arXiv:2411.16165v1 [math.NA] 25 Nov 2024

Explainable MST-ECoGNet Decode Visual Information from ECoG
Signal

Changgqing JI*, Keisuke KAWASAKI ¥, Isao HASEGAWA?, Takayuki OKATANI*T
*Graduate School of Information Sciences, Tohoku University, Miyagi, Japan
Email: {ji.changging, okatani}@vision.is.tohoku.ac.jp
tGraduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
Email: {kkawasaki,isaohasegawa} @med.niigata-u.ac.jp
fCenter for Advanced Intelligence Project, Riken, Tokyo, Japan

Abstract—In the application of brain-computer interface
(BCI), we not only need to accurately decode brain signals,
but also need to consider the explainability of the decoding
process, which is related to the reliability of the model. In
the process of designing a decoder or processing brain signals,
we need to explain the discovered phenomena in physical or
physiological way. An explainable model not only makes the
signal processing process clearer and improves reliability, but
also allows us to better understand brain activities and facilitate
further exploration of the brain. In this paper, we systematically
analyze the multi-classification dataset of visual brain signals
ECoG, using a simple and highly explainable method to explore
the ways in which ECoG carry visual information, then based
on these findings, we propose a model called MST-ECoGNet
that combines traditional mathematics and deep learning. The
main contributions of this paper are: 1) found that ECoG
time-frequency domain information carries visual information,
provides important features for visual classification tasks. The
mathematical method of MST (Modified S Transform) can ef-
fectively extract temporal-frequency domain information; 2) The
spatial domain of ECoG signals also carries visual information,
the unique spatial features are also important features for classi-
fication tasks; 3) The real and imaginary information in the time-
frequency domain are complementary. The effective combination
of the two is more helpful for classification tasks than using
amplitude information alone; 4) Finally, compared with previous
work, our model is smaller and has higher performance: for the
object MonJ, the model size is reduced to 10.82% of base model,
the accuracy is improved by 6.63%; for the object MonC, the
model size is reduced to 8.78%, the accuracy is improved by
16.63%.

Index Terms—Visual ECoG, Visual Classification, MST, Spa-
tial Filter, Temporal-Frequency domain.

I. INTRODUCTION

Humans have never lost the curiosity about brain, the study
of brain science cannot be separated from the analysis of
electroencephalograms. Electroencephalograms can be divided
into two types according to the acquisition method: invasive
method, such as ECoG, and non-invasive method like EEG.
EEG is a method that attaches the measuring electrodes to
the surface of the scalp. It has the advantages of low cost
and non-invasiveness. However, the collected data is easily
affected by noise, and the electrode layout is sparse in space.
ECoG signal acquisition is to place the electrode array directly
on the gray matter cortex of the brain, directly collect the
electrical signals from the gray matter cortex. Compared with
EEG, there is no attenuation of the skull, the signal has a

higher signal-to-noise ratio, the high density of electrodes has
a high spatial resolution. This makes ECoG widely used, such
as epilepsy detection and tracing [L][2][3]], brain-computer
movement control [4], and the study of brain visual function
[5]161[7]. ECoG is a multi-channel waveform temporal series
signal. For multi-classification tasks, how to effectively pro-
cess the data is a challenging work. At the same time, the data
processing process also needs to be explainable, which not
only helps to improve the reliability of model, but also helps
us understand information processing of our brain, provide a
certain reference value for future research work. In the multi-
classification task of brain temporal series signals, the model
generally can be divided into two parts: feature extractor and
classifier.

The feature extractor directly processes the brain signal, ex-
tracts the corresponding feature information, including explicit
features and implicit features. The explicit features are highly
explainable, we can clearly understand the attribute of the
features, such as the mathematical statistical information of
the brain signal: the average, peak, variance in the temporal
domain, and also the frequency, amplitude, phase angle and
other information in the frequency domain. [6] used a complex
Morlet wavelet to extract temporal-frequency information to
study the visual information. [8][9][10] used Band power
features, [[11]] used covariance matrices, and [12] used surface
Laplacian to complete motor imagery classification. [13] the
signal amplitude was used for speller classification. [14][15]
used Power Spectral Density. On the contrary, implicit features
always cannot be explained during the extraction process, the
feature data exists in the latent space, more like a black box,
such as Autoregressive Coefficients (AR) [16][17], common
spatial patterns (CSP) [18][19][20] and feature extraction
methods based on deep learning [S][21][220][230][24].

The classifier will compress or filter the extracted feature
information, then finally classify. General compression or
filtering methods include using the peak value or average
value, this is common method in the pooling layer of neural
networks [23]. There are also mathematical algorithms such
as genetic algorithms [25] and principal component analysis
(PCA) [26][27]. The methods for feature classification after
filtering include support vector machine (SVM) [28]][29],
linear discriminant analysis (LDA) [30][31] and k-nearest
neighbor (kNN) [32][33], decision trees [34][35] and Naive
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Fig. 1: Outline of Data Flow of MST-ECoGNet

Bayes Classifier [36], as well as neural network methods
[3710381[39]. Although these methods can complete the final
classification task well and efficiently, they always pay less
attention on the explainability of data processing.

Based on the above findings and understanding, we fo-
cus on designing a model that is explainable and also has
high performance. In the feature extraction process of ECoG
signals, we use the mathematical method MST [40]. The
MST method is an important method for time-frequency
analysis of non-stationary signals. Compared with Short-time
Fourier transform (STFT) [41]], wavelet transform (WT) [42]
and S transform (ST) [43]], it has better resolution in the
time-frequency domain both the low-frequency and the high-
frequency domain. Furthermore, MST processing of ECoG
signals can clearly let us know the physical meaning of the
output, its three dimensions represent the frequency domain,
temporal domain and spatial domain respectively. For the
classifier, we borrowed the idea of EEGNet [23] and adopted
a simple neural network. For considering its explainability,
we try our best to make the internal module functions have
physical or physiological meanings in reality. In this paper,
we do not blindly pursue high performance of the model,
we pay more attention to make our model to reveal the
special information and patterns of ECoG during the process,
help us explore the way in which ECoG signals carry visual
information. This special information and its intrinsic connec-
tions would be an important information for brain scientists
to explore and understand the mysteries of the brain. The
experiments in this paper reveal that 1) the frequency domain
of ECoG signals carries rich information and can provide
us the corresponding visual information. Useful information
locates in low frequency domain. This finding could have
some guiding significance for the design of future sampling
frequencies; 2) The Spatial Filter in the classifier can select
out effective features, which also means that the visual-
based ECoG show some special pattern in spatial domain.
This discovery will be helpful for the design of electrode
arrays for future ECoG signal acquisition; 3) In the data and
result correlation test experiment, we found that there is a

50 msec delay from visual stimuli onset to the appearance of
ECoG related information. This discovery may reveal the time-
consuming phenomenon of the brain’s processing of visual
stimuli, which requires further research by brain scientists.

In this paper, introduction of our proposal will be discussed
in section II; then model training & results in section III; in
section IV, we present the research experiments; final part is
the conclusion.

II. METHOD

Figure [I] shows the whole step of data processing: the
multi-channel temporal series signal ECoG is first analyzed
by the MST algorithm to generate a 3D feature space. This
feature space is in complex number, which means it has 2
parts: the real part and the imaginary part. These two parts of
the data will be processed by the corresponding encoder and
then handed over to the full connection (FC) layer for final
classification. The encoders of the real and imaginary parts
have the same structure, but different learning parameters.

A. Modified S Transform (MST)

Modified S Transform is an important tool when applying
temporal-frequency analysis on non-stationary signals such
as ECoG signals. It introduced the arctangent function into
the window function, this makes the window width can
be adapted to the frequency, ensuring that all parts of the
temporal-frequency spectrum have high resolution. This
method can effectively improve the energy aggregation with
higher time frequency resolution. MST formula expression as
below:

MST(t,f) = ks V0 a(r)eap(— Sty Jeap(—j2r fr)dr

f*fm/2
b

a(f) = {a[arctan( IS

where f,, is the maximum analysis frequency, f; is the
signal sampling rate, parameters a, b and c are control factors.
Following the parameter selection guideline in MST [40], in



TABLE I: Model Structure Details F means the number of frequency feature map; N means the number of kernel; G means

the ’group’ parameter in nn.Cov3d function.

Part Layer [Kernel Size] * N/ G Output Reference
MST MST - F x 128 x 300 ECoG signal size:128 x 300
BatchNorm3D - Fx 1x 128 x 300
nn.Cov3d [Ix128x1]*2F/F 2Fx1x1x300 Spatial Filter
BatchNorm3D - 2F x 1 x 128 x 300
nn.ELU() - 2F x 1 x 128 x 300
Encoder nn.AvgPool3d [1x1x4] 2Fx 1 x 128 x 75
nn.Cov3d [Mx1x16] *2F/2F 2Fx1x1x75
nn.Cov3d Mx1x1]*16/1 16 x1x1x75
BatchNorm3D - 16x1x1x75
nn.ELU() - 16x1x1x75
Flatten - 1 x 1200
Cantenate - 2 x 1200 Stack real & img part together
Full Connection  nn.lin() - 1x6

our work we set a = 5,b = 50,¢c = 74, f,, = 128, fs = 1000.
We use MST to transform ECoG data into 3D feature space.
Here we can clearly see that the feature space is composed
of temporal domain, frequency domain and spatial domain,
which has strong explain-ability.

B. Real & Imaginary Encoder

The Real Encoder and the Imaginary Encoder have the same
structure. The detailed structure can be found in Table [l For
high explain-ability, we use very simple structure network.
The core part is a single-layer convolution which simulates
the Spatial Filter function. In subsequent comparative experi-
ments, we found that the Spatial Filter is the best, which also
reveals that the visual-based ECoG signal will show a unique
Spatial Pattern at the spatial domain. This pattern carries visual
information.

C. Full Connection Layer (FC)

The full connection layer completes the classification task
based on the final features extracted. We concatenate the
feature vectors of the Real Encoder and the Imaginary Encoder
together, then use the full connection layer to perform six-
category classification. Subsequent experimental results show
that the parallel structure can effectively utilize the com-
plementary information of the real and imaginary data, can
effectively improve the model performance.

III. MODEL TRAINING & RESULTS

The visual-based ECoG dataset is same dataset used in [5],
we use this dataset to train our proposed model.

A. Visual-Based ECoG Dataset

The ECoG data used in experiment was acquired by
Kawasaki et. from Graduate School of Medicine and Dental
Sciences, Niigata University. The targets were two macaque
monkeys (Subject MonC: 6.1 kg, Subject MonlJ: 5.1 kg). The
outline of the acquire processing can be seen in Figure 2] For
more information, please refer to [S)][6][7]. Here we only give
an overview:

1) Image set selection: The images used as visual stimuli
were selected from natural images, with a total of 6 categories:
building, body part, face, fruit, insect, and tool. After screening
by three experts, 1,000 images were finally selected for each
category, and the image size was reshaped to 512x512;

2) ECoG recording: All animal experiments followed rel-
evant legal requirements, and the experimental subjects were
implanted with 8x16 ECoG electrode arrays on the surface of
the inferior temporal cortex of the brain, total 128 electrode
channels. In fact, subject 2 had another implanted electrode
array with of 64 channels. But here we only utilized 128
channels of data which covered the surface of the ITC. In
this way, the data of the two subjects remained consistent.

3) Recording Process: The subjects were trained with a
visual fixation task to keep their gazes within +1.5 degree of
the visual angle around the fixation target (diameter: 0.3 de-
gree). Eye movements were captured with an infra-red camera
system at a sampling rate of 60 Hz. Stimuli were presented on
a 15-inch CRT monitor (NEC, Tokyo, Japan) with a viewing
distance of 26 cm. In each trial, after 450 ms of stable fixation,
each stimulus was presented for 300 ms, followed by a 600
ms blank interval. Signals were deferentially amplified using
an amplifier (Plexon, TX, USA or Tucker Davis Technologies,
FL, USA) with high- and low-cutoff filters at 300 Hz and 1.0
Hz, respectively. All subdural electrodes were referenced to a
titanium screw that was attached directly to the dura at the
vertex area. Recording wad conducted at a sampling rate of 1
kHz per channel.

B. ECoG Record Preprocess

The ECoG record of one trail contains 3 parts, one of
which is an active interval that lasts for 300 milliseconds.
In this interval, pictures will be displayed to stimulate the
monkey’s visual system; the other two are the pre-static
interval and the post-static interval, pictures are no longer
displayed. Please refer to Figure 4 in the data acquisition part.
For data preprocessing, we select the 300-millisecond interval
before the active interval as the background, the length of the



Fig. 2: Outline of ECoG Record Each image will be used
as visual stimuli, last 300 ms, ECoG signal will be measured
via electrode array.

time interval is consistent with the length of the active interval.
We calculate the overall mean and variance of the background
interval, then use each data of the active interval to subtract
this mean and divide it by the variance for normalization. The
formula is as follows:

Eue(n,t) —mg

Os

Efpe(n,t) =

ms o indicate overall mean value and standard deviation
value of ECoG background respectively. E,.(n,t) indicates
the ECoG data in active interval, which has n channels, ¢
sampling points. E‘,.(n,t) indicates the ECoG data after
processing, this will be the input of MST. The purpose of
this preprocessing is to exclude the influence of the monkey’s
state during the experiment at different time periods as much as
possible. The background interval reflects the basic state of the
monkey, if exclude the influence of this period, the remaining
changes will be caused by visual stimulation, which is what
we are concerned about.

C. Processing of MST

After above preprocess, we apply MST to perform temporal-
frequency analysis, then obtain 3D feature space (temporal-
frequency-spatial). The resolution of the frequency domain is
1Hz, and the time domain and space domain are consistent
with the original ECoG signal. The object MonC dataset has
21,586 trails, the object MonlJ dataset has 13,445 trails, totaling
35,031 trails. In order to obtain more accurate experimental
results, the dataset is evenly divided into 5 parts, use 5 cross
fold validation to verify the performance of the model. In this
paper, all the performance result is the average of 5 times test.

D. Model Training

The experimental model is implemented in pytorch. The
network structure can be found in the encoder part of Figure
I and Table I. The data of the two experimental objects
were trained separately. The parameters of Real Encoder and
Imaginary Encoder were trained on their respective Real and
Imaginary datasets. We trained each model for 200 epochs
with a batch size of 128. We used the Adam optimizer for
optimizing model parameters, with a learning rate of 1.0e-6,
a weight decay of 0.0001, 51 = 0.9, and 52 = 0.999. The
operating platform information is as follows: cpu Intel Xeon
w5-2455%, memory 64 GB, gpu NVIDIA GeForce RTX 4090
24GB.

E. Results & Comparison

Table [[] shows the experimental test results. Compared with

the Base Model [5], our model performance has been greatly
improved: the accuracy of object MonC reached to 53.43%
with an increase of 16.63%; the object MonJ also increased by
6.63%. In addition, in terms of model size, our method model
is smaller: the experimental object MonC is only 0.0396M,
down to 8.78% of the model size of [S]]; the experimental
object Mon] is only 0.0488M, down to 1.08% of the model
size of [5]. This shows that our model is smaller, has higher
performance, this means more suitable for the application of
BCI which requires lightweight models.
We analyzed and compared the models of [5]. The reasons
for the bloated model, low performance of [S] would be: 1)
The feature extractor TCN of [5] contains a complex residual
block, processes each channel independently without sharing
weight parameters, which makes the number of TCNs large
and cannot utilize the correlation between channels; 2) Across-
channel transform is applied to 128-dimensional channel data,
and 3 matrices (query (Q), key (K), and value (V)) are required
for each channel, which makes the parameters of this module
too large and is not conducive to parameter learning.

TABLE II: Model Performance Comparison compare with
base work [5]], our model get better performance and smaller
size

Params / M Accuracy
Model MonC MonlJ MonC Monl
Base Model [5]] 0.451 0.451 36.8+0.51 27.59+0.73
MST-ECoGNet | 0.0396 | 0.0488 | 54.15+1.15 | 35.98+1.15

IV. RESEARCH EXPERIMENTS

There are few studies on ECoG signals based on the visual
system. Thanks to the excellent work of the biology team at
Niigata University, we are fortunate to have access to these
unique data. In order to better and more deeply understand the
ECoG signal, here we design various experiments to explore
what features in the ECoG signal can carry visual information.
We studied the three dimensions (temporal-frequency-spatial)
of the 3D feature space and also the two data types (real part
and imaginary part). These findings are also the basis for the
designing of our proposed model.

A. Influence of Frequency Range

In order to better obtain the features in frequency domain,
when MST processes ECoG signals, we set the resolution of
the frequency domain to 1Hz, and the frequency range is up
to 128Hz. However, we observed that the signal strength on
the temporal-frequency diagram is mainly concentrated in the
low-frequency part, which requires us to reduce the frequency
range. This has two advantages: reducing the frequency range
will make the effective data more concentrated, which is
conducive to the model to better extract features and improve
performance; reducing the frequency range will make the data
set smaller, which is conducive to improving the efficiency of



model training. To this end, we designed a frequency range
screening experiment: we reduce the frequency range step by
step, each step we use the reduced dataset to train the network.
The network here used is consistent with that shown in Figure
I, but only one encoder is used, and the input dimension of
the corresponding FC is also reduced by half. We decide
the best frequency range based on the performance of the
network. In the experiment, two experimental subjects were
tested respectively, we also separately test the 2 types of the
data: Real part data and Imaginary part data. The experimental
results are shown in Figure [3]
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Fig. 3: Influence from Frequency Range Results test on 2
subjects & 2 data part, final frequency range: MonJ 0-52Hz,
MonC 0-38Hz.

The experimental results clearly show the optimal value of
the frequency range. The final range of object MonJ is O-
52Hz, the frequency range of object MonC is 0-38Hz. At
the same time, it also confirms that effective information is
contained in the low-frequency range, frequency is also one
of the important parameters affecting model performance.

B. Frequency Temporal Spatial Feature

After the MST temporal-frequency analysis of the ECoG
signal, we accurately obtain the feature information of three
dimensions. We want to know whether information of these
three dimensions carry visual information. To this end, we
made some modifications to the structure of the encoder,
designed three different filters, each corresponds to different
dimensional features. The structure of each filter is shown in
Figure E[ Each filter has its own focused dimension, through
comparing the respective performance results, we can clearly
know which dimensional information carries more visual
information.

Experimental results refer to Figure [5] The results show
that three different dimensional filters can extract effective
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Frequency, Frequency, Frequency]
Frequency Filter
Kernel Size: Fx 1x 1

Spatial Filter:
Kernel Size: 1 x CH x 1

Temporal Filter
Kernel Size: 1x 1 x T

Fig. 4: Filter Structure for 3 Different Dimensions Each
filter has its own kernel size and convolution direction, then
the filter can only focus its own dimension.

feature information to complete the classification task, but the
performance of using the Spatial Filter is better. This shows
that there is a Spatial Pattern in the ECoG signal, which
contains visual information. This discovery is worth sharing
with the biology group at Niigata University, this would be
of reference significance in the design shape of the electrodes
array or the resolution between electrodes in the future.

Results of Different Filters Mon]

33.74%

31.40%

30.34%

Mon)

m Spatial Filter Frequency Filter Temporal Filter

Fig. 5: Results of 3 Different Filters We only test on
Mon] dataset, real part. Results show Spatial dimension has
best performance, which means spatial pattern carries visual
information.

C. Amplitude-Angle vs Real-Imaginary

The output of MST processes is complex data. For complex
data, we can use them in two forms: Amplitude-Angle &
Real-Imaginary data. We tested these two forms of data sets
respectively; the results of the comparative experiment are
shown in Figure [6]f We can clearly see that compared with
the data type of amplitude-angle, the real-imaginary data type
has better performance.

In addition, considering the Euler formula, the two forms
of data are equivalent, the amount of information contained
should be same. However, the Real-Imaginary data type is
more conducive for the model to extract effective information.

e 7% = cosa(0) + jsin(6)

The real and imaginary parts of the complex domain are
independent of each other, the feature space composed of
real and imaginary is also independent with each other, so
the information contained in these two parts should also be
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Fig. 6: Results of 2 Different Data Form Only test on MonJ
dataset, Results show data form of Real-Imaginary would be
better than Amplitude-Angle data form.

complementary. Use a parallel structure to process real and
imaginary data at the same time, concatenate the extracted
feature vectors, then classify them via the FC layer. This can
effectively utilize the complementary information of the two
parts of the data. To this end, we designed a comparative test:
single encoder and parallel encoder. The experimental results
are shown in Figure [7}
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Fig. 7: Parallel Encoder vs Single Encoder Parallel encoder
using both real and imaginary data has better performance
compare with single encoder which only one data real or
imaginary part.

The comparison of experimental results shows that using
both data in parallel can effectively improve the performance.
In addition, in the frequency importance test, we also found
that the real and imaginary data show a complementary trend
in the low frequency domain.

D. Timing for Distinguish Information

How long does it last from the start of visual stimuli onset
to the point of ECoG starts to carry visual information? This
is an interesting topic among the experts of the biology group.
In order to obtain the corresponding data, we designed a test
experiment: first, we used the 3D Feature data obtained by
the MST method to train the corresponding model, then we
modified the data set, retaining the data of 5 sequent samples
period along the temporal axis, and setting all the other period
data to zero. The modified data set was tested for accuracy
on the pre-trained model, the accuracy obtained was used to
indicate the importance of the data in this time period. The
higher the importance, the more visual information this time
period carries. For detailed experimental algorithms, please
refer to Algorithm [T}
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Fig. 8: Temporal Importance Test Results show that along
temporal axis, there is clear time lag about 50 msec in both
test subjects.

Figure [§] shows the importance of time domain data. We
tested the data sets of two different objects separately, and
also tested the real and imaginary data separately. As can be
seen from the data in the figure, ECoG starts to carry visual
information about 50 milliseconds after the visual stimuli
onset, and it shows two waves in the trend. Similar phenomena
occurred in both experimental subjects. The mechanism of
this phenomenon needs to be explained with the help of the
professional knowledge of the biology group. We will share
the phenomena we found with the biology group.

E. Complementary Information between Real & Imaginary
Data

The parallel processing of real and imaginary data
improves the performance of the model, theoretically the



feature information provided by these two parts of data
will be independent and complementary. In this regard, we
designed a verification experiment, the method is the same as
section 4, the only difference is that for each step only one
frequency of feature data is retained. Similarly, two objects
and two data parts were tested. The specific experimental
results are shown in Figure [9]
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Fig. 9: Frequency Importance Test Results show that most
information comes from low-frequency region, the comple-
mentary phenomenon exists between real and imaginary data.

The experimental results clearly show that in the low-
frequency domain, the real and imaginary data show com-
plementary characteristics, which confirms our conjecture and
proves that the performance of the model we proposed is
reliable.

Algorithm 1: Temporal (Frequency) Importance Test
Input: original ECoG dataset E,,;
Output: Model accuracy list

Acc=[accy, . .., acc;, . .., ace,], ace; means
model accuracy after only keep ‘" temporal
segment based on original 3D feature space

1 # each temporal segment has 5 time points

2 initialization

3 Acc=[], temporal start point ¢; = 0, end time point

toff =1 +95

4 Pre-trained model M odel

5 while ¢; < 295 do

6 for Dataset E,,.;, set temporal period

[0:%;] & [tors : 300] to O, keep rest part, then get
new ECoG dataset Ef

7 | ace; = Model(E¥F)

8 Acc.append(acc;)

9 ti+=1

10 end

11 # for frequency importance test, use same step, but

each step we only keep one frequency feature map.

V. CONCLUSION

There are very few studies on ECoG signals based on
visual stimuli. Thanks to the excellent work of the biology
team at Niigata University, we are fortunate to have access to
these precious data. As a hot topic: Is there a corresponding
connection between visual stimuli and ECoG signals? Here we
use the ECoG signal multi-classification task to start the study.
Taking this as an opportunity, we further designed experiments
to explore what kind of features carry visual information in
multi-channel temporal series signals such as ECoG.

MST is a good temporal-frequency analysis method, which
provides us a way of three different dimensions to observe and
analyze ECoG signals: temporal domain, frequency domain,
and spatial domain. Compared with the original ECoG signal,
which only has spatial domain and temporal domain, there is
an additional frequency domain. From the signal intensity map
generated by MST, we can see that the main information is
concentrated in the low-frequency band, and the best frequency
band needs to be solved first. This is related to the performance
of the model and the timeliness of model training. The results
of the experiment verified that the low-frequency band is more
effective, and it was also found that the best frequency band
has individual differences, which also requires further brain
research.

In addition, to further study the 3D feature space, we designed
an extremely simple and explanatory network structure to
process the 3D feature space along different dimensions. The
core of this network is a network composed of a single layer of
convolution in the encoder, which we call Filter. We designed
three different convolution kernels with corresponding specific
convolution directions, which correspond to the three dimen-
sions of the 3D feature space. From the test results, we can
see there is a great improvement compared with [5]. Among
them, the result of Spatial Filter is the best. This result reveals
that the frequency domain as well as the spatial domain carry
the visual information. At the same time, there is a specific
pattern in the spatial domain of ECoG, and this pattern can be
used to extract visual information. This finding suggests that
we need to consider the design of the electrode array including
shape and density in the future.

In addition, the output data of MST is a complex structure,
which has two expression forms: Amplitude-Angle and Real-
Imaginary. We designed an experiment to compare the impact
of these two forms of data on the performance of the model.
The experimental results show that the data form of Real-
Imaginary is more conducive to the extraction of features
by the neural network. In addition, from the Euler formula,
we know that the amount of information contained in the
two forms of data is consistent, and the data information of
Real and Imaginary part are independent with each other. The
complementary features that can be extracted by using Real
and Imaginary data in parallel, this is conducive to improv-
ing model performance. The experimental comparison results
verified this conjecture. Compared with using Amplitude data
alone, which is generally used in other models, using Real and



Imaginary in parallel will be better.

Furthermore, for the impact of features in temporal domain,
we designed a test experiment of Temporal Importance. The
data set only retains a short period of data along the temporal
axis, and the rest is set to zero. The processed data is tested
on the trained model for accuracy, using this way we can find
out which period of the data can provide useful information.
That means that period ECoG carries visual information. The
experimental results show that both experimental subjects have
a lag time of about 50 milliseconds compared to visual stimuli,
two waves appear. This discovery is worth sharing with
biological experts and maybe inspire future brain research.
Finally, in this paper we used a simple method to explore the
unique characteristics of ECoG signals from three dimensions:
frequency domain, time domain, and spatial domain, and ex-
plored its possible ways of carrying visual information. These
findings provide new directions for future data processing
or research, also provide potential discussion directions for
biological experts. At the end of the last, based on the above
findings, we proposed an explanatory model MST-ECoGNet,
which is lighter and has better performance than the model in
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