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Abstract

This tutorial paper investigates the convergence of statistical mechanics and learning theory,
elucidating the potential enhancements in machine learning methodologies through the
integration of foundational principles from physics. The tutorial delves into advanced
techniques like entropy, free energy, and variational inference which are utilized in machine
learning, illustrating their significant contributions to model efficiency and robustness. By
bridging these scientific disciplines, the tutorial aspires to inspire newer methodologies in
researches, demonstrating how an in-depth comprehension of physical systems’ behavior
can yield more effective and dependable machine learning models, particularly in contexts
characterized by uncertainty.
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1 Introduction

Statistics is a classical discipline that deals with the general rules governing large groups of
objects, where the impact from data errors and inaccuracies can be reduced through general
modeling. Statistical mechanics provides an explanation for the behavior and movement of
particles, applying statistical principles to physical systems. In the development of intelli-
gent agents, various algorithms are designed using well-established theories, including Stat
Mech. The intricate connections between statistical mechanics and learning theory offer
unique insights for advancing both fields.Carleo et al. [2019]; Watkin et al. [1993]

At the root of both disciplines is the concept of probability distributions. In statistical
mechanics, these distributions describe the likelihood of a system being in various energy
states, providing insights into how systems reach equilibrium. In statistical learning, prob-
ability distributions model the data generation process, which is crucial for evaluating and
improving machine learning models. The Central Limit Theorem, a fundamental result in
probability theory, demonstrates how the distribution of the sum of a large number of inde-
pendent random variables approximates a normal distribution. This theorem not only jus-
tifies the use of normal distributions for macroscopic properties in physics but also supports
inference in machine learning by simplifying hypothesis testing and enhancing algorithm
reliability. Another essential technique is importance sampling, which estimates properties
of a target distribution by sampling from a different distribution. This method is critical

©2024 Fall Star (Xinxin) Liu.

http://arxiv.org/abs/2411.15945v1


ML tutorial via Stat Mech

in both thermodynamics for estimating properties in high-dimensional spaces and in ma-
chine learning for handling imbalanced data and optimizing training processes.Watkin et al.
[1993]

By examining concepts such as entropy, free energy, and variational inference, this tuto-
rial aims to elucidate how ideas from statistical mechanics can inform and enhance machine
learning methodologies. This exploration seeks to provide a comprehensive understanding
of how theoretical principles can be adapted to improve the efficiency and robustness of
machine learning models, particularly in environments characterized by high uncertainty.

2 Fundamental Theorem

Probability distributions are essential for modeling and analyzing random phenomena
in statistics. A probability distribution is a mathematical function that assigns probabilities
to each possible outcome of a random variable, ensuring the total probability sums to one.
For a discrete random variable X, the probability distribution is given by

P (X = xi) = pi, where
∑

i

pi = 1 (1)

For a continuous random variable, the probability density function f(x) satisfies

∫ ∞

−∞
f(x) dx = 1 (2)

In statistical mechanics, probability distributions describe the likelihood of a system
being in various energy states, quantifying how system gradually reaches equilibrium. In
statistical learning, probability distributions model the data generation process, describing
the characteristics of data and in turn evaluating of machine learning models.

The Central Limit Theorem (CLT) states that the distribution of the sum (or
average) of a large number of independent, identically distributed random variables
approaches a normal distribution, regardless of the original distribution of the variables.
Briefly speaking, for independent and identically distributed (i.i.d.) random variables
X1,X2, . . . ,Xn satisfy

∀i = 1, 2, . . . n, follows Xi ∼ X (µ, σ2), where µ = E[Xi] and σ2 = Var(Xi) (3)

the sum Sn =
∑n

i=1 Xi normalized by
√
n converges to a normal distribution as n increases.

CLT justifies using normal distributions for macroscopic properties like temperature and
pressure, derived from numerous microscopic interactions in statistical mechanics frame-
work. Also, in theoretical machine learning, it supports inference by enabling normal dis-
tribution approximations for sample means, thus simplifying hypothesis testing, confidence
intervals, enhancing ML algorithms and functionals’ reliability and interpretability.

Importance Sampling is a statistical technique used to estimate properties of a target
distribution by sampling from a different distribution. The key idea is to reweight samples
from the proposal distribution to reflect their importance to the target distribution.
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Mathematically, if p(x) is the target distribution and q(x) is the proposal distribution, the
expectation Ep[h(x)] can be estimated as:

Ep[h(x)] =

∫

h(x)p(x) dx =

∫

h(x)
p(x)

q(x)
q(x) dx ≈ 1

N

N
∑

i=1

h(xi)
p(xi)

q(xi)
(4)

where xi are samples from q(x).

Importance sampling is crucial for estimating thermodynamic properties by focusing
on significant states, especially in high-dimensional integrals and rare-event systems. In
ML algorithms, it is commonly used to handle imbalanced data and optimize training pro-
cesses by emphasizing underrepresented yet highly influential samples, thereby enhancing
the efficiency of training algorithms.

2.1 Fundamentals in Statistical Mechanics

A micro-state refers to the specific combinations of position qi and momentum pi of each
particle i in the system, corresponding to a phase point Q(q, p) on a phase trajectory.
To investigate the system’s evolution over a given time and space interval, we use a set
of statistical variables to describe their distribution, known as macro-state parameters.
Macro-state parameters include extensive properties, which depend on the number of
particles, and intensive properties, which are independent of the number of particles.

To further simplify the calculation, the principle of equal a priori probabilities
states that micro-states with the same energy, volume, and number of particles occur with
equal frequency in the ensemble. Thus, the probability density is written as:

ρ(q, p) = Cδ(H(q, p)− E) (5)

Intuitively, the number of micro-states of a system, Ω, is a function of system energy E and
volume V . Ludwig Boltzmann introduced the multiplicity (or Boltzmann principle
or statistical weight), which refers to the number of micro-states corresponding to a
particular macro-state of a thermodynamic system:

S = kB ln Ω or S(E,V ) = kB ln Ω(E,V ) (6)

where S is the entropy, kB = 1.38× 10−16 is Boltzmann’s constant, and Ω is the number of
micro-states corresponding to the macro-state. With a model to describe the possible micro-
states of the system, we can calculate the thermodynamic properties of a bulk material.

Thermal equilibrium states that if system A is in thermal equilibrium with system
B, and system B is in thermal equilibrium with system C, then system A is in thermal
equilibrium with system C. First Law of Thermodynamics asserts that the energy of
the universe (or any isolated system) is conserved and does not change over time. Any
changes in energy, heat, or work within a system must balance out to result in zero net
change in energy due to time-translation symmetry. For any infinitesimal time span, the
system’s energy satisfies:

dEsys = δWon sys. + δQexit [Conservation of energy] (7)

3
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where the internal energy change of the system is dEsys, external work done on the system
is δWon sys., and heat leaving the system is δQexit. In a quasi-static process, which occurs
slowly enough for the system to remain in internal thermodynamic equilibrium, we have
dW = −PdV , so the First Law can be expressed as:

dEsys = −PdV + δQexit (8)

Second Law of Thermodynamics states that heat cannot transfer from a colder to
a warmer body without some other accompanying change. In any isolated system, entropy
either increases or remains constant over time. When entropy remains constant, the system
is in thermal equilibrium. The second law holds strictly for macroscopic systems but can be
momentarily violated in microscopic systems due to thermal fluctuations. The fluctuation
theorem quantitatively describes the probability of such entropy decreases. If the entropy
change of a system is ∆S, the probability P (∆S) of this change compared to the probability
P (−∆S) of the opposite change is given by:

P (∆S)

P (−∆S)
= e∆S/kB (9)

where kB is the Boltzmann constant. This relation shows that the probability of a decrease
in entropy is significantly lower than the probability of an increase, and this probability
decreases rapidly with system size.

In any solid state system (a system with a single micro-state in the ground state), the
heat capacity approaches zero as the temperature approaches absolute zero:

lim
T→0

Cy = 0 (10)

Third Law of Thermodynamics states that the entropy of a crystalline solid (solid state)
approaches zero as the temperature approaches absolute zero:

lim
T→0

∆ST = 0 (11)

It is impossible to reach absolute zero temperature through successive finite implementations
of a cyclic process.

2.2 Fundamentals in Theoretical Machine Learning

Approximation algorithms for NP-complete (NPC) problems usually run in polynomial
time. In addition to the commonly discussed greedy and randomized algorithms, heuristic
algorithms also provide a reasonable way to find approximate solutions with acceptable
errors compared to the true optimal solution in a reasonable search time. Many ideas such
as this have inspired research in the field of artificial intelligence and machine learning.

In a subset of NPC problems, optimization problems, the performance ratio of approxi-
mate algorithms discusses the relationship between the cost of the algorithm in solving the
problem and the cost of the optimal solution. Specifically, let C be the cost of an algorithm
and C∗ be the cost of the optimal solution. The approximation ratio ρ(n) represents the
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difference factor between the cost C of the solution generated by the algorithm and the cost
C∗ of the optimal solution. For any input size n, the formula

max

(

C

C∗
,
C∗

C

)

≤ ρ(n) (12)

shows that this ratio does not exceed a certain function ρ(n). Algorithms that achieve an
approximation ratio of ρ(n) are called ρ(n)-approximation algorithms.

Machine learning (ML) addresses NP-complete problems by extracting patterns from
data to provide approximate solutions. Learning theory helps by understanding and design-
ing algorithms that generalize well and perform reliably. It focuses on minimizing expected
loss through empirical risk minimization.

We assume that the training data {(Xi, Yi)}ni=1 are independently and identically dis-
tributed (i.i.d.) from an unknown, stationary distribution D. The data points are assumed
to be ”sprinkle” within a finite sample space X × Y. Furthermore, we assume that the
observations include noise following a certain distribution.

Each ML model can be viewed as a family of functionals parameterized by hyper-
parameters θ, forming a hypothesis space Hθ. For a specific set of hyper-parameters
θ, the functional Fθ represents a set of parameterized functions fθ(w), where w denotes
the parameters of the function. Given the target function f∗ we aim to approximate, we
use a loss function L : Y × Y → R

+ to measure the difference between the predicted value
fθ(w;X) and the true value Y . The iterative process, often implemented via gradient de-
scent or its variant methods, aims to find the parameters w that minimize the expected
loss:

Rθ(w) = E(X,Y )∼D[L(fθ(w;X), Y )] (13)

Since the distribution D is unknown, we approximate the expected loss by minimizing the
empirical risk:

ŵ = argmin
w

R̂θ(w) = argmin
w

1

n

n
∑

i=1

L(fθ(w;Xi), Yi) (14)

Probably Approximately Correct (PAC) learning explores the theory for under-
standing the computational complexity of learning tasks. It quantifies the learnability of
functions based on sample size and computational effort, providing a rigorous foundation
for analyzing learning algorithms. In PAC learning, an algorithm seeks a hypothesis from
a class that approximates the true function within given accuracy and confidence levels.

For any target function f which represents the true concept

f : X → Y (15)

there is an approximation h ∈ H of f with an error err(h) satisfies that

err(h) = Pr
(x,y)∼D

[h(x) 6= y] ≤ ǫ (16)

A class, or we say hypothesis space H, is PAC-learnable only if there exists an algorithm
A that, for any accuracy ǫ and confidence level δ, and any distributionD over X×Y, outputs
h ∈ H where the probability should be at least 1− δ, given a sample size

m ≥ 1

ǫ

(

log
|H|
δ

+ k

)

(17)
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where k is a constant, and the algorithm A should be efficient, i.e. its running time is
polynomial in 1/ǫ, 1/δ, and m. This framework has significantly impacted computational
learning theory and AI by offering a structured method to evaluate and develop learning
algorithms.Valiant [1984, 2013]

Based on PAC learnable framework, there are two definations. If we say an algorithm
is strongly learnable, there is a concept class C is strongly learnable if there exists an
algorithm A such that for any concept c ∈ C, any distribution D, and any ǫ > 0, the
algorithm A outputs a hypothesis h with:

Pr
v∼D

[h(v) = c(v)] ≥ 1− ǫ (18)

If we say an algorithm is weakly learnable, there is a concept class C is weakly learnable
if there exists an algorithm A and a constant γ > 0 such that for any concept c ∈ C and
any distribution D, the algorithm A outputs a hypothesis h with:

Pr
v∼D

[h(v) = c(v)] ≥ 1

2
+ γ (19)

Hypothesis Boosting: Start with distribution D1 = D and use the weak learner A to get
h1:

Pr
v∼D1

[h1(v) = c(v)] ≥ 1

2
+ γ (20)

Iterative Distribution Modification:
Step 1: Create distribution D2 emphasizing instances mis-classified by h1 and use A to get
h2:

Pr
v∼D2

[h2(v) = c(v)] ≥ 1

2
+ γ (21)

Step 2: Create distribution D3 based on mis-classifications of h1 and h2 to get h3:

Pr
v∼D3

[h3(v) = c(v)] ≥ 1

2
+ γ (22)

Combining Hypotheses: Combine h1, h2, and h3 using majority vote:

h(v) = MajVote(h1(v), h2(v), h3(v)) (23)

This reduces the error rate:

Error(h) ≤ 3

(

1

2
− γ

)2

− 2

(

1

2
− γ

)3

(24)

By recursively applying this process, the error can be reduced to any desired level 1 − ǫ.
Thus, strong learnable and weak learnable are equivalent, Q.E.D.Schapire [1990]

3 Adapting Ideas into Theoretical Machine Learning

Many theoretical concepts from statistical mechanics are transferred to enhance machine
learning methodologies. Key ideas include entropy, free energy, and variational inference.
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Entropy measures system disorder and information uncertainty, while free energy guides
equilibrium states and informs variational inference to handle uncertainty in reinforcement
learning. Advanced techniques also include like energy-based learning, the Ising model,
and convolution. These methods improve model efficiency and robustness, particularly in
uncertain environments.

3.1 Entropy and Information Gain

In the scenario of thermodynamics, for any micro-canonical ensemble (N, E, V are constant),
the fundamental quantity Gibbs entropy is given by

S = −kB
∑

i

pi ln pi = kB ln Ω (25)

where the summation is over all possible micro-states of system, Ω is the ”statistical weight”
of micro-states in Boltzmann defination, and pi is the probability of a system being in micro-
state i.

Transferred from such concept of system’s disorder, Shannon gives a gauge describing
uncertainty of information:

I = −
W−1
∑

i=0

pi log2 pi (26)

which is also called Information Gain (IG) in decision tree (DT) pruning.

A variant of Shannon Information used in message sequential is called algorithmic infor-
mation. It is hard to express theK, the Shannon Information of one certain sequential.Chaitin
[1975]; Machta [1999] However, their ensemble property, average algorithmic information,
can be expressed as:

〈K〉 =
∑

i

piK(si) ≈ I (27)

where I is Shannon information in Eq. 26. Machta [1999]

3.2 Free Energy and Variational Inference

In statistical mechanics, systems tend to maximize entropy, or disorder. However, for
isothermal systems considering temperature and internal energy, Helmholtz Free Energy A
better describes equilibrium by accounting for both entropy and internal energy:

A = U − TS (28)

where U is the internal energy, T is the temperature, and S is the entropy. This state
function is used to determine the equilibrium state under the condition of free energy
minimization.

In reinforcement learning (RL), solely maximizing rewards can be insufficient in complex
environments. Friston introduces variational inference to handle uncertainty by minimiz-
ing free energy, which quantifies the difference between predicted and observed outcomes.
Information gain (IG) or entropy, representing epistemic value, influences agent behaviors
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based on environmental perceptions. Friston et al. [2015, 2016] For updating beliefs by
minimizing free energy efficiently, the variational free energy F defined as

F = E[Model Energy− Entropy] = DKL(Q(Z) ‖ P (Z|X)) (29)

where DKL is the Kullback-Leibler divergence, Q(Z) is the approximate posterior distri-
bution, and P (Z|X) is the true posterior distribution given data X. Active inference uses
variational free energy to guide the learning process. Agents select actions that minimize
expected free energy, balancing exploration (epistemic value) and exploitation (extrinsic
value). This is formalized as

G(π) = E[r(o, s)− lnQ(s′|s, π)] (30)

where G(π) is the expected free energy under policy π, r(o, s) is the reward, and Q(s′|s, π)
is the state transition probability.Friston et al. [2016]

By transferring the concept of free energy, active learning frameworks can address un-
certainty and optimize learning processes, drawing parallels between physical systems and
learning algorithms. This integration enhances the efficiency and robustness of machine
learning models, particularly in environments with high uncertainty.

Bellman’s equation in reinforcement learning defines the optimal policy in a Markov
decision process (MDP). It expresses the value function V (s) and expected rewards Q(π)
as

V (s) = max
a

[

R(s, a) + γ
∑

s′

P (s′|s, a)V (s′)

]

(31)

Q(π) =
T
∑

t=0

EP (s′|s,a)

[

R(s, a) + γV (s′)
]

(32)

where R(s, a) is the reward for action a in state s, P (s′|s, a) is the transition probability
to state s′, and γ is the discount factor. Incorporating free energy Eq. 30 into Bellman’s
equation, the value function and action-value function becomes

V (s) = min
π

[

E[r(o, s)− lnQ(s′|s, π)] + γ
∑

s′

P (s′|s, π)V (s′)

]

(33)

Q(π) =

T
∑

t=0

EQ(ot,st|π) [lnP (ot, st|π)− lnQ(st|π)] (34)

where P (ot, st|π) is the generative model of observations and states given policy π, Q(st|π)
is the approximate posterior distribution over states given policy π.

Thus, while Bellman’s original equation maximizes cumulative rewards, integrating free
energy minimizes both expected free energy and uncertainty. This provides a unified ap-
proach, combining reinforcement learning’s reward optimization with active inference’s un-
certainty reduction. Friston et al. [2015]
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3.3 Energy-Based Learning

Energy-Based Learning (EBL) is a machine learning framework that models dependencies
between variables by associating a scalar energy E(Y,X) with each configuration of the
variables Y and X. The goal is to make correct configurations have lower energy than
incorrect ones.Lecun et al. [2006]
Inference finds the configuration Y minimizes the energy for given observed variables X
as

Y ∗ = argmin
Y

E(Y,X) (35)

Learning process adjusts the parameters W of the energy function E(Y,X;W ) so that
correct configurations from the training data have lower energies than incorrect ones.

EBL integrates concepts from statistical mechanics. The energy function indicates com-
patibility of variable configurations, where lower energy means higher compatibility. The
Gibbs distribution provides a probabilistic interpretation:

P (Y |X) =
e−βE(Y,X)

∑

y∈Y e−βE(y,X)
(36)

with β controlling the distribution’s sharpness, and the partition function Z(X) ensuring
proper normalization:

Z(X) =
∑

y∈Y

e−βE(y,X) (37)

Perceptron Loss focuses on the difference between the energy of the correct configuration
and the lowest energy of any configuration:

Lperceptron = E(Yi,Xi)−min
Y

E(Y,Xi) (38)

Hinge Loss introduces a margin m to create a gap between the energy of correct and
incorrect configurations:

Lhinge = max(0,m+ E(Yi,Xi)− E(Yincorrect,Xi)) (39)

Negative Log-Likelihood Loss combines the energy of the correct configuration with the
log of the partition function:

Lnll = E(Yi,Xi) +
1

β
log





∑

y∈Y

e−βE(y,Xi)



 (40)

3.4 Ising Model and Boltzmann Machine

The Ising model is a mathematical model used to describe magnetic systems, where each
particle can be in one of two spin states (+1 or -1). The energy of the system is determined
by the interactions between neighboring particles, typically expressed as:

E = −
∑

i,j

Jijsisj −
∑

i

hisi (41)
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where si and sj are the spin states of particles i and j, Jij is the interaction strength between
them, and hi represents the external magnetic field. The partition function is expressed as

Z =
∑

{s}

e−E(s) (42)

where s represents all possible spin configurations.
Inspired by Ising model, Boltzmann machines to describe the energy and state proba-

bilities of neural networks. The energy function for a Boltzmann machine is given by:

E(~v,~h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑

i,j

vihjwij (43)

where vi and hj are the states of visible and hidden units, ai and bj are their biases, and
wij are the weights connecting them. The normalization function is written as

Z =
∑

~v,~h

e−E(~v,~h) (44)

where ~v and ~h represent all possible visible and hidden unit configurations in the form of
vectors. Ackley et al. [1985]; Hinton [2012]

3.5 Convolution and Smoothing

For two independent random variables X and Y with distributions fX(x) and fY (y), their
sum Z = X + Y has a distribution:

fZ(z) = fX ∗ fY =

∫ ∞

−∞
fX(x)fY (z − x) dx (45)

Thus, convolution can describe the combined state of two independent systems A and B
with probability distributions pA(x) and pB(y). The combined system C has a distribution
pC(z) given by:

pC(z) = pA ∗ pB =
∑

pA(x)pB(z − x) (46)

In signal processing, the signal f(t) with a kernel h(t), the smoothed signal g(t) is obtained
via convolution:

g(t) = f(t) ∗ h(t) =
∫ ∞

−∞
f(τ)h(t− τ) dτ (47)

For the matrix of input signal, vector a = (a0, a1, . . . , an−1) and b = (b0, b1, . . . , bn−1)

A(x) = a0 + a1x+ a2x
2 + . . .+ an−1x

n−1 (48)

B(x) = b0 + b1x+ b2x
2 + . . .+ bn−1x

n−1 (49)

Then, C(x) = A(x)B(x) (50)

= a0b0 + (a0b1 + a1b0)x+ . . . + an−1bn−1x
2n−2 (51)

Obviously, the coefficient vector of C(x) is a ∗ b. The convolution a ∗ b calculation is
equivalent to multiplying polynomials. Convolution operation takes O(n2) runtime. Here,
we introduce Fast Fourier Transform (FFT) Algo. 1

Then, the overal runtime complexity of convolution operation by FFT is O(n log n).

10
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Algorithm 1 Fast Fourier Transformation

1: for j = 0 to 2n− 1 do O(n log n)
2: Evaluate A(ωj) and B(ωj)
3: end for
4: for j = 0 to 2n− 1 do O(n)
5: Calculate C(ωj)
6: end for
7: Construct polynomial: O(n log n)

D(x) = C(ω0) + C(ω1)x+ . . .+ C(ω2n−1)x
2n−1

8: for j = 0 to 2n− 1 do O(n)
9: Calculate D(ωj)

10: end for
11: Calculate the coefficients cj of C(x): O(n log n)

D(ωj) = 2nc2n−j , j = 1, . . . , 2n − 1

D(ω0) = 2nc0

3.6 Information Bottleneck Theory

Information Bottleneck (IB) principle further discussed the trade-off between energy (rele-
vance, I(T ;Y )) and entropy (zipping complexity, I(X;T )), analyzing and optimizing DNNs.
They propose that DNNs can be quantified by mutual information I(X;T ) and I(T ;Y )
between input X, output Y , and hidden layers T . The goal is to find a compressed repre-
sentation T that retains maximal relevant information about Y , formulated as minimizing
L[p(t|x)] = I(X;T ) − βI(T ;Y ), balancing complexity and predictive power. DNNs form a
Markov chain

X → T1 → T2 → · · · → TL → Y (52)

where each layer Ti refines information progressively. The Data Processing Inequality en-
sures information loss in one layer is irreversible, implying layers should maximize I(Ti−1;Ti)
while minimizing I(Ti;Y ).Tishby and Zaslavsky [2015]

The IB principle offers new finite sample complexity bounds on DNN generalization,
guiding the optimal design of layers for better generalization and efficiency. This framework
aligns the optimal DNN structure with the IB tradeoff curve, informing the development of
more effective DL algorithms.

3.7 Other Optimizors and Minimization Techniques

Molecular Dynamics (MD) simulation is one of the most important computational appli-
cation from statistical mechanics. MD and ML models both use iterative optimization
processes but have different frameworks and objectives.

In MD simulations, systems evolve through discrete time steps, updating particle posi-
tions and velocities based on Newton’s equations of motion. The goal is to minimize the

11
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system’s potential energy, reaching equilibrium states where the energy function’s partial
derivatives are zero. Methods like conjugate gradient or L-BFGS are used, with computa-
tional demands scaling with the number of particles and interaction complexity.

In machine learning, models are trained iteratively using algorithms like stochastic gra-
dient descent or Adam to minimize an expert-defined loss function. The objective is to
find the optimal model parameters, where the gradient of the loss function is zero, similar
to finding equilibrium in energy minimization. Convergence is assessed using performance
metrics on validation or test datasets. Despite their different contexts, both MD simula-
tions and machine learning aim to iteratively optimize a target function to achieve minimal
energy or error.

More cutting edge researches focus on optimization techniques. The Replica method, de-
veloped by Giorgio Parisi, computes replicated partition sums and applies the Replica Sym-
metry Ansatz to solve high-dimensional optimization problems.Mézard and Parisi [1985];
Abbaras et al. [2020]; Mezard et al. [1986] The Cavity method, pioneered by Marc Mézard,
Giorgio Parisi and Miguel Angel Virasoro, derives self-consistent equations for large-scale
random systems and is useful in studying phase transitions.Mezard et al. [1986] Approxi-
mate Message Passing (AMP), introduced by David Donoho and Andrea Montanari, handles
large-scale inference problems such as random matrices, focusing on convergence properties
and applications in sparse vector denoising, low-rank matrix factorization, and community
detection.Donoho et al. [2009]; Rangan et al. [2019] These methods, rooted in the statistical
physics of spin glasses, provide powerful tools for addressing complex problems in modern
computational science.

3.8 Mean-Field Theory

In statistical mechanics, real-world interactions are inherently multi-body problems where
each particle influences all others. To simplify such complex systems, mean field theory
(MFT) assumes that each particle is affected by an average field generated by all other
particles. Mathematically, if we denote the state of particle i by σi and the interaction
energy between particles i and j by Jijσiσj, MFT approximates the interaction term as

σi〈
∑

j

Jijσj〉 (53)

where 〈·〉 denotes the average. This reduces the complexity by transforming the multi-body
problem into a single-body problem.

Building on this concept, mean field variational inference in machine learning simplifies
the estimation of posterior distributions in probabilistic models. For a model with hidden
variables h and observed data x, the goal is to approximate the posterior p(h|x). MFT
assumes a factorized form

q(h) =
∏

i

q(hi) (54)

and optimizes the variational parameters by minimizing the Kullback-Leibler divergence

DKL(q(h) ‖ p(h|x)) (55)

This approach reduces the computational complexity from dealing with the full joint dis-
tribution to handling individual distributions.
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Extending this idea further, deep learning neural networks (NNs) abstract and simulate
the behavior of neurons in the human brain. For a single layer in a classical neural network,
with input x, weights W , and activation function φ, the output y is given by y = φ(Wx).
Thus, the effects of interactions between neurons are typically ignored, simplifying compli-
cate communications into integral and homogeneous property. This mirrors the principles
of mean field theory, where the complex interactions within the system are approximated
by an average effect, allowing for efficient training and analysis of neural networks.

3.9 From Markov Chain Monte Carlo to Mean Field Multi-Agent
Reinforcement Learning

Monte-Carlo algorithms are widely used, and the Metropolis algorithm’s original paper is
regarded as a landmark in computational physics. Here we show a general set of steps in
Algo. 2.

Algorithm 2 Metropolis Algo for symmetric q(s′|s)
Initialise s = s0;
for t = 1, . . . , T do

Suggest a new state s′ with probability q(s′|s);
Compute ∆H = H(s′)−H(s);
if ∆H ≤ 0 then

Accept the new state: s = s′;
else

Draw a random number r uniformly distributed in [0, 1];
if r < exp(−β∆H) then

Accept the new state: s = s′;
else

Reject s′;
end if

end if
Sample st = s and At = A(st);

end for

Markov Chain Monte Carlo (MCMC) methods, originally used in statistical and compu-
tational thermodynamics to estimate complex probability distributions, efficiently handle
high-dimensional, multi-modal distributions by constructing a converging Markov chain.
This approach was adapted to reinforcement learning (RL) for optimizing policies in com-
plex state spaces to maximize cumulative rewards.

RL involves agents learning through iterative interaction and feedback from the envi-
ronment. Agents observe the state st, take actions at , and receive rewards rt+1, aiming to
learn an optimal policy π to maximize cumulative rewards. Liu et al. [2024] As mentioned
in section 3.2, classical Q-learning algorithms learn the Q-function to quantify expected re-
wards for actions in each state. Deep reinforcement learning (DRL) integrates deep neural
networks with RL, leading to methods like deep Q-networks (DQNs) and policy gradient
methods.

13
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Further RL advances includes Mean Field Multi-Agent Reinforcement Learning (MF-
MARL) addresses scalability issues in traditional multi-agent RL (MARL) methods, which
struggle with the curse of dimensionality. MF-MARL approximates interactions within
a population by considering the average effect from neighboring agents. This simplifies
multi-agent interaction into learning the optimal policy for an individual agent. Yang et al.
[2018] Mathematically, for an agent j with neighboring agents N (j), the Q-function is
approximated by applying the mean field theory:

Qj(s, aj , aN (j)) ≈ Qj(s, aj , āN (j)) (56)

where āN (j) is the mean action of the neighbors:

āN (j) =
1

|N (j)|
∑

k∈N (j)

ak (57)

Then, the mean field Q-learning update rule is given by:

Qj
t+1(s, a

j , āN (j)) = (1− α)Qj
t (s, a

j , āN (j)) + α
[

rj + γEs′

[

V j
t (s

′)
]]

(58)

where α is the learning rate, rj is the reward for agent j, and V j
t (s

′) is the value function
at state s′. Similarly, in the mean field Actor-Critic method, the policy πj is updated using
the gradient of the expected return:

∇θjJ(θj) ≈ Es,aj ,āN (j)

[

∇θj log πθj(a
j |s)Qj(s, aj , āN (j))

]

(59)

Theoretical analysis proved that under certain conditions, the mean field Q-learning and
Actor-Critic algorithms converge to a Nash equilibrium. Experiments on scenarios such as
Gaussian squeeze, the Ising model, and battle games demonstrate the effectiveness and
scalability of MF-MARL, solving complex multi-agent problems where traditional methods
fail.Yang et al. [2018]

3.10 Simulated Annealing Searching

In simulated annealing, we aim to minimize an energy function H(s) to find the optimal
configuration smin. The process uses Monte-Carlo simulation to explore the energy land-
scape with stochastic dynamics, starting at a high temperature kBT = β−1 and gradually
lowering it to refine the search. The Metropolis algorithm governs the acceptance of new
configurations based on the probability Kirkpatrick et al. [1983]

PB(s) = 0 if H(s) > Hmin (60)

PB(s) > 0 if H(s) = Hmin (61)

As an example, in the double-digest problem, Lander et al. [2001] enzymes A and B
produce fragments a = {a1, . . . , an} and b = {b1, . . . , bm}. The goal is to determine the
orderings of these fragments resulting in c = {c1, . . . , cl}. The energy function for this
problem is given by

H(σ, µ) =
∑

j

c−1
j [cj − ĉ(σ, µ)]2 (62)
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where σ and µ are permutations of a and b, respectively. Stochastic dynamics, beginning
at high temperature kBT = β−1 and gradually reducing it, are employed to minimize H
and explore the global minimum Hmin. This method ensures that the dynamics effectively
navigate both the rough and fine features of the energy landscape to find the optimal
configuration.Kirkpatrick et al. [1983]; Lander et al. [2001]

Recent research applied SA gives a general optimizer for large AI model training. In
recent bio-informatic works, a novel model named AbNatiV uses a Vector Quantized Vari-
ational Autoencoder (VQ-VAE) to measure how similar antibody sequences are to natural
human or camel antibodies. It uses SA-based enhanced sampling to quickly identify promis-
ing mutants during training, helping it achieves state-of-the-art performance and shows
potential in immunogenicity assessment.Heydaribeni et al. [2024]

3.11 Sparse Ising Machine helps training Deep Boltzmann networks

Researchers also investigate the utilization of sparse Ising machines (SIMs) for training deep
Boltzmann networks (DBMs), presenting a substantial improvement in training efficiency
and performance through specialized hardware architectures. The core concept leverages the
Ising model to address combinatorial optimization problems using probabilistic-bit (p-bit)
based Ising machines for efficient probabilistic sampling. Key techniques include the de-
ployment of sparse, hardware-aware network topologies such as Pegasus and Zephyr graphs,
enabling parallel and asynchronous updates that enhance sampling speed. Niazi et al. [2024]

Their results show that the SIM effectively trains the full MNIST and Fashion MNIST
datasets without downsampling, achieving 90% classification accuracy on MNIST with far
fewer parameters than traditional restricted Boltzmann machines (RBMs). Additionally,
the sparse DBM can generate new handwritten digits and fashion product images, which
RBMs cannot do. It greatly improves training efficiency and hardware use especially in
training deep generative AI models, especially in settings with limited resources. Niazi et al.
[2024]

4 Discussion

Recent advancements in science-based artificial intelligence (AI) include the development
of specialized models for prediction and the enhancement of computational science tools.

Modeling and forecasting the dynamics of multiphysics and multiscale systems, such as
the Earth’s system, present significant challenges due to the interactions across extensive
spatial and temporal scales. These complexities render traditional methods computation-
ally prohibitive. The integration of observational data is vital, as data-driven approaches
improve the accuracy and feasibility of simulations. By combining machine learning with
traditional numerical methods and embedding physical laws into models, more accurate
and consistent results are achieved. Examples of such hybrid models include Physics-
Informed Neural Networks (PINNs), equivariant neural networks and Network-of-Networks
Model, which reduce the limitations of purely data-driven or physics-based approaches.
Karniadakis et al. [2021]; Pete et al. [2024]

AI has demonstrated its potential in solving complex problems such as protein fold-
ing and molecular simulations, underscoring its transformative power in scientific research.
However, the application of AI in research is not without challenges. These include the
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substantial computational resources required, the need for data standardization, and the
imperative of ensuring reproducibility of results. To enhance the effectiveness and reliabil-
ity of AI models, interdisciplinary collaboration and the incorporation of domain-specific
scientific knowledge are essential.

5 Conclusion

In this tutorial, we collect how statistical mechanics principles and discoveries inspire and
enhance machine learning methodologies. By examining key concepts such as entropy, free
energy, and variational inference, it has been demonstrated that these ideas can improve
the efficiency, robustness, and interpretability of machine learning models. The basic in-
tersection of these field also includes the Central Limit Theorem and importance sampling,
provides a strong theoretical foundation for developing more reliable algorithms. Addition-
ally, advanced techniques like mean field theory and simulated annealing have been shown
to address complex optimization problems in machine learning effectively.

This synthesis of statistical mechanics and machine learning not only highlights the
potential for interdisciplinary approaches to solve contemporary computational challenges
but also sets the stage for future research that leverages the deep connections between
these fields. The integration of these domains promises to yield innovative solutions and
enhance our understanding of both physical systems and data-driven models in uncertain
environments.
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