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Figure 1: SDM-D can simultaneously detect and segment input images based on the prompts, and enable distillation of
knowledge from foundation models to faster, smaller models.

Abstract
Recent breakthroughs in large foundation mod-
els have enabled the possibility of transferring
knowledge pre-trained on vast datasets to do-
mains with limited data availability. Agricul-
ture is one of the domains that lacks sufficient
data. This study proposes a framework to train
effective, domain-specific, small models from
foundation models without manual annotation.
Our approach begins with SDM (Segmentation-
Description-Matching), a stage that leverages
two foundation models: SAM2 (Segment Any-
thing in Images and Videos) for segmentation
and OpenCLIP (Open Contrastive Language-
Image Pretraining) for zero-shot open-vocabulary
classification. In the second stage, a novel
knowledge distillation mechanism is utilized to
distill compact, edge-deployable models from
SDM, enhancing both inference speed and per-
ception accuracy. The complete method, termed
SDM-D (Segmentation-Description-Matching-
Distilling), demonstrates strong performance
across various fruit detection tasks (object detec-
tion, semantic segmentation, and instance seg-
mentation) without manual annotation. It nearly
matches the performance of models trained with

abundant labels. Notably, SDM-D outperforms
open-set detection methods such as Grounding
SAM and YOLO-World on all tested fruit de-
tection datasets. Additionally, we introduce
MegaFruits, a comprehensive fruit segmentation
dataset encompassing over 25,000 images, and
all code and datasets are made publicly available
at https://github.com/AgRoboticsResearch/SDM-
D.git.

Keyworkds: Fruit Detection, Foundation Mod-
els, Knowledge Distillation, Zero-Shot Learning,
Agriculture

1. Introduction
Labor challenges have become a pressing issue in the agri-
cultural sector. According to a report by the Economic
Research Service of the U.S. Department of Agriculture,
the sector’s labor costs reached $42.57 billion in 2022, with
nearly 10% of production expenses allocated to labor alone
(Giri et al., 2023). Increasing labor shortages, especially dur-
ing peak seasons, highlight the need for agricultural automa-
tion (Fei and Vougioukas, 2022), where visual perception
and understanding in open-world scenarios are fundamen-
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tal. For instance, accurate fruit detection and segmentation
are crucial for applications like robotic fruit picking, yield
estimation, and quality assessment.

In the last few years, deep learning (DL) methods have
emerged as a mainstream approach in agricultural visual
perception (Vougioukas, 2019), showing success in vari-
ous tasks such as weed detection (Pai et al., 2024), disease
identification (Hassan and Maji, 2022), and plant stress
detection (Gozzovelli et al., 2021). DL approaches are espe-
cially effective in fruit detection (Zhou et al., 2024; Villacrés
et al., 2023). However, training high-performance convo-
lutional networks frequently requires vast datasets, often
comprising thousands of images, and even state-of-the-art
(SOTA) DL detection methods falter under limited data
(Gupta et al., 2019). The computer vision community gath-
ered a vast array of general open-source datasets, such as
COCO (Lin et al., 2014) and ImageNet (Deng et al., 2009),
which have become invaluable for advancing research and
development in the field. Similarly, specialized open-source
datasets have been developed for autonomous driving (Xu
et al., 2023), and face identification (Huang et al., 2023; Lin
et al., 2021). In addition to these, commercial entities also
establish their own private datasets for proprietary model
training. However, in the domain of agriculture, factors
including environmental variability, crop seasonality, and
concerns about data ownership pose challenges to the cre-
ation of large, diverse datasets. Fruit instance segmentation
introduces additional difficulties, as the labor-intensive pro-
cess of pixel-level labeling complicates data preparation.
Although some segmentation datasets, such as MangoNet
(Kestur et al.), StrawDI Db1 (Pérez-Borrero et al., 2020),
and MinneApple (Hani et al., 2020), are available (Table 1
summarizes publicly available, representative fruit datasets),
they tend to contain a limited number of images. Addition-
ally, the datasets are often highly specific to particular plant
varieties, horticultural practices, lighting conditions, sea-
sons, and even camera types, making it exceedingly difficult
to train a general fruit segmentation model that can effec-
tively generalize across different contexts (Fei et al., 2021).
Therefore, developing an efficient fruit detection model gen-
eration method without the need for manual annotation is
an open problem at present.

Recently, foundation models (FMs) have revolutionized the
fields of natural language processing and computer vision.
Typically trained on expansive datasets often through large-
scale self-supervision, these models demonstrate strong gen-
eralization across various downstream tasks (Bommasani
et al., 2022). For example, the Segment Anything Model
(SAM) (Kirillov et al., 2023) demonstrates zero-shot seg-
mentation that generalizes exceptionally well to unfamil-
iar objects and images. This is achieved by training the
model on the largest segmentation dataset available at the
time, which includes over 1 billion masks on 11 million

images. CLIP (Radford et al., 2021; Ilharco et al., 2021)
enables the model to understand both visual and textual data
through large-scale pretraining. It excels in tasks such as
image captioning, visual question answering, and image-
text retrieval. Despite their advantages, training FMs is
extremely resource-intensive, requiring significant computa-
tional power, large datasets, and extensive energy consump-
tion. For instance, GPT-3, an “outdated” large language
model, has 175 billion parameters (Brown et al., 2020).
According to Lambda Labs, the estimated cost of training
GPT-3 is approximately 4.6 million US dollars and would
take 355 years on a single GPU as of 2020 (Li, 2020). Sim-
ilarly, CLIP requires a dataset of 400 million image-text
pairs, and its largest ResNet model requires 18 days to train
on 592 V100 GPUs (Radford et al., 2021). Hence, effi-
cient utilization of FMs in appropriate downstream tasks
is essential to optimize their cost-effectiveness over their
lifecycle and also benefit domains with limited data avail-
ability (Hernandez and Brown, 2020). To achieve this, we
aim to transfer knowledge from FMs to smaller, more effi-
cient models, thereby enabling the use of pre-trained FMs’
knowledge in the agricultural domain. We also take into
account the practical aspects of real-time edge deployment.

In this study, we introduce SDM-D, a framework designed
to distill knowledge from FMs and realize the panoramic per-
ception of complex agricultural scenes without any manual
annotation. In addition, we contribute MegaFruits, a high-
quality segmentation dataset aimed at advancing agricultural
robotics and precision farming. The key contributions of
this paper are as follows:

• We propose a novel Segmentation-Description-
Matching-Distilling framework that efficiently distills
agricultural-specific domain knowledge from FMs and
transfers it to a small student model without the need
for manual annotation.

• Comprehensive experimental evaluations demonstrate
that the models distilled using our method outperform
existing open-set detection methods in both speed and
accuracy while achieving performance comparable to
models trained on extensive manual annotations.

• We introduce a high-quality, comprehensive fruit in-
stance segmentation dataset to advance agricultural
perception, which includes 20,242 images of straw-
berries with 569,382 pseudo masks, 2,400 manually
labeled images of yellow peaches with 10,169 masks,
and 2,540 manually labeled images of blueberries with
20,656 masks. Utilizing the capabilities of our method,
we are able to generate such a large scale of pseudo-
segmentation labels. To our knowledge, this is the
largest open dataset currently available for fruit seg-
mentation.
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• We have open-sourced the code used in this paper,
enabling anyone to generate fruit segmentation models
as needed. This code supports further research and
development, facilitating the application of FMs in
agricultural robotics.

2. Related Work
2.1. Open-vocabulary Detection

Traditional fruit detection methods primarily involve train-
ing closed-set detection models on specifically collected
and labeled datasets (Chalapathy and Chawla, 2019). Con-
sequently, these models can only respond to objects within
a fixed set of labeled categories. Their performance is
constrained by the size and quality of manually annotated
datasets, and they typically cannot generalize well to un-
familiar domains. The rise of FMs has shifted the focus
toward open-vocabulary object detection (OVD), which can
detect objects in categories not explicitly labeled during
training and generalize to unfamiliar images (Tseng et al.,
2024). This shift is particularly beneficial in the field of
agriculture, where labeled data are often scarce. GLIP (Li
et al., 2022) and OWL-ViT (Minderer et al., 2022) lever-
aged CLIP’s capability to understand both visual and textual
features in images, thereby expanding detection to open-
vocabulary tasks. Grounding DINO (Liu et al., 2024) ad-
vanced OVD by incorporating referring expression com-
prehension (REC) (Qiao et al., 2021), which is crucial for
scenarios where objects are described based on their prop-
erties. This advancement aids in distinguishing between
objects of the same category. While these models excel in
OVD, they can not handle pixel-level segmentation tasks.
LLaVA-Grounding (Zhang et al., 2024) connected a large
multimodal model LLaVA (Liu et al., 2023) with a ground-
ing model to realize grounded visual chat, supporting both
object and pixel-level grounding. Grounded SAM (Ren
et al., 2023) presented an innovative combination of open-
set detector Grounding DINO (Liu et al., 2024) with the
foundation segmentation model SAM (Kirillov et al., 2023).
This approach effectively addresses open-set segmentation
tasks by initially conducting object detection based on the
input text prompt, and then performing segmentation using
the detection outputs. Similarly, YOLO-World (Cheng et al.,
2024) employs CLIP (Radford et al., 2021) for text encoding
within a YOLO structure (Varghese and M., 2024), achiev-
ing high inference speeds for open-set detection. However,
both Grounded SAM and YOLO-World adopt a prompt-
then-segment paradigm, which enhances efficiency but may
reduce precision, especially in dense scenarios such as those
found in agriculture. Additionally, to encode general visual-
text knowledge, these models tend to be large and resource-
consuming, making them difficult to deploy in real-time
edge applications such as robotics.

2.2. Application of FMs in Agriculture

There are some initial studies focused on deploying FMs in
agriculture. This study (Yang et al., 2024) evaluated SAM’s
zero-shot segmentation on chickens using part-based and
infrared thermal images, finding it outperformed SegFormer
(Xie et al., 2021) and SETR (Zheng et al., 2021) in both
whole and part-based chicken segmentation. This work
(Williams et al., 2023) introduced ”Leaf Only SAM,” a zero-
shot segmentation pipeline for potato leaves. They highlight
the potential of FMs to perform effectively with minimal la-
beled data. This work (Li et al., 2024) fine-tuned Grounding
DINO on MetaFruit for open fruit object detection, demon-
strating its impressive adaptability in learning. Nevertheless,
this system lacks the capability for fruit segmentation and
the performance of inference speed is still limited. To the
best of our knowledge, in fruit segmentation, an effective
framework for training a well-performed model without
manual annotation is still lacking.

2.3. Knowledge Distillation

Another related field to this study is knowledge distillation.
Although FMs generalize well to unfamiliar domains and
tasks, they often need substantial computational resources,
making them challenging to deploy efficiently on edge de-
vices such as robots (Ishtiaq et al., 2021). Knowledge dis-
tillation has been explored to address these issues (Kozlov
et al., 2021). In knowledge distillation, a ”teacher” model
transfers its knowledge to a smaller ”student” model, en-
abling the student to achieve comparable performance while
being more resource-efficient (Hinton et al., 2015). In a typ-
ical knowledge distillation process, the student model being
trained to mimic the output probabilities (or logits) of the
teacher model, and a loss function is used to measure the gap
between the student’s and teacher’s predictions. Addition-
ally, Xie et al. (2020) demonstrated that distillation could be
achieved by propagating pseudo-labels to unlabeled data in
a self-supervised pipeline, linking knowledge distillation to
pseudo-labeling without relying on output matching. This
establishes an important connection between knowledge
distillation and pseudo-labeling. Our work builds on this re-
lation and extends knowledge distillation to scenarios where
no manual labels are available.

3. Methodology
To efficiently extract the agricultural-specific domain knowl-
edge for fruit segmentation from FMs and address chal-
lenges related to duplicate detections and insufficient de-
tections in dense fruit scenes, we propose a segment-then-
prompt approach named SDM. Unlike prompt-then-segment
referenced in Grounded SAM (Qiao et al., 2021) and YOLO-
World (Liu et al., 2023), this paradigm shifts segmentation
to occur before prompting. This approach fully unleashes
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Table 1: List of publicly available fruit detection datasets and our MegaFruit dataset.

Datasets Annotation categories Images Instances Labels Task

MangoYOLO (Koirala et al., 2019) Mango 1,730 9,067 Bounding-box Object detection

DeepBlueberry (Gonzalez et al., 2019) Blueberry 7 228 Mask Instance segmentation
293 10,161 Bounding-box Object detection

KFuji RGB-DS (Gené-Mola et al., 2019) Apple 967 12,839 Bounding-box Object detection

MetaFruit (Li et al., 2024) Apple, orange, lemon,
tangerine, grapefruit 4,248 248,015 Bounding-box Object detection

MangoNet (Kestur et al.) Mango 49 6,799 Mask Instance segmentation
MinneApple (Hani et al., 2020) Apple 1,001 41,325 Mask Instance segmentation
StrawDI Db1 (Pérez-Borrero et al., 2020) Strawberry 3,100 17,938 Mask Instance segmentation

MegaFruits (ours)

Ripe strawberry, unripe
strawberry,leaf, stem, others 20,242 569,382 Pseudo-mask Instance segmentation

Blueberry 2,540 20,656 Mask Instance segmentation
Peach 2,400 10,129 Mask Instance segmentation

Figure 2: Overall framework of SDM-D. (a) Segmentation: is based on SAM2, utilizing the sam2 hiera large weight with a
32 × 32 grid of points and no additional prompts. (b) Mask NMS: was proposed to reserve the optimal mask. (c)

Description and Image Segments Encoding: OpenCLIP is used to encode the description and image segments. (d)
Region-Text Matching: this is used to image regions with corresponding textual descriptions. (e) Distilling: involves

transferring knowledge to smaller models that are faster and perform better. The SDM consists of sections (a), (b), (c), and
(d) with pink headings, and SDM-D is a combination of SDM and section (e).

the power of the image segmentation foundation model
and aligns visual and textual inputs more effectively. Addi-
tionally, we augment this method with a model distillation
pipeline to further enhance both segmentation performance
and runtime efficiency, particularly on resource-limited edge
devices. The overall framework, as illustrated in Figure 2,
is referred to as SDM-D.

(a) Segmentation. SAM2 (Ravi et al., 2024) is a prompt-
driven segmentor that comprises an image encoder, a prompt
encoder, and a lightweight mask decoder. The image en-
coder is an MAE [51] pre-trained ViT [52], encoding an
input image with resolution H ×W into a H

16 × W
16 image

embedding. Given the complexity of agricultural scenes
and the need for method generalization, we opt to use a
32×32 regular grid of points as prompt, rather than specific

prompts, to achieve fully automated mask generation. Each
point in the grid is mapped to a 256-dimensional vectorial
embedding. The two-layer mask decoder then maps the
image embedding and prompt embeddings to a set of masks
that correspond to potential valid objects. Since SAM2 is
a model with ambiguity-awareness, for a grid that lies on
a part or sub-part, it will return the top three mask outputs
based on loss ranking. We keep all the segmentation results
and remove the ambiguity in post-processing.

(b) Mask NMS. The segmentation step often generates mul-
tiple masks with significant overlap or redundancy, where an
object can appear in multiple masks, or a single mask may
cover multiple objects. This issue is particularly common
in fruit images, such as strawberries with calyxes (see Fig-
ure 2(a). In robotic operations, such inaccuracies can lead
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to either damaging the fruit or failing to grasp it entirely,
reducing efficiency and increasing waste. To address this,
we propose a Mask NMS mechanism designed to retain the
optimal mask that covers only a single fruit instance (e.g.,
mask2 in Figure 2(a) and eliminate ambiguity. The decision
criterion is shown in Formula 1. Unlike traditional NMS,
which relies on bounding box IoU, our approach calculates
the overlap area between each pair of masks. If the overlap
ratio, based on the smaller mask, surpasses a confidence
threshold, we retain the mask with the higher score. The
pseudo-code implementation of Mask NMS is provided in
Algorithm 1.

M1 =

{
M2, if |M1∩M2|

|M1| > C and S(M2) > S(M1)

M1, else
(1)

where Mi represents the area of the mask. C is the predefined
confidence threshold, which was set at 0.9 in our experiment.
Si is the stability score of the ith mask output by SAM2.

Algorithm 1 Mask Non-Maximum Suppression
1: # masks: list of segmentation masks from SAM2
2: # areas: list of the area of each mask
3: # scores: list of the stability confidence of each mask
4: # keep: a list initialized to all True
5: def Mask NMS(masks, threshold):
6: for i in range(length(masks)):
7: if not keep[i]:
8: continue
9: for j in range(i+1, len(masks)):

10: if not keep[j]:
11: continue
12: inter = Intersection(masks[i], masks[j])
13: smaller area = Min(areas[i], areas[j])
14: if inter > threshold * smaller area:
15: if scores[i] < scores[j]:
16: keep[i] = False
17: else:
18: keep[j] = False
19: filtered masks = [mask for i, mask in enumer-

ate(masks) if keep[i]]
20: return filtered masks

(c) Description and Image Segments Encoding. To facil-
itate seamless image-text comparisons, allowing for more
accurate object recognition and classification in agricultural
contexts, we utilize the open-source OpenCLIP (Ilharco
et al., 2021) and emphasize the importance of REC (Qiao
et al., 2021). As illustrated in Figure 2(b), instead of only in-
putting the labels of the instances within the image, we also
include their corresponding descriptions to generate feature-
rich embeddings. With its dual-encoder setup and extensive
pre-training on image-text pairs, OpenCLIP adeptly handles
a large vocabulary, including out-of-vocabulary words. For

instance, in open-vocabulary detection scenarios, the text
embedding t c for the cth object category is generated by
inputting the cth input description text into the text encoder.
Simultaneously, the segmentation masks are transformed
into image embeddings using the image encoder. This ca-
pability not only enhances the model’s flexibility but also
significantly improves its performance in identifying and
classifying diverse objects.

(d) Region-Text Matching. To align image regions with
textual descriptions, OpenCLIP (Ilharco et al., 2021) calcu-
lates the cosine similarities between the normalized image
and text embeddings. Given a batch of N (image, text)
pairs, OpenCLIP can determine which of the N ×N possi-
ble (image, text) pairings across a batch actually match. By
jointly training an image encoder and text encoder to learn
a multi-modal embedding space, OpenCLIP can maximize
the cosine similarity of the image and text embeddings of the
N real pairs in the batch while minimizing the cosine simi-
larity of the embeddings of the N2 −N incorrect pairs. As
shown in Figure 2(d), we also inherit the matrix representa-
tion from CLIP (Radford et al., 2021), providing an intuitive
interpretation of the match. The label of each mask is then
returned by the index of maximum similarity. This method
enhances the understanding of image-text relationships, sup-
porting advanced applications like image captioning, visual
question answering, and semantic segmentation in complex
agricultural environments.

(e) Distilling. To facilitate efficient deployment on edge
devices, we implement distillation. We let small, edge-
deployable models (students) learn from the pseudo labels
generated by SDM, bypassing the need for costly manual
annotation. Unlike traditional distillation, which typically
operates at the feature or logit level using manually labeled
data, our approach performs distillation at the label level via
pseudo labels, significantly reducing labor costs and alleviat-
ing data scarcity. Interestingly, the inherent noise in pseudo-
labels encourages students to acquire broader knowledge,
enhancing their learning. Moreover, our method is versa-
tile, with no restrictions on the type of student model, any
compact model suited to the downstream task can undergo
distillation. By transferring domain knowledge from large
models to smaller ones, we create models more lightweight
and adaptable to specific agricultural tasks, bridging the gap
between powerful foundation models and practical small
models. This approach also enables seamless deployment
on edge devices, a necessity for real-time agricultural appli-
cations, while ensuring high accuracy and reducing compu-
tational demands.
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Figure 3: Representative examples of MegaFruits: (a)
Object detection task: the label is the smallest rectangular
box to enclose each fruit. (b) Semantic segmentation task:
all the instances in an image are divided into masks and

stored together in a single-channel mask image. (c)
Instance segmentation task: the label is a set of polygon

points around individual fruit instances.

4. Experiments and Results
4.1. Datasets and Metrics

MegaFruits Dataset. To rigorously assess our method’s
performance, a comprehensive fruit segmentation dataset
is essential. Such a dataset should encompass various fruit
types and provide abundant segmentation masks. How-
ever, to the best of our knowledge, no publicly available
dataset currently meets these criteria. To address this gap
and facilitate future research, we propose the creation of
the MegaFruits dataset, a large-scale, annotated segmen-
tation dataset for fruits. This dataset was collected and
annotated between October 20, 2023, and July 6, 2024,
in Hangzhou, Zhejiang, China. Images were captured us-
ing an Honor Magic5 Pro smartphone and a GoPro Hero4
Black camera. The dataset presents several challenges for
fruit segmentation, including varying lighting conditions,
shadows, occlusions, and the presence of branches, veins,
and leaves. The MegaFruits dataset comprises three sub-
sets: Mega Strawberry, Mega Blueberry, and Mega Peach.
The Mega Strawberry includes 20,242 images and 569,382
pseudo-masks generated using our SDM method. The
Mega Blueberry consists 2,540 images with 20,656 masks,
and the Peach subset contains 2,400 images with 10,129
instances. To ensure unbiased evaluation, all test sets were
independently collected from distinct orchard regions, sepa-
rate from those used for training data. Three trained person-
nel carefully labeled the Mega Blueberry and Mega Peach
using the Labelme tool (Russell et al., 2008). Annota-

tion criteria required creating precise polygonal boundaries
around visible fruit, ensuring bare fruit skin was labeled
while occluded parts were excluded. Instances such as
background blueberries that were indiscernible due to dis-
tance, occlusion, position at the image edge, or immaturity
were left unlabeled. The blueberry subset is categorized
into two classes—ripe and unripe—while the peach subset
includes only one class. This dataset supports object de-
tection, semantic segmentation, and instance segmentation
tasks. Example images from each subset are displayed in
Figure 3. It is worth noting that the datasets used in all
following experiments are detailed in Table 2, including
Mega Blueberry and Mega Peach from our MegaFruits, as
well as the StrawDI Db1 dataset from (Pérez-Borrero et al.,
2020). In the StrawDI Db1, we unified the ripe and un-
ripe strawberry classes into a single class. All datasets use
manually annotated labels as evaluation ground truth. The
Mega Strawberry is not involved in the following experi-
ments.

Evaluation Metrics. For object detection and instance seg-
mentation, we adhere to the standard evaluation metrics
established by COCO (Lin et al., 2014), focusing on three
key metrics: mAP50:95, mAP500, and mAR50:95. For se-
mantic segmentation, we employ the VOC (Everingham
et al., 2010) evaluation metrics, focusing on class accuracy,
mIOU, and FWIOU. These evaluation criteria enable a com-
prehensive and rigorous assessment of model performance
across different tasks.

4.2. Zero-shot Open-vocabulary Perception

In this section of the experiments, we evaluated the zero-
shot open-vocabulary perception performance of the SDM
method across three tasks: object detection, semantic seg-
mentation, and instance segmentation. The SDM method
does not require the training of any models; it can work
directly in unfamiliar fruit domains using only descriptions
of each target class. Two SOTA OVD methods Grounded
SAM (Qiao et al., 2021) and YOLO-World (Liu et al., 2023),
were used as comparison methods, using the same prompts
as SDM. The experiments involved comparing the direct
prediction output by these methods to the ground truth hu-
man annotation using the evaluation metrics mentioned in
Section 4.1.

4.2.1. OBJECT DETECTION

The detection of the fruit bounding box is one of the essen-
tial tasks in agriculture, as it facilitates robotic fruit picking
and allows for precise monitoring of fruit yield and maturity.
Table 3 shows the object detection results of three methods
across three datasets, where SDM demonstrates superior
performance by a large margin across all three datasets in
all metrics. This result indicates that SDM has a strong
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Table 2: Distribution table for datasets used in the experiment.

StrawDI Db1 Mega Blueberry Mega Peach

Subset Train Val Test Total Train Val Test Total Train Val Test Total

Images 2,800 100 200 3,100 1,778 254 508 2,540 1,680 240 480 2,400
Instances 16,234 572 1,132 17,938 12,898 1,802 5,956 20,656 6,349 980 2,800 10,129

Figure 4: Comparison of object detection results on a
strawberry image.

Figure 5: Comparison of semantic segmentation results.

understanding of the general concept of fruits, allowing it to
effectively detect fruits in a zero-shot setting, even though
the models within SDM have never been trained on these
specific domains. A visual comparison of object detection
results using the three methods is shown in Figure 4.

4.2.2. SEMANTIC SEGMENTATION

Semantic segmentation provides pixel-level classification
which has a wide range of applications in agricultural per-
ceptions. Table 4 presents three key metrics for semantic
segmentation. Our algorithm achieves the best performance
across all three datasets in all metrics. A visual comparison
of semantic segmentation results is shown in Figure 5.

4.2.3. INSTANCE SEGMENTATION

Instance segmentation offers higher precision and fine-
grained details for complex agricultural tasks by accurately
predicting the boundaries of each fruit, which is essential for
downstream tasks. Table 5 presents all evaluation metrics
of instance segmentation of all methods, the results indi-
cate our proposed SDM method consistently outperforms
other methods in all metrics by a large margin. In terms of
mAP50:95, SDM achieving 2.21, 1.59, and 2.59 times the
performance of the second-best algorithms on strawberry,
blueberry, and peach datasets. This substantial improvement
across all metrics underscores SDM’s capability complex
general fruit scenes at the level of individual fruits and to

Figure 6: Comparison of instance segmentation results.

capture fine-grained boundary details. A visual comparison
of instance segmentation results is shown in Figure 6.

4.2.4. PANORAMIC PERCEPTION

Unlike traditional segmentation models, which are restricted
to predicting a limited set of specific categories predefined
during training, SDM’s capability for general understand-
ing of objects theoretically allows it to segment any object
based on given prompts. In this section, we prompt the
models to segment all potentially interested objects in three
types of fruit scenes, including ripe and unripe fruits, leaves,
stems, flowers, and the background. Since the dataset does
not include ground truth labels for panoramic segmentation,
no quantitative results are included in this section. Fig.7
presents the original images and zero-shot segmentation
results of in strawberry, blueberry, and peach domains. For
clarity, the background class mask is not shown. As illus-
trated in the figure, SDM demonstrates robust panoramic
segmentation capabilities, accurately identifying multiple
instances with minimal overlap. This advantage is evident
compared to Grounded SAM and YOLO-World, which, due
to their prompt-then-segment approach, often assign mul-
tiple labels to the same region or miss detection of some
obvious fruits. This is particularly highlighted in Figure
7(c) and 7(d), where a significant number of the instances
are redundantly segmented while some are missed. How-
ever, the SDM method also has limitations. As observed in
Figure 7(b), SDM struggles to detect objects with unclear
boundaries, such as leaves, in the peach images.

To further explore the generalization ability of SDM, we con-
ducted panoramic segmentation experiments on various fruit
types beyond strawberry, blueberry, and peach. As shown
in FFigure 8, SDM consistently shows striking zero-shot
segmentation performance, indicating it has strong general-
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Table 3: Results of object detection. The best and second-best results for each evaluation metric are highlighted in bold and
underlined, respectively.

Methods StrawDI Db1 Mega Blueberry Mega Peach

mAP50 mAP50:95 mAR50:95 mAP50 mAP50:95 mAR50:95 mAP50 mAP50:95 mAR50:95

Grounded SAM 0.216 0.322 0.401 0.232 0.251 0.356 0.190 0.228 0.220
YOLO-World 0.173 0.232 0.429 0.233 0.314 0.517 0.287 0.410 0.335
SDM (Ours) 0.540 0.635 0.639 0.411 0.462 0.633 0.524 0.596 0.686

Table 4: Results of semantic segmentation. The best and second-best results for each evaluation metric are highlighted in
bold and underlined, respectively.

Method StrawDI Db1 Mega Blueberry Mega Peach

ClassAcc. mIOU FWIOU ClassAcc. mIOU FWIOU ClassAcc. mIOU FWIOU

Grounded-SAM 0.936 0.832 0.959 0.614 0.553 0.829 0.683 0.644 0.858
YOLO-World 0.863 0.768 0.944 0.621 0.536 0.820 0.901 0.875 0.948
SDM (Ours) 0.959 0.917 0.981 0.813 0.760 0.901 0.914 0.882 0.951

ization ability across diverse fruit categories. This suggests
that our model can play a critical role in zero-shot agricul-
tural fruit perception at the pixel level, potentially benefiting
downstream tasks such as robotic harvesting, yield monitor-
ing, and orchard management. These tasks, which require
fruit identification, can be accomplished without the need
for human annotation or additional model training.

4.3. Distilled Edge-deployable Models

One of the key innovations of this work is the distillation
of domain knowledge from large, computationally intense
foundation models to smaller, edge-deployable student mod-
els. The student models were trained using pseudo labels
generated by SDM, Grounded SAM, and YOLO-World,
while reference models utilized the same architecture as the
student models but were trained using manually annotated
labels. The following experiments compare the distilled
student, trained from these three zero-shot perception meth-
ods, with the reference models in object detection, semantic
segmentation and instance segmentation across three fruit
datasets.

4.3.1. OBJECT DETECTION

For the object detection task, we selected YOLOv8s and
EfficientDet-D2 as student model architectures. As shown
in Table 6, the models distilled from SDM outperform those
from Grounded SAM and YOLO-World by a significant
margin, regardless of the student model architecture. More-
over, the performance of the student models, which do not
utilize any manual annotations, is comparable to that of the
reference models trained with manual labels. For example,
the mAP50:95 of the best student models reached 84.8%,
86.9%, and 90.6% of the corresponding reference models in

the strawberry, blueberry, and peach domains, respectively.

4.3.2. SEMANTIC SEGMENTATION

For the semantic segmentation task, we selected
DeepLabv3+ as the student model architecture, and the
performence of the distilled models is reported in Table 7.
SDM outperformed two comparison algorithms across all
metrics on three datasets, achieving mIOU rates of 98.6%,
87.5%, and 96.7% in the strawberry, blueberry, and peach
datasets, respectively, compared to the manually labeled
baselines.

4.3.3. INSTANCE SEGMENTATION

For the instance segmentation task, YOLOv8s was se-
lected as the student model architecture. From Table 8, the
mAP50:95 of the distilled model from SDM reached 85.8%,
88.7%, and 66.6% of the corresponding baselines in the
strawberry, blueberry, and peach datasets, respectively. No-
tably, on the blueberry dataset, which contains two classes,
the mAP50:95 of our algorithm surpasses Grounded SAM
by over 2.21 times and exceeds YOLO-World by over 1.47
times. This highlights our algorithm’s superior performance,
particularly in handling tasks with similar object descrip-
tions, further proving its robustness and effectiveness in
instance segmentation.

4.3.4. FOUNDATION MODEL VERSUS DISTILLED
MODEL

In this section, we compare the performance of the directly
using foundation models with the distilled student model
to emphasize the impact of distillation. There are two key
aspects we are interested in: inference efficiency and per-
ception accuracy.
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Table 5: Results of instance segmentation. The best and second-best results for each evaluation metric are highlighted in
bold and underlined, respectively.

Methods StrawDI Db1 Mega Blueberry Mega Peach

mAP50 mAP50:95 mAR50:95 mAP50 mAP50:95 mAR50:95 mAP50 mAP50:95 mAR50:95

Grounded SAM 0.247 0.376 0.438 0.234 0.255 0.355 0.175 0.212 0.212
YOLO-World 0.119 0.222 0.239 0.258 0.319 0.511 0.163 0.234 0.622
SDM (Ours) 0.548 0.632 0.666 0.411 0.461 0.633 0.454 0.565 0.634

Table 6: Results of object detection. The manual labels trained results (*), serving as the baselines, are marked with an
asterisk. The best and second-best results except the baseline for each evaluation metric are highlighted in bold and

underlined, respectively. During training, the original hyper-parameters of YOLOv8s and EfficientDet were used without
modification to maintain consistency.

Teacher Student
model

StrawDI Db1 Mega Blueberry Mega Peach

mAP50:95 mAP50 mAR50:95 mAP50:95 mAP50 mAR50:95 mAP50:95 mAP50 mAR50:95

Manual*

YOLOv8s

0.826 0.937 0.846 0.781 0.880 0.844 0.781 0.921 0.843
Grounded SAM 0.369 0.542 0.620 0.395 0.441 0.544 0.542 0.716 0.641
YOLO-World 0.352 0.469 0.618 0.397 0.534 0.616 0.421 0.645 0.471
SDM (Ours) 0.701 0.836 0.743 0.679 0.785 0.817 0.708 0.840 0.801

Manual*
Efficient-
Det-D2

0.738 0.879 0.778 0.731 0.865 0.846 0.668 0.822 0.779
Grounded SAM 0.306 0.536 0.541 0.361 0.432 0.678 0.480 0.607 0.603
YOLO-World 0.272 0.453 0.554 0.357 0.535 0.594 0.365 0.584 0.442
SDM (Ours) 0.640 0.776 0.699 0.551 0.658 0.799 0.643 0.794 0.741

Table 7: Results of semantic segmentation. The manual labels trained results (*), serving as the baselines, are marked with
an asterisk (*). The best and second-best results except the baselines for each evaluation metric are highlighted in bold and
underlined, respectively. During training, the original hyper-parameters of DeepLabv3+ were used without modification to

maintain consistency.

Teacher StrawDI Db1 Mega Blueberry Mega Peach

Class Acc. mIOU FWIOU Class Acc. mIOU FWIOU Class Acc. mIOU FWIOU

Manual* 0.980 0.959 0.989 0.927 0.865 0.912 0.963 0.929 0.973
Grounded SAM 0.945 0.835 0.952 0.603 0.533 0.711 0.866 0.838 0.940
YOLO-World 0.875 0.786 0.938 0.666 0.583 0.751 0.942 0.897 0.960
SDM (Ours) 0.966 0.946 0.986 0.830 0.757 0.848 0.949 0.898 0.961

Table 8: Results of instance segmentation of the distilled models. The manual labels trained results (*), serving as the
baselines, are marked with an asterisk (*). The best and second-best results except the baseline for each evaluation metric
are highlighted in bold and underlined, respectively. During training, the original hyper-parameters of YOLOv8 were used

without modification to maintain consistency.

Teacher StrawDI Db1 Mega Blueberry Mega Peach

mAP50 mAP50:95 mAR50:95 mAP50 mAP50:95 mAR50:95 mAP50 mAP50:95 mAR50:95

Manual* 0.796 0.944 0.950 0.767 0.905 0.833 0.901 0.919 0.853
Grounded SAM 0.453 0.657 0.627 0.307 0.42 0.551 0.505 0.709 0.63
YOLO-World 0.221 0.413 0.634 0.461 0.564 0.572 0.548 0.739 0.651
SDM (Ours) 0.684 0.848 0.949 0.68 0.802 0.725 0.600 0.809 0.745

Table 9: Comparison of inference time and GPU memory allocation for each method. In bold is the optimal results.

Method Grounded SAM YOLO-World SDM SDM-D (YOLOv8s)

Inference Time (ms) 8,090.81 99.32 7,615.08 18.96
GPU-Memory Allocation (MiB) 7,602 2,268 6,650 878
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Figure 7: Comparison of zero-shot open-vocabulary segmentation results. (a) The original images. (b) The prediction
results of SDM. (c) The prediction results of Grounded SAM. (d) The prediction results of YOLO-World. On the far left of

each row is a diagram of categories and colors. The mask and bounding box of the same category have the same color.

Inference Efficiency. Consideration of inference speed
and the runtime resource requirement are the main reasons
for distilling knowledge from foundation models to smaller
student models. We compared the inference time and run-
time GPU memory allocation of the best SDM-D student
models, utilizing the YOLOv8s architecture, against meth-
ods that directly employ foundation models for the task of
instance segmentation. This evaluation was conducted on
StrawDI Db1 images using an NVIDIA RTX 3090 GPU.
We performed 1,000 inferences and calculated the average
results, as shown in Table 9. Unsurprisingly, the student
model exhibited the fastest inference speed, achieving a
reduction of over 99.7% in inference time compared to the
direct using Grounded SAM and SDM. It also demonstrated
an 80.9% reduction in inference time compared to YOLO-
World, an inference-time optimized method. Regarding run-
time GPU memory allocation, the distilled SDM-D student

model also had the lowest GPU memory usage, consuming
only 11.5%, 13.2%, and 38.7% relative to the Grounded
SAM, SDM, and YOLO-World respectively. The result in-
dicates that the SDM-D student model is significantly more
efficient in terms of both inference speed and GPU mem-
ory footprint compared to directly using foundation models,
facilitating its deployment on edge devices and enabling
real-time inference.

Accuracy. To evaluate the impact of distillation on percep-
tion performance, we compared the distilled student models
to their teacher models across all the tasks. The results are
shown in Figure 9. Surprisingly, the process of distilling
foundation models into smaller student models not only ac-
celerates inference speed but also improves the perception
performance in the target domain, which is also distinct
from the traditional knowledge distillation method with a
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Figure 8: The results of SDM’s zero-shot open-vocabulary segmentation on various fruit images.

distillation loss. Figure 9 illustrates that all distilled models
outperform their foundation model teachers in three evalu-
ated tasks. Interestingly, this phenomenon is observed not
only in the SDM method proposed in this paper but also in
Grounded SAM (Ren et al., 2023) and YOLO-World (Cheng
et al., 2024). We refer to this improvement as a distillation
improvement. While the distillation improvement is minor
in some tasks, such as semantic segmentation(as shown in
Figure 9b), it is quite significant in object detection and
instance segmentation, as shown in Figure 9a and 9c. One
possible explanation for this distillation improvement is that
the distillation process introduces information from target
domain images (albeit without any human labeling) into
the models, thereby narrowing down the overall prediction
space of the foundation models. Another possible expla-
nation is that the distillation model training process helps
to average out the noisy, incorrect pseudo labels, allowing
the student model to develop a robust perception capabil-
ity. Similar improvements have also been observed by Xie
(2020).

4.4. Fine-tuning with Few Manual Labels

Although the SDM-D method can generate fruit perception
models without any manual annotations, the performance
of the generated model still lags behind reference models
trained with extensive manual annotation, as we presented in
Table 6, 7, 8. Despite the imperfection of the SDM method,
a class label can be interpreted in various ways, resulting in
different labeling criteria. For example, ”strawberry” can
refer to the fruit with or without the calyx. To align the
model’s intent with the ground truth labels and correct other
sources of error, fine-tuning the model is a viable approach.

The models distilled without any manual label are already
well-trained base models capable of extracting features from
images effectively. Their performance can be further en-
hanced when limited labels are available. Few-shot learning
involves refining the model using a small number of labeled
samples. Figure 10 presents the experimental results com-

paring the best-distilled student model, fine-tuned using a
few manually labeled images, to the models trained from
scratch using manually labeled images. The model archi-
tectures used here are the YOLOv8s object detection model
and the YOLOv8s instance segmentation model. The tasks
involved are object detection and instance segmentation, and
the dataset used for evaluation is StrawDI Db1. We used
the mAP50:90 metric for both tasks.

For the distilled student models, we fine-tuned them with
1, 50, and 100 labeled training images, randomly selected
from the training set. Results were averaged over 10 trials
to mitigate the dependency on training data selection. The
models trained from scratch used between 1 and 2,900 la-
beled images, with the first 50 images labeled in increments
of 5 and the remaining images in increments of 50. Images
were randomly selected from the full training dataset to en-
sure a comprehensive comparison. The experimental results
are presented in Figure 10. Figure 10 shows that the perfor-
mance of the initial distilled student models using SDM-D
method were already comparable to the same models trained
from scratch with 200 manually labeled samples for both
tasks. One-shot fine-tuning allowed the distilled model to
reach 91.6% and 91.8% of the performance of a model
trained with 2,900 labels in object detection and instance
segmentation, respectively. To achieve comparable perfor-
mance of our 1-shot and 50-shot models in instance segmen-
tation, a purely manually trained model would require an
additional 250 and 1,050 labeled images, respectively. This
underscores the remarkable data efficiency of our approach,
where the rich features embedded in the pseudo-labels signif-
icantly enhance performance with minimal manual labeling,
offering substantial support for reducing human labor.

4.5. Mask NMS

Mask NMS is one of the innovations introduced in this work,
designed to eliminate the mask ambiguity and overlapping
produced by SAM2. We conducted ablation experiments
on mask NMS for object detection and instance segmen-
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Figure 9: Comparison of foundation models and distilled
models. (a) Comparison of mAP@50:95 for object

detection. (b) Comparison of Class Accuracy for semantic
segmentation. (c) Comparison of mAP@50:95 for instance

segmentation.

tation across three datasets listed in Table 2. As shown in
Figure 11, applying Mask NMS consistently improved the
mAP50:95 scores for all three datasets when predicted by
SDM, demonstrating the effectiveness of Mask NMS within
the SDM pipeline.

4.6. Prompts Design

According to the experiment, we find that the design of
prompts greatly affects the model performance. Accord-
ing to our statistics, about 80% of labeling errors come
from the region-text matching step. We summarize an effec-
tive prompt template: a/an color shape object with feature.
Among them, the color description is the most crucial. It
can be seen from Figure 12(a) and 12(b) that the wrong clas-

sification of backgrounds similar to fruits can be avoided
through reasonable design of prompt words. Figure 12(c)
shows the all labels of segmentation, highlighting some er-
rors indicated by the orange arrows. Although this error can
be avoided by adding a new description (e.g., ”black back-
ground”), considering the generality of the entire dataset,
we didn’t do that. Regarding the design of the number
of prompt texts, we recommend that readers consider the
characteristics of objects within the entire scene. While an
excessive number of prompts may lead to higher accuracy, it
can adversely affect the model’s generalization ability, ren-
dering it less suitable for large-scale datasets and requiring
a lot of time and effort.

5. Conclusion
This paper presents an innovative framework, SDM-D. The
primary contribution of this work is the establishment of
a comprehensive framework that leverages the knowledge
within pre-trained foundation models for fruit perception
and distills this knowledge into edge deployable models
that excel in both speed and accuracy. Experimental results
demonstrate that our method performs remarkbaly well in
multiple perception tasks across various fruit scenes, sur-
passing SOTA OVD methods. The distilled student model
achieves satisfying perception performance without any
manual annotation, reaching over 86.6% of the performance
compared to the reference model trained using extensive
labeled images in the instance segmentation task at the straw-
berry scene. And further reference over 91.8% of the refer-
ence model’s performance with 1-shot fine-tuning.

This approach has broad implications for agricultural percep-
tion. By utilizing our framework, significant annotations can
be saved, thereby reducing both the cost and time required
to develop high-performance fruit perception models. This
advancement accelerates the development and deployment
of agricultural robots, enhancing efficiency and scalability
in tasks such as fruit monitoring and harvesting. Further-
more, we believe this approach holds potential applications
beyond agriculture, extending to fields such as healthcare,
autonomous driving, and robotics, where open vocabulary
segmentation is required. We also present a high-quality
dataset, MegaFruits, which includes over 25,000 annotated
images of strawberries, peaches, and blueberries, making it
the largest open fruit segmentation dataset. We hope this re-
source can advance research and applications in agricultural
perception.

There are still some limitations in SDM-D. While the dis-
tilled models for all experimental tasks are competent, they
do not yet fully match the accuracy of the reference mod-
els trained on extensive human-labeled datasets. And the
distilled student models with high inference speed, show lim-
ited adaptability compared to their foundation model teach-
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Figure 10: Student model training results with the amount of training data image on StrawDI dataset. (a) Comparison of
mAP@50:95 for object detection. (b) Comparison of mAP@50:95 for instance segmentation. The red dot lines represent

the few-shot learning results of the model generated by SDM-D and it starts with the zero-shot result of training on the
pseudo labels generated by SDM. The blue dot lines represent the training with purely manually labeled data. During the

training we incremented by 5 images per step for the first 50, and by 50 images per step from 50 to 2,900.

Figure 11: The ablation results of mask NMS. (a)
mAP@50:95 of the generated labels for object detection.

(b) mAP@50:95 of the generated labels for instance
segmentation. The bars filled with spots represent the
foundation models, and the bars filled with grid lines

represent the distilled models.

ers, requiring re-distillation as environmental conditions or
task requirements change. While the overall zero-shot per-
formance of SDM is satisfying, it occasionally misses detail
structures or introduce small, disconnected components that
should belong to a single object. SDM is designed for gen-
erality and does not require any training, which contributes
to its convenience but may impact accuracy when handling
domains requiring specialized annotations. Future research
can focus on further improving perception accuracy, enhanc-
ing the adaptability of the student small models to various
fruit domains and automatic prompt design.

References
Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ

Altman, Simran Arora, Sydney von Arx, Michael S. Bern-

stein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill,
Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo
Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue,
Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn,
Trevor Gale, Lauren Gillespie, Karan Goel, Noah Good-
man, Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong,
Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan
Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Ge-
off Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi,
Ananya Kumar, Faisal Ladhak, Mina Lee, Tony Lee,
Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen
Li, Tengyu Ma, Ali Malik, Christopher D. Manning,
Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben
Newman, Allen Nie, Juan Carlos Niebles, Hamed Nil-
foroshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel
Papadimitriou, Joon Sung Park, Chris Piech, Eva Porte-
lance, Christopher Potts, Aditi Raghunathan, Rob Re-
ich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo
Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
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