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Abstract
In online advertising, once an ad campaign is deployed, the auto-
mated bidding system dynamically adjusts the bidding strategy to
optimize Cost Per Action (CPA) based on the number of ad con-
versions. For ads with a long conversion delay, relying solely on
the real-time tracked conversion number as a signal for bidding
strategy can significantly overestimate the current CPA, leading to
conservative bidding strategies. Therefore, it is crucial to predict
the number of long-delayed conversions. A typical method is to
aggregate the predicted click-through conversion rate (pCTCVR)
of ad impressions as the predicted ad conversion number. However,
this method often results in overestimation or underestimation.
Therefore, we propose predicting the number of conversions at
the campaign level and adjusting the bidding strategy accordingly.
Nonetheless, it is challenging to predict ad conversion numbers
through traditional regression methods due to the wide range of ad
conversion numbers. Previous regression works have addressed this
challenge by transforming regression problems into bucket classifi-
cation problems, achieving success in various scenarios. However,
specific challenges arise when predicting the number of ad conver-
sions: 1) The integer nature of ad conversion numbers exacerbates
the discontinuity issue in one-hot hard labels; 2) The long-tail
distribution of ad conversion numbers complicates tail data predic-
tion. In this paper, we propose the Long-Delayed Ad Conversions
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Prediction model for bidding strategy (LDACP), which consists of
two sub-modules. To alleviate the issue of discontinuity in one-hot
hard labels, the Bucket ClassificationModule with label Smoothing
method (BCMS) converts one-hot hard labels into non-normalized
soft labels, then fits these soft labels by minimizing classification
loss and regression loss. To address the challenge of predicting tail
data, the Value Regression Module with Proxy labels (VRMP) uses
the prediction bias of aggregated pCTCVR as proxy labels. Finally,
a Mixture of Experts (MoE) structure integrates the predictions
from BCMS and VRMP to obtain the final predicted ad conversion
number. Offline experiments and the online A/B test conducted on
the Kuaishou platform demonstrate that our method outperforms
existing competitive approaches.
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1 Introduction
Kuaishou is one of the top short video platforms in China, attract-
ing hundreds of millions of daily active users. Advertisers place
ads on Kuaishou to increase brand awareness and promote busi-
ness growth. Optimized Cost Per Mille (oCPM) bidding [1] is a
commonly used bidding strategy. When advertisers use oCPM bid-
ding, they need to configure their ad campaigns [2], including the
budget, optimization objectives and target Cost Per Action (CPA).
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The ranking model predicts the pCTCVR (predicted click-through
conversion rate) [3], converts advertisers’ CPA bids into impression
bids, which are then used in traffic auctions. We define the cost rate
as the ratio of actual CPA to target CPA, i.e., cost rate = actual CPA
/ target CPA. To protect the interests of advertisers and ensure the
profits of the platform, a cost rate closer to 1 is preferable. On the
Kuaishou platform, the proportion of ad campaigns with a cost rate
between 0.8 and 1.2 is referred to as the Compliance Rate (CR),
which reflects the advertising cost control ability of the advertising
platform. As illustrated in Figure 1, to align the actual CPA of an
ad campaign with the target CPA, the automated bidding system
will adjust the campaign’s CPA bid based on the real-time tracked
conversion number. However, for ads with a long conversion delay,
conversions may occur days after impressions, making it impossi-
ble to track all conversions in real time. While some studies have
explored how to handle the delayed feedback of conversions for
conversion rate modeling [4, 5], there is little research specifically
focused on predicting the conversion number for ads with a long
conversion delay. A typical method is to aggregate the pCTCVR of
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Figure 1: For ad campaigns using oCPM bidding, the auto-
mated bidding system dynamically adjusts the CPA_bid co-
efficient based on the number of real-time tracked ad con-
versions. Our proposed LDACP predicts the number of con-
versions for ads with a long conversion delay. The predicted
number of conversions will determine the bidding strategies
of the automated bidding system.

ad impressions as the predicted conversion number. This method is
simple and intuitive, and when combined with pCTCVR calibration
technology [6–8], it tends to make the predicted number of conver-
sions for the overall ad market align more closely with the actual
number of conversions. However, this method may not guarantee
the accuracy of prediction at the campaign level, potentially leading
to overestimation for some ad campaigns while underestimation
for others. Furthermore, because the prediction of pCTCVR and
calibration takes place before the impression, this method is unable
to leverage post-impression features like the number of clicks and
views, which are typically positively correlated with conversions.
To address these challenges, we propose to directly predict the num-
ber of conversions from ad impressions in a campaign, aligning it

with the adjustment level of the automated bidding system, and
fully leveraging post-impression features to enhance prediction
accuracy. As the number of ad conversions is an integer, we treat
the prediction of ad conversion numbers at the campaign level as a
regression problem. Next, we discuss the development of regression
methods and the specific challenges in our scenario. In recent years,
with the development of deep learning technology, regression meth-
ods have shifted from the traditional machine learning paradigm
to the deep learning paradigm. Some literature shows that as the
range of label values expands, the difficulty of regression tasks also
increases. Some previous studies predict target values by fitting
parameterized distributions [9, 10] or by logistic regression [11],
but these methods have strong assumptions about data distribution,
and if the data distribution does not meet these assumptions, it may
lead to poor performance. The field of ordinal regression transforms
regression problems into multiple binary classification problems,
where each classifier predicts the probability that the label exceeds
the classifier boundary. In industry applications, particularly in the
fields of Lifetime Value (LTV) estimation [12], video watch time pre-
diction [13–15] and travel time estimation [16], some studies have
attempted to transform regression problems into various forms
of bucket classification problems. While transforming regression
problems into bucket classification problems has been successful
in various domains, the following challenges arise when predicting
ad conversion numbers:

1. The discontinuity issue in one-hot hard labels. Due to the in-
teger nature of ad conversion numbers and the long-tail data
distribution as illustrated in Figure 2a, under the commonly used
equal-frequency bucketing condition, most label values lie near
bucket boundaries. Even minor fluctuations in the label value
can cause significant changes in classification labels. Therefore,
the issue of discontinuity in one-hot hard labels is particularly
pronounced in our scenario.

2. Excessive width of tail buckets increases prediction difficulty for
tail data. When transforming regression problems into bucket
classification problems, the inference stage typically involves
calculating the expectation value for each bucket. Under equal
frequency bucketing, the interval span of the last bucket is very
wide due to the long-tail data distribution. Utilizing the midpoint
of the interval as the expectation value for the bucket may lead
to a substantial overestimation of the overall data. Conversely,
employing the mean of the labels within the bucket as the ex-
pectation value could result in a significant underestimation of
the tail data.

To address these challenges, we propose the Long-Delayed Ad
Conversions Prediction model for bidding strategy (LDACP), which
consists of two sub-modules: Bucket Classification Module with
label Smoothing method (BCMS) and Value Regression Module
with Proxy labels (VRMP). The BCMS transforms one-hot hard
labels into non-normalized soft labels and fits these soft labels by
minimizing classification loss and regression loss, thereby address-
ing the issue of discontinuous one-hot hard labels. We use PCOC
to denote the ratio of the predicted value to the actual value. The
PCOC of the ranking model is the ratio of the aggregated pCTCVR
of ad impressions to the actual number of ad conversions in an ad
campaign, reflecting the bias of the ranking model. As illustrated in
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(a) Ad conversion numbers exhibit a pronounced long-tail distribution
(The vertical axis is on a logarithmic scale).
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(b) The PCOC of the ranking model has a narrow value range and does
not exhibit a long-tail distribution.

Figure 2: The distribution characteristics of ad conversion numbers and the PCOC of the ranking model.

Figure 2b, the PCOC of the ranking model has a narrow value range
and does not exhibit a long-tail distribution. Therefore, the VRMP
employs a traditional regression method to predict the PCOC, and
then converts it into the predicted ad conversion number, thus
overcoming the challenge of long-tail data prediction. Finally, we
use a Mixture of Experts (MoE) [17] to integrate the predictions
from BCMS and VRMP, yielding the final predicted conversion
number. We conducted an offline experiment on a real-world ad-
vertising dataset collected from the Kuaishou platform. The offline
experimental results show that our method outperforms existing
competitive regression methods. To further verify the effectiveness
of our method, we also conducted an online A/B test. The results of
the online A/B test show our method improved the compliance rate
by 2.29%, increased platform revenue by 11.06%, and boosted ad
conversions by 8.68%, bringing significant commercial value to both
the advertising platform and advertisers. Our main contributions
are summarized as follows:

1. In online advertising, bidding strategies are influenced by the
number of conversions. For ads with a long conversion delay,
the number of conversions cannot be tracked in real time. We
abstract this issue into the problem of predicting the number of
conversions for an ad campaign. We systematically study this
problem, proposing to treat it as a regression problem and lever-
age post-impression features to improve prediction accuracy.

2. We propose a Long-Delayed Ad Conversions Prediction model
for bidding strategy (LDACP), which consists of two sub-modules:
BCMS and VRMP. The BCMS alleviates the issue of discontinu-
ity in one-hot hard labels by converting one-hot hard labels
into non-normalized soft labels and then fits those soft labels
by minimizing classification loss and regression loss. The VRMP
addresses the challenge of long-tail data prediction by utilizing
the PCOC of the ranking model as proxy labels.

3. Offline experiments demonstrate that our method outperforms
other competitive regression methods. Furthermore, the online
A/B test conducted on the Kuaishou platform confirms the ef-
fectiveness of our method in increasing the compliance rate,
enhancing platform revenue, and improving ad performance.

2 Related Works
Given the scarcity of literature on predicting the number of long-
delayed ad conversions, our discussion of related works will primar-
ily focus on literature concerning regression problems, which have
been extensively studied across various fields. Ordinal regression
problems have been extensively researched, referring to classifi-
cation tasks with ordered relationships among labels, such as age
estimation, depth estimation and movie rating prediction. Most
approaches transform ordinal regression into a set of multiple bi-
nary classification tasks. [18] transformed the facial age estimation
problem into multiple binary classification problems, showing that
converting traditional regression problems into multi-class clas-
sification problems can not only improve the accuracy but also
improve the stability of training. [19] explicitly learned the ordi-
nal relationships between categories using a pair-wise learning
approach. [20] transformed continuous depth into a sequence of
ordinal labels and tackled the depth estimation issue in images us-
ing ordinal regression techniques, resulting in faster convergence
and higher accuracy than traditional regression approaches. [21]
proposed converting one-hot hard labels into normalized soft labels
and using Kullback-Leibler Divergence (KLD) as the loss function
for training. However, the KLD loss function has certain drawbacks.
For instance, when 𝑝𝑖 = 0.01 and 𝑞𝑖 → 0, it can produce large
gradients during back-propagation, leading to gradient explosion
and severely disrupting training stability, thus it cannot be applied
in our scenario. [22] introduced the mean-variance loss, where
mean-loss penalizes the predicted difference in means, and var-loss
penalizes the variance of the distribution. Other literature has stud-
ied regression problems in industrial applications. [9] posited that
user LTV follows a Zero-Inflated-Log-Normal (ZILN) distribution
and utilized deep learning models to learn the mean and variance
of the log-normal distribution. The limitation of this approach is
that if the data distribution deviates from a log-normal distribu-
tion, it may be difficult to obtain optimal results. [10] proposed a
deep learning network integrating the prediction of "Game Whale"
and user LTV, using the prediction probability of "Game Whale"
as gating information to guide the LTV prediction network. The
modeling of LTV still involves fitting a log-normal distribution
form. [12] considered the LTV distribution to be complex and muta-
ble, proposing a Multi Distribution Multi Experts (MDME) module
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based on a Divide-and-Conquer approach. [16] estimated the distri-
bution of travel time by transforming a single-label regression task
into a multi-class classification task and devised an Adaptive Local
Label Smoothing module to alleviate the over-confidence problem.
[11] utilized weighted-logical regression to predict video watch
time, however, this approach necessitates that negative samples
form the majority. CREAD [13] predicted video watch time using a
multiple classification approach and proposed an Error-Adaptive-
Discretization module to balance classification learning loss and
restoration loss. TPM [14] advanced a single-stage classification
approach to a hierarchical progressive classification approach, com-
bining different levels of bucket classification processes for joint
decision-making. The aforementioned bucket classification meth-
ods have achieved state-of-the-art (SOTA) performance in multiple
scenarios. However, they did not explore methods to address the
difficulties in predicting tail data from long-tailed distributions.
While ordinal regression research introduced a label smoothing
method, the shortcomings of KLD Loss can lead to gradient explo-
sion, impeding model training, and thus it cannot be applied to our
scenario.

3 Problem Formulation
Assume that an ad campaign is deployed from time 𝑡0. By the cur-
rent time 𝑡𝑘 , the campaign has𝑀 impressions, and the pCTCVR of
the𝑚-th impression is 𝑟𝑚 . Given the ad campaign profile, the num-
ber of clicks, the number of views, the number of real-time tracked
conversions, etc., our goal is to predict the number of conversions
resulting from impressions between time 𝑡0 and time 𝑡𝑘 . We treat
predicting the number of conversions of an ad campaign as a re-
gression problem. We collect real-world ad data to build a dataset
comprising 𝑁 samples, where each sample contains the features
and label of an ad campaign from deployment to the time of bidding
strategy adjustment. The features of the sample include ad cam-
paign profile, clicks, views, the aggregated pCTCVR 𝑧 =

∑𝑀
𝑚 𝑟𝑚 ,

etc. The label of each sample is the number of conversions resulting
from impressions during this period. Let {𝑥 𝑗 , 𝑦 𝑗 }𝑁𝑗=1 denote the
dataset, where 𝑦 𝑗 ∈ Y ⊂ N denotes the label of the 𝑗-th sample,
and 𝑥 𝑗 ∈ X ⊂ R𝑑 denotes the input features of the 𝑗-th sample. Our
objective is to learn a function 𝑓 such that the p-norm ∥ 𝑓 (X)−Y∥𝑝
is minimized.

4 Method
4.1 Overview of LDACP
As illustrated in Figure 3, our proposed LDACP consists of two
sub-modules: BCMS and VRMP. The BCMS predicts the number
of ad conversions using a bucket classification method. To address
the issue of discontinuity in one-hot hard labels, BCMS converts
one-hot hard labels into non-normalized soft labels and fits these
soft labels by minimizing Cross Entropy Loss and MSE Loss. The
output of BCMS is the predicted number of conversions, denoted as
𝑦𝑓 . On the other hand, the VRMP predicts the PCOC of the ranking
model via a traditional regression method and combines it with the
aggregated pCTCVR 𝑧 to obtain the predicted ad conversion num-
ber 𝑦𝑔 . Subsequently, 𝑦𝑓 and 𝑦𝑔 are integrated through a Mixture
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Figure 3: The LDACP consists of two sub-modules. The BCMS
predicts the number of ad conversions utilizing a bucket clas-
sification method. It transforms one-hot hard labels into
non-normalized soft labels, which are then fitted by mini-
mizing Cross Entropy Loss and MSE Loss. The VRMP learns
the PCOC of the ranking model using a traditional regres-
sion method, addressing the challenge of predicting tail data
by leveraging the characteristic of PCOC, which does not
exhibit a long-tail distribution. The predictions from BCMS
and VRMP are integrated using a Mixture of Experts (MoE)
structure to obtain the predicted ad conversions number 𝑦.

of Experts (MoE) structure, outputting 𝑦 as the final predicted num-
ber of conversions. BCMS, VRMP and MoE share the embedding
parameters of sparse features.

4.2 Bucket Classification Module with Label
Smoothing Method

Table 1: Notations

Notation Meaning

𝑥 𝑗 the feature of the 𝑗-th sample
𝑦 𝑗 the label of the 𝑗-th sample
𝑧 𝑗 the aggregated pCTCVR of the 𝑗-th sample
T a binary tree
𝑛𝑖 the 𝑖-th node in T

𝑒𝑖→𝑗 the edge connecting 𝑛𝑖 and 𝑛 𝑗

𝑙𝑖 the left boundary of 𝑛𝑖
𝑟𝑖 the right boundary of 𝑛𝑖
𝑚𝑖 the boundary cut-off point of 𝑛𝑖

𝜙 (𝑦 𝑗 ) the set of nodes 𝑛𝑖 where 𝑙𝑖 <= 𝑦 𝑗 < 𝑟𝑖

F the set of all leaf nodes in T
N the set of all non-leaf nodes in T

Given the success of TPM [14] in related tasks, we select TPM as
the instance for BCMS and provide a detailed explanation of how to
implement our label smoothing method within a binary tree struc-
ture. Table 1 provides a quick reference of all notations and their
meanings used in this paper. TPM transforms a regression problem
into a multi-level bucket classification problem using a binary tree
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structure. We briefly describe the process of TPM building a bi-
nary tree. Each node 𝑛𝑖 on the tree T corresponds to a value range
[𝑙𝑖 , 𝑟𝑖 ). The range [𝑙𝑖 , 𝑟𝑖 ) is divided into two sub-ranges: [𝑙𝑖 ,𝑚𝑖 ) and
[𝑚𝑖 , 𝑟𝑖 ), ensuring that both sub-ranges contain an equal number
of samples. The left child 𝑛2𝑖+1 corresponds to a value range of
[𝑙𝑖 ,𝑚𝑖 ), and the right child 𝑛2𝑖+2 corresponds to a value range of
[𝑚𝑖 , 𝑟𝑖 ). At initialization, 𝑙0 is set to the minimum label value of
the training set, and 𝑟0 is the maximum label value. In the original
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Figure 4: An instance of a TPMS. Each edge in the tree is asso-
ciated with a predictor, and when𝑦 changes,ℎ(𝜓 (·)) smoothly
adjusts to address the discontinuity in one-hot hard labels.

TPM literature, each non-leaf node 𝑛𝑖 ∈ N is associated with a
binary classifier. For a non-leaf node 𝑛𝑖 and a sample (𝑥 𝑗 , 𝑦 𝑗 ), if
𝑦 𝑗 ∈ [𝑙𝑖 ,𝑚𝑖 ), then the label of the classifier is 0; If 𝑦 𝑗 ∈ [𝑚𝑖 , 𝑟𝑖 ),
then the label of the classifier is 1. During back-propagation, the
classifier parameters associated with 𝑛𝑖 ∈ 𝜙 (𝑦 𝑗 ) are updated. The
drawback of this method is that when 𝑦 𝑗 =𝑚𝑖 + 𝜖 , the label of the
classifier is 1, but when 𝑦 𝑗 =𝑚𝑖 − 𝜖 , the label of the classifier is 0.
Here, 𝜖 represents a small positive number. In other words, slight
numerical fluctuations in 𝑦 can cause drastic changes in classifica-
tion labels, disrupting the continuity of these changes. Especially
in our scenario, because ad conversion numbers are integers and
exhibit a pronounced long-tail distribution, under the condition of
equal-frequency bucketing, numerous ad conversion numbers lie
near bucket boundaries. To address the issue of discontinuity in
one-hot hard labels, we propose a novel label smoothing method.
Specifically, this method converts one-hot encoded hard labels into
non-normalized soft labels and then fits these soft labels byminimiz-
ing Cross Entropy Loss and MSE Loss. We implement this method
in the TPM and refer to the improved model as TPMS.

4.2.1 The Training Process of TPMS. As illustrated in Figure 4, let
each edge on the tree be associated with a predictor. The predictor
for the edge 𝑒𝑖→2𝑖+1 is 𝑐𝑙𝑖 , predicts the probability of transitioning
from node 𝑛𝑖 to its left child 𝑛2𝑖+1, with the corresponding training
label 𝑝𝑙

𝑖
. The predictor for the edge 𝑒𝑖→2𝑖+2 is 𝑐𝑟𝑖 , predicts the prob-

ability of transitioning from node 𝑛𝑖 to its right child 𝑛2𝑖+2, with
the corresponding training label 𝑝𝑟

𝑖
.

First, for 𝑛𝑖 , we define the distance from 𝑦 𝑗 to its left child 𝑛2𝑖+1 as:

𝑑𝑙𝑖 =

{
0, if 𝑦 𝑗 ∈ [𝑙𝑖 ,𝑚𝑖 )
𝜓 (𝑦 𝑗 ,𝑚𝑖 ), otherwise

(1)

where 𝜓 (𝑦 𝑗 ,𝑚𝑖 ) ∈ R is a function mapping the distance between
𝑦 𝑗 and𝑚𝑖 to a real number.
Second, we map this distance to a probability as follows:

𝑝𝑙𝑖 = ℎ(𝑑
𝑙
𝑖 ) (2)

where ℎ(·) ∈ [0, 1], and when 𝑑𝑖 < 𝑑 𝑗 , ℎ(𝑑𝑖 ) ≥ ℎ(𝑑 𝑗 ). Similarly, the
distance from 𝑦 𝑗 to the right child 𝑛2𝑖+2 is defined as:

𝑑𝑟𝑖 =

{
0, if 𝑦 𝑗 ∈ [𝑚𝑖 , 𝑟𝑖 )
𝜓 (𝑦 𝑗 ,𝑚𝑖 ), otherwise

(3)

This distance is also mapped to a probability:

𝑝𝑟𝑖 = ℎ(𝑑𝑟𝑖 ) (4)

Through the above steps, we convert the one-hot hard labels into
non-normalized soft labels. When 𝑦 varies near𝑚𝑖 , 𝑝𝑙𝑖 and 𝑝

𝑟
𝑖
will

change smoothly, thus eliminating the issue of discontinuity in
one-hot hard labels near bucket boundaries.
Finally, we fit these soft labels by minimizing classification loss
and regression loss. Let 𝑝𝑖 = {𝑝𝑙

𝑖
, 𝑝𝑟

𝑖
}. For 𝑝𝑖 ∈ {0, 1}, we treat the

learning of 𝑝𝑖 as classification tasks, using Cross Entropy Loss as
the loss function; for 𝑝𝑖 ∈ (0, 1), we treat the learning of 𝑝𝑖 as
regression tasks, using MSE Loss as the loss function, that is:

L𝐵𝐶𝑀𝑆 =

{
−𝑝𝑖 log(𝑝𝑖 ) − (1 − 𝑝𝑖 ) log(1 − 𝑝𝑖 ), if 𝑝𝑖 ∈ {0, 1}
(𝑝𝑖 − 𝑝𝑖 )2, otherwise

(5)

4.2.2 The Inference Process of TPMS. First, we calculate the condi-
tional probability from the node 𝑛𝑖 to its left child 𝑛2𝑖+1:

𝑝𝑖→2𝑖+1 =
𝑝𝑙
𝑖

𝑝𝑙
𝑖
+ 𝑝𝑟

𝑖

(6)

Calculating the conditional probability from 𝑛𝑖 to 𝑛2𝑖+2 as:

𝑝𝑖→2𝑖+2 = 1 − 𝑝𝑖→2𝑖+1 (7)

Second, we calculate the weight of the leaf node 𝑛𝑖 ∈ F , which is
the product of the conditional probabilities from 𝑛0 to 𝑛𝑖 :

𝑤𝑖 =

{
𝑤 ⌊ (𝑖−1)/2⌋ · 𝑝 ⌊ (𝑖−1)/2⌋→𝑖 , if 𝑖 > 0
1, otherwise

(8)

Finally, the inference result is given by:

𝑦𝑓 =
∑︁
𝑛𝑖 ∈F

𝑒𝑖 ·𝑤𝑖 (9)

where 𝑒𝑖 is the expectation value of leaf node 𝑛𝑖 , we calculate 𝑒𝑖 as
described by [20]:

Y𝑖 = {𝑦 ∈ Y | 𝑙𝑖 ≤ 𝑦 < 𝑟𝑖 } (10)

𝑒𝑖 =
1

|Y𝑖 |
∑︁
𝑦∈Y𝑖

𝑦 (11)

The LDACP does not restrict the specific bucket classification
method, and our label smoothing method is generally applicable
to bucket classification methods with one-hot labels. The specific
bucket classification method can be chosen based on the character-
istics of the scenario.



WWW’25 Companion, Sydney, Australia,
Peng Cui et al.

4.3 Value Regression Module with Proxy Labels
In our scenario, ad conversion numbers exhibit a significant long-
tail distribution. When applying the widely used equal-frequency
bucketing method, the width of the last bucket tends to be very
large. Using the midpoint value of the bucket range as the expec-
tation value of the leaf node [14], that is, 𝑒𝑖 = 𝑙𝑖+𝑟𝑖

2 , can lead to a
serious overestimation of the overall data. If the mean of the labels
in the bucket is used as the expectation value of the leaf node [18],
it will cause a serious underestimation of the tail data. If the interval
percentage regression is used to predict the expectation value of
the leaf node [12], the accuracy requirement for the percentage
regression will be very high due to the wide interval range. To over-
come the challenge of predicting tail data, we use the PCOC of the
ranking model as proxy labels. Since the PCOC has a narrow value
range and does not exhibit a long-tail distribution, the VRMP learns
the PCOC through the traditional regression method, outputting
the predicted ˆ𝑃𝐶𝑂𝐶 . Subsequently, this ˆ𝑃𝐶𝑂𝐶 is converted into
the predicted number of conversions 𝑦𝑔 . The detailed steps is as
follows:
First, we calculate the PCOC of the ranking model as:

𝑃𝐶𝑂𝐶 =

{
𝑧
𝑦 , if 𝑦 > 0
1, otherwise

(12)

As illustrated in Figure 2b, the range of PCOC is narrower compared
to the number of conversions, and it does not exhibit a long-tail
distribution. Therefore, we propose using it as the learning label
and employing a traditional regression method to predict it:

ˆ𝑃𝐶𝑂𝐶 = 𝑔𝜃 (𝑥, 𝑧) (13)

Second, the MAE Loss is employed to learn the PCOC:

L𝑉𝑅𝑀𝑃 = | ˆ𝑃𝐶𝑂𝐶 − 𝑃𝐶𝑂𝐶 | (14)

Finally, we convert the ˆ𝑃𝐶𝑂𝐶 into the predicted ad conversion
number:

𝑦𝑔 =
𝑧

ˆ𝑃𝐶𝑂𝐶
(15)

Through the above steps, we obtained the predicted number of ad
conversions 𝑦𝑔 by using PCOC as proxy labels.

4.4 Integrating BCMS and VRMP via MoE
We adopt a MoE structure, predicting the gating signal 𝜆 ∈ [0, 1]
to integrate 𝑦𝑓 and 𝑦𝑔 as follows:

𝑦 = 𝜆 · 𝑦𝑓 + (1 − 𝜆) · 𝑦𝑔 (16)

To prevent the model from being dominated by samples with large
labels, we employ a loss function in the form of MAPE to balance
the weights of all samples:

L𝑀𝑜𝐸 = |𝜆 ·
𝑦𝑓

𝑦
+ (1 − 𝜆) ·

𝑦𝑔

𝑦
− 1| (17)

The overall loss function of the LDACP is:

L𝑇𝑂𝑇𝐴𝐿 = L𝐵𝐶𝑀𝑆 + 𝛼 · L𝑉𝑅𝑀𝑃 + 𝛽 · L𝑀𝑜𝐸 (18)

where𝛼 and 𝛽 are the hyperparameters that balanceL𝐵𝐶𝑀𝑆 ,L𝑉𝑅𝑀𝑃

and L𝑀𝑜𝐸 .

5 Experiment
To evaluate the effectiveness of our method, we conducted both
offline and online experiments.

5.1 Offline Experiment

Table 2: Statistics of Kuai-AD

maximum number of conversions 33492
minimum number of conversions 0
average number of conversions 24.70
number of product categories 1141
sample size 2738705

5.1.1 Dataset. We collected real-world advertising data from the
Kuaishou platform as our offline experiment dataset (referred to as
Kuai-AD). Kuai-AD comprises advertising data spanning 8 consecu-
tive days. The data from the first seven days were randomly divided
into training and test sets in a ratio of 9:1, while the data from
the last day was used as the test set. The statistics of Kuai-AD are
presented in Table 2. To account for the delayed ad conversions, we
consider the number of conversions tracked within three days after
ad impressions as the actual conversion number. We also present
the conversion delay of paid objectives, please refer to Appendix A
for details. Each sample in Kuai-AD corresponds to the features of
an ad campaign and the number of ad conversions. The features can
be divided into sparse features and dense features. Sparse features
include ad campaign profiles such as optimization objectives, the
product name and industry information. Dense features include
the number of clicks, the number of views, the number of real-time
tracked ad conversions, etc.

5.1.2 Metrics. On the Kuaishou platform, when the advertiser’s
cost rate is greater than 1.2, the platform will compensate the ad-
vertiser; and when the cost rate is less than 0.8, it means that the
platform has a large loss in profit. Therefore, our primary goal is to
increase the compliance rate (CR), which is defined as follows:

𝐶𝑅 =
1
𝑁

Y∑︁
𝑦

𝜂 (0.8 ≤ 𝑦

𝑦
≤ 1.2) (19)

where 𝜂 (·) is an indication function, such that 𝜂 (true) = 1 and
𝜂 (false) = 0. In addition to CR, Mean Absolute Percentage Error
(MAPE) is employed to evaluate the percentage error.

5.1.3 Baselines. We compared our method with several baseline
methods, which are categorized as follows: Aggregating pCTCVR
of ad impressions: RM; Traditional value regression methods: VR;
Parametric distribution regression methods: ZILN [9]; Ordinal re-
gression methods: CREAD [13]; Bucket classification regression
methods: MDME [12], TPM [14]. For our method LDACP, we
empirically set 𝛼 = 1, 𝛽 = 1,𝜓 (𝑦,𝑚), ℎ(·) as below:

𝜓 (𝑦,𝑚) = |𝑦 −𝑚 |
𝑦 + 𝜖 (20)

ℎ(𝑥) = e−10𝑥 (21)
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Table 3: Performance on Kuai-AD dataset. We use the number of conversions and PCOC as training labels, denoted as method-N
and method-P respectively. The second-best results are underlined, and the best results are highlighted in bold.

Metric Industry RM VR-N VR-P ZILN-N ZILN-P CREAD-N CREAD-P MDME-N MDME-P TPM-N TPM-P LDACP

MAPE ↓

Games 0.9041 0.4101 0.4160 0.3853 0.9893 0.5032 0.3694 0.4817 0.3464 0.3812 0.4263 0.2746
Media 0.5065 0.3245 0.2817 0.2815 0.5207 0.4285 0.2689 0.2977 0.4419 0.2778 0.3285 0.2011

E-commerce 0.5157 0.3607 0.3445 0.3309 0.7023 0.3405 0.2892 0.3045 0.3200 0.4333 0.4099 0.2433
Life Services 0.5214 0.3308 0.3041 0.3079 0.5411 0.3463 0.2998 0.3260 0.3519 0.3536 0.3899 0.2293

Total 0.5604 0.3436 0.3129 0.3083 0.5395 0.4147 0.2914 0.3266 0.3554 0.3262 0.3453 0.2228

CR ↑

Games 24.31% 33.37% 42.18% 38.54% 31.16% 28.85% 40.77% 40.58% 41.84% 39.89% 35.92% 53.08%
Media 27.93% 42.14% 56.79% 52.77% 42.58% 35.41% 56.22% 55.99% 56.43% 55.09% 47.99% 65.64%

E-commerce 33.22% 45.58% 49.76% 52.06% 40.65% 47.56% 54.93% 52.16% 51.87% 47.07% 49.22% 59.06%
Life Services 33.83% 48.56% 55.77% 56.54% 38.27% 49.55% 58.91% 56.91% 56.52% 56.37% 49.05% 65.65%

Total 28.88% 42.12% 53.21% 50.85% 41.44% 38.07% 53.80% 52.99% 53.36% 51.57% 48.77% 62.32%

For a detailed description of the baseline methods, please refer
to Appendix B. To ensure a fair comparison, all experiments are
configured with a batch size of 128 and utilize the Adam optimizer
[23] with a learning rate of 1e-3. All networks employ SELU [24] as
the activation function, with a consistent parameter initialization
method. The maximum number of training epochs is set to 20.
An early stop strategy is employed, terminating training if the
validation MAPE fails to decrease over two consecutive epochs.
The test results from the epoch with the lowest validation MAPE
are considered the final experimental results. Excluding LDACP
and RM, we use the number of conversions and PCOC as training
labels, denoted as method-N andmethod-P, respectively.

5.1.4 Performance Comparison. As shown in Table 3, the results
of the offline experiments indicate that:
(1) Our method outperforms existing competitive methods across

various industries in bothMAPE and CR. Specifically, the MAPE
decreased by 0.0686 compared to the best baseline CREAD-P,
and the CR improved by 8.52% over CREAD-P.

(2) All methods significantly outperform RM, demonstrating the ad-
vantages of leveraging post-impression features and conducting
regression predictions at the campaign level.

(3) The performance of ZILN-P significantly declines compared to
ZILN-N, indicating that ZILN struggles to perform well when
the distribution does not conform to its prior assumptions.

(4) The performance of CREAD-N significantly declines compared
to CREAD-P because the bucket classification label definition
of CREAD is not suitable for scenarios with severe long-tail
distributions where the labels are integers.

We also present the experimental results for the CR metric under
other thresholds. Please refer to the Appendix C.

5.2 Ablation Study
We conducted ablation studies on Kuai-AD to further demonstrate
the effectiveness of our label smoothing method and VRMP.
• -wo-smoothing: This configuration refers to the LDACPwithout
applying the label smoothing method.

• -wo-VRMP means removing the VRMP, and adopting 𝑦𝑓 as the
inference result.

Table 4 shows that theMAPE for -wo-smoothing increases by 0.0464
compared to LDACP and the CR decreases by 4.94%, indicating
the effectiveness of our label smoothing method. The MAPE for

Table 4: Ablation study on Kuai-AD

Metric -wo-smoothing -wo-VRMP LDACP

MAPE 0.2692 0.3119 0.2228
CR 57.38% 52.90% 62.32%

-wo-VRMP increases by 0.0891 compared to LDACP, and the CR
decreases by 9.42%, demonstrating the effectiveness of the VRMP.
We further analyzed the characteristics of 𝑦𝑓 , 𝑦𝑔 , and 𝑦 in the
test set to demonstrate the role of VRMP and MoE in addressing
the challenges of long-tail data prediction and improving overall
performance. We divided samples of the test set into buckets based
on their labels and calculated the CR for each bucket. Figure 5
shows that 𝑦𝑓 has a higher CR for the interval with a smaller label,
while the 𝑦𝑔 has a higher CR for the interval with a larger label.
The CR of 𝑦 in most intervals is on par with the best results of 𝑦𝑓
and 𝑦𝑔 . We further calculated the average value 𝜆 of the test set
samples in each bucket, which reflects the weights of 𝑦𝑓 and 𝑦𝑔 in
each bucket interval. It can be seen that 𝜆 gradually decreases as
the label value increases, which once again shows that the MoE
structure effectively integrates the advantages of both 𝑦𝑓 and 𝑦𝑔 ,
achieving a higher CR overall. We also explored how the number
of leaf nodes affects the performance of LDACP. For more details,
please see Appendix D.

5.3 Online A/B Test
We conducted an A/B test in the Kuaishou oCPM bidding adver-
tising scenario to evaluate the effectiveness of our method in en-
hancing advertising performance. Each ad campaign is divided into
two groups, each with half of the traffic and budget. One group
serves as the control group, employing bidding strategies based on
the real-time tracked conversion number; the other group serves
as the experimental group, employing bidding strategies based on
the predicted conversion number. Since our offline experiments
have demonstrated that LDACP achieves significant performance
improvements over the baselines, and considering the substantial
commercial impact of conducting online experiments, we will use
only LDACP for predicting the number of ad conversions. As il-
lustrated in Figure 6, the features of LDACP are categorized into
four types. The first category is the campaign profile, such as the
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Figure 5: The CR and average value of 𝜆 on Kuai-AD test set. 𝑦𝑓 and 𝑦𝑔 each have their distinct advantages. 𝑦 integrates the
strengths of both to address the challenge of predicting tail data and enhance overall performance.

product name, optimization objectives and the industry of the ad
campaign. The second category includes features reflecting the
effect of advertising, such as the number of impressions, the num-
ber of views, the number of clicks and the aggregated pCTCVR
of ad impressions. These features undergo a base-10 logarithmic
transformation to standardize the feature range before being input
into the model. The third category includes features reflecting the
bias of the ranking model, such as the PCOC of the ranking model
for industry, product and account. The fourth category includes
features reflecting the churn rate, such as the churn rate of industry,
product and account. For sparse features, we set the embedding
dimension to 8. We ensure the predicted ad conversion number
of LDACP is not less than the number of real-time tracked con-
versions. During the five-day online A/B experiment, as shown
in Table 5, the experimental group consistently achieved a higher
CR than the control group, with an overall improvement of 2.29%,
demonstrating the effectiveness of our method in enhancing the
compliance rate. Additionally, we observed that the revenue of the

LDACP

the predicted ad conversion number
Ad Campaign

Experimental Group

1/2 traffic, 1/2 budget

1/2 traffic, 1/2 budget

bidding strategies based on the real-time tracked ad conversion number

bidding strategies based on the predicted ad conversion number

Control Group

Campaign Profile 

product name oCPX type

optimization objectives

item type

industry

…

Real-Time Ad Performance 

exposure numbers click numbers

pay numberswatch numbers

ranking model estimation ...

PCOC

PCOC for industry

PCOC for account ...

Churn Rate 

industry churn rate product churn rate

account churn rate ...

PCOC for product

Figure 6: An ad campaign is split into a control group and
an experimental group, each receiving half of the traffic and
budget. The control group employs bidding strategies based
on the number of real-time tracked ad conversions, while
the experimental group employs bidding strategies based on
the predicted number of conversions.

platform in the experimental group increased by 11.06% compared

to the control group, and the number of ad conversions increased
by 8.68%. We analyzed how improving the CR can boost both the
platform’s revenue and the number of conversions; for more details,
refer to Appendix E.

Table 5: Cost compliance rate of the online A/B test. The ex-
perimental group consistently achieved a higher compliance
rate compared to the control group.

Date Control Group Experimental Group

D1 53.60% 58.26% (4.66% ↑)
D2 58.18% 59.80% (1.62% ↑)
D3 59.85% 60.45% (0.59% ↑)
D4 58.91% 59.84% (0.93% ↑)
D5 56.64% 60.12% (3.48% ↑)
Total 57.38% 59.66% (2.29% ↑)

6 Conclusion
In this paper, we propose a novel Long-Delayed Ad Conversions
Prediction model for bidding strategy (LDACP) designed to predict
the conversion number of an ad campaign and thus determine the
bidding strategy of the automated bidding system. LDACP consists
of a Bucket Classification Module with label Smoothing method
(BCMS) and a Value RegressionModule with Proxy labels (VRMP).
The BCMS converts one-hot hard labels into soft labels and fits
these soft labels by minimizing classification loss and regression
loss, effectively addressing the discontinuity issue that arises when
transforming regression problems into multi-class classification
problems. The VRMP uses the prediction bias of the aggregated
pCTCVR as proxy labels, successfully tackling the challenge of
predicting tail data. Then we integrate the strengths of the BCMS
and VRMP through a MoE structure to produce the final predicted
ad conversion number. Offline experiments and the online A/B
test conducted on the Kuaishou platform have demonstrated the
effectiveness of our method in predicting ad conversion numbers
and enhancing advertising performance.
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A Conversion Delay for Paid Objectives
As shown in Table 6, we present the average delay of paid objec-
tives on the Kuaishou platform, showing the average delay from
impression to conversion. It is evident that most types of paid ad
campaigns experience significant conversion delays. Except for the
SITE_PAGE type, the "p50" conversion delays of other types are
20 minutes or longer. The automated bidding system adjusts the
CPA bid approximately every 10 minutes. Therefore, if the real-time
tracked conversion number is directly used as a bidding strategy
adjustment signal, it will lead to a more conservative bidding strat-
egy, making it difficult for ad campaigns to obtain sufficient traffic,
which is particularly obvious in the early stages of ad campaign
deployment.

Table 6: Conversion delay for paid objectives, where "p10"
denotes the time delay for the fastest 10% of conversions, and
other metrics follow the same pattern. The time units in the
table are given in minutes.

Campaign Type p10 p20 p30 p40 p50 p60 p70 p80 p90

APP 7 11 17 27 46 103 305 999 2770
APP_ADVANCE 1 3 5 7 20 88 294 569 931
SITE_PAGE 3 4 5 7 9 13 18 29 74

LIVE_STREAM 9 18 26 35 50 85 269 1176 4434

B More Details of Baselines
• RM(RankingModel) aggregates the pCTCVR of ad impressions
in an ad campaign as the predicted ad conversion number.

• VR(Value Regression) directly predicts the number of ad con-
versions by employing Mean Absolute Error (MAE) as the loss
function.

• ZILN [9] models the mean and variance of a log-normal dis-
tribution through neural networks, with the expectation of the
log-normal distribution serving as the predicted value. We adopt
the open-source code and parameter configurations provided in
the original paper.

• CREAD [13] predicts video watch time using a multi-class clas-
sification approach and introduces the Error-Adaptive Discretiza-
tion Module (EADM) to balance learning and restoration losses.
We implemented CREAD based on the original paper’s descrip-
tions and hyperparameters. For the EADM module, we selected
the smoothing function specified in the paper. To ensure fair
comparison, the number of buckets was set to 64.

• MDME [12] addresses complex data distributions using a two-
stage bucket classification approach. First, the overall data distri-
bution is divided into𝐾 sub-distributions, which are subsequently
partitioned into 𝑁 buckets each. Since the original paper did not
provide the source code, we implemented the method based on

https://developers.facebook.com
https://developers.facebook.com
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the descriptions outlined in the study. For fair comparison with
other methods, we followed the experimental setup in the paper,
setting the number of sub-distributions to 2 and evenly splitting
each into 32 buckets.

• TPM [14] employs a progressive tree-based approach to derive
inference results. Our experiments were conducted using the
implementation provided in the original paper. We set the tree
height to 7 thus leaf nodes contain 64 buckets. Given the pro-
nounced long-tail distribution of Kuai-AD, using the midpoint of
intervals as the expectation value for leaf nodes would lead to
significant overestimation. Therefore, we calculate the expecta-
tion values of the leaf nodes following the method outlined in
[20]. The TPM paper introduces node loss, prediction loss and
variance loss terms. However, due to the wide range of ad con-
version numbers, using both node loss and variance loss terms
would hinder model training. Therefore, we only employed the
node loss term.

C Cost Compliance Rate Under Different
Thresholds
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Figure 7: Comparison of the 𝐶𝑅𝜏 between LDACP and base-
line methods on Kuai-AD test set.

We analyzed the cost compliance rate of LDACP and baseline
methods under varying thresholds. This experiment was conducted
on Kuai-AD dataset, using the same experimental configuration as
described in Section 5. We define 𝐶𝑅𝜏 as:

𝐶𝑅𝜏 =
1
𝑁

Y∑︁
𝑦

𝜂 (1 − 𝜏 ≤ 𝑦

𝑦
≤ 1 + 𝜏) (22)

As illustrated in Figure 7, LDACP consistently outperforms other
baseline methods across a range of threshold values for 𝜏 , demon-
strating its robustness and effectiveness.

D The Impact of the Number of Leaf Nodes on
the Performance of LDACP

We studied the performance of LDACP on Kuai-AD with different
numbers of leaf nodes. Specifically, we set the number of leaf nodes

of TPMS to {16, 32, 64, 96, 128}. As illustrated in Figure 8, the change
in the number of leaf nodes has a certain impact on the CR and
MAPE metrics, but the impact is relatively small.
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(a) CR of LDACP with varying numbers of leaf nodes.
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(b) MAPE of LDACP with varying numbers of leaf nodes.

Figure 8: Performance of LDACP with varying numbers of
leaf nodes on Kuai-AD.

E Analysis of Online Ad Performance
The online experiment showed increases in cost compliance rate,
platform revenue, and ad conversions. Here, we explain how im-
proving the cost compliance rate can increase advertising platform
revenue and boost ad conversions. Since the number of real-time
tracked ad conversions is not greater than the actual number of ad
conversions, the current CPA will be overestimated. To prevent the
current CPA from exceeding the target CPA, the automated bidding
system adopts a more conservative strategy. In severe cases, this
may cause ad campaigns to lose in traffic auctions and become in-
active. Inactive ad campaigns generate no revenue for the platform,
and advertisers fail to meet their target advertising effects. Our
method addresses this issue by accurately predicting the number of
ad conversions, enabling the automated bidding system to use these
predictions as decision-making signals. This enables the develop-
ment of more effective bidding strategies, enhancing ad campaign
performance. Consequently, the platform gains more profit, and
advertisers achieve their target advertising effects.
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