
Tackling Data Heterogeneity in Federated Time
Series Forecasting

Wei Yuan
The University of Queensland

Brisbane, Australia
w.yuan@uq.edu.au

Guanhua Ye
Beijing University of

Posts and Telecommunications
Beijing, China

g.ye@bupt.edu.cn

Xiangyu Zhao
City University of Hong Kong

Hongkong, China
xianzhao@cityu.edu.hk

Quoc Viet Hung Nguyen
Griffith University

Gold Coast, Australia
henry.nguyen@griffith.edu.au

Yang Cao
Institute of Science Tokyo

Tokyo, Japan
cao@c.titech.ac.jp

Hongzhi Yin
The University of Queensland

Brisbane, Australia
h.yin1@uq.edu.au

Abstract—Time series forecasting plays a critical role in
various real-world applications, including energy consumption
prediction, disease transmission monitoring, and weather fore-
casting. Although substantial progress has been made in time
series forecasting, most existing methods rely on a centralized
training paradigm, where large amounts of data are collected
from distributed devices (e.g., sensors, wearables) to a central
cloud server. However, this paradigm has overloaded communi-
cation networks and raised privacy concerns. Federated learning,
a popular privacy-preserving technique, enables collaborative
model training across distributed data sources. However, directly
applying federated learning to time series forecasting often yields
suboptimal results, as time series data generated by different
devices are inherently heterogeneous. In this paper, we propose
a novel framework, Fed-TREND, to address data heterogeneity
by generating informative synthetic data as auxiliary knowl-
edge carriers. Specifically, Fed-TREND generates two types of
synthetic data. The first type of synthetic data captures the
representative distribution information from clients’ uploaded
model updates and enhances clients’ local training consensus.
The second kind of synthetic data extracts long-term influence
insights from global model update trajectories and is used
to refine the global model after aggregation. Fed-TREND is
compatible with most time series forecasting models and can be
seamlessly integrated into existing federated learning frameworks
to improve prediction performance. Extensive experiments on
eight datasets, using several federated learning baselines and
four popular time series forecasting models, demonstrate the
effectiveness and generalizability of Fed-TREND.

I. INTRODUCTION

With the proliferation of sensors, wearables, and Internet
of Things (IoT) devices, the volume of time series data has
increased dramatically in recent years. Time series forecast-
ing has emerged as a focal point for both academic and
industrial communities, reflecting its importance of automati-
cally extracting meaningful patterns from extensive historical
data to predict future values. Existing forecasting methods
primarily aim to enhance prediction accuracy by employing
advanced deep learning architectures to model temporal de-
pendencies [1]. For example, several studies [2], [3] have
refined the Transformer architecture [4] to efficiently handle

long-sequence time series predictions. Meanwhile, recent re-
search [5]–[7] has explored the use of MLPs for capturing
temporal information, achieving state-of-the-art performance.

While the aforementioned models have achieved significant
success, most rely on centralized training, where large volumes
of data are collected from widely deployed devices and
uploaded to a central server or cloud. However, collecting
data from distributed devices presents practical challenges due
to limited bandwidth and stringent privacy regulations (e.g.,
GDPR 1 and CCPA 2). For example, electricity usage data can
reveal highly sensitive information about individuals, causing
data owners to hesitate to share it due to privacy concerns [8].
Similarly, smart wearables record detailed personal health
metrics, such as oxygen saturation, heart rate, ECG, and EEG.
Given the sensitive nature of this data, sharing it significantly
heightens the risk of data breaches.

Federated learning [9], [10] offers a privacy-preserving
framework for training predictive models without sharing
or transmitting raw data. In this approach, a central server
coordinates multiple clients, enabling them to collaboratively
train models on their locally stored data. This ensures data
privacy while minimizing the need to transmit large volumes
of raw data. In this work, we focus on cross-device federated
time series forecasting, where each device operates as an
individual client due to its growing computational capabilities.
This federated framework provides robust privacy protection
by ensuring that data remains stored locally on each device.
Throughout the subsequent sections, the terms “client” and
“device” are used interchangeably. However, traditional feder-
ated learning methods assume that data across clients follow
independent and identical distributions (IID), which is rarely
true in time series data. Time series data are inherently hetero-
geneous, as they are generated by diverse devices operating
under varying conditions and severing various applications.

1https://gdpr-info.eu/
2https://oag.ca.gov/privacy/ccpa

ar
X

iv
:2

41
1.

15
71

6v
1

 [
cs

.L
G

]
 2

4
N

ov
 2

02
4

https://gdpr-info.eu/
https://oag.ca.gov/privacy/ccpa

Existing federated learning methods face significant challenges
in effectively learning from such heterogeneous data [11].

Two key scenarios give rise to heterogeneity in federated
time series forecasting. (1) Multivariate Time Series Fore-
casting: This scenario occurs when different variables or
dimensions of the same entities are collected and stored on
separate devices. These variables are inherently heterogeneous
and correlated. However, leveraging and integrating their cor-
relations can significantly enhance forecasting performance
across all variables, as evidenced by numerous multivariate
time series prediction models developed using traditional cen-
tralized approaches [7]. In federated time series forecasting,
models are trained independently on each variable, with model
aggregation serving as the sole mechanism for information
sharing. Unfortunately, this approach fails to capture the
complex relationships between variables and can even degrade
forecasting accuracy for individual variables after aggrega-
tion. (2) Heterogeneous Temporal Patterns: This scenario
arises when different devices monitor the same variables or
dimensions across distinct entities. For example, electricity
usage data collected by smart meters varies significantly across
households due to differences in lifestyle and living activi-
ties. Aggregating models that capture heterogeneous temporal
patterns or distributions often produce a suboptimal global
model. Addressing these heterogeneity challenges in cross-
device federated time series forecasting remains a largely
unexplored research area.

To address the challenges of learning from heterogeneous
time series data, we propose a novel method Fed-TREND
(Federated Time Series Forecasting with Synthetic Data). Fed-
TREND draws inspiration from recent advancements in data
condensation [12]–[14], where synthetic data is generated from
model trajectories to encapsulate the essential information.
Specifically, Fed-TREND generates two types of synthetic data
on the central server to tackle the two forms of heterogeneity
respectively, enhancing the federated learning process. The
first type of synthetic data, Dct, is generated based on model
updates uploaded by all clients, encapsulating the distribution
information of all clients. This synthetic data is then distributed
back to each client to augment their local training alongside
their own data. By doing so, each client can benefit from
all the other clients’ variable representative information, akin
to training multivariable time series models in a centralized
manner. The second type of synthetic data, Dgt, is derived
from global model trajectories, capturing the dynamic pat-
terns in the global model parameters. This data is used in
conjunction with client-uploaded model updates to refine the
aggregation of the global model, mitigating the challenges
posed by heterogeneous temporal patterns.

Noted that unlike other data condensation-based federated
learning approaches [15]–[18], where synthetic data acts as the
primary information carrier for collaborative learning, Fed-
TREND uses synthetic data solely as auxiliary information.
The primary learning process remains rooted in sharing model
parameters and updates, ensuring system performance does
not overly depend on the quality of synthetic data - a factor

often difficult to guarantee. Furthermore, the synthetic data
construction occurs entirely on the central server, minimizing
the computational burden on client devices.

To sum up, the major contributions of this work are as
follows:

• To the best of our knowledge, we are the first to propose
and conduct a comprehensive investigation into the data
heterogeneity challenge in cross-device federated time
series forecasting.

• We propose a versatile federated time series forecasting
component, Fed-TREND, which addresses the challenges
of learning from heterogeneous time series data by con-
structing two types of synthetic data derived from clients’
uploaded models and the aggregated global models.

• To validate the effectiveness and generalizability of Fed-
TREND, we conducted extensive experiments on eight
widely used time series forecasting datasets. By inte-
grating Fed-TREND into several mainstream federated
learning frameworks, we train four widely adopted state-
of-the-art time series forecasting models: DLinear [6],
LightTS [5], TSMixer [7], and iTransformer [3]. The
results consistently demonstrate that Fed-TREND signif-
icantly improves the federated forecasting performance
across all time series forecasting datasets from diverse
application scenarios.

The remainder of this work is organized as follows. In
Section II, we present a literature review of related topics,
followed by introducing the preliminaries of time series fore-
casting in Section III. Section IV describes the technical details
of our Fed-TREND. Extensive empirical results and analysis
are shown in Section V. Finally, a brief summarization of this
paper is delivered in Section VI.

II. RELATED WORK

In this section, we briefly review the literature of four related
topics: time series forecasting, federated learning with data
heterogeneity, federated learning with data condensation, and
federated time series forecasting.

A. Time Series Forecasting

Time series forecasting is a widely used task applicable to
numerous real-world scenarios, including energy consumption
prediction [19], pandemic spread modeling [20], weather and
traffic forecasting [21], and more [22]. Early studies in time
series forecasting relied on statistical methods, such as au-
toregressive integrated moving average (ARIMA) [23], expo-
nential smoothing [24], and structural models [25]. However,
these methods require extensive expert effort to develop.

In recent years, deep learning-based approaches have be-
come the dominant trend in time series forecasting [22]. These
methods typically use neural network architectures, such as
RNNs [26], CNNs [27], Transformers [4], and MLPs, as back-
bone models. For example, LSTNet [28] and TPR-LSTM [29]
combine CNNs and RNNs with attention mechanisms to
capture both short- and long-term dependencies in time series
data. However, RNN-based methods often suffer from issues

like gradient explosion or vanishing, while CNNs are limited
in modeling long-term sequences due to the restricted size
of their receptive fields. Transformers have recently gained
popularity in time series forecasting due to their ability to
model global dependencies [30]. Zhou et al. [2] introduced In-
former, which reduces time complexity and enhances memory
efficiency. Autoformer [31] introduces a decomposition archi-
tecture with an auto-correlation mechanism, and Liu et al. [3]
innovatively reverse the data dimensions in the Transformer’s
attention and feed-forward layers, achieving improved per-
formance. The use of pure MLPs in time series forecasting
has also become a recent trend because of their simplicity
of implementation and effectiveness of performance. Zeng et
al. [6] challenged the effectiveness of Transformers in time se-
ries forecasting domain, proposing a MLP-based model called
DLinear. LightTS [5] incorporates two down-sampling meth-
ods, interval sampling and continuous sampling, to enhance
MLP performance, while TSMixer [7] uses mixing operations
across both time and feature dimensions to efficiently capture
relevant information.

However, all of these methods are implemented in a cen-
tralized manner, overlooking the practical challenges of data
privacy in real-world applications.

B. Federated Learning with Data Heterogeneity

Federated learning enables collaborative training of a global
model without requiring access to clients’ raw data and has
been widely researched in many domains [32]–[36]. This
learning paradigm has garnered significant attention for ap-
plications where data collection is challenging [37], [38].
FedAvg [9] was the first and remains the most widely used
federated learning framework. It trains a global model by
averaging the local models of participating clients. However,
FedAvg’s performance suffers when data across clients is
heterogeneous, a common situation as clients independently
collect data in diverse environments.

To address data heterogeneity in federated learning, nu-
merous methods have been proposed [10], [11]. Broadly,
these approaches can be divided into two categories based
on whether they maintain compatibility with the original
FedAvg protocol. For methods incompatible with FedAvg,
additional assumptions or altered learning pipelines are typ-
ically required. For example, some approaches assume the
central server has access to public data [39]–[41] or that data
transmission between clients is allowed [42], [43]. These extra
requirements limit their practical applicability. Therefore, in
this paper, we focus on approaches to handling data het-
erogeneity within the standard federated learning framework.
FedProx [44] introduces a proximal term during local model
training to prevent local updates from deviating too far from
the global model. SCAFFOLD [45] employs a control variate
for variance reduction to stabilize aggregation. FedDyn [46]
uses dynamic regularization to adjust each client’s objective
during training. Elastic [47] designs an elastic aggregation
approach that dampens the influence of updates to sensitive
parameters. Chen et al. [48] propose FedHEAL, incorporating

a fair aggregation objective to prevent global model bias
toward specific domains.

Unfortunately, most of these studies address data hetero-
geneity in image classification tasks. Our empirical results
reveal that these approaches fail to achieve significant im-
provements in federated time series forecasting. This is due to
the unique nature of heterogeneity in time series forecasting,
which differs fundamentally from that in traditional image
classification. In image classification tasks, heterogeneity typ-
ically stems from variations in label or domain distribu-
tions across clients. In contrast, heterogeneity in time series
forecasting arises from differences in variable types and the
complex, evolving temporal patterns of the time series data.

C. Federated Learning with Data Condensation

Data condensation aims to compress a large training dataset
into a smaller, synthetic dataset [13] and has recently been
integrated into federated learning [14]. This integration serves
two primary purposes: (1) to improve communication effi-
ciency [49]–[53] and (2) to address data heterogeneity [15]–
[18], [54], [55]. Here, we focus on the latter. Goetz et al. [15]
and Xiong et al. [16] propose a standard workflow where
clients locally compress a small synthetic dataset and share
it with the central server. The server then trains a global
model on the gathered synthetic data and distributes this
model back to the clients. Wang et al. [18] extend this
approach by allowing clients to upload average logits of
real data, further improving system performance. However,
these methods have several limitations. First, their performance
heavily relies on the quality of the synthetic data generated by
each client, which is difficult to guarantee. Additionally, these
approaches require clients to have substantial computational
resources, as generating synthetic data is computationally
intensive. In federated time series forecasting, clients are often
sensors or mobile devices with limited computational capacity,
making these methods less suitable for such environments.
DynaFed [54] is more closely related to our approach, Fed-
TREND, but it only uses synthetic data to adjust the global
model and is designed for image classification tasks.

D. Federated Learning in Time Series Forecasting

The research of federated time series forecasting is still
under-explored. Time-FFM [56] investigates this topic at the
organization level, where each data organization (e.g., traffic
data organization or electrical data organization) acts as a
client. Abdel et al. [57] apply organization-level federated
learning to train a time series forecasting model based on large
language models. Yan et al. [58] propose a vertical federated
learning structure. In this paper, we propose a device-level
federated time series forecasting framework that alleviates data
heterogeneity by generating synthetic data.

III. PRELIMINARIES

In this section, we present a formal introduction for the
settings of federated time series forecasting and then briefly
introduce the basic time series forecasting models. Note that,

TABLE I
LIST OF IMPORTANT NOTATIONS.

ci a client/device in federated time series forecasting
Dci the local dataset for client ci.
Dct synthetic dataset generated using clients’ model trajectories.
Dgt synthetic dataset generated using global model trajectories.
Tct trajectories bank for client model updates.
Tgt trajectories bank for global model updates.
X

ci
j ,Y

ci
j the jth input/target output data for client ci

Xct
i , Yct

i the ith input/target output data (trainable parameters) in Dct

Xgt
i , Ygt

i the ith input/target output data (trainable parameters) in Dgt

Wt
ci

the model trained by ci at round t
Wt the aggregated global model at round t
Lx, Ly the input/output data length

Lct
the update frequency of Dct and the trajectories segment
length in Dct construction

Lgt the update frequency of Dgt

Lseg
gt the trajectories segment length in Dgt construction

we use squiggle uppercase (e.g., A) to indicate set or algo-
rithms, bold lowercase (e.g., a) to represent vectors, and bold
uppercase (e.g., A) to denote matrices or tensors. Table I lists
some important notations.

A. Formulation of Federated Time Series Forecasting

Let C = {ci}|C|
i=1 be the set of clients/devices and |C|

is the number of all clients. For a client ci, it owns time
series data Xci = [xci

1 ,xci
2 , . . . ,xci

T−1,x
ci
T] ∈ RT×f , where

T is the total lengths of the data and f is the number
of dimensions. Notebly, in federated time series forecasting,
the time series data Xci are always kept on corresponding
device and will not be accessed by any other participants.
To train a time series forecasting model, clients construct a
dataset Dci = {(X

ci
j ,Yci

j)}|Dci
|

j=1 based on Xci , where Xci
j =

[xci
j ,xci

j+1, . . . ,x
ci
j+Lx−1,x

ci
j+Lx

] ∈ RLx×f is a fragment of
time series data as the input of a forecasting model F(·) and
Yci

j = [xci
j+Lx+1,x

ci
j+Lx+2, . . . ,x

ci
j+Lx+Ly−1,x

ci
j+Lx+Ly

] ∈
RLy×f is the target future prediction. Then, the goal of
federated time series forecasting can be described as:

argmin
W

1

|C|
∑
ci∈C

1

|Dci |
L(W,Dci) (1)

L(W,D) =
∑

(Xj ,Yj)∈D

∥Yj −F(W,Xj)∥ (2)

where W is the parameters of the forecasting model.
Federated time series forecasting employs a central server to

coordinate clients to optimize E.q. 1 without accessing clients’
distributed datasets Dci by transmitting and aggregating model
parameters. Specifically, clients and the central server itera-
tively repeat the following steps until model convergence. At
the round of t, a central server selects a group of clients Ct
to participate in the training process and disperses a global
model parameters Wt to them. Subsequently, clients leverage
the received global model parameters to initialize a local
model and optimize the local model with E.q. 2 on their local
datasets Dci . After local training, clients upload the updated
model parameters Wt

ci to the central server. When received

the updated parameters, the central server aggregates these
parameters to form a new global model parameters:

Wt+1 ← agg({Wt
ci}ci∈Ct) (3)

One main-stream aggregation solution is FedAvg [9], which
utilizes weighted average to aggregate client uploaded param-
eters:

Wt+1 =
∑
ci∈Ct

|Dci |∑
cj∈Ct

|Dcj |
Wt

ci (4)

This design performs well when the client data are homo-
geneous. However, when client data are heterogeneous, local
models are updated towards local optimal solution and Fe-
dAvg cannot simply aggregate them to achieve optimal global
performance.

B. Base Time Series Forecasting Models

A federated time series forecasting framework should ide-
ally be compatible with most time series forecasting models. In
this paper, to demonstrate the generalizability of our proposed
method, we select four recent state-of-the-art time series
models that cover two major architectures: Transformer and
MLP.

DLinear [6]: DLinear decomposes input time series data
into seasonal and trend components using a moving average
kernel. For each component, DLinear employs a linear layer
network, summing the resulting features for prediction.

LightTS [5]: LightTS utilizes two down-sampling strate-
gies, continuous sampling and interval sampling, to process
time series data. Besides, it introduces an Information Ex-
change Block (IEBblock), which consists of two MLPs that
encode input matrix data from both the row and column
perspectives.

TSMixer [7]: Generally, TSMixer consists of four main
components: a time-mixing MLP for capturing temporal pat-
terns, a feature-mixing MLP for leveraging covariate informa-
tion across time steps, a temporal projection layer to adjust
the input length for forecasting, and residual connections that
link the MLPs to enhance model depth.

iTransformer [3]: Unlike other Transformer-based forecast-
ing models [2], iTransformer retains the original Transformer
architecture but inverts the input dimensions. It encodes the
full history of each variable into a single token, using the
attention mechanism to capture correlations between variables
instead of time steps. This approach inherently encodes tem-
poral information, making positional encoding unnecessary.

IV. METHODOLOGY

In this section, we firstly provide the overview and mo-
tivation of developing Fed-TREND. After that, we detailly
describe the techniques of each component in Fed-TREND.

A. Overview of Fed-TREND

In Section I, we analyze two key scenarios in federated
time series forecasting: (1) the time series data on clients
correspond to different variables, and (2) clients have the

local data
train

Device 1

𝐷!" 𝑊!!
"#$

+

𝑊!!
"#$

𝑊!"
"#$

𝑊!#
"#$

𝒯!"

aggregate

store 𝐷!"

construct

𝑊"#$

𝒯%"

store

construct 𝐷%"

calibrate

local data
train

Device 2

𝐷!" 𝑊!"
"#$

+
…

local data
train

Device n

𝐷!" 𝑊!#
"#$

+

…

𝑊!!
"#$𝑊!"

"#$ 𝑊!#
"#$…

𝑊"#$ 𝐷!"

Fig. 1. The overall architecture of Fed-TREND. When clients uploaded their model updates, these updates are (1) used for aggregation as the original
federated learning and (2) stored in a trajectory bank Tct for Dct construction. In addition, the aggregated global model is recorded in another trajectory bank
Tgt, which is used to construct the synthetic data Dgt. After that, Dct is sent back to clients for local training, while Dgt is used to refine the aggregated
global model.

same variables but with distinct temporal patterns due to their
unique characteristics. Based on this analysis, we identify
two critical weaknesses of the original federated learning
framework that hinder its ability to handle such heterogeneous
scenarios. First, clients rely solely on model aggregation
for knowledge transfer, which fails to capture the complex
relationships between clients, especially when these clients
are corresponding to different variables. Second, the server
lacks the capability to aggregate a superior global model
from the uploaded client models, particularly when faced with
heterogeneous data distributions.

In light of this, we introduce Fed-TREND, a framework
designed to address heterogeneity in federated time series
forecasting by improving knowledge transfer among clients
while calibrating a better aggregated global model. Fed-
TREND achieves these objectives by constructing two types of
synthetic data using model trajectories from various sources.
The first type of synthetic data, Dct, encapsulates the represen-
tative distribution information derived from clients’ uploaded
model updates. This data acts as a “proxy” that enhances
knowledge transfer by integrating with clients’ local training.
The second type of synthetic data, Dgt, captures the long-term
dynamic changes in the aggregated global model trajectories
and is used to refine the global model. An overview of Fed-
TREND is depicted in Figure 1, and its workflow is presented
in pseudocode in Algorithm 1.

Notably, our Fed-TREND is compatible with most federated
learning frameworks as it addresses heterogeneity from the
synthetic data construction aspect and does not break the basic
federated learning protocol. Without loss of generality, we
introduce Fed-TREND based on the most general learning
framework illustrated in Section III-A. In the experimental sec-
tion part, we will also evaluate the empirical performance of
Fed-TREND when integrated with various federated learning
frameworks.

B. Synthetic Data Dct for Representative Knowledge Transfer

The recently developed technique of data condensation [12]
has demonstrated that a synthetic dataset can be learned from
model training trajectories to summarize useful information.
Building on this idea, Fed-TREND introduces a synthetic
dataset, Dct, designed to capture representative knowledge of
all clients from clients’ uploaded model parameters.

Specifically, at each federated training round t, when client
ci uploads its updated model parameters Wt

ci , except for
using this model updates for model aggregation, the central
server will also store them in a trajectories bank Tct = {ci :
[W1

ci , . . . ,W
t
ci]}ci∈C . Then, the central server will optimize

a synthetic dataset Dct based on Tct as follows:

argmin
Dct

Ecj∼U(C),s∼U(1,t−Lct)

[
d(W̃s+Lct

cj ,Ws+Lct
cj)

]
(5)

s.t.W̃s+Lct
cj = argminL(Ws

cj ,Dct) (6)

Here, Lct is the segment length of a trajectory and U(·)
denotes uniform random sampling. The meaning of the above
two formulas is that, in E.q. 6, we train a forecasting model
initialized from Ws

cj on Dct = {(Xct
i ,Y

ct
i)}|Dct|

i=1 for Lc steps,
obtaining the trained model W̃s+Lct

cj . Note that same as the
settings in real dataset, Xct

i and Yct
i are the input and target

output pair. Then, in E.q. 5, we minimize the distance between
W̃s+Lct

cj and Ws+Lct
cj via optimizing Dct, i.e., the synthetic

time series data pair (Xct
i ,Y

ct
i) are learnable parameters.

Intuitively, by optimizing Eqs. 5 and 6, we can obtain a
synthetic dataset Dct, where initializing a model with any
client’s model updates from T ct and subsequently training
the model on Dct produces updates similar to those obtained
by training on the clients’ original local data. In other words,
Dct effectively captures the essential information of all clients’
local data for training their local models from initialization to
round t.

Ideally, the optimization should be performed every time
when clients upload new model updates. However, construct-
ing the synthetic dataset is computationally intensive due to
its bi-level optimization process, posing a heavy burden on
the central server. Since the goal of Fed-TREND to construct
Dct is to learn the representative information among clients
rather than replacing the original dataset in each client as the
traditional data condensation goal, which requires a very high
quality of synthetic data, we simplify the process to reduce
computational and memory costs. In detail, we only update
the synthetic datasets at intervals of Lct. For each client ci,
the central server temporarily stores only the start and end
model updates within these intervals Wk∗Lct

cj and W
(k+1)∗Lct
cj ,

i.e., Tct = {ci : (Wk∗Lct
cj ,W

(k+1)∗Lct
cj)}ci∈C . Then, when the

round t = (k + 1) ∗ Lct, the central server will construct a
synthetic dataset Dt

ct based on the trajectories Tct. That is to
say, E.q. 5 is simplied to:

argmin
Dct

Ecj∼U(C)

[
d(W̃k∗Lct

cj ,W(k+1)∗Lct
cj)

]
(7)

After obtaining the optimized Dct, Tct is set to empty and
used to record the next pair of start and end parameters of
Lct length model trajectories. Therefore, it can also reduce
the memory burden as we only need the store a pair of model
updates for clients, rather than clients’ whole model updates.

Moreover, to further reduce the optimization difficulty and
make the synthetic dataset focus on learning significant infor-
mation from trajectories Tct, we only utilize the model parame-
ters that consistently update towards the same directions as the
learning sources for Dt

ct optimization. According to [48], the
parameters that consistently update towards a direction may
reflect some important signals and learn from these parameters
can make the synthetic dataset more concentrate on extracting
these knowledge. Therefore, before the parameters W̃k∗Lct

cj
been added to the trajectories memory bank Tct, the central
server will firstly check whether the gradient of the element
wcj ,m ∈ W̃k∗Lct

cj is consistent with its previous updates, i.e.,
sign(∆wk∗Lct−1

cj ,m) == sign(∆wk∗Lct
cj ,m). If the update is not

consistent, the distance loss of corresponding element in E.q. 7
will be masked.

After the central server constructed the synthetic dataset
Dct, it will be dispersed to each client and mixed with
clients’ local dataset for local training. Since the dataset Dct is
optimized on the consistent model trajectories from all clients,
it captures the representative knowledge of all clients’ local
data. Thus, incorporating this synthetic dataset helps mitigate
local data heterogeneity, enabling clients to learn from each
other indirectly.

C. Synthetic Data for Global Model Refinement

Although the synthetic data Dct can carry some representa-
tive information from all clients to improve the local training
consensus, the heterogeneity problem still persists. This is
because that the size of Dct is limited considering the commu-
nication cost and it is hard to let Dct capture all information
of clients’ data. Consequently, the global model may still drift

Algorithm 1 The pseudo-code for Fed-TREND.
Input: global round R; learning rate lr, Lct, Lgt . . .
Output: well-trained time series forecasting model WR

1: server initializes model W0

2: Tct = {ci : [W0
ci]}ci∈C , Tgt = {W0}

3: Dct = ∅,Dgt = ∅
4: for each round t = 0, ..., R− 1 do
5: sample a fraction of clients Ct from C
6: for ci ∈ Ct in parallel do
7: // execute on client sides
8: Wt+1

ci ←CLIENTTRAIN(ci, Ct, Dct)
9: end for

10: // execute on central server
11: if t%Lct == 0 then
12: check each element’s update direction consistency
13: append Wt+1

ci into Tct
14: end if
15: Wt+1 ← aggregate received client model parameters
{Wt+1

ci }ci∈Ct

16: append Wt+1 into Tgt
17: refine Wt+1 on Dgt

18: end for
19: if t%Lct == 0 then
20: Dct ← DATACONSTRUCTION(Tct)
21: end if
22: if t%Lgt == 0 then
23: Dgt ← DATACONSTRUCTION(Tgt)
24: end if
25: function CLIENTTRAIN(ci, Wt, Dct)
26: download Wt and Dct

27: Wt+1
ci ← update local model with forecasting objec-

tive E.q. 2 on Dci and Dct

28: return Wt+1
ci

29: end function
30: function DATACONSTRUCTION(T)
31: randomly initialize synthetic dataset Dsyn

32: for synthetic data training iteration n = 1 . . . N do
33: sample a segment of trajectories (Wstart,Wend)

from trajectories bank T
34: W̃end ← train Wstart on Dsyn

35: compute distance loss d(W̃end,Wend) and gradi-
ent based on Dsyn

36: end for
37: return Dsyn

38: end function

away from the optimal point after aggregation. To address this,
Fed-TREND introduces an additional synthetic dataset Dgt to
refine the aggregated global model.

Specifically, Fed-TREND constructs Dgt based on the tra-
jectories of aggregated global models, so that the dataset
can capture the long-term dynamics of mutual influences of
clients’ models trained on their heterogeneous local data.
Formally, the central server maintains a trajectory bank Tgt =
{W1, . . . ,Wt}, storing aggregated global model Wt at each

round. Then, Dgt is optimized as follows:

argmin
Dgt

Es∼U(1,t−Lseg
gt)

[
d(W̃s+Lseg

gt ,Ws+Lseg
gt)

]
(8)

s.t.W̃s+Lseg
gt = argminL(Ws,Dgt) (9)

where Lseg
gt is the length of the trajectory segment and

W̃s+Lseg
gt is the model trained on Dgt from the initializa-

tion point of W̃ s for Lseg
gt steps. Similar to Dct, Dgt is

constructed with pairs of learnable input and target outputs
Dgt = {(Xgt

i ,Ygt
i)}|Dgt|

i=1 and has been optimized using E.q. 8.
For computational efficiency, Dgt is updated at intervals of Lgt

rounds, similar to the update strategy for Dct.
Once constructed, Dgt effectively summarizes the stable

influence of clients’ data distributions on model aggregation
within the recent Lgt federated learning rounds. Then, for the
future aggregated global model Wt, we refine it by finetuning
on Dgt for calibration.

D. Implementation of Synthetic Data Construction

We employ the most commonly used synthetic data con-
struction algorithm MTT [12] to construct both Dct and Dgt,
considering its state-of-the-art performance for meaningful
data construction. Note that Fed-TREND is also compatible
with other data construction algorithms, such as distribution
DC [59], PP [60], FTD [61], and so on. The detailed steps
for synthetic data construction are outlined in Algorithm 1,
Lines 29-36. The integration of Dct and Dgt into the general
federated learning framework is described in Lines 11-23 and
Line 26 in Algorithm 1.

E. Discussion

In this part, we briefly discuss Fed-TREND from three
aspects: privacy, communication and computational burden.

1) Privacy Analysis: The synthetic data in Fed-TREND
are constructed in accordance with the standard federated
learning protocol without any additional assumptions. Hence,
the privacy-preserving capabilities of Fed-TREND should be
consistent with those of traditional federated learning methods.
In Section V-I, we also showcase the compatibility of Fed-
TREND with existing privacy-preserving mechanisms [62].

2) Communication Cost Analysis: Fed-TREND introduces
some additional communication overhead because the central
server needs to distribute Dct to clients. However, this cost
is minimal. Taking our experimental setup as an example, the
central server sends Dct to clients at intervals of 10 rounds,
with Dct consisting of 20 input-output pairs. Therefore, for the
entire training process (spanning 80 rounds), the extra com-
munication cost per client is 8×20×(size(Xct)+size(Yct)).
Given that size(Xct) is a sequence of 24 numbers in our case,
the total additional cost is less than 30KB per client.

3) Computational Burden Analysis: Existing condensation
techniques often suffer from high computational costs. To
mitigate this issue in federated learning systems, unlike other
works [15]–[18] that require clients to perform synthetic data
construction, Fed-TREND offloads the entire synthetic data

construction process to the central server. This design choice is
based on the fact that in practical applications, clients typically
have limited computational resources, whereas the central
server usually possesses ample computational power. As a
result, the computational burden on clients in Fed-TREND
remains unchanged, while the extra load on the central server
is manageable, especially considering its substantial resources
and the potential for performance improvement.

V. EXPERIMENTS

In this section, we conduct experiments to answer the
following research questions:

• RQ1. How effective is our Fed-TREND compared to
existing federated learning baselines?

• RQ2. How is the generalization ability of our Fed-
TREND?

• RQ3. How does Fed-TREND benefit from each key
component?

• RQ4. How does the value of some important hyper-
parameters (e.g., synthetic data sizes, frequency of syn-
thetic data updates, input and output data lengths) affect
Fed-TREND’s performance?

• RQ5. Further study: how is the performance of Fed-
TREND with privacy protection mechanism?

A. Datasets

We validate Fed-TREND on eight datasets (ETTh1, ETTh2,
Electricity, Traffic, Solar Energy, State-ILI, Country-Temp,
and USWeather), covering four different domains (energy,
traffic, disease, and climate forecasting). The statistics of
these datasets are listed in Table II. ETTh 3 datasets record
hourly electrical transformer statistics over a span of two
years. Electricity 4 captures the electricity consumption in
kilowatts of 321 clients from 2012 to 2014. Traffic 5 tracks the
hourly road occupancy rate using 862 sensors across the San
Francisco Bay Area freeways over 48 months (2015-2016).
Solar Energy 6 provides solar power production records at
10-minute intervals in 2006 from 137 PV plants in Alabama
State. State-ILI 7 tracks Influenza-like Illness (ILI) data weekly
for 37 U.S. states from approximately 2009 to 2017. Country-
Temp 8 contains the average land temperature of 131 countries
from 1823 to 2013. USWeather 9 includes 4 years from 2010
to 2013 climatological data and we follow the usage in [2].
For each dataset, 70% of the data is used for training and
validation, while the remaining 30% is reserved for testing. In
this paper, we focus on cross-device federated time series fore-
casting, where each device (e.g., sensors, meters, wearables,
etc) is treated as a client. Consequently, in ETTh1, ETTh2,
and USWeather, clients track different variables, whereas in

3https://github.com/zhouhaoyi/ETDataset
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5http://pems.dot.ca.gov
6http://www.nrel.gov/grid/solar-power-data.html
7https://github.com/emilylaiken/ml-flu-prediction
8https://data.world/data-society/global-climate-change-data
9https://www.ncei.noaa.gov/data/local-climatological-data/

https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
http://pems.dot.ca.gov
http://www.nrel.gov/grid/solar-power-data.html
https://github.com/emilylaiken/ml-flu-prediction
https://data.world/data-society/global-climate-change-data
https://www.ncei.noaa.gov/data/local-climatological-data/

TABLE II
THE STATISTICS OF DATASETS.

Dataset Client Num Timesteps Granularity Domain Start Time
ETTh1, ETTh2 7 14,400 1 hour Energy 2016/7/1
Electricity 321 26,304 1 hour Energy 2012/1/1
Traffic 862 17,544 1 hour Traffic 2015/1/1
Solar Energy 137 52,560 10 minutes Energy 2006/1/1
State-ILI 37 345 1 week Disease 2009/10/4
Country-Temp 131 2,277 1 month Climate 1823/1/1
USWeather 12 35,064 1 hour Climate 2010/1/1

the remaining datasets, clients record the same variable for
different entities.

B. Evaluation Metrics

Following previous time series forecasting studies [3], [5]–
[7], we use Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as the primary metrics to evaluate model perfor-
mance. MSE measures the average of the squared differences
between the predicted and actual values, while MAE calculates
the average of the absolute differences between the forecasted
and actual values. Lower MSE and MAE values indicate better
forecasting accuracy.

C. Baselines

To demonstrate the effectiveness of Fed-TREND, we com-
pare it against several baselines, including traditional central-
ized (Centralized), basic federated learning method (FedAvg),
and state-of-the-art general federated learning solutions for
data heterogeneity (FedProx, FedDyn, Elastic, FedHEAL, and
DynaFed). The following is a brief introduction for these
baselines:

• Centralized: This traditional approach trains a time series
forecasting model by collecting data from all devices and
training it on a central server.

• FedAvg [9]: The most widely used federated learning
framework, FedAvg averages the model parameters up-
loaded by clients to update the global model.

• FedProx [44]: An extension of FedAvg, FedProx intro-
duces a proximal term in the local training objective to
stabilize updates from clients with diverse data distribu-
tions.

• FedDyn [46]: FedDyn addresses data heterogeneity by
adding a dynamic regularization term to the local objec-
tive function, helping synchronize client updates with the
overall federated learning process.

• Elastic [47]: This approach handles data heterogeneity
by selectively weighting or attenuating client updates,
ensuring the global model benefits from stable, consistent
patterns while minimizing the impact of divergent updates
due to local data variations.

• FedHEAL [48]: A state-of-the-art technique designed to
address domain skew, FedHEAL maintains both local
consistency and domain diversity, enhancing the global
model’s generalization across different client domains.

• DynaFed [54]: Similar to our Dgc construction process,
DynaFed is designed for image classification and does not

update the synthetic data during training. Consequently,
its performance degrades as the synthetic data becomes
outdated over time.

D. Implementation Details

For the main experiments, we use DLinear [6] as the default
base model for time series forecasting in both Fed-TREND
and the baselines, considering its effectiveness and efficiency.
In Section V-F, we further evaluate the performance of other
forecasting models within Fed-TREND. We set both the input
and output lengths (i.e., Lx and Ly) to 24 and will examine the
impact of these lengths in Section V-H3. The total number of
global training rounds R is set to 80, with a local epoch count
of 1, and all clients participate in each training round. For local
training, we use SGD [63] as the optimizer, with a learning
rate of 5 × 10−4 and momentum of 0.9. The batch size for
local training is 256. For synthetic data generation, we set the
update intervals for Lgt and Lct to 10, meaning the synthetic
datasets Dgt and Dct are updated every ten global rounds.
The influence of these intervals are explored in Section V-H4.
The sizes of Dgt and Dct are explored in Section V-H2 and
Section V-H1, respecatively. The optimizer for synthetic data
construction is Adam [64] with a learning rate of 3×10−4, and
the number of learning iterations is set to 300, following [12].

E. Fed-TREND v.s. Baselines (RQ1)

To demonstrate the effectiveness of Fed-TREND, we com-
pare it with several baselines in Table III. The results show that
the traditional federated learning framework (FedAvg) often
lags behind centralized training. The performance gap varies
across datasets due to differing degrees of data heterogeneity.
For example, on Solar Energy dataset, the performance be-
tween Centralized and FedAvg is very close. This is because
the data in this dataset are almost homogeneous since at
any plants, the solar energy is zero at night and variations
among different areas in a state are minimal. In contrast, on
datasets like State-ILI and Country-Temp datasets, intuitively,
the data are highly heterogeneous, as illness statistics dif-
fer significantly across states, and ground temperatures vary
widely among countries. Consequently, the naive FedAvg
approach performs much worse than centralized training in
these cases. Furthermore, most existing solutions designed to
address heterogeneity in image classification do not perform
well in federated time series forecasting. As discussed in the
previous section, this is due to fundamental differences in
task settings and the nature of data heterogeneity between

TABLE III
THE COMPARISON OF THE OVERALL PERFORMANCE OF FED-TREND AND BASELINES. THE BEST VALUES OF FEDERATED LEARNING METHODS ON

EACH DATASET ARE BOLD.

Dataset Electricity Traffic Solar Energy State-ILI
Metrics MSE MAE MSE MAE MSE MAE MSE MAE
Centralized 0.21822 0.30709 0.47615 0.40192 0.32125 0.43077 0.89061 0.68811
FedAvg 0.22199 0.31156 0.48622 0.41120 0.32251 0.43210 0.96516 0.72040
FedProx 0.22288 0.31273 0.48815 0.41281 0.32588 0.43608 0.96614 0.72401
FedDyn 0.21991 0.31628 0.48023 0.40865 0.33385 0.44509 0.96454 0.72014
Elastic 0.21450 0.30289 0.47445 0.39996 0.32352 0.43345 0.96387 0.71986
FedHEAL 0.22061 0.31261 0.48187 0.40621 0.32237 0.43123 0.96489 0.72027
DynaFed 0.23515 0.33116 0.53152 0.44961 0.32481 0.43468 0.95894 0.71776
Ours 0.20888 0.29838 0.46073 0.38698 0.31457 0.42284 0.91795 0.70034
Dataset Country-Temp ETTh1 ETTh2 USWeather
Metrics MSE MAE MSE MAE MSE MAE MSE MAE
Centralized 0.26942 0.37543 0.37308 0.40949 0.15794 0.27620 0.45217 0.44744
FedAvg 0.54606 0.57863 0.39343 0.42228 0.16318 0.28154 0.45444 0.45011
FedProx 0.54606 0.57983 0.39646 0.42428 0.16524 0.28367 0.45533 0.45123
FedDyn 0.54044 0.57762 0.38909 0.41953 0.15655 0.27625 0.44625 0.45352
Elastic 0.63603 0.63226 0.38215 0.41568 0.16165 0.28026 0.45054 0.44734
FedHEAL 0.53606 0.57324 0.37465 0.41158 0.16188 0.28121 0.45202 0.45350
DynaFed 0.57391 0.61212 0.41513 0.43578 0.15899 0.27764 0.45613 0.45683
Ours 0.45429 0.54099 0.35814 0.39937 0.14449 0.26381 0.44036 0.44247

FedProx FedDyn Elastic FedHEALDynaFed
Electricity

0.
10

0.
15

0.
20

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
Traffic

0.
2

0.
3

0.
4

0.
5

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
Solar Energy

0.
1

0.
2

0.
3

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
State-ILI

0.
6

0.
7

0.
8

0.
9

1.
0

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
Country-Temp

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
ETTh1

0.
2

0.
3

0.
4

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
ETTh2

0.
00

0.
05

0.
10

0.
15

M
SE

FedProx FedDyn Elastic FedHEALDynaFed
USWeather

0.
30

0.
35

0.
40

0.
45

M
SE

Original +Fed-TREND

Fig. 2. The result of using Fed-TREND to improve the general federated learning frameworks.

image classification and time series forecasting. Finally, our
proposed method, Fed-TREND, consistently outperforms fed-
erated learning baselines with a large margin. Notably, on six
datasets (Electricity, Traffic, Solar Energy, ETTh1, ETTh2,
and USWeather), Fed-TREND even surpasses the performance
of centralized training. This improvement may be attributed
to the synthetic datasets, which provide additional insights,
helping the model better capture temporal patterns. On the
more heterogeneous datasets, State-ILI and Country-Temp,
while Fed-TREND still has a performance gap compared to
Centralized, it achieves the best results among all federated
learning baselines.

F. The Generalization of Fed-TREND (RQ2)

Beyond its effectiveness, Fed-TREND also offers strong
generalization capabilities. In this section, we explore this
generalizability from two perspectives: (1) Can Fed-TREND
enhance existing federated learning frameworks by integrating

with them? and (2) Can Fed-TREND effectively work with
various time series forecasting models?

First, we investigate whether Fed-TREND can improve the
performance of federated learning baselines. Specifically, we
integrate the construction process of Dgt and Dct into each
federated learning method’s central server. After aggregation,
Dgt is used to finetune the global model, while Dct is
mixed with local data for local training. Figure 2 shows the
performance results of equipping federated baselines with Fed-
TREND. According to the results, Fed-TREND enhances the
performance of all baselines across all datasets, demonstrating
its strong generalization ability within different federated
learning frameworks.

Additionally, we test Fed-TREND’s compatibility with four
time series forecasting models, including two of the most
popular architectures: MLP and Transformer. As shown in
Table IV, Fed-TREND improves the performance of all tested
forecasting models compared to naive federated learning.
Specifically, DLinear and TSMixer achieve the best perfor-

TABLE IV
THE PERFORMANCE OF FED-TREND WITH VARIOUS STATE-OF-THE-ART TIME SERIES FORECASTING MODELS.

Dataset Electricity Traffic Solar Energy State-ILI
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

DLinear FedAvg 0.22199 0.31156 0.48622 0.41120 0.32251 0.43210 0.96516 0.72040
Ours 0.20888 0.29838 0.46073 0.38698 0.31457 0.42284 0.91795 0.70034

LightTS FedAvg 0.22205 0.30894 0.48514 0.40768 0.33548 0.44212 1.24200 0.85050
Ours 0.21006 0.29762 0.46243 0.38758 0.33318 0.44018 1.17520 0.82470

TSMixer FedAvg 0.21727 0.30388 0.47401 0.39677 0.27527 0.35847 1.19635 0.83488
Ours 0.20974 0.29598 0.46634 0.38831 0.27441 0.35672 0.96942 0.73354

iTransformer FedAvg 0.28840 0.38110 0.58663 0.47946 0.27552 0.34224 0.94379 0.72348
Ours 0.28443 0.37762 0.58295 0.47692 0.27478 0.34109 0.87321 0.69234

Dataset Country-Temp ETTh1 ETTh2 USWeather
Metrics MSE MAE MSE MAE MSE MAE MSE MAE

DLinear FedAvg 0.54606 0.57863 0.39343 0.42228 0.16318 0.28154 0.45444 0.45011
Ours 0.45429 0.54099 0.35814 0.39937 0.14449 0.26381 0.44036 0.44247

LightTS FedAvg 0.71192 0.67898 0.37634 0.41393 0.16354 0.28388 0.45765 0.45359
Ours 0.64298 0.64576 0.35660 0.39982 0.15203 0.27366 0.44338 0.44723

TSMixer FedAvg 0.54964 0.58744 0.37824 0.41354 0.15104 0.26636 0.44910 0.45031
Ours 0.51085 0.57618 0.36611 0.40612 0.14236 0.25674 0.44351 0.44350

iTransformer FedAvg 0.88088 0.79160 0.49450 0.48204 0.16896 0.29863 0.47024 0.47050
Ours 0.86617 0.78476 0.49103 0.47991 0.16789 0.29747 0.46755 0.46874

TABLE V
THE RESULTS OF ABLATION STUDY. “-CU” MEANS DOES NOT CONSTRUCT Dct THAT ONLY CONSIDERING THE CONSISTENT UPDATED GRADIENTS, I.E.,

USING ALL PARAMETERS FOR Dct CONSTRUCTION. “-Dct” AND “-Dgt” MEANS REMOVE THE CORRESPONDING SYNTHETIC DATASETS.

Dataset Electricity Traffic Solar Iliness
Metrics MSE MAE MSE MAE MSE MAE MSE MAE
Fed-TREND 0.20888 0.29838 0.46073 0.38698 0.31457 0.42284 0.91795 0.70034
-cu 0.21190 0.30099 0.46878 0.39574 0.31428 0.42279 0.91848 0.70060
-cu -Dct 0.21524 0.30446 0.47332 0.39979 0.32014 0.42962 0.94931 0.71375
-Dgt 0.21645 0.30591 0.46984 0.39826 0.32307 0.42921 0.95027 0.71408
-cu -Dct -Dgt (FedAvg) 0.22199 0.31156 0.48622 0.41120 0.32251 0.43210 0.96516 0.72040
Dataset Temperature ETTh1 ETTh2 USWeather
Metrics MSE MAE MSE MAE MSE MAE MSE MAE
Fed-TREND 0.45429 0.54099 0.35814 0.39937 0.14449 0.26381 0.44036 0.44247
-cu 0.45275 0.53956 0.37340 0.41001 0.15181 0.27123 0.44005 0.44249
-cu -Dct 0.47206 0.54721 0.38161 0.41520 0.15537 0.27478 0.44667 0.44655
-Dgt 0.49183 0.55251 0.36022 0.40132 0.14864 0.26832 0.44071 0.44281
-cu -Dct -Dgt (FedAvg) 0.54606 0.57863 0.39343 0.42228 0.16318 0.28154 0.45444 0.45011

mance among the four models, while iTransformer performs
the worst. This is likely because, in our cross-device federated
time series forecasting setting, each device tracks only a single
variable. Therefore, iTransformer, which is designed to fuse
information across multiple variables, is less effective in this
context.

In conclusion, Fed-TREND demonstrates strong generaliz-
ability across both federated learning frameworks and various
time series forecasting models.

G. Ablation Studies (RQ3)

In Fed-TREND, we introduce the construction of two syn-
thetic datasets: Dct, based on consistent client model updates,
and Dgt, based on the aggregated global model. The synthetic
dataset Dct is distributed to clients for local training, while Dgt

is retained on the central server to finetune and calibrate the
global model. In this section, we investigate the effectiveness
of Dgt, Dct, and the consistent updating (“CU”) method used
in constructing Dct.

The empirical results are displayed in Table V. When we
remove the consistent update dataset construction method,

i.e., “-cu”, the system’s performance slightly declines. This
suggests that building Dct based on consistent updates helps
the synthetic data concentrate on capturing more valuable
information for model training. Next, we examine the impact
of removing the synthetic datasets Dct (“-CU -Dct”) or Dgt

(“-Dgt”) individually. In both cases, the system’s performance
significantly decreases across all datasets, demonstrating the
importance of each synthetic dataset. Finally, when all syn-
thetic data components are removed, the system degrades to
the FedAvg baseline.

Overall, the results indicate that each of the proposed
components contributes meaningfully to improving model
performance.

H. Hyperparameter Analysis (RQ4)

In this paper, the dataset sizes |Dgt| and |Dct| are intuitively
the two most significant hyperparameters influencing the per-
formance of Fed-TREND. Therefore, we analyze their impact
in Section V-H1 and Section V-H2, respectively. Additionally,
we explore Fed-TREND’s performance with different input
and output lengths in Section V-H3, as these settings are

0 5 10 20 40
Electricity

0.2100

0.2125

0.2150
M

SE

0 5 10 20 40
Traffic

0.465

0.470

M
SE

0 5 10 20 40
Solar Energy

0.3150

0.3175

0.3200

0.3225

M
SE

0 5 10 20 40
State-ILI

0.92

0.93

0.94

0.95

M
SE

0 5 10 20 40
Country-Temp

0.46

0.48

M
SE

0 5 10 20 40
ETTh1

0.358

0.359

0.360

M
SE

0 5 10 20 40
ETTh2

0.144

0.146

0.148

M
SE

0 5 10 20 40
USWeather

0.44000

0.44025

0.44050

0.44075

M
SE

Fig. 3. The performance trend with different |Dgt|.

10 20 30 40
Electricity

0.209

0.210

M
SE

10 20 30 40
Traffic

0.462

0.464

0.466

M
SE

10 20 30 40
Solar Energy

0.312

0.314

0.316

M
SE

10 20 30 40
State-ILI

0.92

0.93

0.94

0.95

M
SE

10 20 30 40
Country-Temp

0.454

0.456

0.458

0.460

M
SE

10 20 30 40
ETTh1

0.355

0.360

0.365

M
SE

10 20 30 40
ETTh2

0.144

0.146

0.148
M

SE

10 20 30 40
USWeather

0.440

0.442

M
SE

Fig. 4. The performance trend with different |Dct|.

crucial for practical time series forecasting tasks. Last but not
least, we analyze the frequency of updating Dgt and Dct, i.e.,
the value of Lgt and Lct’s influence in Section V-H4.

1) The Impact of Dgt dataset size: Figure 3 illustrates the
performance trend as the size of the synthetic dataset |Dgt|
increases. Across all datasets, as |Dgt| grows from 0 to 40,
model performance improves, but the rate of improvement
gradually decreases. Notably, when |Dgt| increases from 0
to 5, system performance improves rapidly, highlighting the
positive impact of Dgt. However, as |Dgt| continues to grow,
the contributions to performance become minimal. This may
be because, beyond a certain threshold, additional synthetic
data does not provide significant new information.

2) The Impact of Dct dataset size: Figure 4 shows the
performance trend of Fed-TREND as the size of |Dct| in-
creases from 10 to 40. The results indicate that for most
datasets, as the size of Dct grows, model performance initially
improves, reaching a peak. This suggests that Dct provides
valuable information for local model training. However, be-
yond a certain point, further expansion of the dataset size
leads to a decline in performance. This phenomenon can be
attributed to two main reasons. First, larger synthetic datasets
introduce more trainable parameters, increasing the complexity
of training and potentially capturing noise. Second, an overly
large synthetic dataset may dilute the semantics of clients’
original data, ultimately hindering local training. Therefore,

selecting an appropriate size for Dct is crucial for maximizing
model performance.

3) The Impact of Input and Output Time Series Data
Length: To simplify the investigation cases, we assume that
input and output data lengths Lx and Ly are the same, and
then, we change the data length from the default value 24 to
96. Note that due to the limited number of timesteps in the
State-ILI dataset (only 345 in total, as shown in Table II), we
only examine data lengths from 24 to 48 for this dataset.

Intuitively, increasing the data length should decrease model
performance since longer forecasting horizons are more chal-
lenging. This trend is observed in the Country-Temp, ETTh1,
ETTh2, and USWeather datasets. However, in the Electricity,
Traffic, and Solar Energy datasets, increasing the data length
initially worsens performance, but further increases in data
length help mitigate this decline. Interestingly, in the State-
ILI dataset, a longer data length actually improves model
forecasting. This may be because, while a longer output data
length increases forecasting difficulty, a longer input data
length provides more valuable contextual information. For
example, in real-world scenarios, illness statistics like those
in the State-ILI dataset exhibit seasonality, so having a longer
observed data window is beneficial for accurate predictions.

Overall, in all cases, Fed-TREND consistently outperforms
its corresponding base federated learning framework, FedAvg,
by a significant margin, demonstrating the robustness and ef-

24 48 72 96
Electricity

0.22

0.24

M
SE

24 48 72 96
Traffic

0.50

0.55

0.60

M
SE

24 48 72 96
Solar Energy

0.3

0.4

0.5

M
SE

24 32 40 48
State-ILI

0.7

0.8

0.9

M
SE

24 48 72 96
Country-Temp

0.5

0.6

M
SE

24 48 72 96
ETTh1

0.40

0.45

M
SE

24 48 72 96
ETTh2

0.15

0.20

0.25

M
SE

24 48 72 96
USWeather

0.5

0.6

M
SE

FedAvg
Ours

Fig. 5. The performance trend with time series data length.

fectiveness of our method across different data length settings.

5 10 15 20
Lgt

0.36

0.37

M
SE

5 10 15 20
Lct

0.355

0.360

0.365

M
SE

Fig. 6. The performance trend with the synthetic data construction frequency
Lgt and Lct on ETTh1. Similar trend can be observed on other datasets.

4) The Impact of Data Construction Interval: Figure 6
illustrates the impact of synthetic data construction frequency
on system performance. Due to space limitations, we present
the results for the ETTh1 dataset, but similar trends are ob-
served across the other seven datasets. The results indicate that
smaller values of Lgt and Lct lead to better performance. This
is because more frequent construction of synthetic datasets
allows them to quickly adapt to recent dynamics, thereby
incorporating the latest knowledge from model updates. How-
ever, frequently updating synthetic datasets also increases
computational costs, creating a trade-off between effectiveness
and efficiency. In our experiments, we found that setting Lgt

and Lct to 10 strikes a good balance.

I. Further Study with Privacy Protection Mechanism (RQ5)

To enhance privacy protection, federated learning often
incorporates privacy mechanisms. Among these, local differ-
ential privacy (LDP) is considered the gold standard and the
most widely used approach [65]. In this section, we evaluate
whether Fed-TREND can still improve the performance of
baseline federated learning when using LDP. Specifically, we
implement LDP with the Laplace mechanism by adding noise
sampled from N (0, λ2I) to the model parameters, where N
represents the normal distribution, and we set λ = 0.001 to
balance the trade-off between performance and privacy. As
shown in Figure 7, integrating Fed-TREND with “FedAvg

Electricity Traffic Solar Energy State-ILI Country-Temp ETTh1 ETTh2 USWeather
datasets

0.
2

0.
4

0.
6

0.
8

1.
0

M
SE

FedAvg+LDP Fed-TREND+LDP

Fig. 7. The performance comparison of the base federated learning and the
equipping of Fed-TREND under the context of differential privacy.

+ LDP” results in lower MSE scores across all datasets,
indicating that Fed-TREND remains effective in the context
of differential privacy.

VI. CONCLUSION

This paper introduces Fed-TREND, a federated time series
forecasting framework designed to close the performance gap
between federated and centralized time series forecasting by
enhancing learning on heterogeneous data. Specifically, Fed-
TREND constructs two types of synthetic datasets based on
clients’ uploaded models and the aggregated global model
to improve the consensus during clients’ local training and
to refine the global model aggregation, respectively. Since
the synthetic data construction process does not require any
prior knowledge and is performed on the central server,
Fed-TREND can be easily integrated with most federated
learning frameworks without imposing a heavy computational
burden on clients. Extensive experiments conducted on eight
time series datasets using four popular forecasting models
demonstrate the effectiveness and generalization capabilities
of the proposed Fed-TREND.

REFERENCES

[1] Y. Li, X. Lu, H. Xiong, J. Tang, J. Su, B. Jin, and D. Dou, “Towards
long-term time-series forecasting: Feature, pattern, and distribution,” in
2023 IEEE 39th International Conference on Data Engineering (ICDE).
IEEE, 2023, pp. 1611–1624.

[2] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI conference on artificial intel-
ligence, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[3] Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, “itrans-
former: Inverted transformers are effective for time series forecasting,”
in The Twelfth International Conference on Learning Representations.

[4] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[5] T. Zhang, Y. Zhang, W. Cao, J. Bian, X. Yi, S. Zheng, and J. Li, “Less
is more: Fast multivariate time series forecasting with light sampling-
oriented mlp structures,” arXiv preprint arXiv:2207.01186, 2022.

[6] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective
for time series forecasting?” in Proceedings of the AAAI conference on
artificial intelligence, vol. 37, no. 9, 2023, pp. 11 121–11 128.

[7] S.-A. Chen, C.-L. Li, S. O. Arik, N. C. Yoder, and T. Pfister, “Tsmixer:
An all-mlp architecture for time series forecast-ing,” Transactions on
Machine Learning Research.

[8] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, “Smart meter data
privacy: A survey,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 4, pp. 2820–2835, 2017.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[10] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in 2022 IEEE 38th international
conference on data engineering (ICDE). IEEE, 2022, pp. 965–978.

[11] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao, “Heterogeneous feder-
ated learning: State-of-the-art and research challenges,” ACM Computing
Surveys, vol. 56, no. 3, pp. 1–44, 2023.

[12] G. Cazenavette, T. Wang, A. Torralba, A. A. Efros, and J.-Y. Zhu,
“Dataset distillation by matching training trajectories,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 4750–4759.

[13] R. Yu, S. Liu, and X. Wang, “Dataset distillation: A comprehensive re-
view,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

[14] X. Gao, J. Yu, W. Jiang, T. Chen, W. Zhang, and H. Yin, “Graph
condensation: A survey,” arXiv preprint arXiv:2401.11720, 2024.

[15] J. Goetz and A. Tewari, “Federated learning via synthetic data,” arXiv
preprint arXiv:2008.04489, 2020.

[16] Y. Xiong, R. Wang, M. Cheng, F. Yu, and C.-J. Hsieh, “Feddm: Iterative
distribution matching for communication-efficient federated learning,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 16 323–16 332.

[17] P. Liu, X. Yu, and J. T. Zhou, “Meta knowledge condensation for fed-
erated learning,” in The Eleventh International Conference on Learning
Representations.

[18] Y. Wang, H. Fu, R. Kanagavelu, Q. Wei, Y. Liu, and R. S. M. Goh,
“An aggregation-free federated learning for tackling data heterogeneity,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 26 233–26 242.

[19] Q. Wen, L. Yang, T. Zhou, and L. Sun, “Robust time series analysis
and applications: An industrial perspective,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2022, pp. 4836–4837.

[20] T. Shen, Y. Li, and J. M. Moura, “Forecasting covid-19 dynamics:
Clustering, generalized spatiotemporal attention, and impacts of mobility
and geographic proximity,” in 2023 IEEE 39th International Conference
on Data Engineering (ICDE). IEEE, 2023, pp. 2892–2904.

[21] S. Chen, G. Long, T. Shen, and J. Jiang, “Prompt federated learning for
weather forecasting: toward foundation models on meteorological data,”
in Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, 2023, pp. 3532–3540.

[22] K. Benidis, S. S. Rangapuram, V. Flunkert, Y. Wang, D. Maddix,
C. Turkmen, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella

et al., “Deep learning for time series forecasting: Tutorial and literature
survey,” ACM Computing Surveys, vol. 55, no. 6, pp. 1–36, 2022.

[23] G. E. Box and D. A. Pierce, “Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models,” Journal
of the American statistical Association, vol. 65, no. 332, pp. 1509–1526,
1970.

[24] E. S. Gardner Jr, “Exponential smoothing: The state of the art,” Journal
of forecasting, vol. 4, no. 1, pp. 1–28, 1985.

[25] A. C. Harvey, “Forecasting, structural time series models and the kalman
filter,” 1990.

[26] A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and
long short-term memory (lstm) network,” Physica D: Nonlinear Phe-
nomena, vol. 404, p. 132306, 2020.

[27] J. Wu, “Introduction to convolutional neural networks,” National Key
Lab for Novel Software Technology. Nanjing University. China, vol. 5,
no. 23, p. 495, 2017.

[28] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and
short-term temporal patterns with deep neural networks,” in The 41st
international ACM SIGIR conference on research & development in
information retrieval, 2018, pp. 95–104.

[29] S.-Y. Shih, F.-K. Sun, and H.-y. Lee, “Temporal pattern attention for
multivariate time series forecasting,” Machine Learning, vol. 108, pp.
1421–1441, 2019.

[30] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun,
“Transformers in time series: a survey,” in Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, 2023,
pp. 6778–6786.

[31] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
Advances in neural information processing systems, vol. 34, pp. 22 419–
22 430, 2021.

[32] Q. V. H. Nguyen, C. T. Duong, T. T. Nguyen, M. Weidlich, K. Aberer,
H. Yin, and X. Zhou, “Argument discovery via crowdsourcing,” The
VLDB Journal, vol. 26, pp. 511–535, 2017.

[33] W. Yuan, H. Yin, F. Wu, S. Zhang, T. He, and H. Wang, “Federated
unlearning for on-device recommendation,” in Proceedings of the six-
teenth ACM international conference on web search and data mining,
2023, pp. 393–401.

[34] W. Yuan, L. Qu, L. Cui, Y. Tong, X. Zhou, and H. Yin, “Hetefedrec:
Federated recommender systems with model heterogeneity,” in 2024
IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 2024, pp. 1324–1337.

[35] W. Yuan, C. Yang, L. Qu, Q. V. H. Nguyen, J. Li, and H. Yin, “Hide your
model: A parameter transmission-free federated recommender system,”
in 2024 IEEE 40th International Conference on Data Engineering
(ICDE). IEEE, 2024, pp. 611–624.

[36] W. Yuan, S. Yuan, C. Yang, N. Quoc Viet hung, and H. Yin, “Manip-
ulating visually aware federated recommender systems and its counter-
measures,” ACM Transactions on Information Systems, vol. 42, no. 3,
pp. 1–26, 2023.

[37] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[38] H. Yin, Q. Wang, K. Zheng, Z. Li, and X. Zhou, “Overcoming data
sparsity in group recommendation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 34, no. 7, pp. 3447–3460, 2020.

[39] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Interna-
tional conference on machine learning. PMLR, 2021, pp. 2089–2099.

[40] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation
for robust model fusion in federated learning,” Advances in neural
information processing systems, vol. 33, pp. 2351–2363, 2020.

[41] H.-Y. Chen and W.-L. Chao, “Fedbe: Making bayesian model ensemble
applicable to federated learning,” in International Conference on Learn-
ing Representations.

[42] Q. Liu, C. Chen, J. Qin, Q. Dou, and P.-A. Heng, “Feddg: Federated do-
main generalization on medical image segmentation via episodic learn-
ing in continuous frequency space,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2021, pp. 1013–
1023.

[43] T. Yoon, S. Shin, S. J. Hwang, and E. Yang, “Fedmix: Approximation
of mixup under mean augmented federated learning,” in International
Conference on Learning Representations.

[44] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[45] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International conference on machine learning. PMLR, 2020,
pp. 5132–5143.

[46] D. A. E. Acar, Y. Zhao, R. M. Navarro, M. Mattina, P. N. Whatmough,
and V. Saligrama, “Federated learning based on dynamic regularization,”
arXiv preprint arXiv:2111.04263, 2021.

[47] D. Chen, J. Hu, V. J. Tan, X. Wei, and E. Wu, “Elastic aggregation for
federated optimization,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023, pp. 12 187–12 197.

[48] Y. Chen, W. Huang, and M. Ye, “Fair federated learning under domain
skew with local consistency and domain diversity,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 12 077–12 086.

[49] Y. Zhou, G. Pu, X. Ma, X. Li, and D. Wu, “Distilled one-shot federated
learning,” arXiv preprint arXiv:2009.07999, 2020.

[50] S. Hu, J. Goetz, K. Malik, H. Zhan, Z. Liu, and Y. Liu, “Fedsynth:
Gradient compression via synthetic data in federated learning,” in
Workshop on Federated Learning: Recent Advances and New Challenges
(in Conjunction with NeurIPS 2022).

[51] J. Zhang, C. Chen, B. Li, L. Lyu, S. Wu, S. Ding, C. Shen, and C. Wu,
“Dense: Data-free one-shot federated learning,” Advances in Neural
Information Processing Systems, vol. 35, pp. 21 414–21 428, 2022.

[52] B. Zheng, K. Zheng, X. Xiao, H. Su, H. Yin, X. Zhou, and G. Li,
“Keyword-aware continuous knn query on road networks,” in 2016 IEEE
32Nd international conference on data engineering (ICDE). IEEE,
2016, pp. 871–882.

[53] R. Dai, Y. Zhang, A. Li, T. Liu, X. Yang, and B. Han, “Enhancing one-
shot federated learning through data and ensemble co-boosting,” in The
Twelfth International Conference on Learning Representations.

[54] R. Pi, W. Zhang, Y. Xie, J. Gao, X. Wang, S. Kim, and Q. Chen,
“Dynafed: Tackling client data heterogeneity with global dynamics,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 12 177–12 186.

[55] N. Q. V. Hung, H. H. Viet, N. T. Tam, M. Weidlich, H. Yin, and
X. Zhou, “Computing crowd consensus with partial agreement,” IEEE
Transactions on Knowledge and Data Engineering, vol. 30, no. 1, pp.
1–14, 2017.

[56] Q. Liu, X. Liu, C. Liu, Q. Wen, and Y. Liang, “Time-ffm: Towards
lm-empowered federated foundation model for time series forecasting,”
arXiv preprint arXiv:2405.14252, 2024.

[57] R. Abdel-Sater and A. B. Hamza, “A federated large language model
for long-term time series forecasting,” arXiv preprint arXiv:2407.20503,
2024.

[58] Y. Yan, G. Yang, Y. Gao, C. Zang, J. Chen, and Q. Wang, “Multi-
participant vertical federated learning based time series prediction,” in
Proceedings of the 8th International Conference on Computing and
Artificial Intelligence, 2022, pp. 165–171.

[59] B. Zhao, K. R. Mopuri, and H. Bilen, “Dataset condensation with
gradient matching,” arXiv preprint arXiv:2006.05929, 2020.

[60] G. Li, R. Togo, T. Ogawa, and M. Haseyama, “Dataset distillation
using parameter pruning,” IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences, vol. 107, no. 6,
pp. 936–940, 2024.

[61] J. Du, Y. Jiang, V. Y. Tan, J. T. Zhou, and H. Li, “Minimizing the accu-
mulated trajectory error to improve dataset distillation,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 3749–3758.

[62] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[63] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in International
conference on machine learning. PMLR, 2013, pp. 1139–1147.

[64] D. P. Kingma, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[65] S. Zhang, W. Yuan, and H. Yin, “Comprehensive privacy analysis on
federated recommender system against attribute inference attacks,” IEEE
Transactions on Knowledge and Data Engineering, 2023.

	Introduction
	Related Work
	Time Series Forecasting
	Federated Learning with Data Heterogeneity
	Federated Learning with Data Condensation
	Federated Learning in Time Series Forecasting

	Preliminaries
	Formulation of Federated Time Series Forecasting
	Base Time Series Forecasting Models

	Methodology
	Overview of Fed-TREND
	Synthetic Data Dct for Representative Knowledge Transfer
	Synthetic Data for Global Model Refinement
	Implementation of Synthetic Data Construction
	Discussion
	Privacy Analysis
	Communication Cost Analysis
	Computational Burden Analysis

	Experiments
	Datasets
	Evaluation Metrics
	Baselines
	Implementation Details
	Fed-TREND v.s. Baselines (RQ1)
	The Generalization of Fed-TREND (RQ2)
	Ablation Studies (RQ3)
	Hyperparameter Analysis (RQ4)
	The Impact of Dgt dataset size
	The Impact of Dct dataset size
	The Impact of Input and Output Time Series Data Length
	The Impact of Data Construction Interval

	Further Study with Privacy Protection Mechanism (RQ5)

	Conclusion
	References

