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Fig. 1. Overview. Given a single image, the existing image-to-3D generative models always synthesize 3D meshes with flawed geometry and RGB textures
only. Our method not only boosts existing approaches with PBR materials, empowering relighting under various lighting conditions, but also boosts the
object’s normal maps, capturing more intricate details and better aligning with the given image. Notably, we fine-tune Stable Diffusion to estimate the albedo
map from the single-view RGB image and lift it to multi-view albedo maps for a complete albedo UV.

Automatic 3D content creation has gained increasing attention recently,
due to its potential in various applications such as video games, film indus-
try, and AR/VR. Recent advancements in diffusion models and multimodal
models have notably improved the quality and efficiency of 3D object gen-
eration given a single RGB image. However, 3D objects generated even by
state-of-the-art methods are still unsatisfactory compared to human-created
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assets. Considering only textures instead of materials makes these methods
encounter challenges in photo-realistic rendering, relighting, and flexible
appearance editing. And they also suffer from severe misalignment between
geometry and high-frequency texture details. In this work, we propose
a novel approach to boost the quality of generated 3D objects from the
perspective of Physics-Based Rendering (PBR) materials. By analyzing the
components of PBR materials, we choose to consider albedo, roughness,
metalness, and bump maps. For albedo and bump maps, we leverage Stable
Diffusion fine-tuned on synthetic data to extract these values, with novel us-
ages of these fine-tuned models to obtain 3D consistent albedo UV and bump
UV for generated objects. In terms of roughness and metalness maps, we
adopt a semi-automatic process to provide room for interactive adjustment,
which we believe is more practical. Extensive experiments demonstrate
that our model is generally beneficial for various state-of-the-art generation
methods, significantly boosting the quality and realism of their generated 3D
objects, with natural relighting effects and substantially improved geometry.
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1 INTRODUCTION
3D content generation has gathered widespread interest in recent
years for its vast potential in diverse applications, such as video
games, filmmaking, and AR/VR. The advancement of diffusion mod-
els [Ho et al. 2020; Rombach et al. 2022a] has precipitated a paradigm
shift in 3D content generation, significantly enhancing the realism of
produced 3D objects. Owing to its unique fast feedforward pipeline
and controllability, 3D from a single image gradually becomes the
main pipeline in 3D content generation. Given an RGB image and
a conditional text prompt, these methods [Hong et al. 2024; Liu
et al. 2024a; Long et al. 2024; Wang et al. 2024b; Xu et al. 2024a] can
project the input image to multi-view images and then fuse them
into a 3D mesh with compelling textures and great 3D consistency.

Notwithstanding the remarkable progress, existing methods still
suffer from two fundamental drawbacks. For one, all of them can
only generate 3D objects with textures but ignore more crucial
materials, which are imperative for rendering under various lighting
conditions. The absence of materials not only compromises the
photorealism of 3D objects but also constrains their utility in a
wider range of downstream applications. For another, the generated
3D objects often exhibit a misalignment between their geometry
and high-frequency details of corresponding textures, resulting in
a modest geometry quality that falls short of expectations. Even
when endowed with plausible materials, these 3D objects tend to
exhibit unrealistic artifacts under novel illuminations.
In this paper, we propose a novel approach to boost 3D object

generation in the perspective of Physics-Based Rendering (PBR)
materials. It works in a plug-and-play manner that is compatible
with any single image-to-3D generation method. By considering
PBR materials, objects generated with our approach can be more
photorealistic and relightable thanks to the involvement of concepts
like albedo, roughness, and metalness. Besides, the misalignment of
high-frequency geometry details can also be substantially improved
since PBR materials cover bump maps that reflect intricate texture-
aligned details.

In our proposed approach, different components of PBR materials
are handled in different ways to enhance their practical value, where
albedo maps are predicted from the input RGB image, bump maps
are iteratively optimized given a 3D mesh and its albedo UV, and
roughness and metalness maps are determined in a semi-automatic
way, to leave space for interactive adjustment as desired by practical
workflows. Specifically, to predict albedo maps and optimize bump
maps, we fine-tune Stable Diffusion with synthetic data to obtain
image-to-albedo and image-to-normal diffusion models, motivated

by the promising prospects of unleashing the diffusion priors for in-
trinsic properties. Subsequently, to obtain the albedo UV and bump
UV of a target 3D object, we first convert the input image into an
albedo map, which is fed into an image-to-3D generation method to
generate multi-view albedo maps. we empirically found this leads
to satisfactory results since albedo maps can be seen as clean im-
ages without much noise. A 3D mesh with a complete albedo UV
is then obtained by fusing these multi-view albedo maps, whose
geometry contains severe misalignment as discussed above. We thus
further apply an iterative refinement process based on the previ-
ously fine-tuned image-to-normal diffusion model, where we refine
the original normals by optimizing bump UV from different viewing
angles, until satisfactory normals are obtained. While we can adopt
a similar prediction process for roughness and metalness UV, we
argue that a semi-automatic process with interactive adjustment
functionality is more preferred in real applications. In our proposed
approach, such a semi-automatic process is achieved by leveraging
the Segment-Anything-Model [Kirillov et al. 2023] to obtain 3D
segmentation masks indicating object regions that should be con-
sistent in terms of semantics, as well as roughness and metalness
values. Afterwards, the roughness and metalness values of each
part can be recommended by powerful Vision-Language Models
(VLMs) [Achiam et al. 2023; Liu et al. 2023c; Team et al. 2023] or
manually adjusted by experienced 3D artists.
As shown in Figure 1, our fine-tuned diffusion models are capa-

ble of estimating accurate albedo and normal maps from a single
RGB image. Thanks to such superior performance, our plug-and-
play approach seamlessly integrates CRM [Wang et al. 2024b], a
state-of-the-art single image-to-3D generation approach, to produce
high-quality 3D objects with authentic PBR materials that support
relighting under diverse illuminations. Exhaustive experiments, as
shown in Figure 3, 11 and 9, demonstrate that our model can substan-
tially boost various 3D generation frameworks, efficiently yielding
3D assets with relightable capability and intricate normal details.

2 RELATED WORK
Text-to-3D generation with 2D diffusion models. With the advance-

ment of text-to-image diffusionmodels, a line of research work seeks
to exploit strong priors from 2D diffusion models for 3D content gen-
eration. Pioneers, DreamFusion [Poole et al. 2023] and SJC [Wang
et al. 2023a], propose Score Distillation Sampling (SDS) (also known
as Score Jacobian Chaining) that significantly facilitates the devel-
opment of this area. Following the SDS-based 2D-lifting method,
recent works have achieved promising results through improved
score distillation loss [Wang et al. 2023b], texture refinement [Chen
et al. 2024; Liang et al. 2024], multi-view diffusion model [Shi et al.
2024], or more advance 3D representations [Li et al. 2024a]. How-
ever, these methods solely generate 3D objects with RGB textures,
devoid of materials, thereby failing to satisfy the requirements of
real-world applications. Fantasia3D [Chen et al. 2023] tried to model
PBR materials by disentangling geometry and texture but lacked
the necessary constraints on PBR materials and illuminations to
achieve such disentanglement. RichDreamer [Qiu et al. 2024] and
UniDream [Liu et al. 2023b] both employ diffusion models trained
on the albedo domain for PBR material modeling, but unfortunately,
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Fig. 2. Overview of our 3D generation pipeline.Given a single image, we first convert it to an albedo map using our fine-tuned diffusion model. Conditioned
on this derived albedo, the base method to be boosted will generate multi-view albedo maps and then fuse them into a 3D mesh and an albedo UV. Afterwards,
we leverage a 3D semantic mask to obtain complete metalness and roughness UVs by acquiring the VLMs or 3D artists’ manual adjustment. Moreover, an
iterative normal refinement is employed to boost the original flawed normals, empowering realistic relighting results.

they inadvertently bake geometry details into the metalness and
roughness components. Unlike them, our approach leverages the
diffusion priors for albedo estimation and incorporates 3D semantic
masks for more plausible metalness and roughness maps.

Single image-to-3D generation. By training on medium-sized 3D
object datasets, prior works have investigated image-conditioned
3D generative models on various 3D representations [Cheng et al.
2023; Liu et al. 2023a; Melas-Kyriazi et al. 2023; Müller et al. 2023],
but the diversity and generalization of their produced 3D objects are
significantly limited. The seminal work, Zero123 [Liu et al. 2023d],
fine-tunes a view-conditioned diffusion model on a large-scale 3D
dataset, Objaverse [Deitke et al. 2023], for novel view synthesis,
inspiring plenty of optimization-based approaches [Lin et al. 2024;
Qian et al. 2024; Sun et al. 2024]. Meanwhile, some works [Liu et al.
2024b,a; Long et al. 2024] design a more promising reconstruction-
based paradigm that consists of multi-view image generation and
3D reconstruction from these views. Given a single image, Won-
der3D [Long et al. 2024] generates 6 novel views and the correspond-
ing normal maps, which are then fused to a textured 3D mesh via
NeuS [Wang et al. 2021]. Recently, LRM-series methods [Hong et al.
2024; Li et al. 2024c; Tochilkin et al. 2024; Wang et al. 2024a,b; Xu
et al. 2024a,b] have received increasing attention due to their dis-
tinctive feed-forward architecture and rapid reconstruction speeds.
However, all these image-to-3D methods ignore PBR materials and
their produced 3D objects lack geometry details. we aim to boost
all of them with realistic PBR materials and refine their created 3D
assets with intricate normals.

Material Capture and Generation. Thanks to the advent of deep
learning, single flash image material estimation [Deschaintre et al.
2018; Gao et al. 2019; Guo et al. 2020; Hui et al. 2017; Kang et al.
2018] has already made great progress by leveraging U-Net archi-
tecture [Ronneberger et al. 2015], albeit under the assumption of
2D planar geometry. Moreover, prior endeavors [Forsyth and Rock
2021; Sang and Chandraker 2020; Wimbauer et al. 2022] aimed at
recovering materials from the in-the-wild single RGB image rely on
feed-forward neural networks, whereas we target unleashing 2D
diffusion priors to estimate albedo instead. On the other hand, some

methods [Kocsis et al. 2024b; Lopes et al. 2024; Sartor and Peers
2023; Vecchio et al. 2023; Zeng et al. 2024] utilize diffusion-based
generative models to synthesize material conditioned on input pho-
tographs. Similar to ours, Another body of research works [Chen
et al. 2022; Vainer et al. 2024; Xu et al. 2023; Youwang et al. 2024]
concentrates on generating 3D meshes with PBR materials, but they
either require extensive training or cannot achieve satisfactory ma-
terial disentanglement from illuminations. In contrast, our method
enhances overall fidelity and realism with realistic PBR materials
where the normal maps help to recover more geometry details.

3 PRELIMINARIES

3.1 Stable Diffusion
Stable Diffusion is a latent diffusion model [Rombach et al. 2022b]
which has achieved state-of-the-art performance in text-to-image
generation. It performs the diffusion process in latent space to enable
the generation of high-resolution images. A variational autoencoder
(VAE) is used to decode and encode the image to and from the latent
space. The crux of the diffusion process is a U-Net that predicts the
noise 𝜖 from a noisy latent z𝑡 , given a text embedding s and the
timestep 𝑡 : 𝜖 = 𝑔(z𝑡 ; s, 𝑡), where 𝑔 represents the function modeled
by the U-Net. By iteratively removing the noise from an initial
random noise, a clean latent z0 is generated, which can then be
decoded into the resulting image.

Existing works have demonstrated that pre-trained Stable Diffu-
sion can serve as a vision foundation model. After fine-tuning, they
can be adapted for various down-streaming vision tasks, such as
relighting [Kocsis et al. 2024a], human reenactment [Hu et al. 2024],
image editing [Huang et al. 2024], and depth estimation [Ke et al.
2024]. In this work, we exploit pre-trained stable diffusion as a prior
model for predicting albedo and normal maps from a single image.

3.2 3D Reconstruction from a Single Image
The reconstruction-based methods for recovering 3D meshes from
single images typically involve a two-stage pipeline, comprising the
generation of multi-view images and the subsequent reconstruction
of 3D geometry from these synthesized views. Given a single image
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𝐼0 ∈ R𝐻×𝑊 ×𝐶 , these approaches employ a multi-view diffusion
model G𝑀 to generate a set of consistent multi-view images:

𝐼1:𝑁 = G𝑀 (𝐼0). (1)

Thereafter, these multi-view images 𝐼1:𝑁 are fused into a 3D mesh
𝑀 with accompanying textures 𝑇 . These methods either leverage
sparse-view 3D reconstruction algorithms such as NeuS [Wang
et al. 2021] or train a fast feed-forward reconstruction model [Hong
et al. 2024]. While sparse-view reconstruction algorithms require
a significant amount of time to process each object, feed-forward
methods, which are trained on large-scale 3D datasets, have demon-
strated exceptional speed and generalization capabilities. Denote
the reconstruction model as G𝑅 , we formulate this process as

(𝑀,𝑇 ) = G𝑅 (𝐼1:𝑁 ), (2)

where the texture 𝑇 can be further expanded to a UV map.

4 METHODOLOGY
This section elaborates on our plug-and-play method that boosts
single image-to-3D generation frameworks through PBR materials.
The overview of our whole pipeline is illustrated in Figure 2. Sec-
tion 4.1 first provides details on the fine-tuning of Stable Diffusion
to accurately estimate the albedo and normal map from a given
RGB image. Following the estimation of the albedo, we elaborate in
Section 4.2 on how to leverage the Vision-Language Models (VLMs)
to assign plausible values for metalness and roughness terms, with
the guidance of 3D semantic masks. Finally, we propose the iterative
normal refinement in Section 4.3 where the derived normal maps in
Section 4.1 are treated as the pseudo-ground truth.

4.1 Albedo and Normal Estimation
In our pipeline, two image-to-image translation modules are em-
ployed to predict the albedo and normal map, respectively, from
a single input image. However, estimating albedo or normal maps
from a single image is a highly ill-posed problem due to the lack
of lighting or geometry information. Therefore, a strong prior is
essential to recover plausible albedo and normal maps from a single
image. Inspired by existing work on monocular depth estimation
[Ke et al. 2024], we exploit the data-driving prior inside the Stable
Diffusion [Rombach et al. 2022b] to achieve zero-shot albedo and
normal map estimation. We show that by slightly modifying the U-
Net structure and fine-tuning the pre-trained stable diffusion model
on the synthetic dataset, we can obtain an image-to-image trans-
lation model that generalizes well to unseen in-the-wild data. It is
noteworthy that such an image-to-image translation paradigm leads
to high-quality albedo maps without clear highlights or shadows
and intricate normals with fine details.

To this end, we initially encode the input single image using the
VAE encoder E into a latent code z𝑖 . Then, we concatenate the input
latent with the noisy latent and feed the resulting composite latent
code into the U-Net of Stable Diffusion:

𝜖task = 𝑔task (z𝑡 ∥ z𝑖 ; s∅ , 𝑡), task ∈ {normal, albedo}, (3)

where ∥ is the concatenation operator, and s∅ indicates an empty
text embedding. Note that the U-Net 𝑔 is originally designed to take
in the noisy latent only. Therefore, we duplicate the number of input

channels for the first convolutional layer inside U-Net to enable the
concatenated latent. The U-Net gradually denoises the noisy latent
into a clean latent, which is then decoded into a normal map or an
albedo map using the VAE decoder. Theoretically, we can control
whether the U-Net generates the normal or albedo map based on the
text prompt s. However, we observe that sharing the same network
for different tasks leads to slightly degenerate predictions. Therefore,
we train two separate U-Net, 𝑔normal and 𝑔albedo, for albedo and
normal estimation, and leave the text embedding as an empty text
embedding s∅ .

4.2 PBR Material Generation
To obtain a complete albedo UV, a straightforward solution is to
utilize our fine-tuned image-to-albedo diffusion model to derive
multi-view albedo maps from generated multi-view images 𝐼1:𝑁
as described in Equation (1). However, we empirically find such a
naive approach results in inconsistent albedo maps. Instead, we first
leverage the diffusion model to convert the given single image to the
albedo map following Equation (3), and then employ Equation (1)
to synthesize multi-view albedo maps conditioned on this derived
albedo. The multi-view albedo map can be fused to a 3D mesh 𝑀

and an albedo UV 𝐴 via Equation (2).
While generating the metalness and roughness maps, we conform

to the inherent property of PBRmaterials, i.e., surface areas with sim-
ilar semantic characteristics tend to exhibit consistent values. Specif-
ically, we project the reconstructed 3D mesh from 6 orthographic
views and obtain 6 orthographic albedo maps, which are segmented
into different parts via the Segment-Anything-Model [Kirillov et al.
2023]. Through voting strategy in the overlapping regions, such
six segmentation results can be seamlessly integrated into a 3D
semantic mask, as illustrated in Figure 2. Thereafter, we feed the
given image into Gemini [Team et al. 2023], one of the powerful
Vision-Language models, to get the recommended values of metal-
ness and roughness terms associated with different semantic parts.
Equipped with this 3D mask, we can easily extend these values to
the entire 3D object, thereby generating comprehensive metalness
and roughness UVs. Moreover, it’s noteworthy that the values of
such two terms are typically adjusted by experienced 3D artists in
practical 3D content creation workflows.

4.3 Iterative Normal Refinement
Unfortunately, the normal map of reconstructed 3D meshes con-
tains too many flaws, leading to poor relighting results as shown
in Figure 4. To overcome this challenge, we propose iterative nor-
mal refinement by using the aforementioned normal estimation
diffusion model.
We draw inspiration from the texture refinement presented in

DreamGaussian [Tang et al. 2024] and propose a refinement strat-
egy involving optimizing a bump map, which combines with the
original flawed normal 𝑛𝑜 to produce a refined normal map 𝑛𝑓 (𝜃 ).
Specifically, an MLP Γ parameterized as 𝜃 is utilized to predict the
bump map 𝑛𝑏 (𝜃 ). For any point 𝑝 ∈ 𝑅3 on the surface of a 3D mesh
𝑀 , we apply the hash-grid positional encoding 𝛽 (·) on point 𝑝 and
then obtain the bump map and refined normal map via:

𝑛𝑏 (𝜃 ) = Γ(𝛽 (𝑝);𝜃 ), 𝑛𝑓 (𝜃 ) = 𝑛𝑜 ⊕ 𝑛𝑏 (𝜃 ), (4)
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where ⊕ represents the special operation for normal integration.
To enable the optimization of the bump map 𝑛𝑏 (𝜃 ), we leverage

our fine-tuned image-to-normal diffusion model to derive the target
normal maps 𝑛tgt from the albedo maps with fine details. Therefore,
we first render multiple normal maps and the corresponding albedo
maps along a series of different views. Then, we employ the encoder
E of VAE to encode the integrated normalmaps𝑛𝑓 (𝜃 ) and the albedo
maps 𝑎 into latent codes 𝑧𝑛 = E(𝑛𝑓 (𝜃 )) and 𝑧𝑎 = E(𝑎), respectively.
During the inference, The normal latent 𝑧𝑛 is perturbed with a
random noise 𝜖 , and then concatenate with the albedo latent 𝑧𝑎 to
predict the noise 𝜖normal following:

𝜖normal = 𝑔normal
(
𝑧𝑛 + 𝜖 (𝑡0) ∥ 𝑧𝑎 ; s∅ , 𝑡0

)
, (5)

where 𝑡0 represents the initial timestep selected to balance the infor-
mation from the original normal and the priors from the image-to-
normal diffusion model. Subsequently, the target latent code 𝑧𝑛,tgt
can be obtained and then feed into the decoder D of VAE for the
target normal map 𝑛tgt = D(𝑧𝑛,tgt), which aligns with the albedo
map and thus contains enough intricate geometry details. Regarding
the target normal map 𝑛tgt as the pseudo-ground truth, we optimize
the bump map 𝑛𝑏 (𝜃 ) via a pixel-wise MSE loss:

𝐿𝑀𝑆𝐸 = ∥𝑛𝑓 (𝜃 ) − 𝑛tgt∥22 (6)

5 EXPERIMENTS

5.1 Implementation Details
5.1.1 The fine-tuning of Stable Diffusion. The Stable Diffusion-V2.1-
base model is selected as our base model for fine-tuning. During the
fine-tuning, we freeze the VAE and only fine-tune the U-Net using
the standard denoising diffusion objective: Ltask = ∥𝜖 − 𝜖task∥22,
where 𝜖 ∼ N(0, 𝐼 ) is a random noise map. As mentioned in Sec-
tion 4.1, the input channels of the first convolution layer inside U-Net
are duplicated to empower the desirable image-to-image translation
ability. During the training, we zero-initialize the weight for the
duplicated channels in the input layers and train our model on the
HyperSim [Roberts et al. 2021], a synthetic indoor-scene dataset
containing ground truth albedo and normal map. The fine-tuning on
albedo and normal maps takes 16 hours and 22 hours respectively
on a single NVIDIA Tesla A100 GPU.

For the albedo estimation, we observe degenerate results on object
images owing to the color space gap between indoor-level and
object-level data. To address this issue, we further fine-tune the
albedo estimationmodel on the Objaverse [Deitke et al. 2023] dataset
to align the color space of the model output to the object-level
data, which roughly requires 28 hours of training on 4 A100 GPUs.
Importantly, we empirically find direct fine-tuning on the Objaverse
dataset is insufficient to remove strong lighting effects, such as
highlights and shadows, from the input RGB images. In contrast, the
fine-tuned image-to-normal diffusion model demonstrates superior
performance on object-level data, successfully recovering intricate
normal maps from the object images.

5.1.2 Methods for boosting. We select four different reconstruction-
based methods as the base models to boost: Wonder3D [Long
et al. 2024] generates 6-view images and normal maps that are
fused to a textured 3D mesh via NeuS [Wang et al. 2021]; Tri-
poSR [Tochilkin et al. 2024] builds upon LRM structure but affords

substantial improvements in model design and training processes.
While CRM [Wang et al. 2024b] predicts 6 orthographic images
and then employs a convolutional U-Net for 3D reconstructions,
InstantMesh [Xu et al. 2024a] builds a purely transformer-based
reconstruction architecture, offering superior flexibility and training
scalability.

5.2 Normal boosting
In Figure 3, we present a visual comparison of normal boosting re-
sults for four distinct base models, accompanied by the input image
and our estimated albedo map at the top. As illustrated, the base
methods CRM and Wonder3D yield unsatisfactory object geome-
tries, plagued by numerous flaws, whereas InstantMesh tends to
reconstruct 3D meshes that lack essential geometry details. After
our boosting, the resulting normal maps exhibit a significant re-
duction in geometry flaws and effectively capture more intricate
details aligning with the corresponding images. It’s noteworthy
that TripoSR is prone to predict more artificial geometry details
but ours can successfully avoid such a dilemma. Figure 4 provides
further validation of our normal boosting results through relighting
experiments, wherein it is evident that the generated PBR materials
yield satisfactory relighting outcomes only when combined with
the boosted normal maps. Furthermore, as shown in Figure 5, our
method is also capable of boosting the normal maps generated by
DreamCraft3D [Sun et al. 2024], a prominent optimization-based
approach for synthesizing 3D object meshes from single images.

5.3 Qualitative Comparison to Baselines
We compare our albedo estimation module with two strong base-
lines [Sang and Chandraker 2020; Wang et al. 2023c] aiming to
recover the albedo map from the given single image. Unlike baseline
methods, our method is able to derive albedo maps that effectively
eliminate strong lighting effects as shown in Figure 6. We also try to
compare our PBR material results with baselines enabling PBR ma-
terial generation. In the absence of prior work focused on material
generation for reconstruction-based image-to-3D methods, we opt
to compare our material generation results with those of two repre-
sentative text-to-3D approaches, Fantasia3D [Chen et al. 2023] and
RichDreamer [Qiu et al. 2024]. Figure 9 shows that Fantasia3D fails
to exclude highlights or shadows from the obtained albedo maps,
whereas RichDreamer incorrectly assigns geometry details to the
variations in the metalness and roughness maps, leading to unreal-
istic relighting results under various novel illuminations. Thanks to
our image-to-albedo diffusionmodel and 3D semantic masks, we can
generate high-quality PBR materials that more accurately conform
to the requirements of real-world 3D content creation workflows.
Moreover, our method also supports flexible material editing as
shown in Figure 10.

5.4 User Study
We conduct an experiment involving 20 diverse 3D objects across
4 base models, totaling 80 pairwise comparisons, to evaluate the
perceptual quality enhancement of our boosted results relative to
prior work. For each comparison, participants will view the input
image, original and boosted normal maps, and relighting outcomes
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Fig. 3. Normal boosting for four different methods. Our iterative normal refinement significantly reduces the original geometry flaws and successfully
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method can avoid this issue.

Normal Relighting 1 Relighting 2Relighting 2Relighting 1Normal

Fig. 4. Our refined normal maps lead to improved relighting outcomes
under novel lighting environments. (Zoom in for best view)

pre- and post-boosting. The presentation order is randomized to
maintain the questionnaire’s integrity. Participants assess the quality
of normal maps and the naturality of relighting, selecting the result
superior in visual fidelity and realism. Feedback from 60 participants
is collected, and preference ratios are computed for four different
base models against our boosting model as shown in Table 1.

Table 1. User study. The ratios show users’ preference towards the percep-
tual quality of results generated by base models and boosting models.

Method CRM InstantMesh TripoSR Wonder3D Total

base (%) 9.55 14.25 17.46 25.50 16.49
boosting (%) 90.45 85.75 82.54 74.50 83.51

5.5 Usability Study
We assess the effectiveness of our method through a usability study
with two professional artists and eight non-expert Internet users
unfamiliar with 3D creation. Participants can generate 3D objects
using a base Image-to-3D model and enhance them with our tool.
The general agreement among participants is that our tool substan-
tially improves 3D object quality. However, one artist notes that the
generated objects are incompatible with their required format, as
the base models only produce triangle meshes. Additionally, seven
participants express dissatisfaction with the lengthy generation pro-
cess, which takes 25 minutes for base models and 5 minutes for our
boosting. We anticipate future research to develop more efficient
image-to-3D generative models. Regarding the boosting process, the
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Image Original Boosted

Fig. 5. Normal boosting on DreamCraft3D. Our iterative normal refine-
ment also shows its effectiveness on typical 3D objects generated by the
prominent method DreamCraft3D.
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Fig. 6. Qualitative comparison of albedo estimation. Regarding albedo
estimation from the single image, our fine-tuned diffusion model outper-
forms two strong baselines on in-the-wild testing cases.

primary time expenditure is attributed to the interactive phase with
the SAM model for 3D semantic masks. We foresee the potential for
streamlining this step with advanced 3D models capable of direct
mask prediction.

5.6 Ablation Study
5.6.1 Multi-view albedo estimation. As discussed in Section 4.2, a
naive application of our image-to-albedo diffusion model to multi-
view RGB images would yield inconsistent albedo maps. We show
the derived albedo maps from such an inferior solution in Figure 7.

5.6.2 Further fine-tuning on the Objaverse dataset. After the fine-
tuning on the HyperSim dataset [Roberts et al. 2021], our image-
to-albedo diffusion model demonstrates suboptimal performance
on object data, as illustrated in Figure 8. The albedo comparison
presented therein underscores the importance of additional fine-
tuning on the Objaverse dataset [Deitke et al. 2023].

Fig. 7. Naively applying our image-to-albedo diffusion model leads to de-
generate and inconsistent albedo maps.

Image w/o Objaverse
fine-tuning

w/ Objaverse
fine-tuning Image

w/o Objaverse
fine-tuning

w/ Objaverse
fine-tuning

Fig. 8. After fine-tuned on the HyperSim, our image-to-albedo diffusion
model is prone to predict unnatural darker albedo maps, but the derived
albedo turns much better after additional fine-tuning on the Objaverse.

5.7 Additional Results
Our boosting method functions as a post-processing pipeline, in-
dependent from the 3D generation process. To further validate the
effectiveness and generalizability of our approach, we conduct addi-
tional experiments on Era3D [Li et al. 2024b], an advanced version
of Wonder3D. The results of these tests continue to demonstrate
the efficacy of our method, as depicted in Figure 3 and Figure 4 of
the supplementary material. Moreover, our approach successfully
enhances geometry and produces realistic PBR materials for objects
crafted by professional 3D artists and featuring complex geometry
and realistic appearance, which are sourced from the Objaverse-XL
dataset [Deitke et al. 2024], as illustrated in Figure 12, Figure 13, and
the supplementary material’s Figure 1 and Figure 2.

6 CONCLUSION AND LIMITATIONS

6.1 Conclusion
This paper presents a novel framework for enhancing existing single
image-to-3D generation methods with high-fidelity PBR materials.
Our approach involves two key components. Firstly, we adapt the
Stable Diffusion model to infer albedo maps from single images and
leverage powerful VLMs to derive plausible values for metalness
and roughness terms. Subsequently, we augment the original tex-
ture maps with relightable PBR materials, thereby enabling realistic
relighting under novel illumination conditions. Secondly, we de-
sign an iterative normal refinement module to enhance the original
flawed normal maps with learnable bump maps. As a result, our re-
fined normal maps exhibit intricate geometry details and improved
alignment with the corresponding RGB images. We believe that our
boosting scheme has the potential to significantly accelerate the
development of single image-to-3D generation techniques.

6.2 Limitations
Despite the superior capability, our boosting model still exhibits
certain limitations. The image-to-albedo diffusion model introduces
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inherent randomness in albedo prediction, resulting in a color dis-
crepancy between RGB images and their corresponding albedomaps.
Additionally, the model’s accuracy is contingent upon dataset con-
straints and diffusion prior performance, which does not ensure pre-
cise estimations for all images. The image-to-normal diffusionmodel
similarly suffers from these issues. Furthermore, our pipeline’s opti-
mization of bump maps through albedo-to-normal map prediction
is not wholly logical, particularly for monochromatic objects where
albedo maps simplify to color blocks, devoid of geometric informa-
tion, leading to the image-to-normal prediction model’s failure.
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Fig. 9. Qualitative comparison of material generation. While baseline methods Fantasia3D and RichDreamer struggle to eliminate highlights or shadows
from albedo maps, our generated PBR materials effectively circumvent this hurdle and present more natural relighting results under various illuminations.

Albedo M & R 1 M & R 2 M & R 3 Relighting1 Relighting2 Relighting3

Fig. 10. Our method empowers flexible editing on PBR materials.
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Fig. 11. Additional results demonstrate the effectiveness of our iterative normal refinement for four different image-to-3D methods.

Fig. 12. Normal boosting results on artist-crafted objects. Our iterative normal refinement can also boost the normal of 3D meshes made by professional
3D artists.

Fig. 13. PBR material generation results on artist-crafted objects. It is noteworthy that these objects equipped with our generated PBR material present
natural relighting results.
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