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SKEW GROUP ALGEBRAS, THE (FG) PROPERTY AND
SELF-INJECTIVE RADICAL CUBE ZERO ALGEBRAS

MADS HUSTAD SANDØY

Abstract. We classify self-injective radical cube zero algebras with respect
to whether they satisfy certain finite generation conditions sufficient to have a
fruitful theory of support varieties defined via Hochschild cohomology in the
vein of [7,22]. Using skew group algebras and Linckelmann’s notion of separable
equivalence, we obtain results that complement the existing partial classification
of [21] and complete the classification begun in [8,21] up to assumptions on the
characteristic of the field.

1. Introduction

Support varieties of modules are powerful tools, but they are not always avail-
able. In the case of a group algebra of a finite group, one defines them using
the maximal ideal spectrum of the group cohomology. One generalization of this
notion to a more general finite dimensional algebra Λ works instead with a sub-
algebra of the Hochschild cohomology ring of Λ. In [7], many of the results one
would expect a good notion of support to satisfy were shown to hold assuming Λ
is self-injective and has certain finite generation properties defined as follows: One
says that Λ has (Fg) provided

Ext∗Λe(Λ, U) = ⊕i≥0 Ext
i
Λe(Λ, U)

is a Noetherian module over the Hochschild cohomology ring of Λ

HH∗(Λ) = Ext∗Λe(Λ,Λ)

for every finitely generated Λe-module U , where Λe := Λop ⊗k Λ is the enveloping
algebra of Λ.1

A natural question is then whether particular classes of algebras possess this
finite generation property. In [9], this was settled for the case of radical-cube-zero
weakly symmetric algebras. Moreover, as the (Fg) property implies finite complex-
ity, [8] described the quivers and relations of representation infinite radical-cube-
zero self-injective algebras Λ of finite complexity as a step towards determining

2020 Mathematics Subject Classification. 16D50, 16E40, 16S35 .
1While this is not the original definition given in [7, Assumption 1, Proposition 1.4, Assump-

tion 2], it follows by [23, Propositions 5.5-5.7] that we can assume without loss of generality that
we work with H = HH∗(Λ).
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which of these satisfied the aforementioned finite generation conditions. In partic-
ular, they used the type of these algebras, which is defined as the extended Dynkin
type of the separated quiver of the radical-square-zero algebra obtained by taking
such an algebra Λ modulo its socle.

In the thesis [21], this work was essentially completed for classes of type Ãn and

D̃n, but not for the exceptional types. Many of the proofs involve long explicit
computations using quivers with relations of coverings of the algebras in question.

In this note, we show that the general radical-cube-zero self-injective case can
be reduced to the weakly-symmetric one by using skew group algebras and the
notion of separable equivalence as introduced in [16] provided the characteristic
is good and the Nakayama automorphism of the algebra has finite order. Note

that the latter always holds if the type of the algebra is not Ãn. Using this, we

partially recover the main result of [21]: Namely, we do so in part for type Ãn and

in whole for type D̃n. However, we also cover the exceptional cases, something
[21] does not. Hence, combining our results with those those of [21] we obtain
a complete answer to when a radical-cube-zero self-injective algebra satisfies the
(Fg) property.
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2. Skew group algebras, the (Fg) property and self-injective
radical-cube-zero algebras

For the rest of this note, let k be an algebraically closed field and Λ a finite
dimensional k-algebra. We often write ⊗ instead of ⊗k. Moreover, we denote the
k-duality functor by D. We refer to [1,2] for background on quivers with relations
and the representation theory of finite dimensional algebras.

Let G be a finite group acting on Λ, by which we mean that there exists some
group homomorphism G → AutΛ with AutΛ the multiplicative group of algebra
automorphisms of Λ. The skew group algebra ΛG is then the finite dimensional
algebra with underlying vector space Λ ⊗k kG, in which kG is the group algebra
of G, and with multiplication defined as

(λ⊗ g)(λ′ ⊗ g′) := λg(λ′)⊗ gg′.
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Observe also that there is an isomorphism

ΛG ≃
⊕

g∈G

1Λg

obtainable by using the fact that every element can be written uniquely as a sum∑
g∈G λg ⊗ g. Recall that 1Λg is the bimodule with underlying vector space Λ and

with bimodule action given by twisting on the right with g, i.e.

λ · λ′ · λ′′ = λλ′g(λ′′).

Consequently, the skew group algebra ΛG is a free left Λ-module.
We now relate this to Linckelmann’s notion of separable equivalence of algebras

[16]. Note thus that the term 1Λe in ⊕g∈G 1Λg is equal to Λ. Hence, if we let
M and N denote respectively ΛG considered as a Λ-ΛG-bimodule and as a ΛG-
Λ-bimodule, we see that Λ is isomorphic to a direct summand of M ⊗ΛG N as a
Λ-Λ-bimodule. On the other hand, provided the order of G is invertible in k, it
follows by [20, Theorem 1.1] that N⊗ΛM has a ΛG-ΛG-bimodule direct summand
isomorphic to ΛG. Following [16], one thus calls Λ and ΛG separably equivalent.

The following result, the proof of which is essentially [16, Theorem 4.1], allows
us to transfer the finite generation properties between Λ and ΛG. The proof we
give indicates which parts of the proof of [16, Theorem 4.1] that must be altered to
accommodate our slightly different assumptions. In particular, we indicate how we
can circumvent the assumption that the algebras in question must be symmetric.
Hence, recall that an algebra Λ is symmetric if Λ and D(Λ) are isomorphic as
bimodules.

Proposition 2.1. Assume that Λ is a k-algebra, that the order of G is invertible
in k, and let A = ΛG. Then ExtΛe(Λ, U) is Noetherian as an HH∗(Λ)-module for
any finitely generated Λe-module U if and only if ExtAe(A, V ) is Noetherian as an
HH∗(A)-module for any finitely generated Ae-module V . In other words, Λ is (Fg)
if and only if A = ΛG is.

Proof. As mentioned, the proof is essentially the same as that of [16, Theorem 4.1]
albeit with our A-Λ-bimodule N substituted for D(M).

In particular, note that [16, Theorem 4.1] requires symmetric to use two lemmas:

(i) [16, Lemma 3.2]; and
(ii) [16, Lemma 4.5].

For (ii), note that the parts of the proof of [16, Lemma 4.5] which use the
symmetric assumption are (1): The proof invoking [16, Lemma 4.4], the content
of which is that the symmetric assumption forces the Λ-ΛG-bimodule M to have
D(M) as both its left and right adjoint, and that this then implies that D(M)⊗Λ

−⊗ΛM as a functor from modΛe to modAe is left adjoint to the functorM⊗A−⊗A

D(M); and (2): that symmetric implies that D(M) is right projective since M is
left projective. For (i), note that the conclusion of [16, Lemma 3.2] essentially says
that Λ and A are respectively bimodule summands ofM⊗AD(M) andD(M)⊗ΛM .
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Observe then that [20, Theorem 1.1] shows −⊗ΛGN ≃ HomΛG(N,−) to be left
adjoint to −⊗Λ M in addition to it being its right adjoint by ⊗-Hom-adjunction.
Consequently, we deduce that N⊗Λ−⊗ΛM is left adjoint to M⊗A−⊗AN . Hence,
(ii)(1) is taken care of and (ii)(2) is no issue as the ΛG-Λ-bimoduleN = ΛG is right
projective. Consequently, [16, Lemma 4.5] holds with N substituted for D(M).

Moreover, M and N both satisfy the conclusion in the lemma in (i) by the
discussion before the proposition. �

Remark 2.2. Note that [4, Theorem 4.2(2)] is a similar result that was shown
independently, as is also pointed out in [4].

Also note that the only part of the proposition above that requires any assump-
tion on the field k is the conclusion that Λ is (Fg) if and only if A = ΛG is (Fg),
and for this assuming that k is perfect instead of algbraically closed would suffice;
see also [4, Remark 3.3] for a more thorough discussion.

Recall now that if Λ is a basic self-injective k-algebra, we can assume that Λ is
a Frobenius algebra, implying that there is a Λe-module isomorphism D(Λ) ≃ 1Λν

where ν is an algebra automorphism of Λ. Here, ν is what is called the Nakayama
automorphism of Λ. Recall that ν is unique up to composition with an inner
automorphism, i.e. an automorphism induced by conjugation with an invertible
element of Λ. Note that Λ is symmetric if and only if it is Frobenius and its
Nakayama automorphism is an inner automorphism.

It is well known that for an algebra Λ to be Frobenius is equivalent to there
existing a non-degenerate associative bilinear form 〈−,−〉 : Λ × Λ → k, in which
associative means that 〈λ, λ′λ′′〉 = 〈λλ′, λ′′〉. For example, the group algebra kG is
Frobenius with the bilinear form defined on the basis of group elements g, h ∈ G
by 〈g, h〉 = 1 if gh = e and 0 otherwise.

Using this, one can show that if Λ is Frobenius then ΛG is as well: One defines
a bilinear form on ΛG by letting

〈λ⊗ g, λ′ ⊗ g′〉ΛG := 〈λ, g(λ′)〉Λ · 〈g, g′〉kG.

Note that we here use subscripts to denote which algebra a given form is defined
for, but often omit these in the sequel as it will cause no ambiguity.

It is straightforward to see that this form is associative, and so we need only
check non-degeneracy: Assume thus that x =

∑
g∈G λg ⊗ g satisfies 〈x, y〉 = 0 for

all y ∈ ΛG. Hence, we deduce that

〈x, λ′ ⊗ h−1〉 = 〈λh, h(λ
′)〉 · 〈h, h−1〉

= 〈λh, h(λ
′)〉

= 0

for all all λ′ ∈ Λ. But h acts on elements of Λ by its image in AutΛ, i.e. via an
algebra automorphism, and so we get that 〈x,Λ〉 = 0, a contradiction.

We also need the following convenient lemma.
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Lemma 2.3. [13, Lemma 2.7] Let k be a field and let Λ be a finite dimensional
Frobenius k-algebra with associated bilinear form 〈−,−〉. Then the Nakayama
automorphism ν of Λ, satisfies 〈λ, λ′〉 = 〈λ′, ν(λ)〉 for all λ, λ′ ∈ Λ, and any
automorphism satisfying this formula is a Nakayama automorphism.

The next result determines the Nakayama automorphism of ΛG whenever Λ has
a Nakayama automorphism of finite order and G is generated by ν.

Proposition 2.4. Let Λ be a basic self-injective algebra with Nakayama automor-
phism ν of finite order, and let G be the finite cyclic group generated by ν. Then
ΛG is symmetric.

Proof. We compute as follows

〈λ⊗ νi, λ′ ⊗ ν−i〉 = 〈λ, νi(λ′)〉 · 〈νi, ν−i〉

= 〈λ, νi(λ′)〉

= 〈νi(λ′), ν(λ)〉

= 〈λ′, ν−i+1(λ)〉

= 〈λ′ ⊗ ν−i, ν(λ)⊗ νi〉.

This shows that
νΛG(λ⊗ νi) = ν(λ)⊗ νi

is a Nakayama automorphism of ΛG by Lemma 2.3 as long as it is an automorphism
of the algebra.

Observe now that 1 ⊗ ν ∈ ΛG is invertible, and that it defines an inner auto-
morphism

ν(λ)⊗ νi = (1⊗ ν) · (λ⊗ νi) · (1⊗ ν−1).

We are hence done as this implies that we can choose ΛG to have the identity as
its Nakayama automorphism. �

We also need the following result.

Proposition 2.5. [10, Lemma 2.7] If Λ is a symmetric algebra and η is some
idempotent of Λ, then ηΛη is symmetric.

We are not yet ready to show the main (and only!) result of this note, namely
that we can reduce the classification of basic radical-cube-zero self-injective (Fg)
algebras to the classification in the weakly symmetric case in all cases except

those of type Ãn provided the characteristic is good. In particular, we need to

show that all self-injective radical-cube-zero algebras that are not of type Ãn have
a Nakayama automorphism that is of finite order.

Note that an algebra Λ is called radical-cube-zero if it satisfies rad3 Λ = 0.
Moreover, we can ignore those algebras which satisfy rad2 Λ = 0 in the basic self-
injective case which is of interest to us for reasons we now explain. Indeed, we
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can restrict to those algebras Λ which are representation-infinite since the ones
which are representation-finite are already known to be (Fg) essentially by the
main result in [6] via the methods in [11]. If rad2 Λ = 0 holds with Λ basic self-
injective, then one can check that Λ must be a Nakayama algebra, and hence of
finite representation type; see e.g. [9, Proposition 1.4].

By [17], any representation-infinite self-injective radical-cube-zero algebra is
Koszul; see [3] or [17] for a definition. In particular, this implies that it must
be a quadratic algebra and hence have quadratic relations if it is basic. Moreover,
note that a Koszul algebra Λ is a positively graded algebra, meaning that as a k-
vector space Λ can be expressed as a direct sum of the form ⊕i∈NΛi satisfying that
Λi ·Λj ⊆ Λi+j. Also note that a finite dimensional Koszul algebra is isomorphic as
a graded algebra to its associated graded with respect to the radical filtration by
[3, Proposition 2.5.1].

We want to combine this with some information on the structure of the quivers
of self-injective radical-cube-zero algebras. Following [8, Definition 7.1], the type of
such an algebra Λ is the underlying graph of the separated quiver of A = Λ/ socΛ,
which is a radical-square-zero algebra. Following [2], the separated quiver of a
radical-square-zero algebra A is given by the quiver of the bipartite hereditary
algebra

[
A/ radA radA

0 A/ radA

]
.

Using the aforementioned [3, Proposition 2.5.1], we get that this is isomorphic to

∇Λ :=

[
Λ0 Λ1

0 Λ0

]
,

i.e. the Beilinson algebra of Λ as in [18, 24].
Recall now that the 2-quasi-Veronese of a graded algebra Λ (as in [18, Definition

4.6.2]) of highest degree 2 is

Λ[2] :=

[
Λ0 Λ1

0 Λ0

]
⊕

[
Λ2 0
Λ1 Λ2

]
.

The essential idea in the following is that we can replace Λ by its 2-quasi-
Veronese Λ[2] to get what we can think of as a normal form of Λ which is easier to
work with.

Recall now that given a graded module M = ⊕i∈ZMi, one defines the j-th
graded shift of M to be the graded module M〈j〉 with M〈j〉i = Mi−j . Since Λ is
Frobenius and its socle lies in its highest degree, i.e. 2, we have that DΛ〈−2〉 ≃ 1Λν

as graded bimodules by [12, Lemma 2.2]. Consequently, we get Λ2 ≃ 1D(Λ0)ν−1

and Λ1 ≃ 1D(Λ1)ν−1. Note that we here abuse notation by letting ν−1 denote
both the inverse of the Nakayama automorphism of Λ and the automorphism the
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inverse induces on Λ[2]. Using this, we deduce that

Λ[2] ≃

[
Λ0 Λ1

0 Λ0

]
⊕

[
1D(Λ0)ν−1 0

1D(Λ1)ν−1 1D(Λ0)ν−1

]
.

In other words, Λ[2] is the twisted trivial extension of (Λ[2])0 with respect to the
degree 0 part of ν−1, a notion we recall now: Given a finite dimensional algebra A,
the trivial extension of A is ∆A := A⊕DA as a vector space. It is an algebra with
multiplication (a, f) · (b, g) = (ab, ag + fb) for a, b ∈ A and f, g ∈ DA. Observe
that ∆A is a symmetric algebra with a non-degenerate bilinear form induced by
setting 〈a, f〉 := (a · f)(1) and 〈f, a〉 := (f · a)(1) for a ∈ A and f ∈ DA and
extending bilinearly.

Similarly, if σ is an algebra automorphism of A, one defines the twisted trivial
extension of A with respect to σ as the vector space ∆σA := A⊕ 1D(A)σ endowed
with the same multiplication as for the usual trivial extension. Note, however,
that ∆σA is not necessarily symmetric, only Frobenius. This is well known, but
we include a proof for the convenience of the reader:

If A is some algebra and σ is an automorphism of A, then the twisted trivial
extension of A with respect to σ has Nakayama automorphism given essentially by
σ−1, and we abuse notation and let it be denoted by σ−1, too. To see this, let σ−1

act on a ∈ A as you would expect while σ−1 acts on f ∈ DA by σ−1(f) = f ◦ σ.
One can check that setting 〈a, f〉 := (a · f)(1) and 〈f, a〉 := (f · a)(1) for a ∈ A
and f ∈ DA induces a non-degenerate associative bilinear form for ∆σA.

Note then that

〈a, f〉 = (a · f)(1) = f(a) = (f · σ−1(a))(1) = 〈f, σ−1(a)〉

and

〈f, a〉 = (f · a)(1) = f(σ(a)) = (a · f ◦ σ)(1) = 〈a, σ−1(f)〉,

so the claim follows by Lemma 2.3, and we have hence shown:

Proposition 2.6. The twisted trivial extension of A with respect to the automor-
phism σ has Nakayama automorphism given by σ−1, where σ−1 acts on elements
of A as one would expect and σ−1(f) = f ◦ σ for f ∈ D(A)σ.

Consequently, we see that the possible forms of the Nakayama automorphisms of
a 2-quasi-Veronese Λ[2] should be determined by the automorphisms of the algebra

Λ
[2]
0 . Also note that Λ

[2]
0 is a bipartite hereditary algebra whenever Λ is basic

radical-cube-zero self-injective, and that the type of Λ
[2]
0 coincides with the type

of Λ. Our aim to is to use this to somehow exploit the fact that tame hereditary
algebras have particularly nice groups of outer automorphisms, and especially so

if they are not of type Ãn.
To achieve this, we first show that when checking if Λ is (Fg) we can reduce to

working with the 2-quasi-Veronese of Λ provided the characteristic is not 2. To
do this, we begin by noting that Λ[2] can be identified with a smash product of Λ
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with the group Z2, a notion we now recall: First, recall that if G is a group, the
notion of a G-graded algebra Λ is defined similarly to that of a positively graded
algebra, i.e. Λ is G-graded if it can be expressed as a direct sum Λ = ⊕g∈GΛg

such that Λg · Λh ⊆ Λgh. We now let {pg ∈ kG∗ | g ∈ G} be the dual basis
of kG∗ := Homk(kG, k), where G is a finite group, and recall that the smash
product Λ#G∗ of a G-graded algebra Λ = ⊕g∈GΛg with the group G is the finite
dimensional algebra with underlying vector space Λ ⊗k kG

∗ and multiplication
given by

λpg · λ
′ph = λλ′gh−1ph

wherein λ′ =
∑

g∈G λ
′
g, i.e. λ′

gh−1 is the degree gh−1 part of λ′ and we have omitted
the notation for the tensor products. Using this, we have the following.

Proposition 2.7. Let Λ = ⊕0≤i≤2Λi have the Z2-grading given by letting Λ0 ⊕Λ2

be in degree 0 and Λ1 be in degree 1. Then Λ[2] ≃ Λ#Z
∗
2.

Proof. This follows by noting that

Λ#Z
∗
2 ≃

[
Λ0p0 Λ1p1
0 Λ0p1

]
⊕

[
Λ2p0 0
Λ1p0 Λ2p1

]
,

comparing this with the decomposition given above for the 2-quasi-Veronese, and
checking that the multiplications of the two agree. �

The smash product Λ#G∗ has an action of the group G given by (λph)
g = λphg

for λ ∈ Λ, ph ∈ kG∗ and g ∈ G by [5, Lemma 3.3]. Hence, one can form the skew
group algebra (Λ#G∗)G, and this is Morita equivalent to Λ by [5, Theorem 3.5].
Since the (Fg) property is preserved by Morita equivalence by the main result in
[14], it follows by Proposition 2.1 that if the characteristic is different from 2, then
Λ is (Fg) if and only if Λ[2] is, and we record this in the following proposition.

Proposition 2.8. Let Λ = ⊕0≤i≤2Λi have the Z2-grading given by letting Λ0 ⊕Λ2

be in degree 0 and Λ1 be in degree 1. If the characteristic is different from 2, then
Λ is (Fg) if and only Λ[2] is (Fg).

Let now A be a basic hereditary k-algebra with quiver Q. For instance, this

holds for A = Λ
[2]
0 with our assumptions. Moreover, let Aut(Q0; d) be the group

of automorphisms of Q0 that preserve the number of arrows between pairs of
idempotents, let Out(A) be the group of outer automorphisms and let Out0(A) be
its subgroup consisting of those automorphisms that fix Q0. Recall that Out(A)
is defined to be the quotient of Aut(A) by the subgroup of inner automorphisms,
i.e. those defined by conjugation with an invertible element of A, and one proceeds
similarly for Out0(A). From [19, Proposition 1.7], we have the following split exact
sequence

1 → Out0(A) → Out(A) → Aut(Q0; d) → 1

provided A is connected. However, consulting the proof in [19, Proposition 1.7],
we note that the result also holds without the connected assumption whenever
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Out0(A) is trivial, which is what we need: In fact, by [19, Proposition 1.7] we have
that Out0(A) is trivial if the quiver of A is a tree, i.e. in all Dynkin and extended

Dynkin cases with the exception of Ãn. Moreover, by [8, Proposition 2.1] we know
that a self-injective radical-cube-zero algebra must have type Dynkin or extended
Dynkin if it is to have (Fg).

From the split exact sequence above we deduce that any outer automorphism
ψ of A is a composition consisting of an outer automorphism σ of A that fixes
the idempotents corresponding to Q0 and an element of Aut(Q0; d), say π. To
be more precise, π is obtained as an element in Out(A) by mapping a preimage
π′ ∈ Aut(Q0; d) into Aut(Q) – the group of quiver automorphisms of Q – along a
splitting, and one then takes the image of the resulting quiver automorphism in
Out(A).

We would now like to use these observations to deduce that the Nakayama
automorphisms of the algebras of interest to us are suitably nice provided their

types are not Ãn. To do this, we need a few observations:

Proposition 2.9. Let σ and π be automorphisms of A and let σ be inner. Then
D(A)σ◦π ≃ D(A)π as A-bimodules.

Proof. That an automorphism σ of an algebra A is inner is well-known to be
equivalent to there existing an A-bimodule isomorphism σA ≃ A. The implication
we need follows by noting that if σ(a) = uau−1, then a 7→ ua is an isomorphism
from A to σA. Twisting this by π on the left yields an isomorphism

πA ≃ π(σA) ≃ σ◦πA,

and the claim then follows by dualizing. �

To use this, we need the following, whose proof we omit.

Proposition 2.10. Graded isomorphisms of algebras Γ = Γ0⊕Γ1 and Γ′ = Γ0⊕Γ′
1

whose degree 0 parts are just the identity correspond to Γ0-bimodule isomorphisms
from Γ1 to Γ′

1.

Note that this combined with the preceding result implies that the isomorphism
class of a twisted trivial extension is determined by the outer automorphism class
of the defining automorphism.

Finally, we want to transfer a Nakayama automorphism along an algebra iso-
morphism.

Proposition 2.11. If φ : Λ → Γ is an isomorphism of algebras and Γ is Frobenius
with Nakayama automorphism ν, then Λ is Frobenius with Nakayama automor-
phism φ−1 ◦ ν ◦ φ.

Proof. One can note that we have the following chain of isomorphisms of Λ-
bimodules

D(Λ) D(Γ) Γν Λφ−1◦ν◦φ

D(φ−1) φ−1
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wherein D(Γ) and Γν have the Λ-bimodule structures induced by φ. Indeed, the
middle map exists by the assumption that Γ is Frobenius, whereas the final map
is verified by noting that φ−1(φ(x)x′ν(φ(x′′))) = xφ−1(x′)φ−1(ν(φ(x′′))) holds for
x, x′, x′′ ∈ Γ. �

Combining the preceding three propositions with the fact that Out0(A) is trivial

for A tame hereditary of type not Ãn, we get the next result.

Proposition 2.12. Let A be hereditary, and let σ and π be automorphisms such
that σ ∈ Out0(A) and π ∈ Aut(Q0; d). If σ is inner, then ∆σ◦πA and ∆πA are

isomorphic as algebras. Moreover, if A is tame not of type Ãn, then any twisted
trivial extensions of A can be endowed with a Nakayama automorphism of finite
order.

Finally, we are ready to show the main result of this note.

Theorem 2.13. Let Λ be Frobenius of infinite representation type satisfying that
rad3 Λ = 0 6= rad2 Λ. Moreover, assume that both 2 and the order of the Nakayama
automorphism of Λ is invertible in k. Then Λ is (Fg) if

(1) the type of Λ is extended Dynkin but not Ãn; or

(2) the type of Λ is Ãn and its Nakayama automorphism is of finite order.

Proof. Let A = Λ[2], and recall that the type of A0 coincides with the type of Λ.

If the type of Λ is extended Dynkin but not Ãn, then by the preceding result, A
has a Nakayama automorphism of finite order. Hence, if either (1) or (2) hold, we
can form the skew group algebra AG with G the finite cyclic group generated by
a Nakayama automorphism of A, and AG is then a radical-cube-zero symmetric
algebra by [20, Theorem 1.3] and Proposition 2.4. A basic version of AG is then
also radical-cube-zero symmetric by Proposition 2.5, and these all satisfy (Fg) by
[9]. By [14], we have that AG is (Fg) if a basic version of AG is, by Proposition 2.1
we have that A is (Fg) if AG is, and by Proposition 2.8 we have that Λ is (Fg) if
A = Λ[2] is. �

Remark 2.14. We note some similarities with Said’s approach in [21]: whereas
we use a Z2-covering or smash product via the 2-quasi-Veronese, Said employs a
Z-covering. The goal is more or less the same, namely getting a “normal form”
that is easier to work with.

Following this, we use some results on the structure of automorphisms of heredi-
tary algebras to construct isomorphisms to further simplify the algebras in all cases

except Ãn. Said, on the other hand, uses explicit base changes for the same end,

although she can characterize when (Fg) holds in all of type Ãn. Note, however,
that the proofs in [21] are far longer and involve explicit case by case computations.

By combining the theorem above with the main result of [21], we obtain a
complete answer to when a radical-cube-zero self-injective algebra satisfies the
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(Fg) property. Before we can present this, we must recall some things: Note that

if Λ is radical-cube-zero self-injective of type Ãn and finite complexity, then the
main result of [8] shows that Λ has a quiver Q as described in Proposition 5.1,
Proposition 5.4 or Proposition 6.4 of [8]. Also note that [21, Chapter 2] shows
that Λ is (Fg) in either of the latter two cases. If the quiver of Λ is instead
as in Proposition 5.1 of [8], Said shows that one can assume that at most one
commutativity relation in the presentation of Λ = kQ/I involves a coefficient q
possibly different from ±1. Using this, Said then shows that Λ is (Fg) if and only
if this q is a root of unity.

Corollary 2.15. Let Λ = kQ/I be a connected Frobenius algebra satisfying that
rad3 Λ = 0 6= rad2 Λ. Moreover, assume that both 2 and the order of the Nakayama
automorphism of Λ is invertible in k. Then Λ is (Fg) if and only if one of the
following hold.

(1) The type of Λ is Dynkin.

(2) The type of Λ is extended Dynkin but not Ãn.

(3) The type of Λ is Ãn and its quiver Q is as described in Proposition 5.4 or 6.4
of [8].

(4) The type of Λ is Ãn, its quiver Q is as described in Proposition 5.1 of [8], and
the Nakayama automorphism of Λ is of finite order as an outer automorphism.

Proof. The “if” direction for (2)-(4) is clear by the above theorem in combination
with the main result of [21], whereas for (1) it follows by Proposition 2.1 of [8] and
the fact that representation finite selfinjective algebras are known to satisfy (Fg);
see as before e.g. [6] and [11].

For the “only if” direction, we assume that Λ satisfies (Fg) and begin by consid-
ering cases: If Λ is representation finite, the type must be Dynkin by the proof of
[8, Proposition 2.1]. If Λ is representation infinite, then the proof of [8, Proposition
2.1] implies that the type must be extended Dynkin as otherwise it would have
non-finite complexity in contradiction to the assumption that Λ is (Fg). Hence,

we only need to consider the case when Λ is of type Ãn and its quiver Q is as in
Proposition 5.1 of [8].

We now want to use [25, Proposition 2.15] in manner similar to what is done in
the proof of [15, Criterion 5.1] to deduce that the Nakayama automorphism must
be of finite order in this case. Thus, recall that we can choose a basis B of Λ that
also contains a basis for the socle of Λ, and let us define a function trΛ : Λ → k to
be given by trΛ(λ) = 1 if λ ∈ socΛ and 0 otherwise. Then [25, Proposition 2.15]
tells us that the bilinear form 〈−,−〉 of Λ that exists by the assumption that Λ is
Frobenius can be given by 〈λ, λ′〉 = trΛ(λλ

′).
By our assumptions, the socle of Λ consists only of paths of length two. More-

over, by considering the form of the quiver of Λ, we see that for any given arrow
α ∈ Q1 there is exactly one arrow α∗ such that αα∗ ∈ socΛ. Since we have both
rad3 Λ = 0 and that Λ is Frobenius, paths λ, λ′ of length two starting and ending
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in the same vertex must be equal up to some scalar. However, by [21, Chapter 2,
Section 3], we can assume any coefficient in a commutativity relation to be a root of
unity and hence the same is true of any such scalar. Consequently, since for α ∈ Q
we have 〈α, α∗〉 = 〈α∗, ν(α)〉, we see that the preceding observations combined
with Lemma 2.3 imply we can choose a Nakayama autmorphism ν such that ν(α)
equals q(α∗)∗ for q some root of unity. Hence, since any two Nakayama automor-
phisms are equal up to composition with an inner automorphism, we deduce that
any Nakayama automorphism of Λ is of finite order as an outer automorphism.
This finishes the proof. �
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