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ABSTRACT

Context. Star-forming regions, stellar associations, and open clusters are fundamental stellar systems where predictions from star-
formation theories can be robustly contrasted with observations.
Aims. We aim to provide the astrophysical community with a free and open-source code to infer the phase-space (i.e. positions and
velocities) parameters of stellar systems with ≲1000 stars based on Gaia astrometry and possibly observed radial velocities.
Methods. We upgrade an existing Bayesian hierarchical model and extend it to model 3D (positions) and 6D (positions and velocities)
stellar coordinates and system parameters with a flexible variety of statistical models, including a linear velocity field. This velocity
field allows for the inference of internal kinematics, including expansion, contraction, and rotation.
Results. We extensively validated our statistical models using realistic simulations that mimic the properties of the Gaia Data Release
3. We applied Kalkayotl to β-Pictoris, the Hyades, and Praesepe, recovering parameter values compatible with those from the literature.
In particular, we found an expansion age of 19.1± 1.0 Myr for β-Pictoris and rotational signal of 32±11 m s−1 pc−1 for the Hyades and
that Praesepe’s rotation reported in the literature comes from its periphery.
Conclusions. The robust and flexible Bayesian hierarchical model that we make publicly available here represents a step forward in
the statistical modelling of stellar systems. The products it delivers, such as expansion, contraction, rotation, and velocity dispersions,
can be directly contrasted with predictions from star-formation theories.

Key words. methods:statistical,stars:kinematics and dynamics, open clusters and associations: general, open clusters and associa-
tions: individual: Beta Pictoris, Hyades, Praesepe.

1. Introduction

Open clusters, stellar associations, and star-forming regions, re-
ferred to as low-number stellar systems (LNSS), are laborato-
ries where theories of star formation, stellar evolution, and stel-
lar dynamics can be tested and validated. Often, the predictions
of these theories are stated in physical spaces rather than in ob-
servational ones. Therefore, comparing theoretical predictions to
observations requires translating operations that keep biases at
the minimum and thoroughly propagate the uncertainty from the
observed space to the physical one. The proper handling of this
uncertainty propagation is fundamental for hypotheses testing.

The kinematics of stellar systems are one of their fundamen-
tal properties that allows for the testing of theories about their
formation, evolution, and disaggregation. Because the kinematic
predictions are often stated in the joint space of 3D positions
and 3D velocities rather than in the observed space of sky coor-
dinates, parallax, proper motions, and radial velocity, the testing
of these theories requires an inference process as a mandatory
bridging step.

The problem of inferring the kinematic parameters1 of stel-
lar systems is commonly addressed in the literature from at least
three different perspectives. The most common approach is to
translate the observations of the ensemble of members to the
physical space, and then perform the inference in that space. In
contrast, in an alternative approach, the inference is done in the
observed space, and then the population parameters are trans-
lated to the physical one. Finally, in the third and most compu-
tationally expensive approach, the inference of the parameters is
done in the physical space by proposing parameter values that
are transformed to the observed space, where they are compared
to the observations. This last approach is known as forward-
modelling because it proposes a model in the space of interest
and moves it forward to the observed space, where the likelihood
is computed (see, for example, Luri et al. 2018). Unfortunately,
none of these perspectives is free of caveats and their application
depends on the particular objective of the researcher. We now de-
scribe what we consider are the most concerning caveats of these
approaches.

The transformation of the data from the observed space to the
physical one demands sources with fully observed entries (i.e.

1 Through this work, we refer to the parameters of the stellar system
as group-level or population-level, parameters, whereas to star-level or
source-level parameters to those of individual stars.
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radial velocity and all astrometric entries). However, radial ve-
locities are usually only present for a small fraction of the bright
stellar system’s members. Therefore, the practitioners of this ap-
proach tend to discard sources with missing radial velocity de-
spite the quality of their astrometry. The caveat of this approach
is that the parameters inferred based on such cropped samples
will be biased towards the properties of the brightest observed
members and will have larger uncertainties due to a smaller sam-
ple. The second approach is usually unaffected by the previous
caveat given that the population parameters can be inferred inde-
pendently in each feature of the observed space, despite missing
values. However, transforming the resulting distributions of the
population parameters from the observed space to the physical
one requires the Jacobian of the transformation, which, for non-
linear transformations, heavily depends on the precision of the
measurements.

Moreover, the transformation of either measurements, as
done in the first approach, or population parameters, as done in
the second one, from the observed space to the physical one, is a
non-trivial problem that unavoidably requires prior assumptions.
Even in the presence of high signal-to-noise measurements or
low-uncertainty parameters, the choice of the prior is of critical
importance (see Bailer-Jones 2015, for the archetypical case of
transforming parallaxes into distances).

The forward-modelling approach is free of the previous
caveats but is often time-consuming for both human modellers
and computing machines. We now present a brief review of the
literature works that use this methodological approach for the
task of inferring the internal kinematics of LNSS.

In their pioneering series of articles, Dravins et al. (1999)
proposed, Lindegren et al. (2000) developed, and Madsen et al.
(2002) applied a new method to estimate the space velocity and
internal velocity dispersion of stellar clusters based on astromet-
ric data alone. This method infers the cluster velocity parameters
using a maximum-likelihood formulation together with Monte
Carlo simulations. Their basic cluster model includes only the
cluster’s velocity vector and an internal and isotropic velocity
dispersion as population parameters and the parallax of each star
as source-level parameters. In their complete model, the entries
of a linear-velocity tensor were also inferred as population pa-
rameters. One of the advantages of this model is that it produces
as output the kinematically improved parallaxes of each star to-
gether with its predicted astrometric radial velocity.

Building upon the previous method, Oh & Evans (2020) cre-
ated the open code Kinesis, which fits the internal kinematics
of open clusters with astrometry and (possibly missing) radial
velocity data of its members. The inclusion of radial velocities
allowed them to break the degeneracy between expansion or con-
traction and approaching or receding perspective effects present
in the original method by Lindegren et al. (2000). Although their
method continues to infer the velocity population- and source-
level parameters, it relaxes the previous authors’ assumption on
the isotropy of the velocity dispersion and infers its full covari-
ance matrix. Therefore, their Bayesian forward-model for the ve-
locity field allows for the inference of full velocity dispersion; a
linear gradient that incorporates, expansion, rotation, and shear;
and a background model for decontamination.

Crundall et al. (2019) created the Chronostar open code,
which uses astrometry and radial velocities (when available) of
sources within a specified sky region, to simultaneously identify
the LNSS present in the region, deliver a list of their candidate
members, infer their phase-space parameters (i.e. positions, ve-
locities, and their dispersion), and estimate kinematic age. How-
ever, its application for estimating kinematic age is restricted to

young stellar systems (see Sect. 3.4 of Žerjal et al. 2023). The
code infers the stellar system’s phase-space parameters of loca-
tion and dispersion assuming that the dispersion is isotropic but
independent in positions and velocities.

Wen et al. (2024) developed a Bayesian hierarchical model
for studying Galactic globular clusters that allows for the infer-
ence of source-level (i.e. heliocentric phase-space coordinates of
individual stars) and population-level (i.e. distribution function)
parameters, which include, among others, the cluster’s position
and velocity dispersions. Rather than assuming a classical statis-
tical distribution for the population-level parameters, the authors
assume a lower isothermal distribution function. Although de-
signed for globular clusters, the authors validate their method
on datasets containing up to a thousand stars. We include this
method in our review because it shares similar characteristics to
the method presented in this work.

In this work, we aim to provide the astrophysical commu-
nity with a free and open-source code that simplifies the imple-
mentation of forward-models of the phase-space of stellar sys-
tems. The methodological and practical implementation (i.e. the
source code) that we present here is the multi-dimensional ex-
tension of the 1D Kalkayotl code (Olivares et al. 2020, hereafter
Paper I). Thus we continue using the same name and online ad-
dress.2 The new version of the code will allow its users to infer
the 3D Cartesian or 6D phase-space parameters of LNSS with
a variety of flexible models. However, we warn its users that its
main caveat is that it remains computationally expensive (see
Appendix B).

This work is organised as follows. In Sect. 2, we introduce
the theoretical and practical frameworks to infer the 3D positions
and the 6D phase-space parameters of LNSS. Then, in Sect. 3,
we validate these frameworks with synthetic datasets. In Sect. 4,
we exemplify the use of Kalakyotl by applying it to benchmark
stellar systems where other literature methods have been applied,
particularly, Chronostar in β-Pictoris and Kinesis in the Hyades.
Finally, in Sect. 5, we present our conclusions. Appendices A
and B show a compilation of the method’s assumptions and the
code’s time scalability, respectively.

2. Methodology

Kalkayotl infers the internal positions and kinematics of LNSS
by creating flexible Bayesian hierarchical models with domains
in the distance space (i.e. the 1D model), the Cartesian positional
space (i.e. the 3D model), or Cartesian phase-space (i.e. the 6D
model). These Cartesian coordinates represent source-level pa-
rameters from the bottom-level hierarchy of the model, while the
population-level parameters represent the upper-layer hierarchy
of the model. The space of Cartesian coordinates can be selected
to correspond either to the ICRS or Galactic reference systems,3
for which we followed the PyGaia4 conventions and definitions.

In the rest of this section, we describe each of the dimension-
alities of Kalkayotl’s models (i.e. 1D, 3D, and 6D) and the fam-
ilies of statistical distributions it provides to describe the data.
Throughout this section we undertake the assumptions specified
in Appendix A. Later on, we specify our choice of prior distri-
butions for the population-level parameters and the probabilis-
tic programming language that we use to sample the posterior
distributions. We retain the central and non-central parametri-
sations introduced in Paper I and follow the recommendations

2 https://github.com/olivares-j/Kalkayotl
3 By specifying the reference_system argument.
4 https://github.com/agabrown/PyGaia

Article number, page 2 of 20

https://github.com/olivares-j/Kalkayotl
https://github.com/agabrown/PyGaia


J. Olivares et al.: Kalkayotl 2.0

therein: central parametrisation for distances up to 500 pc and
non-central beyond. Finally, we end the section by describing
our strategies to diagnose the prior specification, the conver-
gence of the Markov chains, and the predictive power of the in-
ferred models.

2.1. The 1D distance models

The 1D distance models are described in Paper I. Briefly, in
those models, we constructed a Bayesian hierarchical model in
which the stellar distances (source-level parameters) were sam-
pled from distributions of statistical (e.g. uniform, Gaussian) or
astrophyscial (e.g. King’s) origin whose (global-level) parame-
ters were inferred hierarchically from the data as well. In this
new version of the code, we keep the same 1D models as in
Paper I and, following Bailer-Jones et al. (2021), include, as
a prior for the distance r > 0, the generalised Gamma distri-
bution (GGD; Stacy 1962) which is defined as p(r|a, d, p) =
(p/ad)rd−1e−(r/a)p

/Γ f (d/p), with shape parameters d > 0 and
p > 0, scale parameter a > 0, and Γ f the gamma function, re-
spectively. Then, Eq. 3 of Bailer-Jones et al. (2021) is recovered,
by setting a = L, d = β + 1, and p = α as

GGD(r|L, α, β) =
1

Γ f
( β+1
α

) αLβ+1 rβe−(r/L)α . (1)

We note that the exponentially decreasing space density (EDSD)
prior introduced by (Bailer-Jones 2015, Eq. 17) is a special case
of the GGD(r|L, α, β), and corresponds to α = 1 and β = 2.
When implementing this prior within Kalkayotl, we assume the
following hyperpriors: for α and β, we assume uniform distribu-
tions with a width of 100, and lower limits set to 0 and -1 respec-
tively. The length scale L is assumed to be Gamma-distributed,
with L ∼ Γ(α = 2, β = 2/c) such that c > 0 is a user-defined
hyper-parameter that corresponds to the mean of the length scale
L.

2.2. The 3D position models

We modelled the 3D positions (i.e. the X, Y, and Z source-level
parameters) of individual stars (either in ICRS or Galactic coor-
dinates) as independent and identically distributed (iid) random
variables drawn from the same multivariate parent distribution in
the hierarchy, which comprises Gaussian, Student-T, and Gaus-
sian mixture models (GMM). For the GMM, we included two
special cases: the concentric GMM (CGMM) and the field GMM
(FGMM). In the CGMM all Gaussian distributions in the mix-
ture share the same mean or location parameter. The FGMM also
has concentric mean parameters and a component representing
the field in which the covariance matrix is diagonal and fixed to
the values provided by the user. Specific details on the number
of parameters and their dimensionality is given in the following
sections.

2.3. The 6D phase-space models

We modelled the 6D coordinates (i.e. X, Y, Z, U, V, W source-
level parameters) of individual stars as either joint distributions
of positions and velocities or as a linear velocity field. In the
linear velocity field, the velocities are expressed as a linear com-
bination of the positions plus a peculiar velocity. As in the 3D
models, the user can choose to infer the model parameters in the
Cartesian ICRS or Galactic reference systems.

2.3.1. Joint models

The phase-space joint models are generalisations of the 3D mod-
els (see Sect. 2.2) in which the dimensionality simply goes from
3 to 6, with its consequent increase in the total number of model
parameters. For example, the Gaussian and GMM models now
have 6 × n + 27 and 6 × n + 27 × m + m − 1 free parameters,
respectively.

2.3.2. Linear velocity field

In addition to the joint model of positions and velocities de-
scribed above, Kalkayotl allows for the construction of a linear 5

velocity field model. Following Lindegren et al. (2000), we mod-
elled the velocity of a star as the addition of the system’s velocity
(together with its internal dispersion) plus the velocity expected
by a linear field:

vi = T · (xi − x0) +D(v0,Σv), (2)

where T is a 3 × 3 tensor representing the linear velocity gradi-
ent, xi and x0 are the 3D positions of the star and the system,
respectively, and D(v0,Σv) is either a multivariate Gaussian or
multivariate Student-T distribution (see Sects. 2.4.1 and 2.4.2,
respectively) centred at the system’s velocity v0 and with veloc-
ity dispersion given by the covariance matrix Σv. The entries of
tensor T correspond to the nine partial derivatives of the velocity
components (U, V, W) with respect to the position components
(X, Y, Z).

Here, we represent the diagonal, lower-triangular, and upper-
triangular entries of tensor T with vectors κ,Ω0, andΩ1, respec-
tively, as follows:

T =

 Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

 =
 κx Ω00 Ω01
Ω10 κy Ω02
Ω11 Ω12 κz

 . (3)

With this notation, the mean of vector κ expresses the inter-
nal contraction or expansion of the system, with |κ| = 1

3 (Txx +

Tyy + Tzz) = 1
3 (κ0 + κ1 + κ2) while the rotational velocity vector

ω can be expressed as: ω = [ωx, ωy, ωz] = 1
2 [Tzy − Tyz,Txz −

Tzx,Tyx − Txy] (see Eq. 4 of Lindegren et al. 2000). We notice
that a simpler and constant6 velocity model can be obtained by
neglecting the contributions of vectors Ω0 and Ω1 which effec-
tively reduce tensor T to a diagonal matrix.

Thanks to the previous definitions, objective criteria can be
defined to establish if a stellar system is expanding, contracting
or rotating. We use the following definitions throughout the rest
of this work. Expansion or contraction is said to be detected at
the α level if the α-quantile of the high-density interval (HDI)
from the posterior distribution of |κ| does not contain zero. For
example, expansion (contraction) is said to be detected at the 2σ
level if the 95% HDI of the posterior distribution of |κ| is posi-
tive (negative) and does not contain zero. Similarly, we define a
detectability criterion for rotation. We said to detect rotation at
the α level if the α-quantile HDI of the posterior distribution of
at least one of the entries of the ω vector does not contain zero.
We notice that our restrictive criterion applies to each indepen-
dent component given that a set of rotation vectors with random
orientations may also have a magnitude that could be signifi-
cantly positive without implying an ordered motion. In the case

5 By including κ and ω as model parameters.
6 By including only κ and not ω as model parameter.
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of expansion or contraction, given that the important quantity,
|κ|, is defined as the average of the trace of tensor T and there are
only two directions (contraction or expansion) there is no issue
in defining its significance over the posterior distribution of |κ|
rather than on the components of κ.

The previous velocity model is essentially the same that
Lindegren et al. (2000) originally proposed and then Oh &
Evans (2020) augmented by a background modelling. There are
nonetheless the following differences. First, our model lacks an
integrated decontamination mechanism (see Assumption 4), as
the iterative outliers rejection of Lindegren et al. (2000) or the
background modelling of Oh & Evans (2020). Second, the 3D
positions in our model are inferred using a system-oriented hi-
erarchical model (see Sect. 2.4), which offers more robust es-
timates than the improper 1D distance prior assumed by Oh &
Evans (2020). Third, observed radial velocities are also included
as part of the data; thus the perspective expansion or contrac-
tion effects affecting the Lindegren et al. (2000) model are no
longer present. As stated in Appendix A of Oh & Evans (2020), a
few radial velocity measurements across the system serve to an-
chor its systemic velocity and remove these perspective effects.
Finally, the major difference between the previous models and
ours is the correction of the angular (spatial) correlations present
in both proper motions and parallaxes of Hipparcos (Perryman
et al. 1997) and Gaia (Gaia Collaboration et al. 2016) data. Cor-
recting for these correlations results in improved parameter pre-
cision and credibility (see Paper I).

Regarding contamination, we believe that due to the mul-
titude of origins that it may have (e.g. observation conditions,
reduction pipeline, catalogue creation, selection function, mem-
bership methods, cherry-pick selection) a single decontamina-
tion model will not be optimal for a particular research objective
given that an object may be considered a contaminant in some
cases but not in others. The clearest example of this type of ob-
jects is an unresolved binary star, which could be considered a
contaminant for some objectives (e.g. trace-back age dating) and
not in others (e.g. mass function determination). For the previ-
ous reasons, we decided to leave the decontamination process
to the criteria of the user. Nonetheless, we provide a simple de-
contamination method similar to that of Oh & Evans (2020) but
constructed in the joint space of positions and velocities, which
can be run independently from the rest of the models (see Sect.
2.4.5). The user can access this model through the FGMM family
and the specific field_scale parameter. The probabilistic classifi-
cation resulting from this model can be used to clean the list of
system members.

2.4. Families of statistical distributions

In Paper I, we use two types of families to describe the distance
distributions of stellar systems: the purely statistical and the as-
trophysical ones. Here, we only provide purely statistical distri-
butions and leave the inclusion of astrophysical ones for future
work. The purely statistical distributions that we implemented
here are Gaussian, Student-T, and GMM, together with two spe-
cific cases of the GMM: the concentric Gaussian mixture model
and the field Gaussian mixture model.

We notice that in all our model families, their parameters can
be held fixed to a user-provided value during the inference pro-
cess. This proved particularly useful in those cases where the
user wants to reproduce the inference process given all or some
parameter values from the literature or from a previous run. For
example, if the user is interested in inferring the parameters of a
single star that is known to be a member of the stellar system for

which its parameters are known. Thus, instead of running a full
analysis with the previous members plus the new one, the user
can assume that this new member has a negligible contribution
to the population-level parameters and hold them fixed when in-
ferring its source-level parameters, which will certainly speed up
the inference process.

2.4.1. Gaussian distribution

The Gaussian distribution describes the multivariate coordinates
(i.e. 3D or 6D) x of each star as x ∼ N(µ,Σ), with N the mul-
tivariate normal distribution, µ its vector of central location (i.e.
mean or median), and Σ the symmetric positive semi-definite co-
variance matrix. The number of free parameters of the Gaussian
distribution equals D + (D × (D + 1))/2, with D the model’s di-
mension (i.e. 3 or 6).

2.4.2. Student-T distribution

Similar to the Gaussian distribution, the Student-T distribution
describes the multivariate coordinates (i.e. 3D or 6D) x of each
star as x ∼ T (µ, ν,Σ), with µ and Σ defined as in the Gaussian
distribution, but now, the ν parameter describes the degrees of
freedom. We notice that when ν → ∞ the Student-T distribu-
tion converges to the Gaussian distribution. Its number of free
parameters is only one more than those of the Gaussian distribu-
tion with the same dimensionality. When this family distribution
is used in combination with the linear velocity model, the ν pa-
rameter is a vector of dimension two with the first one used for
positions and the second one for velocities.

We decided to include the Student-T distribution because it
describes variations from normality using a single parameter (ν)
with clear interpretability and simplicity. The smaller the value
of the ν parameter, the larger the discrepancy with respect to the
Gaussian distribution. Its heavy tails for small values of ν al-
low for a simple and robust modelling of possible outliers while
maintaining a symmetric distribution.

2.4.3. Gaussian mixture

The Gaussian mixture distribution describes the multivariate co-
ordinates (i.e. 3D or 6D) x of each star as drawn from a mixture
of Gaussian distribution with a fixed number of components m
set by the user, that is

x ∼ GMM
(
{wi,µi,Σi}

m
i=1

)
≡

m∑
i=1

wi · N(µi,Σi),

with wi, µi and Σi the weight, mean, and covariance matrix of the
i-th Gaussian component, where

∑m
i=1 wi = 1. The total number

of free parameters for the GMM distribution equals m × [(2 ×
D) + (D × (D + 1))/2] − 1, with D the model’s dimensionality.

We decided to include this family distribution to model com-
plex stellar regions composed of more than one structure. We
notice that each component in the mixture has its own location
and dispersion, thus representing the most flexible of our mod-
els. In addition, this family allowed for a probabilistic posterior
classification of individual stars into the components of the mix-
ture, thus enabling probabilistic disentanglement of stellar popu-
lations (assuming that the Gaussian distribution is a good model
for each of these populations).
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2.4.4. Concentric Gaussian mixture

The concentric Gaussian mixture (CGMM) as its name says, is
a special case of GMM in which the Gaussian components are
concentric, this is, they all share the same and unique mean µ.
Fixing this unique mean effectively reduces the number of free
parameters to D + m × [D + (D × (D + 1))/2] − 1, with D the
model’s dimensionality.

We included this special case of the GMM to describe com-
plex distributions of stellar systems having tails heavier than
those of the Student-T distribution but that are symmetric with
respect to the centre (i.e. they are concentric). This distribution
proved to be useful for describing the long tidal tails of open
clusters (see, for example, Olivares et al. 2023b).

2.4.5. Field Gaussian mixture

The field plus Gaussian mixture (FGMM) distribution is a fur-
ther special case of the CGMM in which the last component of
the mixture has a fixed and user-provided diagonal covariance
matrix. This last component is used to model possible field con-
taminants whose large dispersion may be known a priori by the
user. Therefore, the 6D field_scale vector parameter that repre-
sents the standard deviations of the field component should be
supplied by the user based on existing a prior information about
possible contaminants. The number of free parameters of this
model is thus reduced to D+ (m− 1)× [D+ (D× (D+ 1))/2]− 1,
with D the model’s dimensionality.

We included this special case to allow for the decontamina-
tion of the input list of members. Given the probabilistic clas-
sification provided by Gaussian mixtures, the user can make a
first run using this decontamination model, and then use its out-
put classification to remove from the input list of members those
sources classified as field stars. An example of this procedure is
shown in Sect. 4.

2.5. Prior specification

All the family distributions implemented in Kalkayotl share two
types of parameters: locations and scales. Other parameters, such
as the weights in the mixture distributions or the degrees of free-
dom in the Student-T distribution, are family specific and are
discussed below.

The location parameter corresponds to the single D-
dimensional vector µ in the Gaussian, Student-T, CGMM, and
FGMM families, and to the set of m D-dimensional vectors
{µ}mi=1 in the GMM family. Similarly, the scale parameter cor-
responds to the single DxD covariance matrix Σ in the Gaussian
and Student-T families and to the set of m DxD covariance ma-
trices {Σi}

m
i=1 in the mixture models (m − 1 in the case of the

FGMM).
For the location parameter (µ or {µ}mi=1) we used a Gaussian

prior. In each entry (coordinate), µ, of this vector parameter we
imposed a univariate Gaussian prior so that µi ∼ N(µ=αi,0, σ =
αi,1), with fixed hyper-parameters αi,0 and αi,1, corresponding to
the median and standard deviation of the Gaussian distribution.
The values of these hyper-parameters are either provided by the
user or set to its default values.

For the scale parameter (Σ or {Σi}
m
i=1) we used indepen-

dent prior distributions over the correlation matrices, Corr, and
the diagonal standard-deviation matrix, S d, and reconstructed
the scale parameters as Σ = S d · Corr · S d. We imposed a
Lewandowski et al. (2009) distribution (hereafter LKJ) as prior
for the correlation matrices, Corr ∼ LKJ(η), with fixed hyper-

parameter η, which controls the degree of correlation between
entries (coordinates), with η = 1 resulting in uniform correla-
tions (i.e. ρ ∼ U(0, 1)) and increasingly larger values producing
decreasing correlations. The value of this η parameter can be
provided by the user or left to its default value of one. In each
entry of the diagonal standard-deviation matrix we imposed a
Gamma prior, σi ∼ Γ(α = 2, β = βi) with fixed hyper-parameter
βi either to a user-provided value or to its default of 10 pc in
positions and 2 km s−1 in velocities, which result in modes at
10 pc and 2 km s−1, respectively. The combination of these two
hyper-parameters can help users to flexibly infer the shape of the
stellar system in both positions and velocities or, on the contrary,
to impose spherical symmetry on it.

For the weight parameter w of the mixture distributions (i.e.
GMM, CGMM and FGMM), we used a Dirichlet prior distribu-
tion so that w ∼ D(δ), with δ a fixed hyper-parameter whose
value is provided by the user. This hyper-parameter controls
the amount of mass distribution going to each component, with
small magnitude vectors resulting in more relaxed priors. For the
degrees-of-freedom parameter, ν, of the Student-T distribution
we use a Gamma prior distribution so that ν ∼ Γ(α= να, β= νβ),
with hyper-parameters να and νβ fixed to either the user-provided
values or να = 1 and νβ = 0.1.

For the parameters κ and Ω of the linear velocity field, we
use the following prior distributions. The components of both,
κ and Ω are expected to be small and centred on zero. Thus we
used zero-centred normal distributions with standard deviations
as user-defined hyper-parameters σκ and σΩ, both having a de-
fault value of 0.1km s−1 pc−1.

In Table 1, we provide a summary of the shared and family-
specific parameters together with their prior distributions. The
right column of the table also provides the default hyper-
parameter values for cases in which the user does not provide
input values. In the default values of the hyper-parameters, the X
vector corresponds to the mean vector of observables after trans-
formation into the ICRS or Galactic reference system.

Table 1. Prior distributions and its hyper-parameters.

Parameter Prior Default values
Location: µi N(µ=αi,0, σ=αi,1) αi,0=Xi, α1=0.2Xi

Scale: σi Γ(α=2, β=βi) βi∈[X,Y,Z]=10 pc, βi∈[U,V,W]=2 km · s−1

Scale: Corr LKJ(η) η=1
Weights: w D(δ) •

Degrees of freedom: ν Γ(α=να, β=νβ) να=1, νβ=10
Expansion/Contraction: κ N(µ=0, σ=σκ) σκ = 0.1km s−1 pc−1

Rotation: Ω N(µ=0, σ=σΩ) σΩ = 0.1km s−1 pc−1

Notes. The i index goes over the coordinates X, Y, Z, U, V and W.

2.6. Likelihood

We assumed that the likelihood of the N stars in the input list
of the system’s members is a multivariate Gaussian distribu-
tion. The dimensionality of this Gaussian corresponds to the to-
tal number of effectively observed features in the input list of
members Ne f f . For example, the likelihood of a dataset with
N = 100 stars with fully observed astrometry and radial ve-
locity will be a multivariate Gaussian of Ne f f = 600 dimen-
sions in the 6D model and Ne f f = 300 dimensions in the 3D
model. However, the likelihood of a dataset with the same num-
ber of stars (N = 100) but with only 50 of them having radial
velocity measurements would be a multivariate Gaussian with
Ne f f = 550 and Ne f f = 300 dimensions in the 6D and 3D mod-
els, respectively. This single high dimensionality Gaussian re-
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sults from dropping the usual assumption that observations are
independent and identically distributed. Instead, we assume that
the data is heteroscedastic and spatially correlated in the sky,
as is the case of the Hipparcos (e.g Lindegren 1988; Lindegren
et al. 2000) and Gaia (e.g. Lindegren et al. 2021) data. We model
these spatial (angular) correlations using Equations 24 and 25 of
Lindegren et al. (2021) (Assumption 3).

In the previous multivariate Gaussian likelihood, the median
value corresponds to the flattened vector of the measurements of
all the members in the input list. The covariance matrix of this
Gaussian likelihood is constructed as follows. First, the covari-
ance matrix of each source is reconstructed from its provided
uncertainties (i.e. the _error suffix) and correlations (i.e. the
_corr suffix). These N covariances are used to populate the
block diagonal entries of the Ne f f ×Ne f f covariance matrix. The
inter-source covariances (off-block entries) of the parallax and
proper motions features are populated with the values provided
by the spatial correlation functions mentioned above (see As-
sumption 3). We notice that the entries of this covariance matrix
corresponding to radial velocities and sky coordinates have zero
inter-source correlations.

We noticed that the tiny sky uncertainties (typically of the
order of 50 µas) of the Gaia data difficult the sampling of the
model parameters. In a Markov chain, the probability of reject-
ing a proposed step increases with a diminished likelihood value.
Therefore, the tiny uncertainties result in Markov chains with
very few accepted transitions, large autocorrelations, and low ef-
fective sample sizes. The solution to this problem is to run longer
chains at the cost of a higher computing time. We provide an al-
ternative and more practical solution which is to increase the sky
uncertainties to a value that results in an acceptable compromise
between computing time and convergence of the Markov chains.
We heuristically find that increasing the sky uncertainties by fac-
tors of the order of 105 − 106 (which effectively results in sky
uncertainties of the order of 5-50 arcseconds) improves the con-
vergence of the chains with negligible impact on the recovered
parameter values. We set the default value of this scaling factor
to 106, which renders the best compromise between computing
time and convergence assurance.

2.7. Posterior sampling

We specify our models and sample their posterior distributions
given the input list of members using the probabilistic program-
ming language PyMC (Salvatier et al. 2016). To sample the pos-
terior distributions, Kalkayotl finds suitable initial solutions for
each Markov chain through auto-differentiable variational infer-
ence (ADVI; Kucukelbir et al. 2017). This fast initial solution
serves to reduce the computation time that otherwise the chains
would need to reach the target region of the parameter space.
These initial solutions (one per chain) are passed to the No-
U-Turn sampler (NUTS; Hoffman & Gelman 2011), which is
used for efficient sampling of high-dimensionality spaces. Fur-
ther sampling acceleration can be achieved using graphical pro-
cessor units (GPUs) through the high-performance computing
library JAX7.

The sampler default parameters were established as follows.
The ADVI search for the initial solution runs for 5× 105 steps or
an absolute tolerance of 5 × 10−3. The sampling is done by run-
ning two chains with 3000 and 2000 iterations each for tuning
and sampling, respectively. The default parameters for NUTS
are a target acceptance of 0.65 (see Hoffman & Gelman 2011)

7 http://github.com/google/jax

and step sizes of 10−1, 10−2 and 10−3 for models of 1D, 3D, and
6D, respectively. These values were found after extensive vali-
dation and they probed to effectively reduce the tuning iterations
without compromising the convergence. Nonetheless, the 3000
tuning iterations are used to refine this value at each run.

2.7.1. Convergence and statistics

Convergence of the NUTS chains is automatically assessed by
PyMC at the end of each run. We recommend users to carefully
read the output messages of the sampler, which generally pro-
vide useful diagnose. Nonetheless, Kalkayotl computes its con-
vergence assessment through the following statistics. The po-
tential scale reduction (Gelman & Rubin 1992), known as the
Gelman-Rubin R̂ statistic, is intended to measure the factor by
which the posterior would shrink if the number of iterations will
go to infinity. It is intended for multiple chains and its value
should be ≲ 1, with values of R̂ > 1.1 indicating convergence
issues. The effective sample size (ESS) measures the number of
independent samples with the same statistical power as the N
autocorrelated samples from the Markov chain (see Sect. 11.5
of Gelman et al. 2013), and thus the Markov chain standard er-
ror (MCSE) of the parameters is σ/

√
ESS rather than σ/

√
N,

with σ the standard deviation. These three statistics are reported
for each model parameter as part of the standard output files. In
addition, the terminal output of Kalkayotl also reports the step
size value of the NUTS algorithm used by each chain, which can
be used to further refine its value in consecutive runs and to di-
agnose convergence issues when different chains provide highly
discrepant step size values.

2.7.2. Model criticism: Prior and posterior checks

Model criticism is a fundamental step of the knowledge extrac-
tion process. Although it lies beyond the inference process it-
self, it is important to diagnose possible biases associated with
the model itself rather than with the sampling algorithm. For this
reason, model criticism must be done once the convergence of
the sampling algorithm has been warranted.

The most straightforward element to criticise in a Bayesian
parametric model is its set of prior distributions. This criticism of
the prior in most cases can be done by visual comparison of the
prior and posterior distributions. Upon user’s requests, Kalkay-
otl samples from the prior predictive distribution and thus gener-
ates samples from the prior distribution of the model parameters.
Then, the code provides output files with plots of these prior
distributions together with the inferred posterior ones. Inspect-
ing these plots, the user can easily spot problematic prior distri-
butions. In principle, the prior distribution should allow, with a
non-negligible probability, the expected intervals of the param-
eter value without being overly restrictive to avoid biasing the
posterior distribution towards specific parameter regions.

The second and sometimes most difficult element to criticise
in a model is its set of prior assumptions (i.e. the assumptions
that the modeller made when constructing the model). Assessing
the fitness of these assumptions is dataset specific and far from
simple. One diagnostic that aids in this criticism, particularly
when comparing different models, is the ability of the model
and its inferred parameter distributions to predict observed data,
which could be sources observed or unobserved by the model.
Kalkayotl provides, as part of the output files, the posterior pre-
dictive distributions of the model’s observed sources (i.e. those
used to infer the posterior distributions). These synthetic ob-
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served data can be used to judge the model’s ability to predict
the real observed data. And thus, by comparing the predictive
posterior distributions of different models, the user can decide
the specific model that better suits the particular needs of the
scientific objective at hand.

We notice that these posterior predictive distributions may
have further astrophysical uses. For example, by comparing the
radial velocities posterior predictive distributions with the ob-
served ones, the user can discriminate between single stars and
possible binaries or multiples. Also, when working with 6D
models, the posterior predictive distributions of the parallaxes
would in general shrink with respect to the observed ones due
to the effect of the kinematically improved parallaxes (see Lin-
degren et al. 2000, and its Sect. 4.1.2, particularly). One further
use could be to obtain kinematic parallaxes by adding to the sys-
tem’s input dataset the data of candidate members with missing
parallaxes but measured sky positions and proper motions (in
the same reference system as Gaia), as those provided by the
DANCe (Bouy et al. 2013) and VISIONS (Meingast et al. 2023)
surveys.

3. Validation

We validated our methodology using synthetic data sets with
Gaia data release 3 (DR3, Gaia Collaboration et al. 2023) prop-
erties created with the Amasijo8 code. For detailed explanations
of this code, we refer the reader to the works of Casamiquela
et al. (2022) and Olivares et al. (2023b). Briefly, the code creates
a synthetic population of stars from the user-provided kinematic
parameters (location and dispersion in the ICRS or Galactic ref-
erence systems, optionally a linear velocity tensor can also be
provided) together with the fixed population’s age, metallicity,
and extinction. These true values are transformed into the ob-
served space (astrometry plus photometry) and then resampled
from the observational uncertainties given by PyGaia9 for Gaia
DR3. The radial velocities are masked as missing according to
PyGaia criteria, which roughly correspond to sources fainter
than 14 mag in G band. Therefore, the percentage of sources
with missing radial velocities varies from 10% for clusters at
100 pc to 50% for those at 1.5 kpc.

For each model family, we created synthetic clusters in a grid
with varying numbers of stars n_stars ∈ [100, 200, 400], dis-
tances d ∈ [50, 100, 200, 400, 800, 1500] pc, and random seeds
s∈ [0, 1, 2, 3, 4, 5]. We fixed the population’s age, metallicity and
extinction to 100 Myr, z = 0.012, and Av = 0.0, respectively.
The system’s location in space and velocity space was fixed to
XYZ = [1, 1, 1] ·d/

√
3 pc and UVW = [10, 10, 10] km s−1 whilst

its scale (dispersion) fixed to 3 pc in position and 1 km s−1 in
velocity, both isotropic with zero correlations.

We generated stellar systems with five statistical models:
Gaussian joint, Gaussian linear, Student-T joint, Student-T lin-
ear, and GMM joint. The joint models are multivariate in the
joint space of positions and velocities (XYZUVW) while the lin-
ear ones are disjoint in positions (XYZ) and velocities (UVW).
In the linear velocity field, the velocities are expressed as a linear
field of the positions (see Eq. 2) with a tensor T fixed to

T = C ·

 1 −1 1
1 1 −1
−1 1 1

 m s−1 pc−1 (4)

8 https://github.com/olivares-j/Amasijo
9 https://github.com/agabrown/PyGaia

with C as a constant taking values in C ∈ [10, 50, 100].
Such tensor produces stellar systems that expand isotropically
at a rate |κ| = C m s−1 pc−1 and rotate with an angular velocity
ω = [C,C,C] m s−1 pc−1. The chosen values of C are similar to
the expansion and rotation signals found in the literature for the
benchmark stellar systems of the β-Pictoris stellar association
and the Hyades and Praesepe open clusters (see Sect. 4). In the
Student-T and GMM, we fixed the parameter values to ν = 10
and w= [0.6, 0.4] with two components, respectively. We notice
that in all cases we use the same location and scale parameters
as described above, although in the GMM case, the second com-
ponent is always located 50 pc above the first component in the
Z direction.

We inferred the stellar system parameter of each synthetic
data set using its corresponding model family. The posterior
distribution was sampled, analysed, and criticised as described
in Sects. 2.7, 2.7.1, and 2.7.2, respectively. Appendix B shows
some examples of the typical execution time that Kalkyotl takes
as a function of the number of stars in the system.

In the following, we validate and assess the quality of the
recovered parameters with three metrics: error, uncertainty, and
credibility. The error measures the parameter’s relative deviation
from its true value and is computed as the difference between the
mean of the parameter’s posterior distribution and the true value
divided by the true value. The uncertainty metric corresponds to
the standard deviation of the parameter’s posterior distribution
divided by the parameter’s true value. These error and uncer-
tainty metrics correspond to the ones typically known as accu-
racy and precision, although here we express them in relative
terms. Finally, the credibility metric measures the fraction of the
simulations in which the true parameter’s value was contained
within the 95% HDI of the parameter’s inferred posterior distri-
bution. All of these metrics are expressed in percentage units.

In the next two sections, we present the validation of the
population-level parameters and the source-level parameters. Fi-
nally, we end this section with a discussion about our models’
characteristics.

3.1. Population-level parameters

We validate the population-level parameters of our set of mod-
els with the error, uncertainty, and credibility metrics mentioned
above. First, we assess the performance of our method to re-
cover the set of parameters that are common to all models (i.e.
the location and standard deviation). Then, we continue the vali-
dation and discussion of the model-specific parameters, particu-
larly those from the linear velocity field.

3.1.1. Common parameters

Figures 1 and 2 show the error and uncertainty, respectively, of
the population-level parameters of location and standard devia-
tion, which are common to all our models, as a function of the
cluster’s distance. The solid lines and shaded regions depict, re-
spectively, the mean and standard deviation of the random clus-
ter realisations at each distance value. The figures show only the
results on synthetic clusters with 100 stars given that the met-
rics of clusters with 200 and 400 stars are better, as expected,
and thus, for the sake of simplicity, we do not show them. In the
case of the GMM model, we only show the result of one com-
ponent and up to a distance of 800 pc. Beyond this limit, the
parameter’s recovery shows large errors, large uncertainties and
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Fig. 1. Relative error of the population-level parameters common to all our models as a function of distance. The lines and shaded regions depict
the mean and standard deviation of the synthetic clusters with 100 stars.

negligible credibility. From these figures, we draw the following
conclusions.

First, the errors and uncertainties are isotropic showing sim-
ilar values in the position and in the velocity coordinates. The

Article number, page 8 of 20



J. Olivares et al.: Kalkayotl 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Un
ce

rta
in

ty
 [%

]
loc[X] loc[Y] loc[Z]

0

1

2

3

4

5

Un
ce

rta
in

ty
 [%

]

loc[U] loc[V] loc[W]

0

5

10

15

20

25

30

35

40

Un
ce

rta
in

ty
 [%

]

std[X] std[Y] std[Z]

0 500 1000 1500
Distance [pc]

0

5

10

15

20

25

30

35

40

Un
ce

rta
in

ty
 [%

]

std[U]

0 500 1000 1500
Distance [pc]

std[V]

0 500 1000 1500
Distance [pc]

std[W]

Case
Gaussian_joint Gaussian_linear StudentT_joint StudentT_linear GMM_joint

Fig. 2. Relative uncertainty of the population-level parameters common to all our models as a function of distance. Captions as in Fig. 1.

isotropy of our results indicate that our models can recover the
true phase-space geometry of stellar systems with errors ≲10%
up to 800 pc and ≲20% up to 1.5 kpc, which implies that up

to 800 pc there is a minimal "fingers of God" effect (for a de-
scription of this effect, see, for example, Fig. 2 of Zucker et al.
2020). The only exception to this trend is the GMM model,
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which shows larger std errors, particularly in the X and Z direc-
tions. These large errors most likely result from the combination
of both the lower number of stars (the shown GMM component
has only 60 stars compared to the rest of the cases having 100
stars each) and the entanglement between components in the Z
direction resulting from the second component being displaced
50 pc in this direction.

Second, concerning the errors, we observe that all our mod-
els, except for the GMM one, have negligible errors in the lo-
cation parameters of position (≲0.5%) and velocity (≲3%), with
the former having larger values in the closest clusters and the
latter in the farthest ones. The errors in the standard deviation
parameters of all models are ≲20% for both positions and ve-
locities, with their values increasing from 5-10% at the closest
clusters and up to 20% for the farthest ones. The GMM model
shows the largest dispersion error in the X and Z directions for
the reasons explained in the previous paragraph.

Third, concerning uncertainties, the 3D location of the clus-
ters are recovered with uncertainties in the 0.5-1.5% range for
clusters up to 200 pc and ≲0.2% for clusters up to 1.5 kpc. The
relatively larger uncertainties at the closest distances indicate
that our models struggle to infer the 3D centre of the nearest
clusters despite the excellent precision and accuracy with which
the 3D positions of their stars are recovered (at the 0.1% level,
see Figs. 4 and 5). In the rest of the parameters and models, the
uncertainties grow with distance, as expected, from 1% to 5%
in the velocity location, and from 10% to 35% in the rest of the
dispersion parameters.

Concerning the parameter’s credibility, the median value of
this metric for all location and standard deviation parameters in
all models is 100%, except for the GMM one beyond 800 pc,
where it drops to zero as mentioned above. The high credibility
indicates that our method can recover the true parameters values
within the 95% HDI for distances up to 800 pc for the GMM
model and up to 1.5 kpc for the rest of the models.

Finally, the low error, low uncertainty, and high credibility
prove that our method is able to recover the true parameters of
location and standard deviation of stellar systems with excellent
accuracy and acceptable precision in the GMM model up to 800
pc and up to 1.5 kpc in the rest of models. Most probably, the
subset of the location parameters could still be recovered with
excellent accuracy and precision beyond 1.5 kpc. However, we
are interested in showing the validity of the model as a whole
rather than subsets of it.

3.1.2. Model-specific parameters

There are three sets of additional model-specific parameters: the
ν parameter of the Student-T distribution, the weight parameters
of the GMM model, and the nine entries of the T tensor in the
linear velocity field models. In the following, we briefly discuss
those of the GMM and Student-T, and then we discuss in more
detail the parameters of linear velocity field models, particularly
their detectability.

The ν parameter in the Student-T models is recovered with
large errors for the closest clusters (200% in the joint model and
60% and 40% in the position and velocity of the linear field
model) but these errors diminish with distance and stabilise at
800 pc with values of 100% for the joint model and <5% for the
linear field model. This parameter is recovered with large un-
certainties (∼100%) in both the joint and linear field models for
all distances. In spite of the large errors, the credibility reaches
100% due to the large uncertainties, except in the case of the
joint model at closer distances (≲100 pc), where the credibility

is lower than 60% due to the large errors. Therefore, we recom-
mend caution when using the Student-T model and either disre-
garding the inferred values of the ν parameter or fixing it to a
certain a priori value before the inference.

The weights of the GMM model are recovered with negligi-
ble errors, ≲2%, low uncertainties, ≲12%, and 100% credibility
for distances up to 800 pc. Beyond this limit, the errors and un-
certainties increase and the credibility goes to zero. Therefore,
we conclude that our method can accurately and precisely re-
cover the true weights of the GMM model to distances up to 800
pc.

The entries of the linear velocity tensor T (see Eq. 3) are
all recovered with almost identical metrics. Thus, the following
description is valid for any of the entries.

Concerning errors, these vary mostly with the C value and
are almost independent of the number of stars. For the lowest
value of C =10, the errors are independent of distance and their
absolute values are, on average, ≲200%. For C = 50, the errors
remain independent of distance in general, but this time, their
absolute values are ≲50%. For the largest value of C = 100, the
errors show a linear trend with distance that varies between 0%
at 50 pc to -50% at 1.5 kpc.

Concerning the uncertainties, these grow with distance and
diminish with an increasing number of stars, as expected. For
C = 10, they vary between 200% at 50 pc to 800% at 1.5 kpc,
while for C=50 they vary between 40% at 50 pc to 160% at 1.5
kpc. Finally, for C = 100, the uncertainties vary between 20%
at 50 pc to 80% at 1.5 kpc. Despite the large errors, the large
uncertainties result in a high 100% credibility for all C values,
distances and number of stars.

In the light of the previous results, we recommend proceed-
ing with caution whenever an entry of the linear velocity tensor
is inferred with a value ≲50 m s−1 pc−1, particularly when it is
lower than ≲10 m s−1 pc−1. The criteria for the detection of such
low signals should be based on their full posterior distribution
rather than only on their mean value.

Fig. 3. Signal-to-noise ratio of the entries in the linear velocity tensor
as a function of the distance and the number of stars for the three values
of the C constant in units of metre per second per parsec (see Eq. 4).
The lines and shaded regions depict the median and standard deviation
of the synthetic simulations with varying random seed.

Usually, the detection of a signal is based on its significance
level, with 3σ to 5σ being common criteria to establish a discov-
ery. Moreover, the significance level of a signal can be related to
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the well-known term of signal-to-noise ratio (S/N), in which an
S/N=n is roughly equivalent to a nσ significance level.

To aid the users of Kalkyotl to estimate the detectability of
the entries in the linear velocity tensor, we use our set of Gaia
DR3 simulations to compute the S/N of the inferred T tensor en-
tries. In Fig. 3, we show the S/N of these entries as a function of
the cluster distance, and colour-coded with the number of stars
for the three values of the C constant (shown with different line
style). As can be observed, the S/N improves with signal value
and number of stars and diminishes with distance up to a max-
imum distance of 800 pc, beyond this limit, it remains almost
constant independent of the number of stars. Moreover, the fig-
ure shows that given the current Gaia DR3 data (i.e. astrometry
and radial velocity) a 5σ detection can only be achieved in the
nearest (50 pc) and most populated clusters (>400 stars). How-
ever, if the criteria would be relaxed to 1σ significance level,
then the detection of signals ∼ 50 m s−1 pc−1 could be achieved
up to distances of 800 pc even for clusters with 100 stars. We
noticed that these S/N improve with the improving quality of
the radial velocities. Thus, complementing Gaia DR3 astrometry
with precise radial velocity surveys could significantly improve
the detection of low T entry signals.

3.2. Source-level parameters

We validate the source-level parameters (i.e. the phase-space co-
ordinates of individual stars) with the same metrics used for the
population-level parameters. However, in this case, we first av-
eraged over the entire system’s population and then over simu-
lations. The error and uncertainty in the source-level parameters
of the six phase-space coordinates are shown in Figs. 4 and 5,
respectively. The figures show the metrics value as a function of
distance colour-coded according to the model. As with the fig-
ures of the group-level parameters, the ones here do not show the
values of the GMM model for distances beyond 800 pc nor the
results of clusters having 200 and 400 stars. The metrics of clus-
ters having larger populations remain similar to those of having
100 stars except for a mild error reduction in the clusters at 1.5
kpc. In the case of the GMM model, as discussed in the previous
section, the maximum distance at which it can be reliably ap-
plied is 800 pc. Thus, we do not show values beyond this limit.
In the rest of the distances and models, the credibility remains
high at 100%, and thus, for the sake of simplicity, their figures
are not shown. In the following, we discuss the properties of the
previous metrics.

As in the case of the population-level parameters, the source-
level ones do not show signs of the "fingers of God" effect. The
errors and uncertainties are isotropic with similar values for the
3D positions and 3D velocities.

Concerning errors, we observe that the X, Y, and Z co-
ordinates are recovered with excellent accuracy, having errors
≲0.1%. Although the U, V, and W velocities are recovered with
larger errors, ≲2%, these are still negligible.

The uncertainty of the source-level parameters is also re-
markable, with values ≲0.4% for 3D positions and ≲8% for 3D
velocities. These later behave as expected, growing at a constant
rate of 4% at 50 pc to 8% at 1.5 kpc. On the contrary, the uncer-
tainty of the 3D positions shows two distinct behaviours. First,
it grows with a high slope from values ≲0.1% at 50 pc to 0.45%
at 400 pc. Then, it decreases to 0.3% at 800 pc and remains
constant at this value. These two behaviours result from the use
of the central and non-central parametrisations (see Sect. 2), in
which the former is used for clusters up to 500 pc and the latter

for farther away ones. As can be seen in Fig. 5, the use of these
parametrisations ensures that the uncertainty remains minimal.

In Paper I, we observed that the distance errors of the indi-
vidual sources showed an anti-correlation with their true posi-
tion within the cluster (see Sect. 4.2 and Fig. 2 of Paper I). In
our phase-space models, this anti-correlation remains, although
much less pronounced. For the 3D positions, it is negligible at
50 pc, grows up to -0.5 at 500 pc and remains at this value for
larger distances. On the contrary, for the 3D velocities, it remains
at -0.5 for all distances. The explanation for this anti-correlation
remains the same as in the 1D case. It results from the ratio be-
tween the size of the source uncertainty to that of the cluster, co-
ordinate by coordinate. When the source’s uncertainty is much
smaller than the cluster’s dispersion, then there is enough infor-
mation to pinpoint the source position within the cluster and the
anti-correlation is negligible, as in the case of the 3D positions
at 50 pc. As the source’s uncertainty increases and gets similar
or larger than the cluster’s dispersion, then there is not enough
information to pinpoint the source’s position within the cluster
and its posterior gets attracted towards the cluster’s mode, thus
resulting in the anti-correlation.

Finally, we can conclude that despite the previously de-
scribed anti-correlations, the low errors, small uncertainties, and
high credibility prove that our method can recover the phase-
space coordinate of stars in LNSS with excellent accuracy and
precision.

3.3. Discussion

The results of the previous sections show that Kalkayotl is able
to recover the true values of the population-level and source-
level parameters from various phase-space family distributions
and velocity models with varying degrees of accuracy and pre-
cision. Despite the remarkable similarities in the metrics values,
we notice the following important differences amongst models.

First, the GMM model has a lower applicability domain, with
a recommended maximum distance of 800 pc. This reduced do-
main results from increasing entanglement of the GMM Gaus-
sian components with increasing dataset uncertainties. We rec-
ommend that the users of this model do a thorough exploration
of the chain’s traces to spot possible label switching. Moreover,
when the uncertainties are large and the population is scarce, the
model can fail to detect one of the components. For this reason,
we recommend running the code with several chains or more
than only one time. In addition, this model faces convergence
difficulties beyond 500 pc. Whenever this occurs, we recom-
mend increasing the number of iterations in the initialisation and
tuning phases.

Second, the Student-T family, with both joint and linear ve-
locity fields, shows good metrics values in the common param-
eters of location and standard deviation. However, the low cred-
ibility of the ν parameter must be kept in mind when using this
model.

Third, due to its excellent accuracy and precision, our recom-
mended model is the Gaussian one. In those cases where the use
of the GMM model is unavoidable, we recommend nonetheless
performing a run of the Gaussian model on each of the identified
GMM components.

Finally, we observe that when the linear velocity field is ap-
plied to clusters at close distances or with a large number of
sources, the sampling algorithm faces difficulties in the con-
vergence of the chains. These difficulties result from both the
model’s large number of parameters (nine more than the joint
model) and its lack of flexibility (given that velocities are as-

Article number, page 11 of 20



A&A proofs: manuscript no. Kalkayotl

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Er
ro

r [
%

]

X Y Z

0 500 1000 1500
Distance [pc]

4

2

0

2

4

Er
ro

r [
%

]

U

0 500 1000 1500
Distance [pc]

V

0 500 1000 1500
Distance [pc]

W

Case
Gaussian_joint Gaussian_linear StudentT_joint StudentT_linear GMM_joint

Fig. 4. Relative error of the source-level parameters as a function of distance. Captions as in Fig. 1.

sumed to follow Eq. 2). Although these issues can easily be
solved by increasing the number of iterations in the initialisa-
tion and tuning phases, we recommend informing the model on
the system’s velocity dispersion by setting its prior to sensible
values, for example, to those obtained after running the joint ve-
locity model on the same system.

4. Application to real stellar systems

As part of the validation process and to exemplify the use of
Kalkayotl in real data, we use it to infer the 6D phase-space
source- and population-level parameters of the β-Pictoris stel-
lar association and the Hyades and Praesepe open clusters. We
select these systems because they have ample literature works
describing their internal kinematics and relatively low (≲ 1000)
numbers of members, which keeps the computation time at a
reasonable value (see Appendix B). In β-Pictoris we use both
the Gaussian joint and Gaussian linear velocity models, whereas
in the open clusters we only use the Gaussian linear velocity
one. Other examples of the application of Kalkayotl’s Gaus-
sian, GMM, and CGMM family distributions with the joint ve-
locity model to open clusters and star-forming regions can be
found in Olivares et al. (2023a) and Olivares et al. (2023b). The
users of Kalkayotl can find all the associated routines to infer
and analyse the following stellar systems in the same online ad-
dress as the source code (see footnote 2, specifically the folder
article/v2.0/Code).

4.1. The β-Pictoris stellar association

Young stellar associations are one of the fundamental products of
star formation. As such, studying their kinematics is paramount
to understanding their origin and evolution. The β-Pictoris (β-
Pic) stellar association, due to its proximity and young age (28
pc and 18-20 Myr for dynamical ages Couture et al. 2023; Miret-
Roig et al. 2020; Crundall et al. 2019, 24±3 Myr from isochrones
Bell et al. 2015 and 24-25 Myr from Lithium depletion bound-
ary Galindo-Guil et al. 2022; Messina et al. 2016), has been the
focus of several studies and, as a result, its kinematic properties
are well constrained. Here, we use the Gaia DR3 data of the lists
of members from Couture et al. (2023), Miret-Roig et al. (2020),
and Crundall et al. (2019). In the case of Crundall et al. (2019),
we use the Gaia DR3 data of their 46 members in component A
with a membership probability greater than 0.9. In the cases of
Miret-Roig et al. (2020) and Couture et al. (2023), we use the
Gaia DR3 data of their 26 and 25 members, respectively, com-
plemented by the radial velocities provided in each work.

The previous works report the parameter values in the Galac-
tic reference systems, and thus, for comparison, we used it as
well. We notice though that Crundall et al. (2019) report their
parameters with respect to a spatial origin located 25 pc above
the Galactic plane and a velocity origin coinciding with the local
standard of rest10. We subtracted this origin to put their values
in the same reference frame as the other two works. We also no-
tice that Couture et al. (2023) do not report uncertainties to any

10 There is a typo in the sign of their V⊙ velocity component.
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Fig. 5. Relative uncertainty of the source-level parameters. Captions as in Fig. 1.

Table 2. Location and standard deviation parameters of the β-Pic stellar association as reported in the literature and inferred in this work with the
Gaussian joint model.

Couture+2023 Crundall+2019 Miret-Roig+2020
Reported This work Reported This work Reported This work

Parameter Units

loc[X] [pc] 22.69 23.90 ± 4.59 30.00 ± 3.15 25.90 ± 3.44 47.49 ± 0.11 38.35 ± 4.29
loc[Y] [pc] −4.31 −2.90 ± 2.86 −5.50 ± 2.80 −4.81 ± 1.96 −7.89 ± 0.04 −10.65 ± 2.73
loc[Z] [pc] −18.49 −18.97 ± 1.77 −17.50 ± 1.70 −18.16 ± 1.58 −17.92 ± 0.05 −17.12 ± 1.77
loc[U] [km/s] −10.20 −10.13 ± 0.26 −9.60 ± 0.20 −9.59 ± 0.24 −8.74 ± 0.24 −8.77 ± 0.27
loc[V] [km/s] −15.70 −15.58 ± 0.12 −15.74 ± 0.10 −15.63 ± 0.14 −16.16 ± 0.11 −15.93 ± 0.14
loc[W] [km/s] −8.64 −8.67 ± 0.16 −8.85 ± 0.10 −8.72 ± 0.15 −9.98 ± 0.11 −9.03 ± 0.15
std[X] [pc] 29.70 29.56 ± 4.01 24.50 ± 1.45 27.76 ± 2.89 16.04 25.00 ± 3.46
std[Y] [pc] 13.94 15.84 ± 2.44 21.60 ± 1.15 14.02 ± 1.58 13.18 13.84 ± 2.07
std[Z] [pc] 8.11 9.45 ± 1.52 13.70 ± 0.85 10.78 ± 1.18 7.44 8.95 ± 1.41
std[U] [km/s] 1.50 1.53 ± 0.23 1.20 ± 0.10 1.73 ± 0.20 1.49 1.51 ± 0.21
std[V] [km/s] 0.60 0.59 ± 0.10 0.90 ± 0.10 0.90 ± 0.12 0.54 0.69 ± 0.11
std[W] [km/s] 0.76 0.75 ± 0.12 1.00 ± 0.10 0.95 ± 0.12 0.70 0.75 ± 0.12

of their parameters, while Miret-Roig et al. (2020) only report
those of the location parameters.

Table 2 shows the group-level parameters (i.e. location and
standard deviation together with their ±σ uncertainties) of the
β-Pic stellar association as reported in the aforecited literature
works (i.e. Couture et al. 2023; Miret-Roig et al. 2020; Crun-
dall et al. 2019) and inferred here using Kalkayotl’s 6D Gaussian
joint model. For each of the selected literature works, the table
shows the reported parameter’s values and those inferred here
with the Gaia DR3 data of the corresponding authors’ member-
ship list.

As can be observed, there is a general agreement between the
values inferred here and those reported in the literature works,
with the majority being compatible within the 2σ uncertainty
(i.e. the 95% HDI). However, the largest exceptions correspond
to the X parameters (both location and standard deviation) re-
ported by Miret-Roig et al. (2020), and those corresponding to
the standard deviation in Y, Z, and U as reported by Crundall
et al. (2019). Given the large X location and low X dispersion re-
ported by Miret-Roig et al. (2020) as compared to the rest of the
estimates, we consider that these large deviations are probably an
artefact resulting from either the membership list or the authors’
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method. Similarly, the discrepant standard deviations values re-
ported by Crundall et al. (2019) in the Y, Z, and U coordinates
are most likely the result of their method, given that in the same
membership list as those authors we find parameters’ values per-
fectly compatible with those reported by Couture et al. (2023)
and Miret-Roig et al. (2020). Therefore, we conclude that our
parameters estimates are generally compatible with those from
the literature at the 2σ level.

Concerning our parameter’s uncertainty, we observe that
these are generally similar to those reported by the literature
works. In particular, there is a remarkable similarity between our
uncertainties and those reported by Crundall et al. (2019). With
respect to the parameters reported by Miret-Roig et al. (2020),
we observe that in the location velocities both works have sim-
ilar uncertainties. However, we notice that their uncertainties in
the X, Y, and Z locations are smaller by one and two orders of
magnitude. Given that our uncertainty values are similar to those
of other parameters and literature works, we conclude that those
reported by Miret-Roig et al. (2020) in the location of the X, Y,
and Z coordinates are most likely underestimated.

It is interesting to highlight that, in spite of the different
samples of members used by the previous works, our method-
ology renders all the inferred parameters (loc and std) compati-
ble within the 2σ (95%HDI) uncertainties, except in the case of
loc[U] were the values inferred from the samples of Miret-Roig
et al. (2020) and Couture et al. (2023) are mutually exclusive.

In Fig. 6, we show a one-to-one comparison of the source-
level parameters (i.e. the coordinate values of each star) as in-
ferred here against those reported in Couture et al. (2023) and
Miret-Roig et al. (2020). As can be observed, we recover with
excellent accuracy and precision the values reported by those au-
thors. The X, Y, and Z, coordinates have an average error ≲0.1-
0.2 pc while in the U, V, and W it is ≲ 0.5 km s−1.

We fit the linear velocity model (see Sect. 2.3.2) to the β-Pic
members from Miret-Roig et al. (2020), Crundall et al. (2019),
and Couture et al. (2023). However, in these two membership
lists, we increased the scaling factor of the sky uncertainties to
107 due to convergence failures with the default value of 106 (see
Sect. 2.6). The most likely reason for these convergence issues
is the presence of outliers and the lack of flexibility of the linear
velocity model (see Sect. 3.3).

Table 3 shows the result of our inference with the linear ve-
locity model (last three rows) together with the literature val-
ues of the Galactic components of expansion reported by Ma-
majek & Bell (2014) and Miret-Roig et al. (2020). As can be
observed, our inferred values are comparable to those of the pre-
vious authors, except for the κZ components reported by Miret-
Roig et al. (2020) and inferred here on the members by Crundall
et al. (2019). Regarding rotation, we observe only mild evidence
of it, with significance values in the order of ≲ 1σ.

The expansion rates can be used to compute the expan-
sion age of the system, τ, using the relation τ = γ−1κ−1, where
γ = 1.022712165s pc km−1 Myr−1; see for example Mamajek &
Bell (2014) and Miret-Roig et al. (2020). Following Mamajek &
Bell (2014), we discard the κz component and compute expan-
sion ages not only from κX and κY independently, but also from
their weighted average. The last three columns of Table 3 show
the expansion ages computed with this method as reported in the
literature (first two rows) and obtained here (last three rows). As
can be observed, the expansion age computed from the weighted
average of κX and κY results in values that agree with the dy-
namical trace-forward age of 17.8±1.2 Myr by Crundall et al.
(2019) and the dynamical trace-back ages of 18.5+2.0

−2.4 Myr by
Miret-Roig et al. (2020) and 20.4±2.5 Myr by Couture et al.

(2023). Combining the expansion ages inferred here (last column
of Table 3) through a weighted average, we obtain a dynamical
expansion age of 19.1 ± 1.0 Myr.

The excellent agreement and the similar or even better un-
certainties of our expansion ages shows that our comprehensive
statistical model combined with a simple inversion of the expan-
sion rate gives age estimates that are as accurate and precise as
the literature trace-back and trace-forward values. Nonetheless,
we notice that this inversion method is highly sensitive to the un-
certainties of the expansion rate, in a similar way that distance
determination is sensitive to the parallax uncertainty when dis-
tance is computed as the inverse of the parallax. Therefore, in the
presence of large uncertainties in the expansion rates, we recom-
mend the use of more sophisticated methods, such as dynamical
trace-back (e.g. Miret-Roig et al. 2020).

Summarising, Kalkayotl was able to recover the source-level
and population-level parameters of β-Pic reported in the litera-
ture with good accuracy and precision. The observed discrep-
ancies in the population level parameters can be explained by
the different statistical models assumed in the literature. Further-
more, we detect expansion at 12σ, 3σ, and 1σ levels in the X, Y,
and Z, directions, respectively, which results in expansion ages
which are as precise and accurate as the literature ones that use
more sophisticated methodologies. Moreover, we detect, for the
first time, some hints of rotation in this system at the 1σ level.
Future work will be needed to confirm the existence of this rota-
tion signal.

4.2. The Hyades open cluster

The Hyades open cluster is the closest to the Sun and has hun-
dreds of members (710 members at 47 ± 0.2 pc, 640+67

−49 Myr,
Lodieu et al. 2019b), which makes it an excellent benchmark
for kinematic analyses. Several works have analysed the in-
ternal kinematics of this cluster (e.g. Jadhav et al. 2024; Hao
et al. 2024; Oh & Evans 2020; Leão et al. 2019; Vereshcha-
gin et al. 2013; Lindegren et al. 2000; Perryman et al. 1998;
Gunn et al. 1988; Hanson 1975; Wayman 1967) and recently
its elongated tidal tails (e.g. Lodieu et al. 2019b; Meingast &
Alves 2019; Röser et al. 2019). Despite being thoroughly anal-
ysed in the literature, its internal rotation is still under debate.
Wayman (1967) studied the influence that internal motions such
as contraction and rotation had on distance determinations made
with the convergent point method. Using a combined analysis
with proper motions, parallaxes, and radial velocities, he mea-
sured a contraction of −13 ± 15 m s−1pc−1 and a total rotation
of |ω| = 30 ± 40 m s−1pc−1, thus concluding that their effect
was negligible, in the case of rotation, and could amount up
to 0.14 mag in the distance modulus, in the case of contrac-
tion. Hanson (1975) also studied the impact that rotation may
have on distance determinations made with the convergent point
method but now employing numerical simulations. He gener-
ated Hyades-like clusters with varying degrees of rotation val-
ues and orientations that were transformed to the observed space
of proper motions, parallaxes, and radial velocities where he
applied the convergent point method. He concluded that when
|ω|= 50 m s−1pc−1 no significant effect was observed in the stel-
lar motions, the convergent point solution, or the cluster distance.
On the other hand, in the case of |ω|= 500 m s−1pc−1 the effects
on the proper motions and radial velocities were so large that
they would be easily spotted if the Hyades possessed such rota-
tion.

Gunn et al. (1988) used precise radial velocities to deter-
mine a convergent point solution that was later used in combi-
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Fig. 6. One-to-one comparison of the source-level parameters inferred here and those reported by Couture et al. (2023) and Miret-Roig et al.
(2020). The grey line depicts the identity relation. The root-mean-squared value of the differences is also shown on the lower right side of each
panel.

Table 3. Expansion, rotation, and age of β-Pic.

Expansion Rotation Age
κX κY κZ ωX ωY ωZ κX

−1 κY
−1 κ−1

XY
Origin Authors [m s−1 pc−1] [m s−1 pc−1] [m s−1 pc−1] [m s−1 pc−1] [m s−1 pc−1] [m s−1 pc−1] [Myr] [Myr] [Myr]

Literature Mamajek & Bell (2014) 39 ± 24 52 ± 19 −31 ± 44 26+41
−10 19+11

−5 21+10
−5

Miret-Roig et al. (2020) 57 ± 6 33 ± 8 −2 ± 2 17 ± 2 29 ± 4 20 ± 4

This work
Crundall et al. (2019) 60 ± 5 34 ± 11 0 ± 17 12 ± 8 −5 ± 8 −6 ± 7 16.2+1.5

−1.2 28.8+13.5
−6.8 17.5+1.6

−1.3
Miret-Roig et al. (2020) 59 ± 5 29 ± 9 −32 ± 20 9 ± 8 −11 ± 11 0 ± 5 16.6+1.6

−1.2 33.6+15.4
−6.9 19.0+1.8

−1.5
Couture et al. (2023) 51 ± 4 16 ± 9 −22 ± 18 14 ± 8 3 ± 8 −6 ± 4 19.3+1.9

−1.4 61.1+61.6
−22.5 22.0+2.1

−1.8

nation with the full astrometric and radial velocity data to infer
a dynamical model that included elongation and cluster rotation
among other parameters. They inferred a distance of 45.4 ± 2.1
pc, a velocity dispersion of 230 m s−1, and a rotation gradient
of 1.3 ± 0.53 km s−1 radians−1(28 ± 11 m s−1 pc−1). Interestingly,
they concluded that the cluster centre rotates faster than the out-
side but they were unable to determine the sense of the rotation
(i.e. left-handed or right-handed).

The Hipparcos data of this cluster was used by Perryman
et al. (1998), Lindegren et al. (2000) and Vereshchagin et al.
(2013), among others, to analyse the internal kinematics of the
cluster. Perryman et al. (1998) concluded that the cluster mem-
bers move with parallel space motions and an internal velocity

dispersion of 0.3 km s−1. They analysed the residuals of the space
motions (see their Fig. 9) and concluded that although suggestive
of a pattern of rotation or shearing motion, they were fully com-
patible within 3σ of the cluster motion. Lindegren et al. (2000)
studied the cluster kinematics with a reduced version of their
linear velocity model (see Sect. 1) that does not incorporate ro-
tation. Vereshchagin et al. (2013) applied a geometric model and
measured, in the plane of the sky, a total internal rotation of
40 ± 30 m s−1pc−1. These authors also concluded that the rota-
tion axis does not lie in the plane of the sky, and thus, that the
study of the cluster’s rotation demands not only proper motions
and parallaxes but also radial velocities.
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Leão et al. (2019) use the spatial correlation of the differ-
ences between spectroscopic high-precision (160 m s−1) radial
velocities with those predicted by Eq. 2 of Madsen et al. (2002),
and measure the cluster’s velocity gradient, in the right ascen-
sion coordinate. This gradient translates into a rotation signal of
42.3 ± 4.0 m s−1pc−1.

Oh & Evans (2020) use an improved version of the general
model of Lindegren et al. (2000) and apply it to the Gaia Data
Release 2 (DR2; Gaia Collaboration et al. 2018) of the Hyades
members from Meingast & Alves (2019) and Röser et al. (2019).
They find no evidence of rotation.

Hao et al. (2024) used Gaia DR3 data from the Hyades mem-
bers by Lodieu et al. (2019b) to analyse its internal rotation.
They found a mean rotational velocity of 90 ± 30 m s−1 within
the cluster tidal radius of 9 pc. To compare with the common
units of rotation, we use instead the peak value of their rota-
tional curve (see their Table 8 and Fig. 14), which is located at
3 pc with a value of 0.61 ± 0.06 km s−1 which corresponds to
203 ± 20 m s−1 pc−1.

Jadhav et al. (2024) used Gaia DR3 data from the mem-
bers by Hunt & Reffert (2023) to study the internal kinematic
the Hyades. However, they do not find evidence for rotation.

Given that our Gaussian linear velocity model is similar to
that of Oh & Evans (2020), we compare our results of rotation
and expansion with those of the previous authors using their list
of members with data from both the second and third releases
of Gaia. In particular, we work with the list of members from
the cluster core, which is expected to be less subject to Galactic
shear forces. In addition, we expect the core list of members to
have fewer contaminants than that of the tails, given that the tails
are more confused with the Galactic field than the high-contrast
and dense region of the core. We notice that Oh & Evans (2020)
report their values in the ICRS reference frame, and thus, when
comparing with those authors, we adopted this same frame.

First, we work with the Gaia DR2 data (i.e. the same astrom-
etry of Oh & Evans 2020) to which we applied our decontami-
nation algorithm (see Sect. 2.4.5). We identified 13 outliers rep-
resenting a fraction of members of 0.968 ± 0.008. This fraction
overlaps at the 95% HDI with the 0.953±0.013 value reported by
Oh & Evans (2020). Then, we applied the Gaussian linear veloc-
ity model (see Sect. 2.3.2) to the remaining 387 core members.
The inferred posterior distributions of our linear model parame-
ters are shown and compared to those of Oh & Evans (2020) in
Table 4. We notice that the model of those authors is only for the
velocity field; thus it lacks the loc and std parameters of the X,
Y, and Z dimensions.

As can be observed from Table 4, in the same data as Oh &
Evans (2020), this is column Gaia DR2, we recover the location
parameters of the 3D velocities (U,V,W) with similar precision,
while their standard deviations (std[U] and std[W]) and correla-
tions with better ones. Only the dispersion in the V coordinate is
recovered with lower precision but it is, nonetheless, compatible
with the uncertainties as the rest of the parameters. Furthermore,
all of the linear velocity parameters (i.e. |κ|,ω, and w) are con-
sistent within the uncertainties with those of Oh & Evans (2020)
although with varying precision.

Then, we proceed to analyse the Gaia DR3 data of the same
387 core members with the Gaussian linear velocity model. The
results of this inference are also shown in Table 4, under the
column Gaia DR3. These results show that there is only a mild
improvement in the precision of the correlation parameters (ρUV
and ρVW ). However, the most relevant result is the detection, at
the 2σ level, of rotation in ωz.

Table 4. Parameters of the Hyades open cluster as reported by Oh &
Evans (2020) and inferred here with data from Gaia DR2 and DR3.

Oh+2020 Gaia DR2 Gaia DR3
Parameter Units

loc[X] [pc] - 17.14 ± 0.15 17.11 ± 0.15
loc[Y] [pc] - 41.14 ± 0.17 41.06 ± 0.17
loc[Z] [pc] - 13.63 ± 0.17 13.60 ± 0.18
loc[U] [km s−1] −6.09 ± 0.03 −6.05 ± 0.03 −6.01 ± 0.03
loc[V] [km s−1] 45.63 ± 0.05 45.62 ± 0.05 45.69 ± 0.06
loc[W] [km s−1] 5.52 ± 0.03 5.53 ± 0.03 5.58 ± 0.03
std[X] [pc] - 2.92 ± 0.10 2.91 ± 0.11
std[Y] [pc] - 3.33 ± 0.12 3.33 ± 0.12
std[Z] [pc] - 3.46 ± 0.13 3.46 ± 0.13
std[U] [km s−1] 0.44 ± 0.07 0.44 ± 0.03 0.50 ± 0.03
std[V] [km s−1] 0.38 ± 0.02 0.44 ± 0.04 0.66 ± 0.05
std[W] [km s−1] 0.37 ± 0.06 0.37 ± 0.02 0.39 ± 0.02
ρUV −0.15 ± 0.37 0.20 ± 0.11 0.38 ± 0.07
ρUW −0.01 ± 0.30 0.09 ± 0.08 0.19 ± 0.07
ρVW −0.17 ± 0.17 0.06 ± 0.12 0.29 ± 0.08
||κ|| [m s−1 pc−1] −6.50 ± 6.42 −6.38 ± 7.26 −1.72 ± 8.06
ωx [m s−1 pc−1] 3.27 ± 5.51 −4.99 ± 9.76 −3.60 ± 10.31
ωy [m s−1 pc−1] 2.24 ± 9.78 1.42 ± 6.58 −0.09 ± 7.05
ωz [m s−1 pc−1] −4.44 ± 8.71 6.49 ± 10.11 29.02 ± 11.79
w1 [m s−1 pc−1] 1.45 ± 5.46 −7.04 ± 9.69 2.29 ± 10.46
w2 [m s−1 pc−1] −6.59 ± 10.07 6.49 ± 6.33 1.55 ± 6.76
w3 [m s−1 pc−1] 1.66 ± 8.70 −14.46 ± 10.94 −33.92 ± 12.70
w4 [m s−1 pc−1] −11.19 ± 15.60 −13.56 ± 10.79 −30.24 ± 11.95
w5 [m s−1 pc−1] 10.64 ± 6.32 −9.48 ± 16.32 17.57 ± 18.49

To compare with other works from the literature, we also in-
ferred the parameters of the linear velocity model in the Galac-
tic reference frame. Unfortunately, from the literature works
that report the cluster parameters in this frame, we found that
only Lodieu et al. (2019b) provides the associated uncertainties.
These authors report the cluster location parameters for sources
located within two radii: 10 pc and 20 pc. We use the value 10
pc because it coincides with the selection criteria of Oh & Evans
2020, from which we take the list of members for the cluster
core. In Table 5, we compare the location parameters reported
by Lodieu et al. (2019b) with those inferred here using the Gaia
DR3 data and the linear velocity model. As can be observed,
the parameters show an overall good agreement despite being
inferred from different lists of members and data sets.

Table 5. Location parameters of the Hyades cluster in the Galactic
frame.

Parameter Units Lodieu et al. (2019b) This work
Gaia DR2 Gaia DR3

X [pc] −43.83 ± 0.18 −43.39 ± 0.18
Y [pc] 0.42 ± 0.11 0.35 ± 0.17
Z [pc] −17.05 ± 0.09 −16.78 ± 0.15
U [km s−1] −42.14 ± 0.11 −42.28 ± 0.06
V [km s−1] −19.26 ± 0.04 −19.13 ± 0.02
W [km s−1] −1.12 ± 0.05 −1.29 ± 0.03

In the Galactic reference frame the rotation signal remains
at the 2σ level; however it is now in ωx alone, with a value of
ω = [−13.61 ± 6.21, 19.87 ± 11.82, 15.93 ± 10.30] m s−1 pc−1.
Unfortunately, this rotation signal cannot be directly compared
to the values reported in the literature given that the majority of
these were obtained by analysing the velocity gradients in the
plane of the sky, whereas our model returns a vector of gradients
in the 3D space. Nonetheless, the norm of the rotation vector we
infer here is perfectly compatible, within the 95% HDI, with the
total rotation values of the literature works (see Table 6), except
with the recent value of Hao et al. (2024), which exceeds the
literature values by more than five times. We notice that if the
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Hyades has a rotation signal ∼ 200 m s−1 pc−1, then our method
would detect it on the Gaia DR3 data with a significance level
higher than 5σ (see Fig. 3).

Table 6. Literature values of the Hyades rotational signal.

Authors |ω|
[m s−1 pc−1]

Wayman (1967) 30 ± 40
Gunn et al. (1988) 28 ± 11

Vereshchagin et al. (2013) 40 ± 30
Leão et al. (2019) 42.3 ± 4.0
Hao et al. (2024) 203 ± 20

This work 32.1 ± 11.0

Summarising, the Gaussian linear velocity model imple-
mented here recovers, with excellent accuracy and slightly bet-
ter precision, the cluster’s parameters reported by Oh & Evans
2020 in the ICRS frame and those of Lodieu et al. (2019b) in the
Galactic frame. Furthermore, when applied over the Gaia DR3
data, it unravels, at the 2σ level, the rotational signal of this clus-
ter and confirms most of the rotation values from the literature.
More precise and complete radial velocity measures are needed
to claim the discovery of the Hyades rotation at a higher signifi-
cance level.

4.3. The Praesepe open cluster

The Praesepe open cluster (187.4 ± 3.9 pc, 673+55
−39 Myr, and

more than 2000 members, Lodieu et al. 2019a), has recently
been at the centre of a controversy about its rotational veloc-
ity. The works by Jadhav et al. (2024), Loktin & Popov (2020),
Hao et al. (2022), and Guilherme-Garcia et al. (2023) have anal-
ysed this cluster with independent data and methodologies, find-
ing contradictory results. Loktin & Popov (2020) find a possi-
ble rotation velocity of 400 m s−1 in the periphery of the clus-
ter. Hao et al. (2022) find a clear rotation signal with a ve-
locity of 200 ± 50 m s−1 within their cluster’s tidal radius of
10 pc. Guilherme-Garcia et al. (2023) do not find rotation and
suggest that when found, it results from uncorrected projec-
tion effects (see their Appendix B and Fig. B.1). Finally, based
only on radial velocity data, Jadhav et al. (2024) find a non-
significant (0.5σ) rotational signal of 9±18 cy Gyr−1, equivalent
to 9.2 ± 18.4 m s−1 pc−1.

Here, we explore the internal kinematics of Praesepe with
the Gaussian linear velocity model applied to the Gaia DR3 data
of the list of members utilised by Hao et al. (2022), Guilherme-
Garcia et al. (2023) and Jadhav et al. (2024). Given the contro-
versial results of these works, we run the Gaussian linear ve-
locity model directly on their list of members as well as in the
cleaned subsamples resulting after applying our decontamina-
tion algorithm and restricting the analysis to sources within the
tidal radius of 10.7 pc reported by Lodieu et al. (2019a). Af-
ter applying our decontamination algorithm with a field scale
of 20 pc in position and 5 km s−1 in velocity (and further re-
stricting to the cluster’s tidal radius), we remove 12 (10), 30
(7), and 3 (0) sources from the membership lists by Hao et al.
(2022), Guilherme-Garcia et al. (2023), and Jadhav et al. (2024),
respectively. We notice that all original members by Jadhav et al.
(2024) were contained within the cluster’s tidal radius. Table 7
shows summaries of the posterior distributions from the param-
eters of the Gaussian linear velocity model as inferred in all pre-
vious cases.

In the original samples, all the location parameters agree
with themselves within the uncertainties. However, the standard
deviations in the positions X, Y, and Z are discrepant, with those
inferred from the members by Hao et al. (2022) being almost
two times larger than those of the other cases. On the contrary,
the standard deviations in the velocities U, V, and W are similar
in the three cases. On the other hand, in the samples that were
cleaned and restricted to the tidal radius, we observe that the
location parameters continue to be in agreement with all previ-
ous cases and the velocity dispersion also show similar although
more consistent values <1 km s−1. However, contrary to what
was observed in the original samples, the standard deviations in
positions X, Y, and Z are all now similar, with values ≲3 pc.

The internal motions in the original samples show the fol-
lowing results. First, expansion is only detected at 2σ level in
the sample from Hao et al. (2022), the other two samples show
spurious detections (<1σ). Second, rotation in ωx and ωy is de-
tected at 4σ on the sample by Hao et al. (2022) and at 2σ in ωy
on the sample by Guilherme-Garcia et al. (2023). The sample by
Jadhav et al. (2024) shows a spurious detection (∼1σ) of rotation
in ωy alone although with opposite sign.

The results of the inference on the samples that were clean
and restricted to the tidal radius indicate no significant detec-
tions of rotation and only some hints of contraction along the Z
component. The rotational signal we found in all cases shows
no-significant rotations in the three components, which is con-
sistent with the recent findings by Jadhav et al. (2024) along the
line of sight.

We conclude that the signals of expansion and rotation, and
rotation found on the original lists of members used by Hao et al.
(2022) and Guilherme-Garcia et al. (2023), respectively, result
from the cluster members beyond the tidal radius. We found no
conclusive evidence for the rotation of the cluster’s central re-
gion within its tidal radius. Thus, we confirm that Praesepe’s ro-
tational signal reported in the literature comes from its periphery
(i.e. halo or tails). Moreover, our analysis shows that the apparent
contradiction in the literature results roots in the contaminants
present in the various membership lists.

5. Conclusions

In this work, we introduce, develop, and validate a free and
open-source code for the inference of the phase-space param-
eters of star-forming regions, stellar associations, and open clus-
ters. This code is the multidimensional extension of an already
published methodology that enables its users to simultaneously
infer global-level and source-level parameters of LNSS based on
Gaia data.

This new code offers several methodological improvements
with respect to similar ones from the literature, among which we
mention the simultaneous modelling of positions, velocities, and
their correlations, the treatment of parallax and proper motions
angular correlations, the flexibility of its statistical models, the
treatment of sources with missing values, particularly radial ve-
locities, decontamination algorithms to clean up the input list of
members, and the modelling of kinematic substructures. Further-
more, the comprehensive modelling enables the improvement of
radial velocities and parallaxes through astrometric radial veloc-
ities and kinematically improved parallaxes (see Lindegren et al.
2000).

Our validation with real data shows that the linear velocity
model that we present here offers similar accuracy and slightly
better precision than the one implemented by Oh & Evans
(2020). Nonetheless, Kalkayotl includes an improved version of
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Table 7. Parameters of the Praesepe open cluster as inferred here with Gaia DR3 data from the samples of members (original and restricted to the
tidal radius) reported by Hao et al. (2022), Guilherme-Garcia et al. (2023), and Jadhav et al. (2024).

Case Original Cleaned & <Rtidal
Origin Hao+2022 GG+2023 Jadhav+2024 Hao+2022 GG+2023 Jadhav+2024

Parameter Units

loc[X] [pc] −140.45 ± 0.53 −139.63 ± 0.34 −140.00 ± 0.31 −139.34 ± 0.39 −139.68 ± 0.31 −139.94 ± 0.30
loc[Y] [pc] −68.45 ± 0.45 −67.97 ± 0.18 −68.03 ± 0.18 −67.76 ± 0.26 −68.01 ± 0.17 −68.01 ± 0.17
loc[Z] [pc] 98.43 ± 0.46 98.59 ± 0.24 98.62 ± 0.23 98.40 ± 0.31 98.65 ± 0.23 98.59 ± 0.22
loc[U] [km s−1] −42.65 ± 0.08 −42.52 ± 0.10 −42.62 ± 0.09 −42.66 ± 0.07 −42.66 ± 0.07 −42.67 ± 0.07
loc[V] [km s−1] −20.32 ± 0.07 −20.31 ± 0.05 −20.35 ± 0.05 −20.27 ± 0.06 −20.37 ± 0.04 −20.37 ± 0.04
loc[W] [km s−1] −9.60 ± 0.12 −9.55 ± 0.09 −9.57 ± 0.08 −9.42 ± 0.08 −9.51 ± 0.08 −9.52 ± 0.07
std[X] [pc] 5.40 ± 0.32 3.79 ± 0.13 2.90 ± 0.10 3.34 ± 0.21 3.20 ± 0.11 2.90 ± 0.10
std[Y] [pc] 5.41 ± 0.30 2.91 ± 0.09 2.81 ± 0.08 2.83 ± 0.17 2.77 ± 0.08 2.81 ± 0.08
std[Z] [pc] 5.22 ± 0.30 2.89 ± 0.09 2.69 ± 0.08 2.94 ± 0.18 2.63 ± 0.08 2.68 ± 0.08
std[U] [km s−1] 0.82 ± 0.06 1.28 ± 0.09 1.05 ± 0.08 0.60 ± 0.06 0.80 ± 0.06 0.76 ± 0.06
std[V] [km s−1] 0.72 ± 0.05 0.89 ± 0.04 0.65 ± 0.03 0.68 ± 0.04 0.62 ± 0.03 0.56 ± 0.03
std[W] [km s−1] 1.05 ± 0.07 1.09 ± 0.07 0.79 ± 0.05 0.60 ± 0.05 0.69 ± 0.04 0.63 ± 0.04
||κ|| [m s−1 pc−1] 20.04 ± 8.18 −5.22 ± 11.11 7.56 ± 12.77 1.16 ± 11.37 −18.24 ± 9.90 −2.27 ± 10.55
κx [m s−1 pc−1] 15.04 ± 15.71 15.83 ± 27.94 1.11 ± 27.18 10.08 ± 18.91 3.33 ± 21.60 3.18 ± 22.95
κy [m s−1 pc−1] 60.04 ± 11.15 3.19 ± 18.54 0.09 ± 15.15 20.51 ± 21.08 −22.95 ± 13.82 −4.37 ± 13.26
κz [m s−1 pc−1] −14.96 ± 17.16 −34.68 ± 26.10 21.48 ± 22.25 −27.11 ± 19.91 −35.11 ± 19.20 −5.62 ± 18.56
ωx [m s−1 pc−1] −49.70 ± 10.13 −7.25 ± 16.46 −1.97 ± 13.10 2.02 ± 14.54 −6.08 ± 11.82 −8.87 ± 11.48
ωy [m s−1 pc−1] 49.67 ± 12.46 53.06 ± 22.40 −17.57 ± 18.53 5.09 ± 14.46 5.94 ± 15.74 3.29 ± 15.04
ωz [m s−1 pc−1] 11.35 ± 9.35 8.69 ± 20.14 −9.55 ± 16.75 −7.37 ± 14.85 1.05 ± 14.18 −4.92 ± 14.18
w1 [m s−1 pc−1] 26.13 ± 10.10 −18.03 ± 15.36 −7.75 ± 13.63 −3.58 ± 14.77 6.39 ± 11.52 5.28 ± 11.57
w2 [m s−1 pc−1] 30.61 ± 11.68 3.43 ± 17.60 −1.29 ± 18.54 17.28 ± 13.80 17.36 ± 14.36 18.79 ± 15.27
w3 [m s−1 pc−1] 4.43 ± 9.01 4.68 ± 16.76 −2.13 ± 15.96 3.58 ± 14.29 −7.43 ± 13.07 −6.62 ± 13.30
w4 [m s−1 pc−1] 15.04 ± 15.71 15.83 ± 27.94 1.11 ± 27.18 10.08 ± 18.91 3.33 ± 21.60 3.18 ± 22.95
w5 [m s−1 pc−1] 60.04 ± 11.15 3.19 ± 18.54 0.09 ± 15.15 20.51 ± 21.08 −22.95 ± 13.82 −4.37 ± 13.26

this linear velocity model with Gaussian and Student-T distri-
butions both in the spatial and velocity components. Moreover,
thanks to the efficient Hamiltonian Monte Carlo sampling of the
full posterior distribution of the improved Lindegren et al. (2000)
linear velocity model our methodology can provide objective
detectability criteria for internal kinematic patterns. Thus, the
methodology present here provides the community with a free
and open source code that delivers objective and reproducible
criteria for the detection of patterns of expansion, contraction,
and rotation.

We applied our newly developed methodology on bench-
mark stellar systems where extensive kinematic information is
available in the literature. Our results show good accuracy and
precision, resulting in agreement with the parameter values re-
ported in the literature. We notice that the results of the internal
kinematic patterns are sensitive to contaminants or outliers in
the input list of members. After applying our decontamination
methodology, we found the following results.

In the β-Pic stellar association, Kalkayotl joint velocity
model recovers the source- and group-level parameters from the
literature with excellent accuracy and slightly better precision.
The Gaussian linear velocity models detects expansion at the 2σ
level. By simple inversion, these expansion values translate into
ages that are as accurate and precise as those from the literature.

In the Hyades open cluster, the Gaussian linear velocity
model recovers the literature parameter values with similar ac-
curacy and slightly better precision. Furthermore, it detects rota-
tion at the 2σ level in the ωz component, with a total rotational
magnitude compatible with the literature values.

In the Praesepe open cluster, we find no evidence of rotation
within the cluster tidal radius but only in its outskirts. Thus, we

conclude that the rotation and expansion signals reported in the
literature come from the periphery of the cluster.

Although the mechanisms producing the expansion and rota-
tion of stellar systems are well understood (see, for example, the
introduction of Jadhav et al. 2024), the relative contribution of
these different mechanisms is still poorly characterised. To im-
prove this characterisation, both numerical N-body simulations
with varying initial conditions (Jadhav et al. 2024) and observa-
tional surveys that minimise biases arising from contaminants,
incomplete membership lists, and kinematic substructures are
still needed. The robust statistical methodology that we present
here offers ways to characterise and minimise these biases in
LNSS up to 1.5 kpc.

Finally, we notice that although our methodology offers sev-
eral advantages over those from the literature, it is still compu-
tationally expensive and requires further statistical modelling of
the physical properties of stellar systems, including their spatial
distribution (Olivares et al. 2018), differential rotation (Jadhav
et al. 2024), or the tidal tails of open clusters. Future steps will
be taken to continue improving Kalkayotl’s models.
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Appendix A: Assumptions

Assumption 1. Same as Paper I. Briefly, the Gaia measure-
ments are normally distributed.

Assumption 2. Same as Paper I but extended to all astrometry
and radial velocities. Briefly, the Gaia measurements have zero
point values for all its observables and these are specified by the
user.

Assumption 3. Same as Paper I but extended to proper motions
as well. Briefly, the Gaia parallax and proper motions are spa-
tially correlated in the sky. To correct for these spatial correla-
tions, we now use Eqs. 24 and 25 of Lindegren et al. (2021).

Assumption 4. Same as Paper I. Briefly, the input list of mem-
bers is not biased.

In the 3D and 6D models presented here, the Assumption 4
of Paper I is no longer needed.

Appendix B: Time scalability

In this Appendix, we aim at giving the users of Kalkayotl a rough
idea of the typical amount of time that an execution of the code
may take. To this end, Figs. B.1 and B.2 show the amount of
time, in hours, as a function of the number of stars in the system
for the Student-T family with linear velocity model and GMM
family with joint velocity model, respectively. This graphs were
computed from the simulations created in Sect. 3 and inferred
with the NUTS (Hoffman & Gelman 2011) samplers numpyro
for the Student-T family and the pymc native for the GMM fam-
ily. The numpyro implementation of the NUTS sampler (see
PyMC documentation11) is faster than the native pymc one.
However, the current version of PyMC fails at sampling 6D
GMM with the numpyro sampler. We run the code using two par-
allel Markov chains in a machine with 2.1 GHz CPUs. The exe-
cution time takes into account not only the MCMC inference but
all the auxiliary pre-processing of the data and post-processing
of the chains.

As expected and observed from Figs. B.1 and B.2, the exe-
cution time grows with the number of stars. In addition, the fig-
ures show that for a fixed number of stars, the execution time is
smaller for systems at farther distances (colour code), with this
difference being less pronounced in the GMM case. The smaller
running time of faraway systems is explained by the large un-
certainty of their observables, which simplifies the job of finding
the initial parameter values and, thus, the subsequent sampling
of the chains.

11 https://www.pymc.io/welcome.html

Fig. B.1. Time scalability of Kalkayotl’s runs done with the numpyro
NUTS sampler as a function of the number of stars. The lines and
shaded regions depict the mean and 2σ percentiles, respectively, from
the grid of stellar systems created using the Student-T family with the
linear velocity model (see Sect. 3).

Fig. B.2. Time scalability of Kalkayotl’s runs done with the native pymc
NUTS sampler as a function of the number of stars. The lines and
shaded regions depict the mean and 2σ percentiles, respectively, from
the grid of stellar systems created using the GMM family with velocity
model (see Sect. 3).
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