction of tokens fi routed to a specific expert
Ei by the total routing probability Pi assigned to
Ei for a single batch, and then sum this across all
experts NE .

LLB = NE ·
NE∑
i=1

fi · Pi (7)

Thus, the total training objective for our MoE
models is balancing loss LLB and traditional cross-
entropy loss for language modelingLLM . Here, we
omit the specific loss of the cross-entropy loss. Fur-
thermore, we adopt a hyper-parameter α to balance
these two losses when training the MoE models.
For all experiments and all MoE models, we set
the hyper-parameter α to 0.01 (Zhu et al., 2024b;
Muennighoff et al., 2024).

Lall = LLM + αLLB (8)

3.4 Two-Stage Post-Training
After constructing the MoE models, we utilize
instruction tuning to recover the model’s perfor-
mance. To prompt the model to deal with dif-
ferent abilities, we collect open-source datasets
that encompass a diverse range of topics, including
general conversation, mathematical problems, and
code generation. Inspired by (Dong et al., 2023),
we adopt a two-stage training pipeline for instruc-
tion tuning. Specifically, in the first stage, we train
the constructed MoE models with general abilities
such as conversation and email writing. Subse-
quently, in the second stage, we equip the model
with math and coding abilities. It is worth noting
that during the second stage of training, we also in-
corporate some general ability data. This prevents
the model from losing its broader, more general

skills as it becomes more specialized in math and
code tasks.

4 Experiment

4.1 Training Datasets

In this paper, we propose a two-stage instruction
tuning process to recover the performance of our
partitioned MoE models. Our training dataset is
divided into two parts. The first part primarily
includes conversation data from sources such as
LIMA (Zhou et al., 2024), OpenHermes (Teknium,
2023), ShareGPT (Wang et al., 2023), BAAI Infin-
ity Instruct (BAAI, 2024), and Magpie (Xu et al.,
2024). In the second stage, we conduct experiments
using code and data from BAAI and MetaMathQA
(Yu et al., 2023), along with a small portion of con-
versation data from the first stage. The composition
of the dataset and the number of training tokens are
detailed in Table 2. Notably, we construct three ver-
sions of the dataset for first-stage instruction tuning,
ranging from 0.40B, 1.28B, to 2.50B tokens.

4.2 Benchmarks and Comparing Models

To comprehensively assess our model’s perfor-
mance under various criteria, we evaluate the fol-
lowing benchmarks: 32-shot BoolQ, 0-shot PIQA
(Bisk et al., 2020), 0-shot SciQ (Welbl et al., 2017),
5-shot MMLU (Hendrycks et al., 2020), 5-shot
Winogrande (Sakaguchi et al., 2021), 25-shot ARC-
Challenge (Clark et al., 2018), 10-shot HellaSwag
(Zellers et al., 2019), 8-shot GSM8K (Cobbe et al.,
2021), and the Pass@10 score for HumanEval
(Chen et al., 2021). We evaluate the results on com-
mon benchmarks from the LM Evaluation Harness1

(Gao et al., 2024). Moreover, as our framework is
applied to instructed models, we also utilize the
Instruction-Following Eval (IFEval) (Zhou et al.,
2023). In appendix, we present several generation
samples from our MoE model in Tables 3 and 4.

4.3 Implementation Details

In this paper, we conduct experiments on the
LLaMA3-8B model (AI@Meta, 2024) to inves-
tigate the sparsity of both the attention and MLP
modules by converting them to MoE. All models
are trained on 32 NVIDIA-A100 (80G) GPUs. We
train for two epochs during both the first-stage and
second-stage instruction tuning. Therefore, the

1For fair comparison and re-implementation, we use the
commit id d14b36e81aea4cef.
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Figure 3: (a) The performance of Attention MoE with different numbers of activated experts. (b) The performance
of Attention MoE with varying granularities while keeping the activation ratio to 50%. (c) The performance of the
MLP MoE model with different numbers of activated experts and varying expert types.

training budget is 5.0B tokens for the first-stage in-
struction tuning and 2.0B for the second stage. The
context length is 4096. To speed up training, we
pack multiple instances into one sample. The maxi-
mum learning rate is set to 2e-5 with a 0.03 warmup
ratio, and the final learning rate decays to 2e-6 us-
ing cosine scheduling. For both attention MoE and
MLP MoE, we apply a balance loss to promote an
even distribution of experts, with a coefficient of
0.01. Since our model is based on LLaMA3, we
adopt the same chat format2 to ensure versatile task
representation. More details on the implementation
can be found in our open-source code.

5 Analysis

In this section, we comprehensively investigate the
sparsity of the LLaMA model, specifically the (i)
attention and (ii) MLP module, and (iii) compare
the sparsity between them.

5.1 Exploring Sparsity of Attention

Takeaway: ❶ Activating less than half of the pa-
rameters in Attention leads to a significant perfor-
mance decline. ❷ Increasing the expert granularity
leads to performance improvement but too large
granularity damages.

In this section, we explore the sparsity of the at-
tention module by comparing different approaches
to building experts for Attention MoE. The exper-
iments in this study are limited to the first-stage
instruction tuning, where we assess the language
ability. All experiments are conducted with 0.40B
instruction tokens, as shown in Table 2. As shown
in Figure 3(a), we begin by splitting the attention
heads into 8 experts and activating different num-
bers of experts. For example, when two experts are
activated, we denote this configuration as “8top2”.

2https://llama.meta.com/docs/model-cards-and-prompt-
formats/meta-llama-3/

When more than half of the heads are activated, the
model’s performance rapidly approaches that of
the dense LLaMA-3 model. In contrast, activating
only a few heads results in a notable performance
degradation.

Additionally, we explore the performance of fine-
grained experts, as shown in Figure 3(b). We ob-
serve that as the granularity of the experts increases
from 8 to 16, the model’s performance improves.
However, when the granularity becomes too large
(e.g., 32 experts), performance starts to decline.

To further validate the effectiveness of our
“16top8” variant, we scale the training data from
0.4B to 1.28B tokens, as shown in Figure 4(a).
Here, we present results from five benchmarks, in-
cluding Hellaswag and MMLU, for a comprehen-
sive evaluation of our Attention MoE. The results
demonstrate favorable scaling properties, with per-
formance improving as the dataset size increases.
Notably, the performance on SciQ, Hellaswag, and
MMLU shows significant improvement.

5.2 Exploring Sparsity of MLP
Takeaway: ❶ Activating half of the parameters in
MLP already achieves moderate performance. ❷

Different MLP MoE construction methods present
diverse characteristics, but both share favorable
scaling properties.

Building on the previous study of Attention
MoE, in this section, we explore the sparsity of
the MLP module. The experiments are conducted
using the same 0.40B instruction data as in the pre-
vious section. First, we investigate the impact of
different numbers of activated experts when split-
ting the MLP into 8 experts. As shown in Figure
3(c), activating half of the experts (i.e., 4 experts)
achieves moderate performance.

We also compare different types of MLP MoE,
including the standard MoE, which evenly splits
the MLP into 8 experts and activates 2 experts,
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Table 1: Comparison of our MoE model with open-source dense and MoE models. All models in this table are
instructed versions from their official repository. The detailed settings of benchmarks are described in Section 4.2.
As our MoE models are from the LLaMA3-8B model, we place the result of this model in the first line for reference.
We only highlight the best performance among our MoE models and competitive methods except for LLaMA3-8B.
Here we further report the training budgets (#Tokens) for each model in the table.

# Tokens BoolQ SciQ PIQA ARC-C TruthfulQA HellaSwag MMLU GSM8K HumanEval IFEval

LLaMA3-8B 15T 83.00 93.20 78.51 61.86 51.71 78.79 67.22 76.50 71.38 76.53

INCITE-3B 1T 66.54 94.70 74.43 40.19 36.40 65.61 25.10 2.12 6.92 30.13
Sheared-LLaMA-2.7B 50B 67.58 76.80 75.84 41.13 47.65 71.28 28.28 1.90 3.29 28.84
Gemma-2-2b 2T 72.29 75.80 67.46 52.56 50.79 68.97 52.99 26.31 46.12 34.94
Salamandra-2b 7.8T 67.98 89.80 74.65 46.25 43.39 62.27 25.13 1.90 5.82 27.72
SmolLM2-1.7B 11T 68.23 84.30 75.95 53.24 39.89 72.55 50.42 38.51 39.05 29.02

OpenMoE-3B-9B 1T 61.71 68.40 65.67 33.28 40.49 56.45 26.46 1.36 1.01 31.24
LLaMA-MoE-3B-7B 200B 68.10 88.80 77.91 44.03 33.29 73.23 28.24 4.62 12.02 28.10
OLMoE-1B-7B 1T 80.89 94.90 80.09 55.63 43.26 79.58 53.79 40.94 40.48 35.49

MLP-MoE (8top2) 7B 74.62 90.60 69.26 42.83 45.62 58.95 37.41 53.07 53.53 32.72
MLP-MoE (1+7top1) 7B 76.88 88.80 67.90 40.19 46.85 53.67 40.89 55.04 51.21 36.04

Figure 4: (a) Scaling the training data for Attention MoE. (b) Scaling the training data for MLP MoE with uniform
expert partition. (c) Scaling the training data for MLP MoE with a shared expert. (d) The performance comparison
of the second-stage instruction tuning data ratio.

and the residual MoE, which has 1 shared expert
and 7 distinct experts. Both MoE models have
the same number of activated parameters. Notably,
the residual MoE outperforms the standard MoE
in the SciQ benchmark, with only 25% activation,
surpassing the standard MoE with 50% activation.

Furthermore, similar to the Attention MoE, we
scale the training instruction data to 1.28B and
2.50B tokens and evaluate the performance of both
MLP MoE models. As shown in Figure 4(a) and
Figure 4(b), our MLP MoE demonstrates favorable
scaling properties across benchmarks. However,
we observe that the Hellaswag metric remains rela-
tively low due to the splitting of the MLP and lim-
ited training data, suggesting that additional data
is needed to improve language ability. Addition-
ally, when comparing the two MoE models, we find
that the standard MoE performs significantly better
on the Hellaswag metric, while the residual MoE
slightly outperforms it on the MMLU benchmark.
We attribute this discrepancy to the fact that the
residual MoE relies on a stronger prior, which en-
hances its knowledgeability but reduces flexibility.

5.3 Sparsity Comparison of Attention and
MLP

After investigating the variants of Attention MoE
and MLP MoE in the above two sections, in this
section, we compare the sparsity of these two kinds
of modules. As depicted in Figure 3 (a) and (c),
“8top2” in MLP MoE already performs better than
“8top4” in Attention MoE, suggesting that MLP
has more sparsity than the Attention module. For
instance, “8top4‘’ Attention MoE achieves 0.54 on
PIQA, but “8top2” MLP MoE obtains 0.66. This
trend remains when we increase the granularity
of the Attention MoE, but the divergence has nar-
rowed. Intriguingly, when scaling the training data,
as shown in Figure 4 (a) and (b), we observe that
“16top8” Attention MoE presents varying levels of
ability. For instance, it performs worse than “8top2”
MLP on BoolQ, PIQA, SciQ, but achieves better
results on HellaSwag and MMLU.

5.4 Two-Stage Post-Training

In this study, we devise a two-stage instruction
tuning to improve the model performance. Specif-
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Figure 5: The router distribution of MLP MoE model (8top2). We demonstrate the distribution of the first layer and
last layer for four different benchmark datasets.

ically, we first train our moe model with single
conversation data to improve the model’s language
ability. Subsequently, we train the math and code
instruction data to prompt the model to handle cor-
responding tasks. Notably, in this stage, we will
also incorporate some conversation data to ensure
that the model does not lose its conversational abil-
ities. The conversation data is sampled from the
first phase, and we control the relative proportion of
conversation data to math and code data. As shown
in Figure 4(d), based on the standard MLP MoE,
which contains 8 experts and activates two, we
incorporate different ratios of conversation in the
second-stage training. The baseline indicates the re-
sult after training in the first stage, and it performs
especially poorly on the HumanEval benchmark.
Moreover, we compare three different settings for
second-stage training by incorporating 5%, 10%,
and 50% training data from the first stage. We can
observe that 10% of conversation data leads to the
best performance among all variants. Especially
on the HumanEval, it achieves 53.53, significantly
better than other variants.

5.5 Performance Scaling

As shown in Table 1, in order to demonstrate the
effectiveness of our framework, we present the re-
sults of our two variants of MLP-MoE, which pos-
sess the same parameters 8.0B with LLaMA3-8B
but only activate 3.8B parameters. In this table, we
compare different abilities covering language abil-
ity, math, code, and instruction following. Specifi-
cally, we first compare our MLP-MoE models with
the original LLaMA3-8B model, and our MLP-
MoE significantly recovers the performance with
only a small amount of post-training data. Further-

more, we compare our MLP-MoE with recent open-
source large language models with similar activa-
tion parameters, including both dense models and
MoE models. From the results, we can observe that
our model achieves comparable performance with
these models but obtains better math and code abil-
ity. For instance, our MLP-MoE (8top2) achieves
53.07 on the GSM8K benchmark, while previous
dense gemma-2-2b only reaches 26.31. Moreover,
OpenMoE and LLaMA-MoE demonstrate signif-
icantly worse results than our model on MMLU,
GSM8K, and HumanEval.

5.6 What are the Experts Specializing in?

In this section, we visualize the routing distribu-
tion of the MLP MoE model after the second-stage
training. As shown in Figure 5, we notice that the
router has a different tendency for each layer. For
the first layer, experts 1, 3, 7, and 8 handle a rela-
tively large number of tokens. However, in the final
layer, experts 1, 4, and 7 handle the most tokens.
To further study this phenomenon, we count the to-
tal number of tokens handled by experts across all
layers and find that the number of tokens processed
by each expert is basically equal, indicating that
our balance loss is functioning effectively.

5.7 Discussion

The key differences between our paper and previ-
ous work are as follows: (i) We explore sparsity
in both the Attention and MLP modules, whereas
other studies typically focus on one of these mod-
ules. (ii) Our work investigates the sparsity of the
instruction-tuned model, rather than the pre-trained
model, thus covering a more comprehensive range
of capabilities including conversation, math, code.
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(iii) To enhance the performance of the MoE mod-
els, we propose a two-stage post-training method,
avoiding the resource-intensive process of contin-
ual pre-training. The experiment results verify the
effectiveness of our two-stage training for building
an instructed MoE model.

6 Conclusion and Future Work

In this paper, we comprehensively explore the spar-
sity of the LLaMA model from both the attention
and MLP modules by building corresponding MoE
models. Specifically, we investigate different ex-
pert construction methods and granularities to an-
alyze the impact of sparsifying the model. Fur-
thermore, to have a comprehensive study of model
ability, we make the first attempt to build instructed
MoE models from the instructed dense LLM and re-
cover model performance with a devised two-stage
post-training stage. The experiments verify the ef-
fectiveness of our method to build an instructed
MoE with a small amount of training tokens.

In the future, we plan to (i) explore sparsification
techniques on additional LLaMA models, such as
LLaMA 3.1, (ii) investigate more effective methods
for splitting both Attention MoE and MLP MoE,
and (iii) further collect instruction tuning data to
train the instructed MoE models. Our experiments
have demonstrated promising scaling performance,
and we hope to leverage post-training to develop a
highly effective instructed MoE model.
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A Dataset Information and Processing

In this section, we describe the composition of the
dataset used in the two-stage Instruction tuning. As
shown in Table 2, we construct three datasets of
different sizes by combining open-source datasets,
including OpenHermes-2.5 3, Lima 4, ShareGPT4
5, SlimOrca 6, BAAI/Infinity-Instruct 7, and Llama-
3-Magpie-Air-3M-v0.1 8. When merging multi-
ple datasets, we apply filtering to ensure the qual-
ity of the datasets. Subsequently, we adopt the
MetaMathQA 9 and the code and math part of the
BAAI/Infinity-Instruct.

B Generation Cases

In this section, we present some examples from the
IFEval and GSM8K benchmarks to demonstrate
that our model exhibits good instruction-following
and math capabilities.

3https://huggingface.co/datasets/teknium/
OpenHermes-2.5

4https://huggingface.co/datasets/GAIR/lima
5https://huggingface.co/datasets/

anon8231489123/ShareGPT_Vicuna_unfiltered
6https://huggingface.co/datasets/Open-Orca/

SlimOrca
7https://huggingface.co/datasets/BAAI/

Infinity-Instruct/tree/main
8https://huggingface.co/datasets/Magpie-Align/

Llama-3-Magpie-Air-3M-v0.1
9https://huggingface.co/datasets/meta-math/

MetaMathQA

Table 2: Dataset Composition of the Instruction Follow-
ing Training Stage.

Dataset Composition Tokens
First-Stage Instruction Tuning

OpenHermes-2.5
Lima
ShareGPT4
SlimOrca

0.40B

OpenHermes-2.5
Lima
ShareGPT4
SlimOrca
BAAI/Infinity-Instruct

1.28B

OpenHermes-2.5
Lima
ShareGPT4
SlimOrca
BAAI/Infinity-Instruct
Llama-3-Magpie-Air-3M-
v0.1

2.50B

Second-Stage Instruction Tuning
MetaMathQA
BAAI/Infinity-Instruct/code
BAAI/Infinity-Instruct/math
Conversation from First-stage 0.99B
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Table 3: Examples from our LLaMA-MoE v2 model. The examples are from the IFEval benchmark.

Query Response
Who built the first artificial ice
rink? Please include the keys
(1) Name (2) Location and (3)
Year. Use less than 150 words.

The first artificial ice rink was built by the French engineer,
Pierre de Chambolle, in 1889. Chambolle’s ice rink was located
in Paris, France. The ice rink was made of a combination of ice
and water, and it was heated by a steam engine. Chambolle’s
invention revolutionized the world of ice sports and paved the
way for the development of modern artificial ice rinks.

Write a short essay about the
updates of the latest episode of
your favorite TV show. Use less
than 300 words.

The latest episode of my favorite TV show, "The Walking
Dead," has been a thrilling ride. The episode picks up where
the previous one left off, with the survivors of the group dealing
with the aftermath of the recent attack on the town. The group
is now on their way to the nearby town of Woodbury, where
they hope to find safety and a new beginning.
As they journey through the post-apocalyptic landscape, they
encounter a number of new characters, including a young girl
who has been surviving on her own. The group is initially wary
of her, but as they get to know her, they realize that she is a
valuable asset to their group.
The episode also introduces a number of new plot twists, includ-
ing the revelation that the group’s leader, Rick Grimes, has been
secretly working with a group of survivors to take down the
walkers. This adds a new layer of complexity to the story, and
raises questions about the true nature of the group’s mission.
Overall, the latest episode of "The Walking Dead" is a gripping
and intense ride, with plenty of action, suspense, and emotional
moments. The characters are well-developed, and the plot is
engaging and unpredictable. If you haven’t already, I highly
recommend checking it out.

Invent a funny tagline for a
local comedy show, and put
your whole response in double
quotes.

"Laugh your way to the stars with us at the ’Laughing Llama’
comedy show, where even the most awkward jokes are guaran-
teed to make you giggle!"

What is another word for En-
gravings? Answer in lowercase
letters only, throughout your en-
tire answer.

carvings
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Table 4: Examples from our LLaMA-MoE v2 model. The examples are from the GSM8K benchmark.

Query Response
At a restaurant, Juice Box A is 4
dollars. Juice Box B is 5 dollars
more than Juice Box A. Juice
Box C is 7 dollars more than
Juice Box A. How much more
is Juice box C than Juice Box
B?

Juice Box A is 4 dollars. Juice Box B is 5 dollars more than
Juice Box A, so it is 4 + 5 = 9 dollars. Juice Box C is 7 dollars
more than Juice Box A, so it is 4 + 7 = 11 dollars. To find out
how much more Juice Box C is than Juice Box B, we subtract
the price of Juice Box B from the price of Juice Box C: 11 - 9 =
2. The answer is 2.

After Andrea saved some
money, she then spent the rest
of her money on an $11 sweater
and gave her brother $4. If she
had $36 in the beginning, how
much did Andrea save?

Andrea had $36 in the beginning. She spent $11 on a sweater
and gave her brother $4. So she spent 11 + 4 = 15 dollars. 36 -
15 = 21. The answer is 21.

Carver just turned 45 years old,
which makes him 5 years less
than twice the age of his son.
How old is his son, in years?

Let’s call Carver’s son’s age "S". According to the information,
5 years less than twice the age of his son is 45. So, 2S - 5 = 45.
Adding 5 to both sides, we get 2S = 50. Dividing both sides by
2, we find S = 25. The answer is 25.

Michael is racing his horse and
notices that for every mile the
horse runs, he eats 1/2 a bail of
hay. A bail of hay costs $3. If
his horse runs for 30 minutes at
32MPH, and Michael has six 5
dollar bills, how much change
does he have after he buys the
hay?

First, we need to find out how many miles the horse runs. 30
minutes is 30 / 60 = 0.5 hours. At 32MPH, the horse runs 0.5 x
32 = 16 miles. For every mile, the horse eats 1/2 a bail of hay.
So the horse eats 16 x 1/2 = 8 bails of hay. A bail of hay costs
$3, so 8 bails cost 8 x $3 = $24. Michael has six 5 dollar bills,
so he has 6 x $5 = $30. After buying the hay, he has $30 - $24
= $6 left. The answer is 6.

Melissa works as a pet groomer.
This week, she has 8 dogs that
need to be bathed, 5 cats that
need their nails clipped, 3 birds
that need their wings trimmed,
and 12 horses that need to be
brushed. If she splits the groom-
ing jobs evenly over the days,
how many animals will she
groom each day of the week?

Melissa has a total of 8 + 5 + 3 + 12 = 28 animals to groom. If
she splits them evenly over 7 days, she will groom 28 / 7 = 4
animals each day. The answer is 4.

Mason is on his bike journey at
a rate of 8 miles per hour. He
travels for 4 hours, takes some
rest, and then goes on for an-
other 6 hours. How many miles
has he traveled in total?

Mason travels for 4 hours at 8 miles per hour, so he covers 4 x
8 = 32 miles. Then he goes for another 6 hours at 8 miles per
hour, so he covers 6 x 8 = 48 miles. In total, he has traveled 32
+ 48 = 80 miles. The answer is 80.
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