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ABSTRACT. Let Sn be a sum of independent identically distribution random variables with
finite first moment and hM be a call function defined by gM (x) = max{x −M, 0} for x ∈ R,
M > 0. In this paper, we assume the random variables are in the domain Rα of normal attraction
of a stable law of exponent α, then for α ∈ (1, 2), we use the Stein’s method developed in
[12] to give uniform and non uniform bounds on α-stable approximation for the call function
without additional moment assumptions. These results will make the approximation theory
of call function applicable to the lower moment conditions, and greatly expand the scope of
application of call function in many fields.
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1. INTRODUCTION

For a fixed constant M > 0, the call function gM is defined by

gM(x) = (x−M)+, x ∈ R,

where (x − M)+ = max{x − M, 0}. In recent years, the call function has been used in
many aspects, such as, risk theory [22, 38], finance [15, 37], etc. For example, one of the
representative applications of call function is the collateralized debt obligation (CDO), which
belongs to the financial instrument and plays a crucial role in the financial crisis in the USA.
For more details on the CDO, we refer the reader to [1, 11, 17, 18, 24, 26, 40, 41] and the
references therein.

For a long time, many authors have been working on the approximation for the call function
and one of the commonly used methods in recent years is the Stein’s method. The Stein’s
method was proposed by Stein in [36] when dealing with the problem of normal approximation.
Now, the Stein’s method has become a commonly used tool for obtaining error bounds between
two probability distributions. For Stein’s method, we refer the reader to [6, 8, 9, 10, 19, 30, 33,
35]. To be specific, [18] used Stein’s method and zero bias transformation to obtain a bound
on Gaussian and Poisson approximation, then a more thorough analysis of the approximation
was conducted using CDO. Subsequently, the approximations are further investigated in [11,
17, 26, 40, 41] and better non uniform upper bounds are obtained, as well as some better upper
bounds with correction terms. Moreover, [24] studied the negative binomial approximation for
call function by Stein’s method.

However, it is a pity that all kinds of approximation for call function studies above have the
assumption that the second moments or variances are bounded, and some non uniform results
even require the existence of higher-order moments. These conditions rule out many heavy-
tailed distributions in theory and applications. In recent years, the heavy-tailed distribution,
especially for the stable distribution, have been widely used in various fields, such as statistics,
finance and economics [4, 25, 27, 29, 32]. Hence, the research on the stable approximation of
call function will further expand the use of heavy-tailed distributions in these fields.
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As an important part of limit theorems, stable distribution and stable central limit theorem
(CLT) play a significant role in probability theory, which have been used in many fields, such
as economics [25, 27], deep learning [20, 23] and so on. Recently, new progress has been made
in the study of stable approximation by Stein’s method. [39] considered the symmetric α-stable
distribution with α ∈ (1, 2), and first used the Stein’s method and the Stein kernel to obtain the
optimal convergence rate of the stable CLT in the Wasserstein-1 distance. Along this research
direction, [12] generalized the method to the asymmetric case with the help of the zero-biased
coupling and Taylor-like extension, then the method was further extended to the non-integrable
case [14] and multivariate case [14]. For more research on stable approximation, we refer the
reader to [2, 3, 5, 7, 16, 21] and the references therein.

In this paper, we will use the Stein’s method developed in [12, 39] to give uniform and non
uniform bounds on α-stable approximation for the call function without additional moment
assumptions. In particular, for the symmetric case (that is, δ = 0), we further improve the
non uniform upper bounds with the help of heat kernel estimates. These results will make the
approximation theory of call function applicable to the lower moment conditions, and greatly
expand the scope of application of call function in CDO and other fields.

Now, we first give the definition of the α-stable distribution.

Definition 1.1. Let α ∈ (1, 2), σ ≥ 0 and δ ∈ [−1, 1] be real numbers. We say that Y is
distributed according to the α-stable law with parameters σ and δ, and we write Y ∼ Sα(σ, δ),
to indicate that, for all λ ∈ (−∞,∞),

E[eiλY ] = exp
{
− σα|λ|α(1− i δ sign(λ) tan πα

2
)
}

It is easy to check that Y/σ ∼ Sα(1, δ) if Y ∼ Sα(σ, δ). Hence, we will only consider the
stable distributions for σ = 1.

1.1. Main assumptions and theorems. In this paper, we assume the random variables are in
the domain Rα of normal attraction of a stable law of exponent α, which is defined as follows:

Definition 1.2. If X has a distribution function of the form

(1.1) FX(x) =
(
1− A+B(x)

|x|α
(1 + δ)

)
1[0,∞)(x) +

A+B(x)

|x|α
(1− δ)1(−∞,0)(x)

)
,

where α ∈ (1, 2), A > 0, δ ∈ [−1, 1] and B : R → R is a bounded function vanishing at ±∞,
then we say that X is in the domain Rα of normal attraction of a stable law of exponent α.

In (1.1), the function B is supposed bounded, that is, there exists L > 0 such that |B(x)| ≤ L.
To be specific, we assume there exist constants L > 0 and γ ≥ 0 such that

|B(x)| ≤ L

|x|γ
, x ̸= 0.(1.2)

Notice that making γ = 0 in (1.2) simply means that we do not want to make any extra
assumption on B defined in (1.1).

To facilitate the formulation of the theorem, we first define two constants, which originate
from the heat kernel estimates of the α-stable process. Define

η1,α,δ = max

{
Γ( 1

α
)

πα
,
(α− 1)

(
1 + δ tanπα

2

) (
2 + δ tanπα

2

)
Γ
(
α−1
α

)
π

}
,(1.3)

η2,α,δ = Beta

(
2

α
, 1− 1

α

)
max

{
Γ( 2

α
)

πα
,

(
1 + δ tanπα

2

) (
1 + 2α + αδ tanπα

2

)
π

}
,(1.4)
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where the Beta function Beta(u, v) =
∫ 1

0
ru−1(1− r)v−1dr for any u, v > 0.

Now, we state the first theorem.

Theorem 1.3 (Uniform bound). Let X1, X2, . . . be independent and identically distributed ran-
dom variables defined on a common probability space, and suppose that X1 has a distribution

of the form (1.1) with B(x) satisfying (1.2). Set σ =
(
Aα
∫∞
−∞

1−cos y
|y|1+α dy

) 1
α

and

(1.5) Sn =
1

σn
1
α

n∑
i=1

(Xi − E[Xi]).

Then we have ∣∣E (Sn −M)+ − E (Sα(1, δ)−M)+
∣∣ ≤ c1Rn,

where

Rn =



n1− 2
α , γ ∈ (2− α,∞),

n1− 2
α

∣∣∣log (σn 1
α

)∣∣∣ , γ = 2− α,

n− (α−1)γ
α(1−γ) , γ ∈ (0, 2− α),

n1− 2
α + n1− 2

α

∫ σn
1
α

−σn
1
α

|B(x)|
|x|α−1dx+ (sup

|x|≥σn
1
α
|B(x)|)α−1, γ = 0,

(1.6)

and

c1 =

[
16dαE

[
|ξ1 − E[ξ1]|2−α]

(2− α)(α− 1)σ2−α
+

12E [|ξ1|] |E[ξ1]|
σ2

]
η2,α,δ

+



8(2A)
2
α

σ2

[
2

2−α
+ 2L

α+γ−2
(2A)−

α+γ
α

]
η2,α,δ, γ ∈ (2− α,∞),

1
σ2

[
4

(
4(2A)

2
α

2−α
+ 8L

α−1

)
η2,α,δ +

8α2(A+L)−4L
α−1

]
, γ = 2− α,

σ
α−γ
γ−1

[
4

(
4(2A)

2
α

2−α
+ 8L

2−α−γ

)
η2,α,δ +

8α2(A+L)−4L
α−1

]
, γ ∈ (0, 2− α),

4max

{
2α(2A)

2
α

(2−α)σ2 ,
4
σ2 ,

8
(2−α)σα + 2(2A)

2
α

σα + 8α2(A+L)−4L
4(α−1)η2,α,δσα

}
η2,α,δ, γ = 0.

Before giving the second main theorem, we define some constants as follows:

η3,α,δ =

(
4α + 2α

2α−2
α − 1

)
η1,α,δ

(α− 1)
,

η4,α = max

{
Γ( 1

α
)

α
,
α2α−1 sin απ

2
Γ(1+α

2
)Γ(α

2
)

π
3
2

} (4α + 2α
2α−2

α − 1
)

α− 1
.(1.7)

Now, we are in the position to give the non uniform bound:

Theorem 1.4 (Non Uniform bound). Keep the same assumptions and notation as in Theorem
1.3. Then we have ∣∣E (Sn −M)+ − E (Sα(1, δ)−M)+

∣∣ ≤ c2,MRn,
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where Rn is defined by 1.6 and

c2,M =
4dαE

[
|ξ1 − E[ξ1]|2−α]

(2− α)(α− 1)σ2−α

η3,α,δ

M
2(α−1)
3α−1

+
3E [|ξ1|] |E[ξ1]|

σ2

η3,α,δ

M
2(α−1)
3α−1

+ η3,α,δ



2(2A)
2
α

σ2

[
2

2−α
+ 2L

α+γ−2
(2A)−

α+γ
α

]
M− 2(α−1)

3α−1 , γ ∈ (2− α,∞),

1
σ2

[(
4(2A)

2
α

2−α
+ 8L

α−1

)
+ q1

]
2(α−1) logM

3α−1
M− 2(α−1)

3α−1 , γ = 2− α,

σ
α−γ
γ−1

[(
4(2A)

2
α

2−α
+ 8L

2−α−γ

)
+ q1

]
M− 2(α−1)2

(3α−1)(1−γ) , γ ∈ (0, 2− α),

max

{
2α(2A)

2
α

(2−α)σ2 ,
4
σ2 ,

8
(2−α)σα + 2(2A)

2
α

σα + q1

}
M− 2(α−1)2

(3α−1) , γ = 0,

with

q1 =
8α2(A+ L)− 4αL

(α− 1)η3,α,δ
.(1.8)

In particular, when δ = 0, the order of M can be improved and the c2,M can be reduced to
c3,M , which is defined as follows:

c3,M =
4dαE

[
|ξ1 − E[ξ1]|2−α]

(2− α)(α− 1)σ2−α

η4,α

M
α2−1

α2+2α−1

+
3E [|ξ1|] |E[ξ1]|

σ2

η4,α

M
α2−1

α2+2α−1

+ η4,α



2(2A)
2
α

σ2

[
2

2−α
+ 2L

α+γ−2
(2A)−

α+γ
α

]
M

− α2−1

α2+2α−1 , γ ∈ (2− α,∞),

1
σ2

[(
4(2A)

2
α

2−α
+ 8L

α−1

)
+ q2

]
(α2−1) logM
α2+2α−1

M
− α2−1

α2+2α−1 , γ = 2− α,

σ
α−γ
γ−1

[(
4(2A)

2
α

2−α
+ 8L

2−α−γ

)
+ q2

]
M

− (α2−1)(α−1)

(α2+2α−1)(1−γ) , γ ∈ (0, 2− α),

max

{
2α(2A)

2
α

(2−α)σ2 ,
4
σ2 ,

8
(2−α)σα + 2(2A)

2
α

σα + q2

}
M

− (α2−1)(α−1)

α2+2α−1 , γ = 0,

with q2 =
8α2(A+L)−4αL

(α−1)η4,α
.

Remark 1.5. (i) In Theorem 1.4, when α ∈ (1, 2), we have

α2 − 1

α2 + 2α− 1
− 2(α− 1)

3α− 1
=

(α− 1)3

(α2 + 2α− 1)(3α− 1)
> 0.

Hence, the constant c3,M is better than the constant c2,M in terms of the order of M .
(ii) The convergence rate of the sample size n in Theorems 1.3 and 1.4 matches the optimal

one in the Kolmogorov distance calculated by [31]. In Example 1.6 below, the simulation result
further confirms that the convergence rate is optimal.

Example 1.6 (Pareto distribution). Let the random variable X1 has the following density func-
tion

pX1(x) =
α

2|x|α+1
1{|x|≥1}.

In this case, A = 1
2
, δ = 0, B(x) =

(
|x|α
2

− 1
2

)
1{|x|≤1}. We derive from Theorems 1.3 and 1.4

with γ = 2 and L = 1
2

that
∣∣E (Sn −M)+ − E (Sα(1, δ)−M)+

∣∣ = O(n
α−2
α M

1−α2

α2+2α−1 ).
When α = 1.5, we check the relation between the sample size n and the difference between

the numerical and true probability distributions in the distance of Kolmogorov-Smirnov(KS)
test, see Figure 1(a). Here we use the method from [28, Theorem 1.3] to obtain the α-stable
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FIGURE 1. The Pareto distribution with α = 1.5

distribution (with 500 paths), that is, let Θ and W be independent with Θ uniformly distributed
on
(
−π

2
, π
2

)
, W exponentially distributed with mean 1, then

Sα(1, 0) =
sin(αΘ)

(cosΘ)
1
α

[
cos ((α− 1)Θ)

W

] 1−α
α

.

We also construct numerical Sn with the following pairs of the sample size and the number of
paths (n,N) that (102, 102), (103, 103), (104, 104) and (105, 105). Moreover, for a fixed 8000
paths, the empirical density functions are presented in Figure 1(b) for different sample sizes
n = 100, 500, 1000.

The paper is organized as follows: In section 2, we establish the Stein’s equation and give
the regularities of the solution to the equation, containing the uniform and non uniform reg-
ularities, which will be crucial to proving our main results. In Section 3, we use the Stein’s
method and the Taylor-like extension to prove the Theorems 1.3 and 1.4 above. In Section 4,
some conclusions are summarised, and the future work is discussed. In addition, the proofs of
heat kernel estimates used in Section 2 and Taylor-like extension appearing in Section 3 are
postponed to Appendixes A and B, respectively.

2. STEIN’S METHOD

In this section, we will introduce the Stein’s equation, which plays a crucial role in the proof
of the stable approximation for call function.

According to the Stein’s method developed in [12], we first give the definition of the infini-
tesimal generator of the α-stable process.

Definition 2.1. For f : R → R in C2
b , define the operator as follows:

(Aα,δf)(y) = dα

∫ ∞

∞

f(y + u)− f(y)− uf ′(y)

2|u|1+α

[
(1 + δ)1(0,∞)(u) + (1− δ)1(−∞,0)(u)

]
du,

where dα =
(∫∞

0
1−cosu
u1+α du

)−1.

Then, the Stein’s equation is given as follows:

(2.1) Lα,δfg(y) := Aα,δfg(y)−
1

α
yf ′

g(y) = g(y)− ν(g), ∀y ∈ R,

where ν is the distribution of Sα(1, δ) and ν(g) =
∫∞
−∞ g(x)ν(dx).

5



It is well known that the distribution Sα(σ, δ) admits a smooth density [34, Proposition 2.5,
(xii)], denote it by pσ,δ. Then, the density satisfies the following scaling property

pσ,δ(y) = σ−1p1,δ

(y
σ

)
,(2.2)

and by [12, Lemma 2.3], the solution to equation (2.1) is

(2.3) fg(y) = −
∫ ∞

0

∫ ∞

−∞
p
(1−e−t)

1
α ,δ

(u− e−
t
αy)(g(u)− ν(g))dudt.

Since the density pσ,δ does not have an explicit expression, we need the following heat kernel
estimates, which will be proved in Appendix A.

Lemma 2.2. Let the random variable Y ∼ Sα(1, δ) and denote the density function of Y by
p1,δ. Then for any y ∈ (−∞,∞), we have

p1,δ(y) ≤ η1,α,δ min

{
1,

1

y2

}
,

∣∣p′1,δ(y)∣∣ ≤ η2,α,δ

Beta
(
2
α
, 1− 1

α

) min

{
1,

1

y2

}
.(2.4)

where η1,α,δ and η2,α,δ are defined by (1.3) and (1.4), respectively.

In particular, when δ = 0, [13] give the following heat kernel estimates.

Lemma 2.3. Let the random variable Y ∼ Sα(1, 0) and denote the density function of Y by
p1,0. Then for any y ∈ (−∞,∞), we have

p1,0(y) ≤ max

{
Γ( 1

α
)

α
,
α2α−1 sin απ

2
Γ(1+α

2
)Γ(α

2
)

π
3
2

}
min

{
1,

1

|y|α+1

}
.(2.5)

Now, we will give the uniform and non uniform regularities of the solution fg.

2.1. Regularities.

Lemma 2.4 (Uniform). For any g ∈ Lip(1) and let fg be the solution to equation (2.1), then
for any y ∈ (−∞,∞), we have

∥f ′
g∥∞ ≤ α, ∥f ′′

g ∥∞ ≤ 4η2,α,δ,(2.6)

where ∥f∥∞ := supx∈R |f(x)| for any function f : R → R.

Proof. By [12, Theorem 1.2], we immediately obtain

∥f ′
g∥∞ ≤ α, ∥f ′′

g ∥∞ ≤ Beta

(
2

α
, 1− 1

α

)∫ ∞

−∞

∣∣p′1,δ(y)∣∣ dy.
Hence, we need to derive the upper bound of the integral

∫∞
−∞

∣∣p′1,δ(y)∣∣ dy. By (2.4), we have

∥f ′′
g ∥∞ ≤η2,α,δ

∫ ∞

−∞
min

{
1,

1

y2

}
dy = 2η2,α,δ

[∫ 1

0

1dy +

∫ ∞

1

1

y2
dy

]
= 4η2,α,δ.

The proof is complete. □

Lemma 2.5 (Non uniform). For any M > 2 and let fgM be the solution to equation (2.1), then
for any y ∈ (−∞,∞), we have

∥f ′′
gM

(y)∥∞ ≤

(
4α + 2α

2α−2
α − 1

)
η1,α,δ

(α− 1)M
2(1−α)
3α−1

:=
η3,α,δ

M
2(α−1)
3α−1

.(2.7)

6



Proof. Recall fgM from (2.3), by a change of variable v = u− e−
t
αy, we have

fgM (y) =−
∫ ∞

0

∫ ∞

−∞
p
(1−e−t)

1
α ,δ

(v)
(
gM

(
v + e−

t
αy
)
− ν(g)

)
dvdt.

By the definition of the function gM and the scaling property (2.2), we have

f ′
gM

(y) =−
∫ ∞

0

∫ ∞

M−e−
t
α y

e−
t
αp

(1−e−t)
1
α ,δ

(v)dvdt

=−
∫ ∞

0

∫ ∞

M−e−
t
α y

e−
t
α (1− e−t)−

1
αp1,δ

(
v

(1− e−t)
1
α

)
dvdt

=−
∫ 1

0

∫ ∞

M−r
1
α y

r
1−α
α (1− r)−

1
αp1,δ

(
v

(1− r)
1
α

)
dvdr,(2.8)

where the last equality is by taking r = e−t. Then one can write by (2.8) and (2.4)

∣∣f ′′
gM

(y)
∣∣ ≤∫ 1

0

r
2−α
α (1− r)−

1
αp1,δ

(
M − r

1
αy

(1− r)
1
α

)
dr

≤η1,α,δ

∫ 1

0

r
2−α
α (1− r)−

1
α

1,
(1− r)

2
α(

M − r
1
αy
)2
 dr.

When y < M
2

, we have M − r
1
αy > M

2
for any r ∈ (0, 1), this implies

∣∣f ′′
gM

(y)
∣∣ ≤η1,α,δ

∫ 1

0

r
2−α
α

(1− r)
1
α(

M − r
1
αy
)2dr ≤ 4η1,α,δ

M2
.(2.9)

When M
2
≤ y ≤ M , for some θ > 0,

∫ 1

0

r
2−α
α (1− r)−

1
α

1,
(1− r)

2
α(

M − r
1
αy
)2
 dr

≤
∫ (1−M−θ)α

0

r
2−α
α

(1− r)
1
α(

M − r
1
αy
)2dr + ∫ 1

(1−M−θ)α
(1− r)−

1
αdr

≤M2θ

y2
+

α

α− 1

[
1− (1−M−θ)α

]α−1
α ≤ 4M2θ

M2
+

α
2α−1
α−1

(α− 1)M
θ(α−1)

α

,

by taking θ = 2α
3α−1

, we have

∫ 1

0

r
2−α
α (1− r)−

1
α

1,
(1− r)

2
α(

M − r
1
αy
)2
 dr ≤ 4(α− 1) + α

2α−1
α

(α− 1)M
2(α−1)
3α−1

.(2.10)

7



When y > M , we divide the integral into following two parts:∫ 1

0

r
2−α
α (1− r)−

1
α

1,
(1− r)

2
α(

M − r
1
αy
)2
 dr

≤

(∫ (M
y
)α

0

+

∫ 1

(M
y
)α

)
r

2−α
α (1− r)−

1
α

1,
(1− r)

2
α(

M − r
1
αy
)2
 dr := J1 + J2.

For J1, we have

J1 ≤
∫ ((M

y
−y−θ)∨0)α

0

r
2−α
α

(1− r)
1
α(

M − r
1
αy
)2dr + ∫ (M

y
)α

((M
y
−y−θ)∨0)α

(1− r)−
1
αdr,

where θ > 0 is a constant, which will be chosen later. On the one hand,∫ ((M
y
−y−θ)∨0)α

0

r
2−α
α

(1− r)
1
α(

M − r
1
αy
)2dr ≤ y2θ−2.(2.11)

On the other hand, we have∫ (M
y
)α

((M
y
−y−θ)∨0)α

(1− r)−
1
αdr ≤ α

α− 1

[(
1− ((

M

y
− y−θ) ∨ 0)α

)α−1
α

−
(
1− (

M

y
)α
)α−1

α

]
,

then for some b > 0, if 1− (M
y
)α > b, one can derive from the Taylor expansion that∫ (M
y
)α

((M
y
−y−θ)∨0)α

(1− r)−
1
αdr ≤αb−

1
αy−θ,

and if 1− (M
y
)α ≤ b, we have∫ (M

y
)α

((M
y
−y−θ)∨0)α

(1− r)−
1
αdr ≤ α

α− 1

[
b

α−1
α + α

α−1
α y

−θ(α−1)
α

]
,

then taking b = y−θ, we have∫ (M
y
)α

((M
y
−y−θ)∨0)α

(1− r)−
1
αdr ≤ α + α

2α−1
α

α− 1
y−

θ(α−1)
α ≤ α + α

2α−1
α

(α− 1)M
2(α−1)
3α−1

,(2.12)

with θ = 2α
3α−1

. For J2, by the same argument as above, we have

J2 ≤
∫ (M

y
+y−θ)α∧1

(M
y
)α

(1− r)−
1
αdr +

∫ 1

(M
y
+y−θ)α∧1

r
2−α
α

(1− r)
1
α(

M − r
1
αy
)2dr

≤α + α
2α−1

α

α− 1
y−

θ(α−1)
α + y2θ−2 ≤ 2α + α

2α−1
α − 1

(α− 1)M
2(α−1)
3α−1

.(2.13)

Combining (2.9), (2.10), (2.11), (2.12) and (2.13), we have

∣∣f ′′
gM

(y)
∣∣ ≤

(
4α + 2α

2α−2
α − 1

)
η1,α,δ

(α− 1)M
2(α−1)
3α−1

,

the proof is complete. □
8



In particular, when δ = 0, with the help of Lemma 2.3, by the same argument as the proof of
Lemma 2.5, we have the following lemma.

Lemma 2.6. For any M > 2 and let fgM be the solution to equation (2.1), then for any
y ∈ (−∞,∞), we have

∥f ′′
gM

(y)∥∞ ≤ η4,α

M
α2−1

α2+2α−1

,

where η4,α is defined by (1.7).

3. PROOF OF THEOREMS 1.3 AND 1.4

In this section, under the heavy-tailed setting stated as above, we use the Stein’s method to
obtain the uniform and nonuniform convergence bounds of the stable approximation for call
function.

3.1. Proof of Theorem 1.3. Notice that gM(x) = (x − M)+ is Lipschitz continuous with
constant 1, according to the definition of Wasserstein-1 distance and the proof of [12, Theorem
1.4], it is easy to verify that∣∣E (Sn −M)+ − E (Sα(1, β)−M)+

∣∣ ≤ c′Rn,

where Rn is defined by 1.6 and

c′ =
4dαE

[
|ξ1 − E[ξ1]|2−α]

(2− α)(α− 1)σ2−α
∥f ′′

g ∥∞ +
3E [|ξ1|] |E[ξ1]|

σ2
∥f ′′

g ∥∞

+



2(2A)
2
α

σ2

[
2

2−α
+ 2L

α+γ−2
(2A)−

α+γ
α

]
∥f ′′

g ∥∞, γ ∈ (2− α,∞),

1
σ2

[(
4(2A)

2
α

2−α
+ 8L

α−1

)
∥f ′′

g ∥∞ + 8α(A+L)−4L
α−1

∥f ′
g∥∞

]
, γ = 2− α,

σ
α−γ
γ−1

[(
4(2A)

2
α

2−α
+ 8L

2−α−γ

)
∥f ′′

g ∥∞ + 8α(A+L)−4L
α−1

∥f ′
g∥∞

]
, γ ∈ (0, 2− α),

max

{
2α(2A)

2
α

(2−α)σ2 ,
4
σ2 ,

8
(2−α)σα + 2(2A)

2
α

σα + 8α(A+L)−4L
(α−1)σα

∥f ′
g∥∞

∥f ′′
g ∥∞

}
∥f ′′

g ∥∞, γ = 0.

Combining (2.6), Theorem 1.3 is proved. □

3.2. Proof of Theorem 1.4. Before giving the proof of Theorem 1.4, we need the following
Taylor-like extension, which will be proved in Appendix B.

Lemma 3.1. Let X have a distribution of the form (1.1) and B(x) satisfy (1.2) with γ ∈
(0, 2 − α]. Let Y be an integrable random variable, which is independent of X . For any
0 < a < (2A)−

1
α ∧ 1, denote

T =

∣∣∣∣E[Xf ′
gM

(Y + aX)]− E[X]E[f ′
gM

(Y )]− 2Aα2

dα
aα−1E

[(
Aα,δfgM

)
(Y )
]∣∣∣∣ .

Then:
i) When γ = 2− α, we have

T ≤ 2α(2A)
2
αη3,α,δ

(2− α)M
α2−1

α2+2α−1

a+η3,α,δ

[(
2(2A)

2
α +

8L

α− 1

)
+ q1

]2(α− 1)a | log a| logM

(3α− 1)M
2(α−1)
3α−1

.

ii) When γ ∈ (0, 2− α), we have

T ≤ η3,α,δ

[(4(2A) 2
α

2− α
+

8L

2− α− γ

)
+ q1

]
a

1−α
γ−1M− 2(α−1)2

(3α−1)(1−γ) .

9



iii) When γ = 0, we have

T ≤ 2α(2A)
2
αη4,α

(2− α)M
α2−1

α2+2α−1

a+ 4η3,α,δaM
− 2(α−1)2

(3α−1)(1−γ)

∫ a−1

−a−1

|B(x)|
|x|α−1

dx

+ η3,α,δ

[( 8

2− α
+ 2(2A)

2
α

)
+ q1

]
aα−1

(
sup

|x|≥a−1

|B(x)|
)α−1

M− 2(α−1)2

(3α−1) ,

where q1 is defined by (1.8) above.

Now, we are in the position to give the proof of Theorem 1.4.

Proof of Theorem 1.4. According to the definition of the constant c′, by the same argument
as the proof of [12, Theorem 1.4], Theorem 1.4 follows from Lemma 2.5 and Lemma 3.1
immediately. In particular, when δ = 0, similar to the calculation of the constant c2,M with
Lemma 2.5 replaced by Lemma 2.6, the constant c3,M can be derived directly. □

4. CONCLUSIONS

In this paper, we study the α-stable approximation for the call function and obtain two types
of convergence rates. In the progress of obtaining the non uniform bound, we adopt the trun-
cation method, which lead to a convergence rate for M that may not be optimal. Hence, the
better convergence rate is worth further investigation. In addition, we will evaluate the practical
performance of our results for the data from CDO pricing models and other financial models.
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APPENDIX A. HEAT KERNEL ESTIMATES

In this section, we will abbreviate the density p1,δ as p and give the proof of Lemma 2.2.

Proof of Lemma 2.2. Recall

E[eiλY ] = exp
{
−|λ|α

(
1− i δ sign(λ) tan

πα

2

)}
and by the inverse of Fourier transform, we have

p(y) =
1

2π

∫ +∞

−∞
e−|λ|α(1−i δ sign(λ) tanπα

2
)e−iλydλ

=
1

2π

∫ +∞

−∞
e−|λ|αei(|λ|

αδsign(λ)tanπα
2
−λy)dλ

=
1

2π

∫ +∞

−∞
e−|λ|α cos(|λ|αδsign(λ)tanπα

2
− λy)dλ

=
1

π

∫ +∞

0

e−λα

cos(λαδ tan
πα

2
− λy)dλ.

Hence, for r ∈ (−1,∞), we denote

Ir(y) =

∫ ∞

0

λre−λα

cos(λα δ tan
πα

2
− λy)dλ,(A.1)

10



Jr(y) =

∫ ∞

0

λre−λα

sin(λα δ tan
πα

2
− λy)dλ,(A.2)

then

p(y) =
I0(y)

π
.(A.3)

By a change of variable u = λα and the fact | cos(x)| ≤ 1, | sin(x)| ≤ 1 for any x ∈ (−∞,∞),
it is straightforward to calculate that

|Ir(y)| ≤
Γ( r+1

α
)

α
, |Jr(y)| ≤

Γ( r+1
α
)

α
.(A.4)

In addition, notice that

Ir(y) =

∫ ∞

0

λre−λα

cos(λαδ tan
πα

2
− λy)dλ

=

∫ ∞

0

λre−λα

cos(λαδ tan
πα

2
) cos(λy)dλ+

∫ ∞

0

λre−λα

sin(λαδ tan
πα

2
) sin(λy)dλ,

when y ̸= 0, one can derive from the integration by parts that

Ir(y) =
rJr−1(y)

y
− αJα+r−1(y)

y
+

αδ tanπα
2
Iα+r−1(y)

y
.(A.5)

Similarly, we have

Jr(y) =
−rIr−1(y)

y
+

αIα+r−1(y)

y
+

αδ tanπα
2
Jα+r−1(y)

y
.(A.6)

Now, we first prove the upper bound of p(y). By (A.3) and (A.4), we have

p(y) =
I0(y)

π
≤

Γ( 1
α
)

πα
.(A.7)

By (A.5) and (A.6), we further have

I0(y) =− αJα−1(y)

y
+

αδ tanπα
2
Iα−1(y)

y

=
α(α− 1)Iα−2(y)

y2
− α2I2α−2(y)

y2
−

α2δ tanπα
2
J2α−2(y)

y2

+
αδ tanπα

2

[
(α− 1)Jα−2(y)− αJ2α−2(y) + αδ tanπα

2
I2α−2(y)

]
y2

,

which implies from (A.4) that

|I0(y)| ≤
(α− 1)

(
1 + δ tanπα

2

)
Γ
(
α−1
α

)
+ α

(
1 + δ tanπα

2

)2
Γ
(
2α−1
α

)
y2

=
(α− 1)

(
1 + δ tanπα

2

) (
2 + δ tanπα

2

)
Γ
(
α−1
α

)
y2

,

then (2.4) follows from (A.3) and (A.7).
For the second inequality, one can derive from (A.3) and (A.4) that

|p′(y)| = |I ′
0(y)|
π

=
|J1(y)|

π
≤

Γ( 2
α
)

πα
,(A.8)
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whereas by (A.5) and (A.6), we have

I ′
0(y) =−

αJ ′
α−1(y)

y
+

αJα−1(y)

y2
+

αδ tanπα
2
I ′
α−1(y)

y
−

αδ tanπα
2
Iα−1(y)

y2

=
αIα(y)

y
+

αJα−1(y)

y2
+

αδ tanπα
2
Jα(y)

y
−

αδ tanπα
2
Iα−1(y)

y2

=
α2Jα−1(y)

y2
− α2J2α−1(y)

y2
+

α2δ tanπα
2
I2α−1(y)

y2
+

αJα−1(y)

y2

+
αδ tanπα

2

[
−αIα−1(y) + αI2α−1(y) + αδ tanπα

2
J2α−1(y)− Iα−1(y)

]
y2

.

Hence, (A.4) implies

|I ′
0(y)| ≤

(1 + α)
(
1 + δ tanπα

2

)
Γ(1) + α

(
1 + δ tanπα

2

)2
Γ(2)

y2

=

(
1 + δ tanπα

2

) (
1 + 2α + αδ tanπα

2

)
y2

,

together with (A.3) and (A.8), the desired result follows. □

APPENDIX B. TAYLOR-LIKE EXTENSION

In this section, we will use the zero-biased coupling to obtain the Taylor-like extension.

Proof of Lemma 3.1. Similar to the proof of [12, Lemma 3.3], define a random variable X̃ ,
which is independent of Y and satisfies

P(X̃ > x) =
A(1 + δ)

|x|α
, x ≥ (2A)

1
α , P(X̃ ≤ x) =

A(1− δ)

|x|α
, x ≤ −(2A)

1
α .(B.1)

Denoting the distribution functions of X̃ by FX̃ , one can derive that

Fξ(x)− Fξ̃(x) =
(1
2
− A+B(x)

|x|α
)
(1 + δ)1

(0,(2A)
1
α )
(x)− B(x)

|x|α
(1 + δ)1

((2A)
1
α ,∞)

(x)

+
(A+B(x)

|x|α
− 1

2

)
(1− δ)1

(−(2A)
1
α ,0)

(x) +
B(x)

|x|α
(1− δ)1

(−∞,−(2A)
1
α )
(x).

Then, according to the proof of [12, Lemma 3.3], we have∣∣∣E[Xf ′
gM

(Y + aX)]− E[X]E[f ′
gM

(Y )]− 2Aα2

dα
aα−1E

[(
Aα,δfgM

)
(Y )
] ∣∣∣

≤E
∣∣∣ ∫ ∞

−∞
x
[
f ′
gM

(Y + ax)− f ′
gM

(Y )
]
d
(
FX(x)− FX̃(x)

)∣∣∣+ |R|,(B.2)

where

R = E
[ ∫ (2A)

1
α

−(2A)
1
α

u
[
f ′
gM

(Y + au)− f ′
gM

(Y )
]Aα[(1 + δ)1(0,∞)(u) + (1− δ)1(−∞,0)(u)

]
|u|α+1

du
]
.
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It is easy to verify from Lemma 2.5

|R| ≤Aα∥f ′′
gM

∥∞a

∫ (2A)
1
α

−(2A)
1
α

(1 + δ)1(0,∞)(u) + (1− δ)1(−∞,0)(u)

|u|α−1
du

=
2α

2− α
(2A)

2
α∥f ′′

gM
∥∞a ≤ 2α(2A)

2
αη3,α,δ

(2− α)M
α2−1

α2+2α−1

a.

Now, let us deal with the first term of (B.2). When 0 ≤ γ ≤ 2−α. Choose a number N > a−1

and θ > 0, which will be chosen later. One has by [39, Lemma 2.8] and using that |B(x)| ≤ L
for |x| > M θN ,

E
∣∣∣ ∫

|x|>MθN

x
[
f ′
gM

(Y + ax)− f ′
gM

(Y )
]
d
(
FX(x)− FX̃(x)

)∣∣∣
≤2∥f ′

gM
∥∞
[ ∫

|x|>MθN

|x|dFX(x) +

∫
|x|>MθN

|x|dFX̃(x)
]

=2∥f ′
gM

∥∞E
[
|X|1(MθN,∞)(|X|) + |X̃|1(MθN,∞)(|X̃|)

]
≤ 4(2A+K)α2

α− 1
M θ(1−α)N1−α,

where the last inequality is by (2.6). On the other hand, by integrating by parts, (2.6) and
Lemma 2.5,

E
∣∣∣ ∫ MθN

−MθN

x
[
f ′
gM

(Y + ax)− f ′
gM

(Y )
]
d
(
FX(x)− FX̃(x)

)∣∣∣
≤4L∥f ′

gM
∥∞M θ(1−α)N1−α + 2∥f ′′

gM
∥∞a

∫ MθN

−MθN

∣∣xFX(x)− xFX̃(x)
∣∣dx

≤4αLM θ(1−α)N1−α +
2η3,α,δ

M
2(α−1)
3α−1

a
[
(2A)

2
α + 2

∫ MθN

(2A)
1
α

|B(x)|
xα−1

dx+ 2

∫ −(2A)
1
α

−MθN

|B(x)|
|x|α−1

dx
]
.

If 0 < γ ≤ 2− α, we have∫ MθN

(2A)
1
α

|B(x)|
xα−1

dx ≤
∫ MθN

(2A)
1
α

L

xα+γ−1
dx ≤

{
L log(M θN), γ = 2− α,

L
2−α−γ

M θ(2−α−γ)N2−α−γ, γ ∈ (0, 2− α).

If γ = 0, we have∫ MθN

(2A)
1
α

|B(x)|
xα−1

dx =

∫ a−1

(2A)
1
α

|B(x)|
xα−1

dx+

∫ MθN

a−1

|B(x)|
xα−1

dx

≤
∫ a−1

0

|B(x)|
xα−1

dx+
1

2− α
sup

x>a−1

|B(x)|M θ(2−α)N2−α.

Since similar bounds hold true for
∫ −(2A)

1
α

−N
|B(x)|
|x|α−1dx, we can consider

N1−α =

{
aN2−α−γ, γ ∈ (0, 2− α]

a sup|x|>a−1 |B(x)|N2−α, γ = 0,

and for any γ ∈ [0, 2− α],

M θ(1−α)+
2(α−1)
3α−1 = M θ(2−α−γ),

13



which implies

N =

{
a

1
γ−1 , γ ∈ (0, 2− α],

a−1
(
sup|x|>a−1 |B(x)|)−1, γ = 0.

and

θ =
2(α− 1)

(3α− 1)(1− γ)
.

The desired conclusion follows. □
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