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ABSTRACT

The X-ray afterglows of some gamma-ray bursts (GRBs) exhibit plateaus, which can be explained by

the internal dissipation of a newborn millisecond magnetar wind. In the early phase of these newborn

magnetars, the magnetic inclination angle undergoes periodic changes due to precession, leading to

periodic modulation of the injection luminosity due to magnetic dipole radiation. This may result in

quasi-periodic oscillations (QPOs) on the plateaus. In this paper, we identify four GRBs with regular

flux variations on their X-ray afterglow plateaus from Swift/XRT data before November 2023, three of

which exhibit periodicity. Based on the likelihood of supporting a precessing magnetar as the central

engine, we classify them into three categories: Gold (GRB 060202 and GRB 180620A), Silver (GRB

050730), and Bronze (GRB 210610A). We invoke a model of magnetic dipole radiation emitted by a

triaxially freely precessing magnetar whose spin-down is dominated by electromagnetic radiation, to

fit the light curves. Our model successfully reproduces the light curves of these four GRBs, including

the regular flux variations on the plateaus and their periodicity (if present). Our work provides further

evidence for early precession in newborn millisecond magnetars in GRBs.
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1. INTRODUCTION

Gamma-ray bursts (GRBs) are extremely bright and powerful explosions that can originate from the collapse of a

massive star (long GRBs) (Woosley 1993; MacFadyen & Woosley 1999) or the merger of two compact objects (short

GRBs), which can be either two neutron stars (NSs) (Paczynski 1986; Eichler et al. 1989) or a black hole (BH) and

a NS (Paczynski 1991). The remnants of GRB explosions, including both long and short bursts, could be rapidly

rotating and highly magnetized NSs, referred to as millisecond magnetars, which may serve as central engines for some

GRBs (Usov 1992; Dai & Lu 1998a,b; Zhang & Mészáros 2001; Dai et al. 2006; Metzger et al. 2011; Bucciantini et al.

2012). A plateau in early afterglow light curves due to energy injection to relativistic forward shocks through magnetic

dipole radiation was predicted by Dai & Lu (1998a,b), Zhang & Mészáros (2001), and Dai (2004). Subsequently, a

significant proportion of early X-ray afterglows from both long and short GRBs detected by Swift/XRT showed a

stable and long-duration X-ray plateau, which is considered as evidence for a magnetar providing sustained energy

injection as the central engine (Zhang et al. 2006; Rowlinson et al. 2013; Lü & Zhang 2014; Lü et al. 2015). The X-ray

plateaus are followed by a power-law steep decline, and based on different decay indices, they can be classified into

“external plateaus” (Lü et al. 2015) and “internal plateaus” (Troja et al. 2007; Rowlinson et al. 2010). The external

plateau is followed by a normal decay phase, which can be explained by an external shock model, where energy is

injected by the magnetar through its magnetic dipole radiation (Zhang et al. 2006) or by the ejecta with multiple

Lorentz factor distributions (Rees & Mészáros 1998; Sari & Mészáros 2000; Uhm et al. 2012). The most convincing

evidence for the magnetar central engine is the existence of internal plateaus, characterized by their most prominent

and crucial feature: a sharp decay following the plateau, with time-dependent decay slopes typically steeper than −3

and occasionally as low as −9 (Troja et al. 2007; Liang et al. 2007; Lyons et al. 2010; Rowlinson et al. 2010, 2013;

Lü & Zhang 2014; Lü et al. 2015). The external shock model is unable to explain such sharp decay, and the sudden

drop poses challenges for the black hole central engine model. However, these features of internal plateaus can be
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well explained by the internal dissipation of magnetar winds, where the sudden drop in luminosity results from the

magnetar collapsing into a BH (Troja et al. 2007; Liang et al. 2007; Rowlinson et al. 2010, 2013; Lü & Zhang 2014).

Some X-ray afterglows of GRBs exhibit oscillatory features in their early stages (Dermer & Mitman 1999; Fargion

2003; Margutti et al. 2008). If these features are genuine physical phenomena, they could potentially provide further

insights into the central engine. The magnetic dipole radiation luminosity of a magnetar depends on the magnetic in-

clination angle α, which is the angle between the magnetic axis and the rotation axis (Spitkovsky 2006; Kalapotharakos

& Contopoulos 2009; Philippov et al. 2015). Due to turbulent convection in remnants formed after GRB explosions,

which eliminates any pre-existing correlation between the system’s magnetic and rotation axes (Thompson & Duncan

1993), magnetars are typically born with a magnetic inclination angle α that is generally not 0 ◦ or 90 ◦ (Melatos

2000; Lander & Jones 2018). The evolution of the rotation vector and magnetic field results in the evolution of α. In

magnetohydrodynamic simulations, α exhibits oscillatory or wobbling behavior (Arzamasskiy et al. 2015; Goglichidze

et al. 2015; Zanazzi & Lai 2015), which could potentially lead to oscillatory features observed in the X-ray afterglows

of GRBs (Suvorov & Kokkotas 2020; Zou et al. 2021). The free precession or forced precession of a magnetar can

lead to time-dependent variations in α, particularly during its early stages, where it may be the primary cause of α’s

evolution (Goldreich 1970; Zanazzi & Lai 2015).

The free precession of NSs is supported by observations in some pulsars. The most convincing evidence comes from

the isolated pulsar PSR B1828-11, whose pulse shape exhibits long-term, highly periodic variations, with the most

prominent period being approximately 500 days (Stairs et al. 2000). These features of PSR B1828-11 may be caused

by precession (Jones & Andersson 2001; Link & Epstein 2001; Akgün et al. 2006). The observational timing data of

PSR B1642–03 also provide support for the free precession of NSs (Cordes 1993; Shabanova et al. 2001). The 35-day

periodic modulation in the light curve of Her X-1 has also been attributed to precession by some authors (Brecher

1972; Kolesnikov et al. 2022). Zanazzi & Lai (2015) explained the increase in pulse separation in Crab pulsars (Lyne

et al. 2013) by the change in magnetic inclination angle caused by pulsar precession. Periodic hard X-ray pulse-

phase modulation has been observed in 4U 0142+61, 1E 1547.0-5408, and SGR 1900+14, providing evidence for free

precession in magnetars (Makishima et al. 2014, 2016, 2021). Recently, the CHIME/FRB Collaboration discovered a

16.35-day period in FRB 180916 (Chime/Frb Collaboration et al. 2020), which could potentially be attributed to the

free precession (Levin et al. 2020; Zanazzi & Lai 2020) or other types of precession (Sob’yanin 2020; Tong et al. 2020;

Yang & Zou 2020; Wei et al. 2022; Wasserman et al. 2022) in a magnetar.

Some studies have invoked a biaxially precessing magnetar as the central engine for GRBs and have employed its

magnetic dipole radiation to investigate the oscillatory behavior observed in the early X-ray afterglows of GRBs.

Suvorov & Kokkotas (2020) used the Akaike Information Criterion (AIC) to demonstrate that for both long GRB

080602 and short GRB 090510, precessing oblique rotating magnetars are more consistent with X-ray afterglow data

than non-precessing orthogonal rotating magnetars. Subsequently, Suvorov & Kokkotas (2021) conducted similar

analyses on a sample of 25 short GRBs believed to be powered by magnetars. Within their sample, they found that 16

short GRBs strongly supported or favored precessing oblique rotating magnetars as central engines. Zou et al. (2021)

and Zou & Liang (2022) invoked a magnetic dipole radiation model of a biaxially precessing magnetar to explain the

quasi-periodic oscillations (QPOs) observed in the X-ray afterglows of two long GRBs, GRB 101225A (4900− 7500 s)

and GRB 180620A (200 − 2300 s). Recently, Zou & Cheng (2024) found a QPO signal with a period of 11 seconds

on the internal plateau of the long GRB 210514A. They proposed a possible scenario involving a biaxially precessing

supra-massive magnetar model to explain this QPO signal. Zou & Liang (2022) and Zou & Cheng (2024) considered

the QPO signals on the afterglow plateau to be strong evidence of magnetar precession. In our work, we adopt similar

criteria to assess the evidence for magnetar precession.

In this paper, our purpose is to search for additional GRBs in the Swift XRT afterglow data that exhibit characteris-

tics similar to those in the GRBs supporting magnetar precession as identified in the works of Zou & Liang (2022) and

Zou & Cheng (2024). Specifically, we aim to identify GRBs with distinct and regular flux variations on the afterglow

plateau, particularly those with QPO signals. Additionally, previous studies on GRBs have typically used a biaxially

precessing magnetar as the central engine (Suvorov & Kokkotas 2020, 2021; Zou et al. 2021; Zou & Liang 2022; Zou &

Cheng 2024), even though magnetar deformations are generally triaxial (Zanazzi & Lai 2015; Gao et al. 2020, 2023).

Therefore, in our work, we adopt a more realistic model of a triaxially precessing magnetar as the central engine for

GRBs. We interpret the QPO signals observed on the afterglow plateaus of the GRBs in our study as being caused by

variations in the magnetic dipole radiation luminosity due to the quasi-periodic variations in the magnetic inclination

angle α during triaxial precession of the magnetar.
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The structure of the paper is organized as follows. In Section 2, we introduce the magnetic dipole radiation generated

by a magnetar undergoing triaxial free precession. In Section 3, we present the GRB samples, along with their

classification criteria, and provide the fitting results of the precessing magnetar model to the early X-ray afterglow

light curves of these GRB samples. Conclusions and discussions are presented in Section 4. Throughout the paper, we

employ a concordance cosmology characterized by the parameters H0 = 67.4 km s−1 Mpc−1, ΩΛ = 0.68, and ΩM = 0.32

(Planck Collaboration et al. 2020).

2. THE MAGNETIC DIPOLE RADIATION OF A TRIAXIALLY PRECESSING MAGNETAR

2.1. Electromagnetic Dipole radiation

The energy of GRBs originates from the total rotation energy of newly born millisecond magnetars, which is

Erot =
1

2
IΩ2 ≃ 2× 1052M1.4R

2
6P

−2
−3 erg, (1)

where I ≃ 2MR2/5 represents the moment of inertia. The rotational angular frequency is given by Ω = 2π/P , where

P denotes the spin period of the magnetar. Additionally, the notations M1.4 = M/1.4M⊙ and Qm = 10−mQ in cgs

units are adopted throughout the fulltext.

The electromagnetic radiation and gravitational waves are different ways of consuming the total rotational energy

of a magnetar at different rates, both of which can cause the magnetar to spin down (Zhang & Mészáros 2001). If the

magnetic dipole spin-down dominates over gravitational wave spin-down, one has (Suvorov & Kokkotas 2020),

−Ėrot = −IΩΩ̇ = LEM =
B2

pR
6Ω4

6c3
λ(α), (2)

where Bp is the polar cap surface magnetic field strength. The magnetospheric factor λ depends on the magnetospheric

environment and the orientation of NS, as determined by the inclination angle α (Goldreich & Julian 1969; Spitkovsky

2006; Kalapotharakos & Contopoulos 2009; Philippov et al. 2015). When the magnetospheric environment of NS is the

pure vacuum, one has the famous result λ(α) = sin2 α (Goldreich & Julian 1969). However, a more realistic scenario

may involve the presence of a substantial amount of magnetized plasma within the NS’s magnetosphere. Numerical

simulations of a magnetosphere filled with charges indicate that λ(α) ≃ 1+sin2 α (Spitkovsky 2006; Kalapotharakos &

Contopoulos 2009; Philippov et al. 2015). Given the constrained comprehension of magnetospheric physics, we adopt

a hybrid model (Suvorov & Kokkotas 2020; Zou et al. 2021; Zou & Liang 2022),

λ(α) ≃ 1 + k sin2 α, (3)

where the parameter k quantifies the properties of magnetospheric physics, satisfying |k| ≤ 1 (Philippov et al. 2014;

Arzamasskiy et al. 2015).

The precession of the magnetar results in periodic variations in the magnetic inclination angle α, which causes the

dipole radiation luminosity to oscillate through the magnetospheric factor λ(α), as shown in equations (2) and (3).

After considering precession, beaming effects, and radiative efficiency, the observed isotropic X-ray luminosity is (Zou

& Liang 2022)

Liso,X(t) =
ηX
fb

LK,0

[
1 +

t

(1 + z)τsd

]−2

λ(α), (4)

where ηX represents the radiation efficiency within the X-ray band, fb = 1− cos θj corresponds to the beaming factor,

where θj denotes the ejection opening angle, and the decay slope of -2 corresponds to the spin-down of a magnetar

through magnetic dipole radiation. Note that t is the time in the observed frame. When the magnetar spin-down is

due to magnetic dipole radiation, the initial electromagnetic spin-down luminosity and the characteristic spin-down

timescale are

LK,0 = 1.0× 1049B2
p,15P

−4
0,−3R

6
6 erg s

−1 (5)

and

τsd = 2.05× 103I45B
−2
p,15P

2
0,−3R

−6
6 s, (6)

respectively. The spin angular frequency of the magnetar evolves as

Ω = Ω0

[
1 +

t

(1 + z)τsd

]−1/2

. (7)
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Figure 1. The geometry of NS precession in the body frame. The unit angular momentum L̂ precesses around ê3, and the
angle θ between them undergoes nutation during precession. The unit dipole moment µ̂ remains constant in the body frame,
with its polar angle and azimuthal angle denoted as χ and η, respectively. The angle between the unit angular momentum L̂
and the unit dipole moment µ̂ is represented by α.

The obeserved isotropic X-ray Luminosity is related with the observed X-ray flux as

Liso,X = 4πD2
LF (t)(1 + z)Γ−2, (8)

where DL is the luminosity distance, z is the redshift, and Γ is the X-ray spectral index.

2.2. Triaxial free precession of an NS

The newly born NSs are typically not perfectly spherical due to the influence of various physical factors, which can

cause deviations from a spherical shape (Zanazzi & Lai 2015; Gao et al. 2020; Gao & Shao 2021; Gao et al. 2023). The

elasticity of the crust and the strong internal magnetic fields are the major causes of the deformation of newborn NS

(Gao et al. 2023). We regard the NS as a rigid body undergoing triaxial deformation. When the principal axis of the

NS is misaligned with its rotation axis, the rotating deformed NS will precess around the total angular momentum

(Landau & Lifshitz 1960; Gao et al. 2020).

When a deformed, rigid-body NS is not subjected to external torques, it undergoes free precession, with its motion

governed by the Euler equations in the body frame, which is (Landau & Lifshitz 1960)

dL

dt
+Ω×L = 0, (9)

where Ω is the angular velocity vector, L = I ·Ω represents the angular momentum with I being the moment of inertia

tensor, and the derivative d/dt is taken in the body frame. We use these directions of the principal axes of inertia as

the coordinate axes in the corotating body frame. Let ê1, ê2, and ê3 represent the three principal axes (or coordinate

axes of the body frame), where I1 < I2 < I3 are their respective principal moments of inertia. The angular momentum

and the angular velocity in the body frame are expressed as L = L1ê1 + L2ê2 + L3ê3 and Ω = Ω1ê1 +Ω2ê2 +Ω3ê3,

respectively.

In the case of a freely precessing NS, both its kinetic energy and angular momentum remain conserved, as described

by the following equations:

2E = I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3 (10)

and

L2 = I21Ω
2
1 + I22Ω

2
2 + I23Ω

2
3, (11)
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where E is the rotational energy, L is the magnitude of the angular momentum. Equation (9) satisfies both of these

equations.

Using Jacobian elliptic functions, one can obtain a well-known and accurate theoretical solution to Equation (9)

(Landau & Lifshitz 1960; Akgün et al. 2006; Zanazzi & Lai 2015; Gao et al. 2020; Wasserman et al. 2022; Kolesnikov

et al. 2022; Gao et al. 2023). At the initial time t = 0, we adopt the usual settings and set Ω2 = 0. In the following,

we assume L2 > 2EI2, which implies that the angular momentum L precesses around ê3 in the body frame, as shown

in Figure 1. The results of other assumptions can be obtained by correctly reordering the indices (Akgün et al. 2006;

Zanazzi & Lai 2015; Gao et al. 2023). Landau & Lifshitz (1960) offered the theoretical solution to Equation (9), which

describes the temporal evolution of angular velocity components in the body frame:

Ω1 =

√
2EI3 − L2

I1(I3 − I1)
cn(τ,m), (12)

Ω2 =

√
2EI3 − L2

I2(I3 − I2)
sn(τ,m), (13)

Ω3 =

√
L2 − 2EI1
I3(I3 − I1)

dn(τ,m), (14)

where dn, sn, and cn are the Jacobian elliptic functions. Here τ = ΩPt represents the dimensionless time, with ΩP

defined as

ΩP =

√
(I3 − I2)(L2 − 2EI1)

I1I2I3
. (15)

The Jacobian elliptic functions parameter m is determined by the following expression:

m =
(I2 − I1)(2EI3 − L2)

(I3 − I2)(L2 − 2EI1)
. (16)

It’s important to note that m < 1, because of the assumption made above that L2 > 2EI2. One can also derive the

temporal evolution of the angular momentum components in the body frame, from equations (12), (13), and (14),

using the relationship Li = IiΩi, where i corresponds to subscripts 1, 2, and 3. The angular velocity components

and the angular momentum components in the body frame are periodic due to the periodicity of the Jacobian elliptic

functions, with a period

T = 4K(m)

√
I1I2I3

(I3 − I2)(L2 − 2EI1)
, (17)

where K(m) represents the first kind complete elliptic integral. The period T represents the period of free precession.

One needs to note that the Jacobian elliptic functions are 4K(m) periodic, not 2π periodic, so the relation T =

4K(m)/ΩP holds.

Following Gao et al. (2023) and Akgün et al. (2006), we simplify the solutions to equation (9) as follows. To better

describe the precession motion of the deformed NS, we introduce the following parameters

ϵ2 =
I2 − I1

I1
, (18)

ϵ3 =
I3 − I1

I1
, (19)

δ =
I3(I2 − I1)

I1(I3 − I2)
, (20)

θ = arccos
L3

L
. (21)

Here, ϵ2 and ϵ3 quantify the degree of non-sphericity, δ characterizes the degree of triaxiality or the deviation from

axisymmetry, and θ denotes the angle between L and ê3 known as the wobble angle. In the biaxial scenario, the
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wobble angle θ remains unchanged, while in the triaxial case, the wobble angle θ undergoes nutation with a period of

T/2. Given that I1 < I2 < I3, it follows that ϵ2 is smaller than ϵ3. Using the parameters defined above, we can get

I2 = I1(1 + ϵ2), (22)

I3 = I1(1 + ϵ3), (23)

δ = (1 + ϵ3)
ϵ2

ϵ3 − ϵ2
. (24)

The ΩP and the parameter m can be reexpressed as:

ΩP =
ϵ3L cos θ0

I3
√
1 + δ

, (25)

and

m = δ tan2 θ0, (26)

where θ0 is the wobble angle at the initial time t = 0.

The solution to equation (9) can also be expressed as the temporal evolution of the unit angular momentum vector

components in the body frame, as functions of the parameters defined above, as follows:

L̂1 = sin θ0 cn(ΩPt,m), (27)

L̂2 = sin θ0
√
1 + δ sn(ΩPt,m), (28)

L̂3 = cos θ = cos θ0 dn(ΩPt,m). (29)

Equations (25)-(29) are the solutions for triaxial free precession adopted in our work. In Appendix B, we prove that

equations (25)-(29) are equivalent to equations (12)-(16) from Landau & Lifshitz (1960).

In the body frame, the dipole moment µ remains fixed, as illustrated in Figure 1. The unit dipole moment vector

components are given by

µ̂1 = sinχ cos η, (30)

µ̂2 = sinχ sin η, (31)

µ̂3 = cosχ, (32)

where η is the azimuthal angle, χ is the polar angle.

One can find that for a nearly spherical star with very minor deformations, the angular velocity and the angular

momentum are almost aligned, with an angle θ̂ ∼ ϵ3θ ≪ 1 between them (Jones & Andersson 2001; Levin et al. 2020;

Gao et al. 2023). In the zeroth-order approximation of ϵ3, the angular velocity is parallel to the angular momentum.

In Appendix C, we provide a detailed explanation of our reasonable approximation that the angular velocity vector is

aligned with the angular momentum vector in our work. Therefore, the magnetic inclination angle α can be expressed

as the angle between the angular momentum L and the dipole moment µ, and it can be defined as

cosα = µ̂1L̂1 + µ̂2L̂2 + µ̂3L̂3. (33)

By combining equations (3)-(8), (10)-(11), and (18)-(33), the magnetic dipole radiation emitted by a newly born

magnetar undergoing triaxial free precession can be derived.

3. SAMPLE STUDY AND LIGHT-CURVE FITTING

3.1. GRB samples selection and classification

Swift has observed numerous GRBs with X-ray afterglows featuring plateaus (Rowlinson et al. 2013; Lü & Zhang

2014; Lü et al. 2015; Li et al. 2018; Tang et al. 2019; Deng et al. 2023). Among these, some GRBs exhibit characteristics

of regular flux variations on the plateau (Suvorov & Kokkotas 2021). Some of these flux variations even display QPO

signals (Zou & Liang 2022). In this paper, our primary focus is on the study of GRBs that exhibit these features.
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Table 1. The table contains the observed characteristics of our Gold, Silver, and Bronze
samples, the fitting results of the smooth broken power-law model to the XRT data, and
the periodicity found by the LSP algorithm.

GRB T90(s)
a za Γa θj(

◦)b αc
1 αc

2 tb(s)
c PQPO(s)

d

Gold

GRB 060202 204 0.783(1) 2.04 5 0.288 6.546 775 157

GRB 180620A 23.16 1.2(2) 1.34 3(5) 0.004 3.197 7853 650± 50(6)

Silver

GRB 050730 157 3.967(3) 1.58 5 0.340 2.816 9217 246

Bronze

GRB 210610A 8.192 3.54(4) 1.86 5 0.000 1.119 1154 None

Note—
a The duration of the prompt emission, redshift, and the X-ray spectral index.
b The jet opening angle, taken from the literature, or according to Lü & Zhang (2014)’s
assumption, is set to 5 ◦.
c The decay slopes of the plateau and post-plateau, and the observed end time of the
plateau, are obtained from fitting with a smooth broken power law.
d The periodicity obtained by the LSP algorithm (except for GRB 180620A).
Reference. (1)Butler (2007); (2)Breeveld et al. (2018); (3)Chen et al. (2005); (4)Zhu
et al. (2021); (5)Becerra et al. (2019); (6)Zou & Liang (2022).

Through visual inspection, we systematically searched the X-ray afterglow data of Swift GRBs observed between May

2005 and November 2023. In this process, we identified four GRBs that exhibited regular flux variations on X-ray

afterglow plateaus. These four GRBs were selected as our study sample, their observational properties are given in

Table 1. The XRT data we adopted are taken from the website of Swift Burst Analyzer (Evans et al. 2009, 2010). To

extract features during and after the plateau, we fit the X-ray afterglow light curves with a smooth broken power law

F = F0

[(
t

tb

)ωα1

+

(
t

tb

)ωα2
]−1/ω

, (34)

where tb represents the observed end time of the plateau, F0 · 2−1/ω is the flux at this time, α1 and α2 correspond

to the decay index of the flux during the plateau and post-plateau phase, and the sharpness parameter ω describes

the sharpness of the transition between these phases. The fitting results of the light curves for our GRB samples are
illustrated in Figure 2, and the relevant parameters are provided in Table 1.

In order to investigate whether there is potential periodicity in the flux variations on the plateaus of our GRB

samples, we conducted power-density spectrum (PDS) analysis using the Lomb–Scargle periodogram (LSP) algorithm

(Lomb 1976; Scargle 1982) for each GRB (except for GRB 180620A) during the time intervals where flux variations

were present on the plateaus. The obtained results are given in Table 1. Our analysis reveals the presence of QPO

signals in GRB 060202 and GRB 050730, with periods of 157 s and 246 s, respectively, and the corresponding power

values for both signals exceed the false alarm probability (FAP) level of 0.01%. For GRB 180620A, we utilized the

results obtained by Zou & Liang (2022), indicating the presence of a QPO signal with a period of 650±50 s within the

interval (200, 2300) s at a confidence level of 3σ. For the remaining GRBs, no evident periodic signals were identified

in their PDS.

For the processing GRB samples, we classified them into three categories, namely “Gold”, “Silver”, and “Bronze”,

based on the likelihood of the central engine being a magnetar and the degree of support for the precession (presence

of QPO signals). This categorization indicates a gradual weakening in the evidence supporting triaxially precessing

magnetars as the central engines for these samples.

1. Gold Sample: this category includes bursts with a decay slope steeper than 3 in the post-plateau phase, indicating

an internal plateau, and QPO signals in the flux variations on the plateau. The samples in this category are

GRB 060202 and GRB 180620A.
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Figure 2. The X-ray light curves of GRBs in our sample. GRB 060202 and GRB 180620A are the Gold samples, GRB 050730
is the Silver sample, and GRB 210610A is the Bronze sample. The black data points represent the XRT data of the afterglow,
and the red solid curves are the smooth broken power-law model fitted to the XRT data.

2. Silver Sample: this category comprises bursts with a normal decay phase following the plateau, indicating an

external plateau, and QPO signals in the flux variations on the plateau. The only sample in this category is

GRB 050730.

3. Bronze Sample: this category includes bursts with a normal decay phase following the plateau, and seemingly

regular flux variations on the plateau. However, no QPO signals were found in their PDS. GRB 210610A belongs

to this category.

3.2. Light-curve fitting

In Section 2, we introduced a model for the magnetic dipole radiation emitted by a triaxially precessing magnetar,

which we employed to fit the X-ray afterglow light curve. In our work, we adopt the magnetar radius of R = 106 cm.

For the Silver and Bronze samples, which exhibit external plateaus, and the Gold samples, which exhibit internal

plateaus, the magnetar mass is set as a free parameter. We express ϵ3 as ϵ3 = ϵ2 + ξ, where ξ > 0 since ϵ2 is less than

ϵ3. The free parameters in our model include the mass of the magnetar M, the radiation efficiency ηX, the surface polar

cap magnetic field Bp, the initial spin period P0, the ellipticity ϵ2, the parameter ξ related to ϵ3, the initial wobble

angle θ0, the azimuthal angle of the dipole moment η, the polar angle of the dipole moment χ, and the parameter k.

We employed the EMCEE PYTHON package (Foreman-Mackey et al. 2013) to implement the Markov chain Monte

Carlo (MCMC) algorithm for fitting the afterglow data and obtaining constraints on the free parameters of the model.

To interpret the afterglow data, we sampled the theoretical light curve at the times corresponding to the afterglow

data points. We also conducted PDS analysis on the sampled theoretical points of both the Gold and Silver samples

using the LSP algorithm. PDSs are computed with uncertainties of the theoretical sampled points taken to be the

same as those of the observed points. The periods of the observed and theoretical points obtained in our work (i.e.,

the peaks of the PDS) all have LSP powers above a FAP level of 0.01%. The best-fitting parameters for our Gold,
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Table 2. The fitting parameters of our model to X-ray afterglow data for three categories of GRB samples.

GRB M(×10−2M⊙) ηX(×10−3) Bp(×1015G) P0(ms) ϵ2(×10−6) ξ(×10−6) θ0(rad) η(rad) χ(rad) k

Gold

GRB 060202 240.830+3.068
−1.852 2.795+1.788

−0.930 2.027+0.524
−0.379 1.353+0.356

−0.252 8.712+9.114
−5.422 7.472+2.697

−2.163 0.252+0.146
−0.086 1.956

+0.375
−0.512 0.514

+0.234
−0.171 0.652+0.207

−0.189

GRB 180620A 238.451+3.169
−1.077 0.407+0.666

−0.234 1.106+0.664
−0.360 1.844+1.134

−0.620 1.538+1.724
−0.908 2.894+1.738

−1.020 0.458+0.145
−0.105 0.440

+0.187
−0.163 0.550

+0.180
−0.135 0.821+0.110

−0.145

Silver

GRB 050730 154.751+27.553
−21.574 170.638+77.673

−53.176 8.489+0.972
−1.347 3.976+0.519

−0.557 18.124+7.981
−6.190 16.510+3.934

−3.227 0.500
+0.115
−0.100 0.004

+0.006
−0.003 0.811

+0.134
−0.139 −0.635+0.036

−0.048

Bronze

GRB 210610A 146.544+27.809
−17.083 49.311+20.124

−15.616 8.747+0.828
−1.229 6.007+0.733

−0.808 21.539
+18.238
−12.251 25.818

+8.115
−7.111 0.536

+0.194
−0.187 0.162

+0.197
−0.109 0.741

+0.362
−0.350 −0.423+0.082

−0.157

Silver, and Bronze samples are presented in Table 2, with the corresponding posterior distributions shown in Figure

7-10.

3.2.1. GRB 180620A

On 2018 June 20 at 08:34:58 UTC, GRB 180620A triggered a response from the Swift/BAT (Evans et al. 2018).

GRB 180620A is one of the relatively bright GRBs observed in recent years. It is identified as a long GRB, with

a duration of the prompt emission T90 = 23.16 ± 4.82 s in the 15-150 keV band (Stamatikos et al. 2018). It has a

redshift limit of 1.2 given by the detection of the Swift/UVOT (Breeveld et al. 2018). The X-ray spectral index on

its shallow decay phase is 1.34 (Zou & Liang 2022). As shown in Figure 2, the X-ray afterglow light curve of GRB

180620A exhibits a plateau phase (α1 = 0.004), followed by a sharp decay phase (α2 = 3.197), and the observed break

time is tb = 7853 s. Multiple significant flux variations are observed on the plateau, in this phase, Zou & Liang (2022)

identified a QPO signal with a period of 650± 50 s in the time interval (200, 2300) s. GRB 180620A is one of the two

Gold samples.

We employed our precessing magnetar engine model to fit the XRT data of GRB 180620A prior to the break time

(from 312 s to 7853 s, corresponding to the first observed point and the time of the break, respectively). Simultaneously,

PDS analysis was conducted on sampled theoretical points in the time interval (312, 2305) s. The corresponding

theoretical light curve and PDS are illustrated in Figure 3. Our model provides a good match between the theoretical

light curve before the break time and the observed plateau, as well as the flux variations on the plateau. The best-fit

values for the mass of the magnetar M, the surface magnetic field Bp, the initial spin period P0, the ellipticity ϵ2, and

the parameter ξ related to ϵ3 obtained from the afterglow fitting of GRB 180620A are M = (238.451+3.169
−1.077)×10−2 M⊙,

Bp = (1.106+0.664
−0.360)×1015 G, P0 = 1.844+1.134

−0.620 ms, ϵ2 = (1.538+1.724
−0.908)×10−6, and ξ = (2.894+1.738

−1.020)×10−6, respectively.

We adopt a commonly used explanation for the internal plateau, suggesting that the magnetar may collapse into a

black hole after the break time. Therefore, we did not fit the observations after the break time using our model.

The PDS of the model points in the time interval (312, 2305) s peaks at 621 s. Our model’s period of 621 s is in good

agreement with the observed period of 650± 50 s reported by Zou & Liang (2022).

Zou & Liang (2022) also employed a precessing magnetar to explain the X-ray afterglow and periodicity observed

in GRB 180620A. Our model differs from Zou & Liang (2022) in two main aspects. First, Zou & Liang (2022)

utilized a biaxially precessing magnetar as the central engine for GRB, while we opted for a more physically realistic

triaxially precessing magnetar. Second, Zou & Liang (2022) attributed the sharp drop in flux after the break time to

a magnetospheric processes, whereas we consider the widely accepted scenario of magnetar collapse to a BH as a more

natural explanation.

3.2.2. GRB 060202

GRB 060202, located at a redshift of 0.783 (Butler 2007), is a long GRB (T90 = 204 s) with a long-duration X-ray

afterglow. Lyons et al. (2010) noted anomalous regular flux variations in its afterglow during the plateau phase. GRB

060202 is another Gold sample. As shown in Figure 2, the X-ray afterglow of GRB 060202 exhibits the following
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Figure 3. Left panel: the sampled theoretical model points (red dots) prior to the break time obtained from the best-fitting
model light curve in comparison with the XRT afterglow data (black dots) of GRB 180620A. Right panel: the PDS (red curve)
of the theoretical sampled points before 2305 s, obtained from LSP. The vertical red solid lines represent the peak of the PDS,
corresponding to P = 621 s. The vertical black solid lines and dotted lines represent the period of 650± 50 s in the time interval
(200, 2300) s taken from Zou & Liang (2022). The horizontal blue dotted, dashdot, and solid lines represent FAP levels of 1%,
0.1%, and 0.01%, respectively.
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Figure 4. Left panel: the sampled points (red dots) from the best-fit model curve during the plateau phase of GRB 060202,
and the XRT data (black dots) in time interval (149, 1399) s. Right panel: the PDSs of the observed points (black curve) and
the sampled model points (red curve) during the plateau phase obtained by LSP, with vertical black and red lines representing
the corresponding peaks at P = 157 s and P = 153 s, respectively. The same labels as those in Figure 3 are used.

features: characterized by a plateau phase (α1 = 0.288), preceded by an initial steep decay phase, followed by a sharp

drop phase (α2 = 6.546), and subsequently a slow decay phase extending up to 2.73× 106 s.

We propose that the initial steep decay phase may arise from curvature effects caused by the cessation of activity

of the central engine when the prompt radiation ends. Additionally, similar to GRB 180620A, we attribute the sharp

drop after the break time in GRB 060202 to the cessation of energy supply after the collapse of the magnetar into

a BH. Thus, we consider only the X-ray afterglow during the plateau phase to be generated by the magnetic dipole

radiation of the precessing magnetar. Therefore, we performed MCMC fitting of the afterglow data during the plateau

phase (from 325 s to 775 s, corresponding to the beginning and the end of the plateau, respectively) using our model.

We also conducted PDS analysis using the LSP algorithm on both the observed points and the sampled theoretical

points within the same time interval. The resulting light curve from our model fit and the PDS obtained from LSP

are presented in Figure 4. As shown in Figure 4, three regular flux variations are observed in the X-ray afterglow

plateau of GRB 060202. Our model successfully reproduces these three flux variations. Moreover, the period obtained

from the model’s sampled points (153 s) is consistent with the observed data period (157 s). The best-fit values for

the mass of the magnetar M, the surface magnetic field Bp, the initial spin period P0, the ellipticity ϵ2, and the
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Figure 5. Left panel: the sampled X-ray lightcurve (red dots) derived from our best model fit and the XRT data (black dots)
of GRB 050730. Right panel: same as the right panel of Figure 4, but for the observations and theoretical points of GRB 050730
in the time interval (187, 790) s. Here, the vertical black and red lines represent P = 246 s and P = 239 s, respectively.
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Figure 6. Left panel: sampled points (red dots) from the fitted curve and observed afterglow (black dots) of GRB 210610A.
Right panel: zoomed-in view of the plateau phase (data before 858 seconds), with the note that the horizontal axis is linear.

parameter ξ related to ϵ3 obtained from the afterglow fitting of GRB 060202 are M = (240.830+3.068
−1.852) × 10−2 M⊙,

Bp = (2.027+0.524
−0.379)×1015 G, P0 = 1.353+0.356

−0.252 ms, ϵ2 = (8.712+9.114
−5.422)×10−6, and ξ = (7.472+2.697

−2.163)×10−6, respectively.

3.2.3. GRB 050730

GRB 050730, the only Silver sample, is a weak burst detected by Swift/BAT at 19:58:23 UT on July 30, 2005

(Holland et al. 2005). The long GRB 050730, with a prompt emission duration of T90 = 157 s, has a high redshift of

z = 3.967 (Chen et al. 2005). The X-ray afterglow of GRB 050730 is characterized by a plateau phase (α1 = 0.340)

followed by a normal decay phase (α2 = 2.816), but its most prominent feature is the presence of three consecutive

flux variations on the plateau. Zheng et al. (2021) discovered that the time intervals between the peaks of the three

flux variations on the plateau are quite similar.

We employed our model to fit the X-ray afterglow of GRB 050730 after 187 seconds, and the resulting fitting curve

is shown in the left panel of Figure 5. The declining afterglow observed before 187 seconds may represent the end of

the initial steep decay phase commonly observed in X-ray afterglows. The three consecutive flux variations on the

plateau derived from the model are in excellent agreement with the three observed flux variations. The best-fit values

for the mass of the magnetar M, the surface magnetic field Bp, the initial spin period P0, the ellipticity ϵ2, and the

parameter ξ related to ϵ3 obtained from the afterglow fitting of GRB 050730 areM = (154.751+27.553
−21.574)×10−2 M⊙, Bp =

(8.489+0.972
−1.347)×1015 G, P0 = 3.976+0.519

−0.557 ms, ϵ2 = (18.124+7.981
−6.190)×10−6, and ξ = (16.510+3.934

−3.227)×10−6, respectively. We

performed PDS analysis using the LSP on the three flux variations from both the model and observations (spanning

from 187 s to 790 s), and the results are shown in the right panel of Figure 5. The period obtained from the model
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(239 s) matches that of the observed data (246 s) and is roughly consistent with the time intervals between the peaks

of the three flux variations. Zheng et al. (2021) proposed that the three flux variations of GRB 050730 are generated

by the magnetar accreting surrounding material three times, driving the jet formation. However, they did not explain

how the magnetar produces three accretions with identical time intervals, leading to the periodicity observed in the

three consecutive flux variations.

3.2.4. GRB 210610A

GRB 210610A is a long GRB with T90 = 8.192 s and a redshift of z = 3.54 (Zhu et al. 2021), belonging to our

Bronze sample. As shown in Figure 2, its X-ray afterglow is composed of a plateau phase with flux variations and a

subsequent slow decay (α2 = 1.119). Figure 6 presents the fitted curve of our model for the X-ray afterglow of GRB

210610A. As shown in the left panel of Figure 6, the light curve from our model reproduces the overall features of the

observed afterglow. In the right panel of Figure 6, both the observed and theoretical afterglows on the plateau exhibit

seemingly regular flux variations. However, the PDS obtained using the LSP for the plateau phase did not reveal

credible periodicity. The best-fit values for the mass of the magnetar M, the surface magnetic field Bp, the initial spin

period P0, the ellipticity ϵ2, and the parameter ξ related to ϵ3 obtained from the afterglow fitting of GRB 210610A

are M = (146.544+27.809
−17.083)× 10−2 M⊙, Bp = (8.747+0.828

−1.229)× 1015 G, P0 = 6.007+0.733
−0.808 ms, ϵ2 = (21.539+18.238

−12.251)× 10−6,

and ξ = (25.818+8.115
−7.111)× 10−6, respectively.

3.3. The collapse time and the precession period

3.3.1. The collapse time for the Gold samples GRB 060202 and GRB 180620A

Long GRBs are produced during the core collapse of massive stars (Woosley 1993; MacFadyen & Woosley 1999).

Some long GRBs exhibit plateau features in their X-ray afterglows, which can be explained by the presence of a

magnetar as the central engine (Lü & Zhang 2014). If the X-ray afterglow plateau of a long GRB is followed by a

decay with a slope shallower than −3, it is referred to as an external plateau (Lü et al. 2015). This corresponds to

the Silver sample GRB 050730 and the Bronze sample GRB 210610A in our work. Conversely, if the X-ray afterglow

plateau is followed by a decay with a slope steeper than −3, it is referred to as an internal plateau (Troja et al. 2007;

Rowlinson et al. 2010). This corresponds to the Gold samples GRB 060202 and GRB 180620A in our work. The

external plateau of a long GRB can be explained by the long-lived newborn magnetar injecting its rotational energy

into an external shock via magnetic dipole radiation, with the end of the plateau corresponding to the spin-down

timescale of the newborn magnetar (Lü & Zhang 2014). The internal plateau of a long GRB can be explained by

internal dissipation within the magnetar wind of a supra-massive magnetar that can only survive for a limited time,

with the end time of the plateau corresponding to the collapse time of the supra-massive magnetar into a black hole

(Troja et al. 2007). Specifically, the observed collapse time of the supra-massive magnetar is tcol = tb/(1 + z).

If the mass of a newborn magnetar formed after the collapse of a massive star is less than the maximum mass of a

non-rotating NS MTOV, then the newborn magnetar can exist stably for a long time. This scenario corresponds to the

external plateaus observed in the Silver and Bronze samples in our study. Therefore, in our work, we set the mass of

the newborn magnetar for the Silver and Bronze samples as a free parameter less than MTOV. If the mass of a newborn

magnetar formed after the collapse of a massive star exceeds MTOV, then the newborn magnetar is a supra-massive

magnetar, which can only survive for a limited time. Due to magnetic dipole spin-down, the supra-massive newborn

magnetar will eventually collapse into a black hole. This scenario corresponds to the internal plateaus observed in the

Gold sample in our work. The survival time of a supra-massive newborn magnetar, or the collapse time Tcol, depends

not only on the magnetic field, initial spin period, and the equation of state (EOS) of the NS, but also on the mass of

the newborn magnetar. Therefore, in our work, we set the mass of the newborn magnetar for the Gold sample as a

free parameter.

For a specific EOS, the maximum gravitational mass (Mmax) is a function of the spin period, which can be expressed

as (Lyford et al. 2003; Lasky et al. 2014)

Mmax = MTOV(1 + α̂P β̂), (35)

where the values of the parameters α̂ and β̂ depend on the specific EOS. As the magnetar spins down due to magnetic

dipole radiation,Mmax gradually decreases. WhenMmax decreases to equal the mass of the magnetarM , the centrifugal

force can no longer support the magnetar, and it will collapse into a black hole.
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When the spin-down of the magnetar is due to magnetic dipole radiation, the evolution of the spinning period is

expressed as (Lü et al. 2015)

P (t) = P0

(
1 +

4π2

3c3
B2

pR
6

IP 2
0

t

)1/2

. (36)

Substituting equation (36) into equation (35), the theoretical collapse time Tcol for a supra-massive magnetar collapsing

into a black hole can be obtained and expressed as (Lasky et al. 2014; Lü et al. 2015; Li et al. 2024)

Tcol =
3c3I

4π2B2
pR

6

[(
M −MTOV

α̂MTOV

)2/β̂

− P 2
0

]
. (37)

The works of Lasky et al. (2014) and Lü et al. (2015) support GM1 (Glendenning & Moszkowski 1991) as the EOS

for NSs. In our work, we choose GM1 as the EOS for NSs, with corresponding parameters MTOV = 2.37M⊙,

α̂ = 1.58 × 10−10 s−β̂ , and β̂ = −2.84 (Lasky et al. 2014; Ravi & Lasky 2014; Lü et al. 2015). By substituting the

values of M , Bp, and P0 (see Table 2) obtained from fitting the X-ray afterglow light curves into equation (37), the

theoretical collapse time for the supra-massive magnetars in the Gold samples GRB 060202 and GRB 180620A can

be derived. For GRB 060202, the theoretical collapse time Tcol = 431 s is consistent with the observed collapse time

tcol = 435 s. Similarly, for GRB 180620A, the theoretical collapse time Tcol = 3549 s is also consistent with the observed

collapse time tcol = 3570 s.

3.3.2. QPOs and the precession period

We identified QPO signals in the flux variations on the afterglow plateaus of the Gold samples GRB 060202 and

GRB 180620A, as well as on the afterglow plateau of the Silver sample GRB 050730. For a newborn magnetar with

spin-down controlled by magnetic dipole radiation, the evolution of the spin frequency Ω follows a broken power law

as described by equation (7). The evolution of the precession frequency ΩP is related to Ω. Before the spin-down

timescale τsd, Ω remains nearly constant, and thus ΩP also remains nearly constant. After τsd, Ω decays following a

power law, and ΩP also decays following a power law.

For the Gold samples GRB 060202 and GRB 180620A, the end of the plateau corresponds to the collapse of the

magnetar into a BH, and here the collapse time Tcol of the magnetar is less than τsd. During the afterglow plateau

phase of the Gold samples GRB 060202 and GRB 180620A, both Ω and ΩP remain nearly constant. Therefore, the

periods inferred from the afterglow plateaus of GRB 060202 and GRB 180620A remain nearly constant. After the

end of the afterglow plateau, the magnetar may collapse into a BH, and the observed afterglow data are no longer

produced by our precessing magnetar model.

For the Silver sample GRB 050730, before τsd, both Ω and ΩP do not undergo significant evolution, and thus QPO

signals can be observed. After τsd, Ω decays following a power law, and thus ΩP also decays following a power law.

The rapid decay of ΩP further leads to a gradual weakening of the flux variations (Suvorov & Kokkotas 2020). The

rapid decay of ΩP and the continuous weakening of the flux variations make it difficult to observe QPO signals after

τsd. This may explain why we did not detect QPO signals in the afterglow data of GRB 050730 after τsd. Zou & Liang

(2022) observed QPO signals in the flux variations on the afterglow plateau of the GRB object they studied, but did

not observe such signals in the post-plateau data. They suggested that this is because ΩP did not undergo significant

evolution during the plateau phase, allowing the QPO signals to be detected, while in the later stages, the rapid decay

of ΩP led to the absence of detectable QPO signals. This might be the same reason that we observed QPO signals

during the afterglow plateau of the Silver sample GRB 050730, but did not detect QPO signals in the post-plateau

data. The evolution of ΩP is also related to the ellipticity. Zou & Liang (2022) noted that if the ellipticity evolves over

time and is controlled by starquakes (while the deformation caused by the magnetic field can be considered constant

in the early stages), then the evolution of ellipticity is the same as that of Ω. This would lead to a faster decay of ΩP

after τsd, making it even more difficult to detect QPO signals in the post-plateau data.

For the Bronze sample GRB 210610A, we did not detect QPO signals in the X-ray afterglow. However, the precessing

magnetar model successfully reproduces both the flux variations on the plateau and the overall characteristics of the

afterglow light curve.

4. CONCLUSION AND DISCUSSION
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In this paper, we have investigated four GRBs with regular flux variations on their X-ray afterglow plateaus.

These four GRBs were selected through visual inspection from Swift/XRT afterglow data spanning from May 2005 to

November 2023. By fitting the X-ray afterglows with a smooth broken power law, we derived the decay slopes for each

GRB after its plateau phase. By applying the LSP algorithm to the PDS analysis of flux variations on each GRB’s

plateau, we determined their respective periodic or non-periodic nature. Based on whether the decay slope following

the plateau is steeper than -3, and on the presence or absence of periodicity in the flux variations on the plateau,

these four GRBs were classified into three categories: Gold (GRB 060202 and GRB 180620A), Silver (GRB 050730),

and Bronze (GRB 210610A). We proposed a model of magnetic dipole radiation emitted by a triaxially precessing

magnetar, in which electromagnetic radiation dominates the magnetar’s spin-down process. With this model, we

employed the MCMC algorithm to fit the X-ray afterglows of the three categories of GRB samples. By sampling the

fitting curve at the observed data points, we obtained the model-sampled points. Except for the post-plateau phase of

the Gold sample GRBs (GRB 060202 and GRB 180620A), which may be attributed to the collapse of the magnetar

into a BH, and the initial segment of the afterglow data for GRB 060202 and GRB 050730, which may be associated

with steep decay formed by curvature effects, the model-sampled points reproduce the remaining portions of the X-ray

afterglows for the three categories of GRB samples. Conducting PDS analysis on the model-sampled points for the

Gold and Silver samples during the plateau intervals with observed flux variations using the LSP algorithm, we found

a good match between the periods derived from the model-sampled points and those from the observational data.

Additionally, the parameters obtained from our model fitting are mutually consistent and align with the expectations

for a newborn magnetar. These results suggest that triaxially precessing magnetars can serve as the central engines

for these four GRBs, accounting for the observed X-ray afterglows.

Our work invokes a more physically plausible triaxial precessing magnetar as the central engine, replacing the biaxial

precessing magnetar model previously used in GRBs studies (studied by Suvorov & Kokkotas (2020) for GRB 080602

and GRB 090510, Zou et al. (2021) for GRB 101225A, and Zou & Liang (2022) for GRB 180620A). Additionally,

our work expands the sample of GRBs with QPOs in their early X-ray afterglows, including GRB 060202 and GRB

050730. While our Bronze sample did not exhibit periodicity in its early X-ray afterglow, the flux variations observed

on its plateau and the overall characteristics of the afterglow can also be successfully reproduced by the triaxially

precessing magnetar model. Suvorov & Kokkotas (2021) identified 16 short GRBs out of 25 with plateau phases in

their X-ray light curves that support a precessing magnetar as the central engine. Our work complements their findings

by increasing the number of long GRBs that also support the precessing magnetar as the central engine. Our work,

along with previous studies, provides evidence for the early precession of newborn millisecond magnetars formed in

massive star collapse events (for long GRBs) or binary neutron star merger events (for short GRBs). Furthermore, our

work further reinforces the theoretical interpretation that links the plateaus in X-ray afterglows to energy injection

from the magnetar engine (Zhang & Mészáros 2001). Particularly, for our Gold sample, the precessing magnetar model

can simultaneously explain the presence of internal plateaus and the periodicity of flux variations on these plateaus.

In our work, we employed a triaxially precessing magnetar model, as described in Section 2, to account for the

regular flux variations observed on the early X-ray plateau of GRBs and their periodicity, if present. There are several

important aspects that deserve to be pointed out. First, the ratio of gravitational wave luminosity to electromagnetic

radiation luminosity for the magnetar is LGW/LEM ∼ 0.3(ϵ23,−3B
−2
P,15P

−2
0,−3) (Suvorov & Kokkotas 2021). By substi-

tuting the parameters obtained from fitting the X-ray afterglows of the four GRBs in our sample, it is found that

LGW ≪ LEM for all the GRBs, consistent with the assumption in our model that the spin-down of the magnetar for

the four GRBs is dominated by electromagnetic radiation. Second, prior to the spin-down timescale τsd, the evolution

of the magnetic inclination angle α is primarily governed by precession (Goldreich 1970; Zanazzi & Lai 2015). Our

work does not take into account the other factors that might influence α in the later stages, which can be explored

through Equation (7) in Goldreich (1970) or Equation (56) in Zanazzi & Lai (2015). Third, in our work, we invoked

a model of a freely precessing magnetar. In more realistic scenarios, a magnetar may be subject to external torques,

such as precession under the influence of near-field torques (Zanazzi & Lai 2015), precession driven by both near-field

and far-field torques (Gao et al. 2023), and precession of magnetars with plasma-filled magnetospheres (Arzamasskiy

et al. 2015). Applying these more complex and realistic magnetar precession dynamics to explain the X-ray afterglows

of GRBs requires further investigation in the future.
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APPENDIX

A. THE POSTERIOR PROBABILITY DISTRIBUTION OF MODEL PARAMETERS OBTAINED BY MCMC

FIT

In Figures 7-10, we present the corner plots obtained from the fits of GRB 180620A, GRB 060202, GRB 050730,

and GRB 210610A, respectively.

M 2 = 238.451+3.169
1.077

1.5

3.0

X,
3

X, 3 = 0.407+0.666
0.234

1.5

3.0

B P
,1

5

BP, 15 = 1.106+0.664
0.360

2

4

P 0
,

3

P0, 3 = 1.844+1.134
0.620

6

12

2,
6

2, 6 = 1.538+1.724
0.908

4

8

6

6 = 2.894+1.738
1.020

0.4

0.8

0

0 = 0.458+0.145
0.105

0.6

1.2

 = 0.440+0.187
0.163

0.4

0.8

1.2

 = 0.550+0.180
0.135

24
0

24
4

M 2

0.5
0

0.7
5

k

1.5 3.0

X, 3

1.5 3.0

BP, 15

2 4

P0, 3

6 12

2, 6

4 8

6

0.4 0.8

0

0.6 1.2 0.4 0.8 1.2 0.5
0

0.7
5

k

k = 0.821+0.110
0.145

Figure 7. The corner plot of the posterior probability distribution of model parameters obtained by MCMC fitting the X-ray
afterglow of GRB 180620A with our model. The best-fitting parameters and the corresponding 1σ uncertainties are depicted in
the diagonal histograms with black dashed lines.
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Figure 8. Same as Figure 7 but for GRB 060202.
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Figure 9. Same as Figure 7 but for GRB 050730.
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Figure 10. Same as Figure 7 but for GRB 210610A.
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B. EQUIVALENCE OF TWO SETS OF SOLUTIONS FOR TRIAXIAL FREE PRECESSION

In this section, we will prove the equivalence of the two sets of solutions for triaxial free precession presented in

Section 2.2. Specifically, we will prove that equations (12)-(16) and equations (25)-(29) are equivalent, with the former

derived from Landau & Lifshitz (1960) and the latter from Gao et al. (2023).

In this paper, we adopt the same initial conditions as Landau & Lifshitz (1960) and Gao et al. (2023), i.e., at the

initial time t = 0, Ω2 = 0. As in Gao et al. (2023), the wobble angle θ is taken as θ0 at the initial time t = 0. Therefore,

at t = 0, we have L1 = I1Ω1 = L sin θ0, L2 = I2Ω2 = 0, and L3 = I3Ω3 = L cos θ0. At t = 0, from equation (10), we

obtain that

2E = I1Ω
2
1 + I2Ω

2
2 + I3Ω

2
3 =

L2
1

I1
+

L2
2

I2
+

L2
3

I3
=

L2 sin2 θ0
I1

+
L2 cos2 θ0

I3
. (B1)

For triaxial free precession, both energy and angular momentum are conserved, so E and L remain constant. From

equation (12), one can obtain that

L̂1 =
L1

L
=

I1Ω1

L
=

I1
L

√
2EI3 − L2

I1(I3 − I1)
cn(τ,m). (B2)

Substituting equation (B1) into equation (B2), we obtain that

L̂1=
I1
L

√
(I3/I1)L2 sin2 θ0 + L2 cos2 θ0 − L2

I1(I3 − I1)
cn(τ,m)

=

√
I3L2 sin2 θ0 + I1L2 cos2 θ0 − I1L2

L2(I3 − I1)
cn(τ,m)

=

√
L2 sin2 θ0(I3 − I1)

L2(I3 − I1)
cn(τ,m) = sin θ0 cn(τ,m). (B3)

Similarly, combining equation (14) and equation (B1), we can obtain

L̂3 =
L3

L
= cos θ =

I3Ω3

L
=

I3
L

√
L2 − 2EI1
I3(I3 − I1)

dn(τ,m)

=
I3
L

√
L2 − L2 sin2 θ0 − (I1/I3)L2 cos2 θ0

I3(I3 − I1)
dn(τ,m)

=

√
I3L2 − I3L2 sin2 θ0 − I1L2 cos2 θ0

L2(I3 − I1)
dn(τ,m)

=

√
L2 cos2 θ0(I3 − I1)

L2(I3 − I1)
dn(τ,m) = cos θ0 dn(τ,m). (B4)

From equations (B2), (B3), and (B4), one can find that

sin θ0 =
I1
L

√
2EI3 − L2

I1(I3 − I1)
=

√
I1(2EI3 − L2)

L2(I3 − I1)
, (B5)

and

cos θ0 =
I3
L

√
L2 − 2EI1
I3(I3 − I1)

=

√
I3(L2 − 2EI1)

L2(I3 − I1)
. (B6)
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Combining equation (13) and equation (B1), one can obtain that

L̂2 =
L2

L
=

I2Ω2

L
=

I2
L

√
2EI3 − L2

I2(I3 − I2)
sn(τ,m)

=

√
I2(2EI3 − L2)

L2(I3 − I2)
sn(τ,m)

=

√
I1(2EI3 − L2)

L2(I3 − I1)
·

√
I2(I3 − I1)

I1(I3 − I2)
sn(τ,m)

=

√
I1(2EI3 − L2)

L2(I3 − I1)
·

√
1 +

I3(I2 − I1)

I1(I3 − I2)
sn(τ,m)

= sin θ0
√
1 + δ sn(τ,m), (B7)

where the expressions for sin θ0 and δ are derived from equation (B5) and equation (20), respectively. To prove that

equations (12)-(16) and equations (25)-(29) are equivalent, it is also necessary to prove that equation (25) is equivalent

to equation (15), and that equation (26) is equivalent to equation (16). Substituting equation (19), equation (20), and

equation (B6) into equation (25), one can obtain that

ΩP=
ϵ3L cos θ0

I3
√
1 + δ

=
I3 − I1

I1
· L
I3

·

√
I3(L2 − 2EI1)

L2(I3 − I1)
·
[
1 +

I3(I2 − I1)

I1(I3 − I2)

]−1

2

=
I3 − I1

I1
· L
I3

·

√
I3(L2 − 2EI1)

L2(I3 − I1)
·

√
I1(I3 − I2)

I2(I3 − I1)

=

√
(I3 − I2)(L2 − 2EI1)

I1I2I3
. (B8)

Thus, equation (25) is equivalent to equation (15). Substituting equation (20), equation (B5), and equation (B6) into

equation (26), one can obtain that

m = δ tan2 θ0= δ
sin2 θ0
cos2 θ0

=
I3(I2 − I1)

I1(I3 − I2)
· I1(2EI3 − L2)

L2(I3 − I1)
·
[
I3(L

2 − 2EI1)

L2(I3 − I1)

]−1

=
I3(I2 − I1)

I1(I3 − I2)
· I1(2EI3 − L2)

L2(I3 − I1)
· L2(I3 − I1)

I3(L2 − 2EI1)

=
(I2 − I1)(2EI3 − L2)

(I3 − I2)(L2 − 2EI1)
. (B9)

Thus, equation (26) is equivalent to equation (16). Combining equations (B1)-(B9), we have proven that equations

(12)-(16) and equations (25)-(29) are equivalent, meaning the two sets of solutions for triaxial free precession are

equivalent.

C. DISCUSSION ON THE RELATIONSHIP BETWEEN THE DIRECTION OF THE ANGULAR VELOCITY

VECTOR AND THE DIRECTION OF THE ANGULAR MOMENTUM VECTOR

In studying the free precession of neutron stars, Jones & Andersson (2001) found that for a nearly spherical star, the

angle θ̂ ≃ ϵ3θ between the angular velocity vector and the angular momentum vector is much smaller than the wobble

angle θ (see equation 18 in Jones & Andersson 2001). Gao et al. (2023) found that θ̂ ∼ ϵ3θ ≪ 1, and while studying
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the triaxial precession of magnetars, they approximated the angular velocity vector as being parallel to the angular

momentum vector (see equation 18 and the explanation below equation 18 in Gao et al. 2023). In their work on

explaining the periodicity of FRB 180916.J0158+65 using a triaxial precessing magnetar, Levin et al. (2020) proposed

that for a nearly spherical star, since its inertia tensor is nearly equal to a multiple of the unit matrix, the angular

velocity vector and the angular momentum vector are almost aligned (see the fifth paragraph of Section 2.1 and Figure

1 in Levin et al. 2020).

In this section, we will discuss the relationship between the direction of the angular velocity vector and the direction

of the angular momentum vector in the body frame. We find that for objects with ϵ2 ≪ 1 and ϵ3 ≪ 1, it is a reasonable

approximation that the angular velocity vector is aligned with the angular momentum vector, which is consistent with

the results of Levin et al. (2020) and Gao et al. (2023).

The unit angular momentum vector and the unit angular velocity vector in the body frame are expressed as L̂ =

L̂1ê1 + L̂2ê2 + L̂3ê3 and Ω̂ = Ω̂1ê1 + Ω̂2ê2 + Ω̂3ê3, respectively. In the body frame, one can obtain that

Ω̂1 =
Ω1

Ω
=

L1

I1Ω
=

LL̂1

I1Ω
=

L

Ω
· L̂1

I1
, (C10)

Ω̂2 =
Ω2

Ω
=

L2

I2Ω
=

LL̂2

I2Ω
=

L

Ω
· L̂2

I2
, (C11)

Ω̂3 =
Ω3

Ω
=

L3

I3Ω
=

LL̂3

I3Ω
=

L

Ω
· L̂3

I3
. (C12)

According to equation (C10), equation (C11), and equation (C12), the cosine of the angle θ̂ between L̂ and Ω̂ can be

expressed as

cos θ̂ = L̂ · Ω̂=Ω̂1L̂1 + Ω̂2L̂2 + Ω̂3L̂3

=
L

Ω
·

(
L̂2
1

I1
+

L̂2
2

I2
+

L̂2
3

I3

)

=
L

ΩI1
·

(
L̂2
1 +

L̂2
2

I2/I1
+

L̂2
3

I3/I1

)

=
L

ΩI1
·

(
L̂2
1 +

L̂2
2

1 + ϵ2
+

L̂2
3

1 + ϵ3

)
, (C13)

where I2/I1 = 1 + ϵ2 and I3/I1 = 1 + ϵ3 come from equation (22) and equation (23), respectively. The first term on

the right-hand side of equation (C13) can be further expressed as

L

ΩI1
=

√
L2
1 + L2

2 + L2
3

I1
√
Ω2

1 +Ω2
2 +Ω2

3

=

√
I21Ω

2
1 + I22Ω

2
2 + I23Ω

2
3

I1
√
Ω2

1 +Ω2
2 +Ω2

3

=

√
Ω2

1 + (I2/I1)
2Ω2

2 + (I3/I1)
2Ω2

3

Ω2
1 +Ω2

2 +Ω2
3

=

√
Ω2

1 + (1 + ϵ2)
2Ω2

2 + (1 + ϵ3)
2Ω2

3

Ω2
1 +Ω2

2 +Ω2
3

=

√
Ω2

1 +Ω2
2 + 2ϵ2Ω

2
2 + ϵ22Ω

2
2 +Ω2

3 + 2ϵ3Ω
2
3 + ϵ23Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

=

[
1 +

2ϵ2Ω
2
2 + 2ϵ3Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

+
ϵ22Ω

2
2 + ϵ23Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

]1/2
. (C14)
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The Taylor expansion of equation (C14) gives

L

ΩI1
=1 +

1

2
·
(
2ϵ2Ω

2
2 + 2ϵ3Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

+
ϵ22Ω

2
2 + ϵ23Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

)
− 1

8
·
(
2ϵ2Ω

2
2 + 2ϵ3Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

+
ϵ22Ω

2
2 + ϵ23Ω

2
3

Ω2
1 +Ω2

2 +Ω2
3

)2

+ · · ·

=1 +
1

2
· (2ϵ2Ω̂2

2 + 2ϵ3Ω̂
2
3 + ϵ22Ω̂

2
2 + ϵ23Ω̂

2
3)−

1

8
· (2ϵ2Ω̂2

2 + 2ϵ3Ω̂
2
3 + ϵ22Ω̂

2
2 + ϵ23Ω̂

2
3)

2 + · · · (C15)

The Taylor expansion of the second term on the right-hand side of equation (C13) gives

L̂2
1 +

L̂2
2

1 + ϵ2
+

L̂2
3

1 + ϵ3
= L̂2

1 + L̂2
2 · (1− ϵ2 + ϵ22 + · · · ) + L̂2

3 · (1− ϵ3 + ϵ23 + · · · ) (C16)

Substituting equation (C15) and equation (C16) into equation (C13), one can obtain that

cos θ̂ = L̂ · Ω̂=

[
1 +

1

2
· (2ϵ2Ω̂2

2 + 2ϵ3Ω̂
2
3 + ϵ22Ω̂

2
2 + ϵ23Ω̂

2
3)−

1

8
· (2ϵ2Ω̂2

2 + 2ϵ3Ω̂
2
3 + ϵ22Ω̂

2
2 + ϵ23Ω̂

2
3)

2 + · · ·
]

·
[
L̂2
1 + L̂2

2 · (1− ϵ2 + ϵ22 + · · · ) + L̂2
3 · (1− ϵ3 + ϵ23 + · · · )

]
. (C17)

Since we are studying the case where ϵ2 ≪ 1 and ϵ3 ≪ 1, we neglect the second-order and higher-order terms in ϵ2
and ϵ3, as well as terms containing ϵ2 · ϵ3, retaining only the first-order terms in ϵ2 and ϵ3. Thus, equation (C17) can

be transformed into

cos θ̂ = L̂ · Ω̂ ≃ 1− ϵ2L̂
2
2 − ϵ3L̂

2
3 + ϵ2Ω̂

2
2 + ϵ3Ω̂

2
3 , (C18)

which means the angle θ̂ is very close to zero.

In our work, the minimum and maximum values obtained for ϵ2 are 1.538 × 10−6 and 21.539 × 10−6, respectively.

For ϵ3 = ϵ2 + ξ, the minimum and maximum values are 4.432× 10−6 and 47.357× 10−6, respectively. Therefore, it is

reasonable to adopt the approximation that the angular velocity vector is aligned with the angular momentum vector

when calculating the cosine of the magnetic inclination angle α, i.e., in the calculation of equation (33).
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