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Abstract

In the context of precision medicine, covariate-adjusted response-adaptive randomization

(CARA) has garnered much attention from both academia and industry due to its benefits

in providing ethical and tailored treatment assignments based on patients’ profiles while still

preserving favorable statistical properties. Recent years have seen substantial progress in un-

derstanding the inference for various adaptive experimental designs. In particular, research has

focused on two important perspectives: how to obtain robust inference in the presence of model

misspecification, and what the smallest variance, i.e., the efficiency bound, an estimator can

achieve. Notably, Armstrong (2022) derived the asymptotic efficiency bound for any random-

ization procedure that assigns treatments depending on covariates and accrued responses, thus

including CARA, among others. However, to the best of our knowledge, no existing literature

has addressed whether and how the asymptotic efficiency bound can be achieved under CARA.

In this paper, by connecting two strands of literature on adaptive randomization, namely robust

inference and efficiency bound, we provide a definitive answer to this question for an important

practical scenario where only discrete covariates are observed and used to form stratification.

Specifically, we consider a special type of CARA that separately implements doubly-adaptive bi-

ased coin design, a flexible and useful response-adaptive randomization procedure, within each

stratum. For this kind of CARA, we prove that the stratified difference-in-means estimator

achieves Armstrong (2022)’s asymptotic efficiency bound, with possible ethical constraints on

treatment assignments. Our work provides new insights and demonstrates the potential for more

research regarding the design and analysis of CARA that maximizes efficiency while adhering

to ethical considerations. Future studies could explore how to achieve the asymptotic efficiency

bound for general CARA with continuous covariates, which remains an open question.

Key words: Adaptive design; Efficiency bound; Stratified difference-in-means; Robust infer-

ence; Precision medicine.
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1. Introduction

Precision medicine can offer more individualized treatment plans based on patient characteristics.

Traditional clinical trial designs often fail to meet the needs of precision medicine. Regulatory

agencies such as the European Medicines Agency (EMA, 2015) and the U.S. Food and Drug Ad-

ministration (FDA, 2023) have focused extensively on this issue and released guidelines on the

incorporation of covariates. The key to designing new types of clinical trials in the context of

precision medicine is how to simultaneously utilize both the patient’s response to treatment and

covariate information such as biomarkers.

The importance of incorporating covariates in clinical trials was recognized in early investi-

gations such as deterministic minimization proposed by Taves (1974) and randomization-based

minimization later introduced by Pocock and Simon (1975). Efron (1980) extended his earlier

proposed biased coin design (Efron, 1971) to account for covariates. For a comprehensive review,

refer to Rosenberger and Sverdlov (2008). Nonetheless, they did not account for the responses of

patients enrolled early in sequential trials. From the philosophy of assigning more patients to the

treatment arm with better response, response-adaptive randomization (RAR) was developed (Hu

and Rosenberger, 2006; Rosenberger and Lachin, 2015). Notably, Thompson sampling, proposed by

Thompson (1933) from a Bayesian perspective, pioneered RAR and other online experimentation

methods. RAR primarily includes urn models, such as the play-the-winner rule (deterministic ver-

sion by Zelen (1969), later developed by Wei (1978) into a randomized version), as well as methods

based on sequential estimation (Melfi and Page, 1998; Hu and Zhang, 2004). For a recent review

of the various types of RAR and their taxonomy, refer to Robertson et al. (2023). Among these,

the doubly-adaptive biased coin design (DBCD) (Eisele, 1994; Eisele and Woodroofe, 1995; Hu

and Zhang, 2004) has gained widespread application and attention in the past decades. DBCD

can target any desired allocation proportions, including various allocation strategies such as the

urn allocation (Rosenberger and Hu, 2004), Neyman allocation (Neyman, 1934), and RSIHR allo-

cation (Rosenberger et al., 2001a). Furthermore, Hu and Rosenberger (2003) demonstrated that

DBCD achieves a smaller variance of the actual proportion and thus higher statistical power for

a given allocation compared to other RAR, such as the sequential maximum likelihood estimation

(SMLE) procedure and the randomized play-the-winner (RPW) rule. Researchers have established
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a relatively complete theoretical framework for RAR under parametric model assumptions. Most

recently, Ye et al. (2024) explored the theoretical properties of DBCD and the subsequent inference

in the presence of model misspecification.

Covariate-adjusted response-adaptive randomization (CARA) (Rosenberger and Lachin, 2015;

Sverdlov, 2015) goes a step further by considering individual differences among patients, using in-

formation on the subjects’ response variables and covariates to allocate them to better treatment

groups with a higher probability. More specifically, the allocation depends on the allocation his-

tory, response history, covariate history, as well as the covariate of the incoming patient during the

CARA process. Under parametric model assumptions, such as the logistic model in Rosenberger

et al. (2001b) and generalized linear models in Zhang et al. (2007), there has been some theoretical

progress on CARA. More recently, Hu et al. (2015) proposed a unified framework for CARA, prior-

itizing both efficiency and ethical considerations. This unified family introduced new and desirable

CARA designs, including examples of stratified adaptive designs. Furthermore, Zhu and Zhu (2023)

employed semiparametric methods to sequentially estimate parameters and update allocation prob-

abilities. The theoretical properties in Hu et al. (2015) and Zhu and Zhu (2023) were derived under

stratified randomization, which remains one of the most commonly used randomization methods in

clinical trials (Lin et al., 2015; Ciolino et al., 2019). This paper focuses on the scenario where only

discrete covariates (or biomarkers) are observed. Specifically, we explore the CARA procedure that

first stratifies subjects and then separately implements DBCD within each stratum. Implement-

ing separate RAR designs within each stratum is conceptually straightforward (Rosenberger and

Lachin, 2015). This approach has been practically applied in clinical trials, such as the fluoxetine

trial by Tamura et al. (1994) and the Bayesian adaptive biomarker-stratified phase II randomized

design proposed by Park et al. (2024). Through stratification, we allow optimal allocations to vary

across strata, aligning with the principles of precision medicine.

Literature has seen much attention in adaptive randomization, with several studies focusing on

the enhancement of the efficiency of estimators and test statistics (e.g., Bugni et al., 2018, 2019;

Ma et al., 2022; Zhu and Zhu, 2023; Tu et al., 2024; Ye et al., 2024). In the identically and indepen-

dently distributed (i.i.d.) case, Hahn (1998) showed the semiparametric efficiency bound and Ney-

man allocation (Neyman, 1934) further minimizes the variance. Armstrong (2022) demonstrated

that the optimized Hahn (1998)’s bound cannot be improved in a much broader class of exper-
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imental designs, including various adaptive randomization procedures such as covariate-adaptive

randomization (CAR), RAR, and CARA. Besides Neyman allocation based on the unconstrained

optimization, Armstrong (2022) also considered the optimal allocation based on the constrained

optimization, which is the typical scenario considered under CARA. In CAR and “finely strati-

fied” experiments, where units are matched within fixed-size blocks (e.g., pairs or quartets) and

uniform randomization is carried out within each block, Rafi (2023) and Bai et al. (2023) de-

rived the semiparametric efficiency bound and the corresponding efficient estimator, respectively.

Nonetheless, both Bai et al. (2023) and Rafi (2023) assumed prespecified allocation probabilities

in randomization, resulting in higher bounds than those proposed by Armstrong (2022); however,

the requirement of prespecified allocation probabilities is not necessary under CARA.

Therefore, ambiguity still persists regarding whether and how the asymptotic efficiency bounds

in Armstrong (2022) can be achieved for CARA. By connecting two strands of literature—robust

inference and efficiency bounds—we provide definitive answers for an important practical scenario

when only discrete covariates are observed and used for stratification. Specifically, for a special type

of CARA that separately implements DBCD within each stratum, the stratified difference-in-means

estimator achieves Armstrong (2022)’s bound with constrained optimization. In other words, the

stratified difference-in-means estimator under CARA attains the minimal asymptotic variance in

the class of randomization considered in Armstrong (2022), including all adaptive randomization

with discrete covariates. To establish the results, we utilize techniques for both design and inference

from recent literature such as Bugni et al. (2019), Bai et al. (2022), and Ye et al. (2024). Our results

highlight the potential for more research regarding CARA that maximizes efficiency while adhering

to ethical considerations, although it remains unresolved how to achieve the asymptotic efficiency

bound for general CARA with continuous covariates.

The organization of this paper is as follows. In Section 2, we introduce our framework, including

the setup and optimal allocation based on optimization. Section 3 reviews the key results from

Armstrong (2022) and presents the asymptotic efficiency bound for CARA. In Section 4, we prove

that the stratified difference-in-means estimator is the asymptotically efficient estimator for an

important class of CARA. Section 5 provides the numerical results, and conclusions are drawn in

Section 6. Appendix contains the proof of main results, the auxiliary results and the additional

simulations. The R and C++ code used to generate the presented results, is available on GitHub
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at https://github.com/jiahui-xin/cara-bound.

2. Framework

2.1. Setup

We consider a setting in which baseline covariatesXi are discrete and potential outcomes {Yi(w)}w∈W

are associated with subject i, where W = {0, 1} is the set of two possible treatment assign-

ments. We assume that Xi ∈ X , {Yi(w)}w∈W ∈ R are i.i.d. from some population, where X

is a discrete set. In the randomization procedure, the researcher chooses a treatment assign-

ment Wi for each subject i, and observes Xi and Yi = Yi(Wi) for each subject i. The series of

assignments is denoted by W (n) = (W1, . . . ,Wn). When Wi is i.i.d., then it leads to the stan-

dard (i.e., non-adaptive) case. Within a CARA framework, the treatment assignment for the

i-th subject Wi depends on the initial i baseline covariates X(i) = (X1, . . . , Xi) which includes

the covariate of the incoming patient Xi, as well as the response history Y (i−1) = (Y1, . . . , Yi−1)

and assignment history W (i−1) = (W1, . . . ,Wi−1). If no additional baseline covariates are ob-

served, we let X = 0. Denote µ(x,w) = E{Yi(w)|Xi = x}, σ2(x,w) = Var{Yi(w)|Xi = x} and

µ(w) = E{Yi(w)}, σ2(w) = Var{Yi(w)}. Denote p(x) = P (Xi = x), n(x) =
∑n

i=1 I{Xi = x} and

n(x,w) =
∑n

i=1 I{Xi = x,Wi = w}, where I{·} is the indicator function.

Based on the observed data, the researcher forms an estimator for the average treatment effect

(ATE), denoted by τ = µ(1) − µ(0). Substantial literature has been dedicated to seeking more

efficient estimation methods, and this paper specifically focuses on semiparametric efficiency in

the sense of van der Vaart (1998). To be more specific, the efficiency bound is a lower bound

on the asymptotic variance of any well-behaved, or “regular,” estimators of ATE (van der Vaart,

1998). If the asymptotic variance of an estimator matches this bound, then no uniform efficiency

improvement is achievable. In the class broader than CARA, Armstrong (2022) examined the same

efficiency bound, but optimized it as in the i.i.d. case (Hahn, 1998).

Remark 2.1. The response-adaptive randomization literature such as Hu and Rosenberger (2003)

and Hu et al. (2006) used “efficiency” to indicate maximizing the power of the Wald’s test under a

specified parametric model, especially, with binary response and no observed covariate. To clarify
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the term “efficiency” used in this paper, our objective is to minimize the asymptotic variance of

ATE estimator under semiparametric model.

2.2. Allocation based on optimization

In the i.i.d. case, Hahn (1998) gave the semiparametric efficiency bound for a given propensity

e(x) = P (Wi = 1|Xi = x),

ve(·) = Var{µ(Xi, 1)− µ(Xi, 0)}+ E

{
σ2(Xi, 0)

1− e(Xi)

}
+ E

{
σ2(Xi, 1)

e(Xi)

}
. (1)

To further minimize the bound in (1), we can choose e∗(·) as Neyman allocation (Neyman, 1934)

such that

σ2(Xi, 0)

{1− e∗(Xi)}2
=
σ2(Xi, 1)

e∗(Xi)2
, (2)

which is obtained by solving the unconstrained optimization problem

min
e(·)

ve(·).

If there are no observed X, we denote the bound as Ve.

In clinical trials, constraints may arise due to ethical concerns or budget restrictions (for more

discussions, see Hu and Rosenberger (2006)). Consider a constrained optimization problem for the

propensity π(x).

minπ(·) vπ(·) = Var{µ(Xi, 1)− µ(Xi, 0)}+ E
{

σ2(Xi,0)
1−π(Xi)

}
+ E

{
σ2(Xi,1)
π(Xi)

}
,

subject to Eθ∗ [r(Xi, 1)π(Xi) + r(Xi, 0){1− π(Xi)}] ≤ c, (3)

where c can be a vector and r(·) is a vector-valued function with the same dimension. Let π∗(Xi)

be the solution of optimization (3). If there are no observed X, we denote the bound as vπ.

Remark 2.2. (Optimal allocation without constraints) By setting the constraint border c to ∞ in

(3), the solution of the optimization is Neyman allocation.

Remark 2.3. (Optimal allocation with constraints) Target allocation is a pivotal component of
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DBCD. Conventionally, various optimal allocation rules have been derived from optimization under

certain model or distributional assumptions (Hu and Rosenberger, 2006). In this paper, we directly

solve the optimization problem (3) without making these assumptions. Note that if we define

r(Xi, w) =

(
µ(x,w)I{Xi = x}

P (Xi = x)

)
x∈X

∈ R|X |

and let c ∈ R|X | in the constrained optimization 3, then the solution is

ρx = ρ(θx) =


cx−µ(x,0)

µ(x,1)−µ(x,0) , sx = 1,

σ(x,1)
σ(x,1)+σ(x,0) , otherwise.

(4)

where θx =
(
µ(x, 1), σ2(x, 1), µ(x, 0), σ2(x, 0)

)
. Let e⋆(x) = σ(x, 1)/{σ(x, 1) + σ(x, 0)}, then sx is

set as

sx =


1, e∗(x)µ(x, 1) + {1− e∗(x)}µ(x, 0) > cx,

0, otherwise.

By modifying the constraint border cx, various allocations ρx can be obtained. Specifically, if cx is

relatively large such that sx = 0, ρx will be Neyman allocation. If cx is set as

µ(x, 0) +
{µ(x, 1)− µ(x, 0)}σ(x, 1)

√
µ(x, 0)

σ(x, 1)
√
µ(x, 0) + σ(x, 0)

√
µ(x, 1)

and at the same time e∗(x)µ(x, 1) + {1− e∗(x)}µ(x, 0) > cx, then we have

ρx =
σ(x, 1)

√
µ(x, 0)

σ(x, 1)
√
µ(x, 0) + σ(x, 0)

√
µ(x, 1)

,

which is RSIHR allocation (Rosenberger et al., 2001a; Hu and Rosenberger, 2006, p. 13).

3. The asymptotic efficiency bound for CARA

In this section, we review some key results from Armstrong (2022) and provide the efficiency bounds.

For a regular parametric submodel indexed by θ, denote fX(x; θ) and fY (w)|X(y|x; θ) as the

probability density function of Xi and Yi(w)|Xi, respectively. Within a CARA framework, Wi =

wi(X
(i), Y (i−1), U) is a measurable function of (X(i), Y (i−1), U) and U is an exogenous random vari-
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able independent of the sample, which allows for randomization. Denote pU as the density of the ex-

ogenous randomness U which does not depend on θ. Then, the likelihood of U,X1, . . . , Xn, Y1, . . . , Yn

can be written as

pU (u)
n∏

i=1

{
fX(xi; θ)

∏
w∈W

fY (w)|X(yi|xi; θ)I{Wi=w}

}
, (5)

where Wi =Wi(x1, . . . , xi, y1, . . . , yi−1, u).

Under the assumptions of quadratic mean differentiability and pathwise differentiability of the

ATE parameter within the submodel, as defined by van der Vaart (1998), Armstrong (2022) demon-

strated the same least favorable submodel as in the i.i.d. case studied by Hahn (1998), but with

optimal allocations. Building on this result, he further established the efficiency bound.

3.1. Optimal allocation without constraints (Neyman allocation)

The following proposition establishes the efficiency bound in the absence of constraints, which

requires the use of the optimal (Neyman) allocation.

Proposition 3.1. (Armstrong, 2022) Assume some regularity conditions on the submodel. Let

ÂTEn = ÂTEn(X
(n), Y (n),W (n)) by any sequence of regular estimator under any sequence of

treatment rule Wi(X
(n), Y (i−1), U). For any loss function L that is subconvex, we have

sup
A

lim inf
n→∞

sup
h∈A

Eθ∗+ h√
n
L(

√
n{ÂTEn −ATE(θ∗ +

h√
n
)}) ≥ ET∼N (0,ve∗(·))L(T ),

where the first supremum is over all finite sets in R and e∗(·) is given by Neyman allocation (1).

Proof. The result is from Corollary 4.1 in Armstrong (2022).

The results essentially mean that ve∗() is the lower bound on the asymptotic variance of all the

regular estimators. The proposition holds for any sequence of treatment rules Wi(X
(n), Y (i−1), U)

which includes, besides RAR, CARA, also CAR and matched-pair experiments (Bai et al., 2022,

2023).

For the bounds with constraints, recall the constrained optimization problem (3). Consider any
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treatment rule Wi(X
(n), Y (i−1), U) that satisfies the constraint in (3) on average, in the sense that

1

n

n∑
i=1

∑
w∈W

r(Xi,Wi) ≤ c+ oPθ∗ (1). (6)

3.2. Optimal allocation with constraints

The proposition below presents the efficiency bound with constraints, where the optimal allocation

can be derived by solving the corresponding optimization problem.

Proposition 3.2. (Armstrong, 2022) Assume some regularity conditions on the submodel. Let

ÂTEn = ÂTEn(X
(n), Y (n),W (n)) by any sequence of regular estimator under any sequence of

treatment rule Wi(X
(n), Y (i−1), U) satisfying (6). For any loss function L that is subconvex, we

have

sup
A

lim inf
n→∞

sup
h∈A

Eθ∗+ h√
n
L(

√
n{ÂTEn −ATE(θ∗ +

h√
n
)}) ≥ ET∼N (0,vπ∗(·))L(T ),

where the first supremum is over all finite sets in R and π∗(·) is the solution of optimization problem

(3).

Proof. Here, we provide a sketch of the proof. For formal details, see Section A.1 in the Appendix.

First we define π(x,w) = P{Wi = w|Xi = x} for simplicity of deduction. Notice that optimiza-

tion problem (3) is equivalent with

minπ(·) vπ(·) = Var{µ(Xi, 1)− µ(Xi, 0)}+ E
{

σ2(Xi,0)
π(Xi,0)

}
+ E

{
σ2(Xi,1)
π(Xi,1)

}
,

subject to Eθ∗ [r(Xi, 1)π(Xi, 1) + r(Xi, 0)π(Xi, 0)] ≤ c,

and π(x, 0) + π(x, 1) = 1 for all x,

which is restricted and simplified version of (12) in Armstrong (2022). Our considered (3) restricts

the case to the binary treatment with allocation probabilities adding up to one, as in Hahn et al.

(2011).

Based on the above optimization problem, we let λ(x) and η denote the Lagrange multipliers

for the constraint. Noting only the second term of vπ(·) depends on π(·), the Lagrangian can be
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written as

L =E
(σ2(Xi, 0)

π(Xi, 0)
+
σ2(Xi, 1)

π(Xi, 1)
+ ηT [r(Xi, 1)π(Xi, 1) + r(Xi, 0)π(Xi, 0)] + λ(Xi){π(Xi, 0) + π(Xi, 1)− 1}

)
.

Write down the first order condition of this optimization problem and plug it into the represen-

tation of vπ∗(·). Follow the proof details of Theorem 5.1 and Corollary 5.1 in Armstrong (2022), we

can deduce the remaining part.

Remark 3.1. Proposition 3.2 simplifies the case from Armstrong (2022) because optimization

problem (3) only considers an inequality constraint related to the outcome. In particular, Armstrong

(2022) also allows for allocation probabilities with a summand less than one.

Proposition 3.2 holds for any treatment rules Wi(X
(n), Y (i−1), U) satisfying (6) which includes,

besides RAR and CARA, among others. The proposition shows that vπ∗() is the lower bound

on the asymptotic variance of all the regular estimators. If Neyman allocation e∗(·) satisfies the

constraints in (3), then we have π∗(·) = e∗(·) and vπ∗(·) = ve∗(·). Otherwise, the optimal solution is

on the border of constraints, and consequently, π∗(·) ̸= e∗(·) and vπ∗(·) > ve∗(·).

4. The asymptotically efficient estimation under CARA

In this section, we first introduce the theoretical properties of CARA based on optimization in

Section 4.1. Secondly, we show in Section 4.2 that the stratified difference-in-means estimator

under CARA achieves the efficiency bound given in Section 3.

4.1. CARA based on optimization

Within the stratum X = x that contains n(x) subjects, a DBCD procedure is implemented. For

w = 0, 1, we define n(x,w) as the number of subjects in treatment w within stratum X = x, with

n(x, 0) + n(x, 1) = n(x).

In the implementation of DBCD, a design model needs to be specified. This model assumes

that Yi(w)|Xi = x follows a distribution represented by hθw,x , though it is not necessarily the true

model. The distribution form of hθw,x is known, where θw,x ∈ Θ ⊂ Rdw represents the unknown
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parameters. The number of unknown parameters for hθw,x is denoted as dw,x. We assume that Θ

is locally compact with a countable base, and d1,x = d0,x = d.

The DBCD procedure sequentially estimates the parameters by maximizing the likelihood func-

tion determined by hθw,x and updates the allocation probability for the next patient. Based on the

first j subjects within the stratum X = x, θ̂j(w),x represents the estimates of θw,x for treatment

w ∈ {0, 1}.

One objective of the allocation scheme using the design model is to ensure that n(x, 1)/n(x)

tends to ρx, where ρx = ρ(θx) = ρ (θ0,x, θ1,x) denotes the optimal allocation within stratum X = x,

derived from some optimization problem (3). Moreover, g(x, y) is the allocation function from

[0, 1]× [0, 1] to [0, 1]. Throughout this paper, we consider the allocation function to be in the form

proposed by Hu and Zhang (2004):

g(x, y) =


1, x = 0,

0, x = 1,

y(y/x)γ

y(y/x)γ+(1−y){(1−y)/(1−x)}γ , otherwise,

(7)

where γ ≥ 0. Next, we elaborate on the procedure of CARA, which implements the DBCD within

each stratum.

(1) Start each stratum with a permuted block randomization of 2n0 subjects, ensuring that

n0(≥ 2) subjects are allocated to each treatment group.

(2) Within the stratum X = x, for the (j + 1)th stage where j ≥ 2n0, assign the (j + 1)th

subject to treatment 1 with probability g (n(x, 1)/j, ρ̂j,x). Here ρ̂j,x = ρ
(
θ̂j(1),x, θ̂j(0),x

)
.

Remark 4.1. In step (1) of the DBCD procedure, we implement a permuted block randomization

for each group within each stratum to establish a start-up design. Alternatively, one may choose an-

other restricted randomization method or complete randomization with appropriate burn-in sample

sizes, as suggested by Haines and Sadiq (2015).

Below, we list the standard regularity conditions outlined in Ye et al. (2024) to ensure the

robustness of stratified DBCD against design model misspecification.
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Assumption 4.1. The response sequence {Yi(w)}ni=1 is i.i.d. random variables for w ∈ {0, 1}.

Moreover, for some ϵ > 0, E |Yi(w)|2+ϵ <∞.

The second condition pertains to the target allocation proportion function ρ(z).

Assumption 4.2. For the proportion function z = (z0, z1) = (z01, . . . , z0d, z11, . . . , z1d) → ρ(z) :

R2d → [0, 1], there exists some δ > 0 such that

ρ(z) =ρ(θ) +
∑
k=0,1

d∑
m=1

(zkm − θkm)
∂ρ

∂zkm

∣∣∣
θ
+ o

(
∥z − θ∥1+δ

)
, as z → θ.

Further required assumptions are specified for the estimators θ̂n(x)(w),x, w ∈ {0, 1}, n ≥ 2n0.

Assumption 4.3. For w = 0, 1 and n(x) ≥ 2n0, θ̂n(x)(w),x is the solution to the estimating

equations given by ∑
Xi=x,Wi=w

ψθw (Yi(Wi)) = 0

subject to the following conditions. Here, the expectation is taken over the conditional distribution

of Yi(w) given Xi = x:

(5.1) For each θw ∈ Θ, ψθw(y) is some measurable function with values in Rd, and ψθw(y) is sepa-

rable: there is a probability null set N and a countable set Θ′ ⊂ Θ such that for every open set U ⊂

Θ and every closed intervalA, the sets {y : ψθw(y) ∈ A, ∀θw ∈ U} and {y : ψθw(y) ∈ A,∀θw ∈ U ∩Θ′}

differ by a subset of N .

(5.2) E
{
supθ′w∈U

∣∣ψθ′w(y)− ψθw(y)
∣∣}→ 0 as the neighborhood U of θ′w shrinks to {θw}, where

| · | is taken to be the sup-norm: |θw| = max (|θw,1| , . . . , |θw,d|).

(5.3) The expected value Ψw (θw) = Eψθw(y) exists for all θw ∈ Θ, and has a unique zero at

θw = θ0w.

(5.4) There exists a continuous function which is bounded away from zero, bw (θw) ≥ b0 > 0 ,

such that (i) supθw {|ψθw(y)| /bw (θw)} is integrable, (ii) lim infθw→∞ {|Ψw (θw)| /bw (θw)} ≥ 1, (iii)

E lim supθw→∞ {|ψθw(y)−Ψw (θw)| /bw (θw)} < 1.

Assumption 4.4. Define

u (y, θw,m) = sup
|ι−θw|≤m

|ψι(y)− ψθw(y)| .
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For k = 0, 1, the following conditions are made, with the expectation taken over the conditional

distribution of Yi(w) given Xi = x:

(6.1) For each θw ∈ Θ, |ψθe(y)|
2 is integrable.

(6.2) Ψw has a non-singular derivative Λw at θ0w.

(6.3) There exist positive numbers a, b, c,m, α, β, and m0 such that α ≥ β > 2, and (i)

|Ψw (θw)| ≥ a
∣∣θw − θ0w

∣∣ for ∣∣θw − θ0w
∣∣ ≤ m0, (ii) Eu (x, θw,m) ≤ bm for

∣∣θw − θ0w
∣∣ + m ≤ m0,

(iii) Euα (x, θw,m) ≤ cmβ for
∣∣θw − θ0w

∣∣+m ≤ m0.

(6.4) ∂Ψw (θw) /∂θw is Lipschitz in a neighborhood of θ0w.

Many common estimators in clinical trials, such as moment estimators and maximum likelihood

estimators, can be framed as solutions to the estimating equation described in Assumption 5,

utilizing an appropriate estimating function ψθw . With Assumptions 3-6, one can establish the

consistency and thelaw of the iterated logarithm of M -estimators based on {Yi(Wi)}Xi=x,Wi=w.

Furthermore, the law of large numbers for allocation proportions can also be established.

Theorem 4.1. If Assumptions 1–4 are satisfied, then for x ∈ X ,

θ̂x → θx, ρ̂x → ρx, n(x, 1)/n(x) → ρx a.s.

Proof. Theorem 4 in Ye et al. (2024) considered the statistical properties of DBCD within a single

stratum: conditional on n(x), θ̂x → θx, ρ̂x → ρx, n(x, 1)/n(x) → ρx a.s. From the superpopulation

assumption, n(x) ∼ Multinomial(n, p(x)) for x ∈ X , and hence n(x)/n → p(x) a.s. Since n(x)

uniformly goes to infinity a.s., we can obtain the result.

Remark 4.2. Theorem 4.1 establishes the almost sure convergence of the parameter estimator,

estimated proportion function, and actual proportion within each stratum. Based on this, we can

deduce the overall convergence of each to its respective expected value, with the expectation taken

over the covariate X. For example,
∑

x∈X n(x, 1)/n→ E(ρX) a.s.

4.2. The asymptotic variance of stratified difference-in-means

In this section, we study the inference under CARA with constraints. We aim to estimate the

average treatment effect τ = E {Yi(1)− Yi(0)} based on the observed data {(Yi, Xi,Wi)}ni=1. Our
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focus is on the stratified difference-in-means, a widely used method for estimating treatment effects

in randomized clinical trials, particularly under CAR (Bugni et al., 2019; Ma et al., 2022). The

stratified difference-in-means estimator is defined as

τ̂ =
∑
x∈X

n(x)

n
{µ̂(x, 1)− µ̂(x, 0)},

where µ̂(x,w) =
∑

Xi=x,Wi=w Yi/n(x,w) is the average of responses in the treatment w and stratum

x. Next, we demonstrate the consistency and asymptotic normality of the stratified difference-in-

means estimator τ̂ under CARA with constraints. The results show that the stratified difference-

in-means estimator achieves the lower bound vπ∗(·) in Proposition 3.2.

Theorem 4.2. If Assumptions 1–4 are satisfied, then we have τ̂ → τ a.s., and
√
n(τ̂ − τ)

d−→

N
(
0, σ2τ̂

)
, where

σ2τ̂ =
∑
x∈X

p(x)
{ 1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}
+Var{µ(Xi, 1)− µ(Xi, 0)}.

If {ρx, x ∈ X} is the solution of optimization (3), then τ̂ achieves the corresponding bound

vπ∗(·) in Proposition 3.2.

Proof. Here, we provide a sketch of the proof. For formal details, see Section A.2 in the Appendix.

Conditional on X(n), Theorem 4 in Ye et al. (2024) yields

√
n(x) [{µ̂(x, 1)− µ̂(x, 0)} − {µ(x, 1)− µ(x, 0)}] d−→ N

(
0,

1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

)
.

We utilize the decomposition in Bugni et al. (2019) to handle the stratified difference-in-means

estimator. Define Ỹi(w) = Yi(w)− µ(Xi, w).

√
n (τ̂ − τ) =

√
n

(∑
x∈X

n(x)

n

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}

+
n∑

i=1

1

n
[{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}]

)

:=Rn,1 +Rn,2,
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The first term Rn,1 can be dealt with Theorem 4 in Ye et al. (2024). Conditional on X(n), n(x)/n→

p(x) a.s. and n(x, 1)/n(x) → ρx a.s. from Theorem 4.1. Conditional on X(n), we have in each

stratum with X = x,

√
n
n(x)

n

{
1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)

}
d−→N

(
0, p(x)

{
1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

})
.

Randomization is independent across strata and hence

√
n
∑
x∈X

n(x)

n

{
1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)

}

d−→N

(
0,
∑
x∈X

p(x)

{
1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

})
.

For the second term, Rn,2 can be dealt with the i.i.d. central limit theorem. We have

√
n

n∑
i=1

1

n
[{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}] d−→ N (0,Var{µ(Xi, 1)− µ(Xi, 0)}).

Now we obtain the asymptotic conditional distribution of Rn,1 given X(n) and the asymptotic

distribution of Rn,2. Because R(n) is the function of X(n), we can obtain the desired result by

Lemma B.2 in the Appendix.

Remark 4.3. If we restrict our analysis to a single stratum, we arrive at the difference-in-means

under the RAR framework, which aligns precisely with the analysis conducted in Ye et al. (2024).

Remark 4.4. Aside from stratified DBCD, other CARA designs, such as the CADBCD proposed

by Zhang and Hu (2009), may also reach the efficiency bound. In Sections C and D.2 of the Ap-

pendix, we provide both theoretical analysis and empirical simulations of CADBCD, demonstrating

its ability to achieve the efficiency bound.
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5. Numerical Study

In this section, we evaluate the empirical performance of the stratified difference-in-means estimator

and the difference-in-means estimator under three types of randomization: CR, RAR, and CARA.

We consider two cases: without observed covariates and with observed covariates. If covariates are

unobserved, we can also use CARA and the stratified difference-in-means, but it will reduce to the

difference-in-means under RAR. For RAR and CARA, we select several values of c and report the

asymptotic variance bound, total expected outcome c̃ under adaptive randomization, and the bias

and variance of the estimators.

For w ∈ {0, 1} and 1 ≤ i ≤ n, the potential outcomes are generated using the equation:

Yi(w) = gw(Xi),

where

g0(Xi) ∼


2× t5(1), Xi = 1,

t5(2) + 10, Xi = 2,

4× t5(3), Xi = 3,

and

g1(Xi) ∼


t5(1) + 20, Xi = 1,

3× t5(2) + 20, Xi = 2,

t5(3) + 20, Xi = 3.

Here, tν(δ) is defined as the distribution of the general non-central t distribution with parameters

(ν, δ), where ν is the degree of freedom and δ is the non-centrality parameter. We assume {Xi}ni=1

are i.i.d., and gw(Xi) is also i.i.d.

The conditional treatment effect is

g1(Xi)− g0(Xi) ∼


20− t5(1), Xi = 1,

2× t5(2) + 10, Xi = 2,

20− 3× t5(3), Xi = 3.
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We select this distribution and allow the noncentrality parameter to vary across strata to account

for heterogeneity in both variance and mean. Consequently, the allocation probability varies across

different strata.

We choose γ = 2 in (7) to determine the allocation function in the DBCD procedure. The total

sample size n is 500. The burn-in number n0 is 10. We replicate the simulation 104 times for each

case. The true ATE is numerically calculated based on 107 simulated units, and the bias is defined

as the difference between the sample mean of the estimator and the true ATE. Simulation results

for binary response cases, non-optimal allocation rules, and other randomization procedures can be

found in Section D of the Appendix.

The results for the case without observed X are shown in Table 1. We use complete randomiza-

tion (CR) with a 1:1 allocation ratio as a benchmark for comparison. c = ∞ means no constraint

is imposed. When c = 15 Neyman allocation still meets the constraint and the bound does not

change. When c ≤ 14, Neyman allocation does not meet the constraint and the bound increases as

c decreases, indicating stricter constraints lead to higher bounds. Total expected outcome c̃ meets

the constraint c on average for all the scenarios. When c ≤ 14, the constraint is active meaning

that the equality holds (e.g., Boyd and Vandenberghe, 2004, p. 128). In this case, the constraint

influences c̃ by forcing it to be close to c. We also find difference-in-means estimator under RAR

has the negligible bias and the variance matching the bound.

Table 1: Simulation results without observed X (RAR vs. CR).

DIM

Rand. c Bound c̃ Bias Variance

CR – 0.249 16.819 -0.005 0.274
RAR ∞ 0.249 14.722 -0.019 0.246
RAR 15 0.249 14.570 -0.009 0.248
RAR 14 0.252 13.959 0.008 0.256
RAR 13 0.271 13.011 0.013 0.276

c, constraint of total expected outcome; c̃, total
expected outcome.
Bound, theoretical bound under the constraint
of total expected outcome.
DIM, difference-in-means.

Table 2 shows the results in the case with observed X. We use complete randomization (CR)
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with a 1:1 allocation ratio as a benchmark for comparison. Similar to Table 1, c = ∞ means no

constraint is imposed. In this case when c ≤ 18, Neyman allocation does not meet the constraint

in all strata, and the bound increases as c decreases, also indicating that stricter constraints lead

to higher bounds. In particular, when c ≤ 18 the constraint in stratum with X = 2 is active and

affects c̃2. When c ≤ 16 the constraints in strata with X = 2 and X = 3 are both active, thus

affecting c̃2 and c̃3. In our simulation, the constraint in the stratum with X = 1 remains inactive.

Total expected outcome c̃ meets the constraint c on average. If and only if the constraint is active,

c̃ is close to c. We find that the stratified difference-in-means estimator under CARA has the

negligible bias and the variance matching the bound while the difference-in-means estimator under

CARA has large bias. Note that the large bias of the difference-in-means estimator is expected,

as the assignment probabilities differ across strata under CARA. It also implies that achieving

the efficiency bound requires both proper design and estimator. Even under constraints, CARA

performs better than CR in our considered scenarios. All simulation results support our theoretical

results.

Table 2: Simulation results with observed X (CARA vs. CR).

DIM S-DIM

Rand. c Bound c̃1 c̃2 c̃3 Bias Variance Bias Variance

CR – 0.135 11.778 19.746 18.919 -0.004 0.271 -0.003 0.170
CARA ∞ 0.135 8.573 23.536 16.063 1.408 0.450 -0.011 0.135
CARA 18 0.152 8.573 18.017 16.074 0.025 0.296 -0.009 0.155
CARA 17 0.160 8.573 17.025 16.045 -0.291 0.288 -0.005 0.163
CARA 16 0.174 8.573 16.034 15.852 -0.675 0.289 0.004 0.182

c, constraint of total expected outcome; c̃x, total expected outcome in stratum with
X = x.
Bound, variance bound under the constraint of total expected outcome.
DIM, difference-in-means; S-DIM, stratified difference-in-means.

6. Conclusion

Precision medicine customizes healthcare by tailoring treatment to individual patients based on

their unique genetic, environmental, and lifestyle information. This approach utilizes biomarkers

and adaptive randomization designs to select the most suitable treatments, aiming to optimize
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preventative and therapeutic care for each person. Due to its incorporation of both responses and

covariate information into the randomization process, CARA has garnered increasing attention

from both academia and industry.

This paper considers one important type of CARA, specifically implementing DBCD separately

within each stratum, and proves that if no additional covariates other than the stratum covariates

are observed, the stratified difference-in-means estimator achieves the asymptotic efficiency bound

given by Armstrong (2022). First, we reviewed the asymptotic efficiency bounds for a broader class

of randomization, including CARA, as provided by Armstrong (2022). Second, we studied the

asymptotic properties of the stratified difference-in-means estimator under the case of implementing

DBCD separately within each stratum, utilizing both properties of DBCD and techniques from

robust inference (Bugni et al., 2019; Bai et al., 2022; Ye et al., 2024). Building upon these two

results, we showed that the stratified difference-in-means estimator with the optimal allocation

achieves the asymptotic efficiency bound. Notably, even with the efficient estimator, non-optimal

allocation rules could not reach the efficiency bound in general. This finding is supported by the

additional simulations in Section D.2 of the Appendix.

In addition to the case of continuous response, our theoretical results also apply to the binary

response case, where the ATE parameter represents the difference between two success probabilities;

for more discussions, see Section D.1 in the Appendix.

It is worth mentioning that we only provide the efficient estimation for one type of CARA, not

all CARA designs. Specifically, we require the covariates to be discrete, which may not always

be the case in practical clinical trials. Continuous covariates pose challenges for both design and

inference properties. In particular, both the conditional target allocation and the conditional mean

function are more difficult to estimate. The estimation of the continuous function requires a larger

sample size, not to mention the challenges of high-dimensional cases. Few studies focus on robust

inference under CARA with continuous covariates, let alone efficient estimation.

In this paper, we bridged the gap between efficiency bounds and efficient estimation for one

important type of CARA with discrete covariates. Whether and how to achieve the asymptotic

efficiency bound for general CARA with continuous covariates remains an open problem.
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A. Proof of Main Results

A.1. Proof of Proposition 3.2

Proof. In this section we define π(x,w) = P{Wi = w|Xi = x} for simplicity of deduction. Notice

that optimization problem (3) is equivalent with

minπ(·) vπ(·) = Var{µ(Xi, 1)− µ(Xi, 0)}+ E
{

σ2(Xi,0)
π(Xi,0)

}
+ E

{
σ2(Xi,1)
π(Xi,1)

}
,

subject to Eθ∗ [r(Xi, 1)π(Xi, 1) + r(Xi, 0)π(Xi, 0)] ≤ c,

and π(x, 0) + π(x, 1) = 1 for all x, (8)

which is restricted and simplified version of (12) in Armstrong (2022). Our considered (3) restricts

the case to the binary treatment with allocation probabilities adding up to one, as in Hahn et al.

(2011). We follow the proof details in Armstrong (2022).

Based on the optimization problem (8), we let λ(x) and η denote the Lagrange multipliers for

the constraint. Noting only the second term of vπ(·) depends on π(·), the Lagrangian can be written

as

L = E
(σ2(Xi, 0)

π(Xi, 0)
+
σ2(Xi, 1)

π(Xi, 1)
+ ηT [r(Xi, 1)π(Xi, 1) + r(Xi, 0)π(Xi, 0)] + λ(Xi){π(Xi, 0) + π(Xi, 1)− 1}

)
.

Recall that π∗(x) is the solution of this optimization problem (3). Similarly, we define π∗(x,w)

as the solution of this optimization problem (8). Since the equivalence of the two optimization

problems, we have π∗(x, 1) = π∗(x) for all x. Hence the minimal value of the objective function is

also same. We will use vπ∗(·) interchangeably.

Using the first order condition we have

σ2(x,w)

π∗(x,w)2
= ηTr(x,w) + λ(x) for all x,w.

We obtain also

π∗(x, 0) + π∗(x, 1) = 1, for all x,

24



and

ηT [E{r(Xi, 1)π
∗(Xi, 1) + r(Xi, 0)π

∗(Xi, 0)} − c] = 0.

Define score function of fX(x) and fY (w)|X(y|x) as sX(Xi) and sw(Yi(w)|Xi), respectively. Let

the information for Xi be IX = E{sX(Xi)sX(Xi)
T} and the conditional information for Yi(w) be

IY (w)|X = E{sw(Yi(w)|Xi)sw(Yi(w)|Xi)
T|Xi = x}. In the least favorable submodel considered in

Hahn (1998) and Armstrong (2022),

IY (w)|X(x) =
σ2(x,w)

π∗(x,w)2

=ηTr(x,w) + λ(x),

the corresponding bound is

vπ∗(·) =IX +
∑
w∈W

E{π∗ (Xi, w) IY (w)|X(Xi)}

=IX +
∑
w∈W

E{π∗(Xi, w)λ(Xi)}+ µT
∑
w∈W

E{π∗(Xi, w)r(Xi, w)}

=IX + Eλ (Xi) + µTc,

which is same as the calculation in page 16 of Armstrong (2022). Similarly as the proof of Theorem

5.1 and Corollary 5.1 in Armstrong (2022), we can deduce the remaining part.

A.2. Proof of Theorem 4.2

Proof. Theorem 4 in Ye et al. (2024) considered the statistical properties of DBCD and the

difference-in-means estimator under DBCD within single stratum—conditional on n(x):

n(x, 1)/n(x) → ρx, θ̂x → θx, ρ̂x → ρx a.s.,

µ̂(x, 1)− µ̂(x, 0) → µ(x, 1)− µ(x, 0) a.s.,

25



and

√
n(x) [{µ̂(x, 1)− µ̂(x, 0)} − {µ(x, 1)− µ(x, 0)}] d−→ N

(
0,

1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

)
.

From the superpopulation assumption, n(x) ∼Multinomial(n, p(x)) for x ∈ X , and hence

n(x)/n→ p(x) a.s..

Then we have

τ̂ =
∑
x∈X

n(x)

n
{µ̂(x, 1)− µ̂(x, 0)} → τ =

∑
x∈X

n(x)

n
{µ(x, 1)− µ(x, 0)} a.s.

In addition, we utilize the decomposition in Bugni et al. (2019) to handle the stratified difference-

in-means estimator. Define Ỹi(w) = Yi(w)− µ(Xi, w).

√
n (τ̂ − τ) =

√
n

(∑
x∈X

n(x)

n

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}

+

n∑
i=1

1

n
[{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}]

)

:=Rn,1 +Rn,2,

where the first term can be dealt with Theorem 4 in Ye et al. (2024) conditional on X(n) and the

second term can be dealt with the i.i.d. central limit theorem.

From n(x)/n→ p(x) a.s. and n→ ∞, for x ∈ X , we have

sup
u∈R

∣∣∣∣∣P
{{ 1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}− 1
2

×
√
n(x)

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}
≤ u

∣∣∣X(n)

}

−Φ(u)

∣∣∣∣∣→ 0 a.s.
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Since n(x) ∈ σ(X(n)), we have

sup
u∈R

∣∣∣∣∣P
{[n(x)

n

{ 1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}]− 1
2

×
√
n
n(x)

n

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}
≤ u

∣∣∣X(n)

}

−Φ(u)

∣∣∣∣∣→ 0 a.s.

Furthermore from Lemma B.1 and n(x)/n→ p(x) a.s., we have

sup
u∈R

∣∣∣∣∣P
{[
p(x)

{ 1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}]− 1
2

×
√
n
n(x)

n

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}
≤ u

∣∣∣X(n)

}

−Φ(u)

∣∣∣∣∣→ 0 a.s.

(9)

From the independence across strata conditional on X(n) and (9), we furthermore have conditional

on X(n),

sup
u∈R

∣∣∣∣∣P
{[∑

x∈X
p(x)

{ 1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}]− 1
2

×
√
n
∑
x∈X

n(x)

n

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}
≤ u

∣∣∣X(n)

}

−Φ(u)

∣∣∣∣∣→ 0 a.s.

(10)

A more understandable way is that conditional on X(n),

√
n
∑
x∈X

n(x)

n

{
1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)

}

d−→N

(
0,
∑
x∈X

p(x)

{
1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

})
.
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For the second term, notice that it is the function of X(n) and we have

√
n

n∑
i=1

1

n
[{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}] d−→ N (0,Var{µ(Xi, 1)− µ(Xi, 0)}). (11)

From (10), (11) and Lemma B.2, we obtain the result

√
n (τ̂ − τ)

d−→ N

(
0,
∑
x∈X

p(x)

{
1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}
+Var{µ(Xi, 1)− µ(Xi, 0)}

)
.

B. Auxiliary Lemmas

Lemma B.1. For n ≥ 1, let Yn be some multivaraite random variable, Bn = Bn(Yn) ∈ σ(Yn) and

Zn be two random variables, and Φ(·) be the standard normal c.d.f. Suppose that

sup
u∈R

| P{Zn/Bn ≤ u|Yn} − Φ(u)| → 0

holds a.s. and additionally Bn → B > 0 a.s. Then we have

sup
u∈R

| P{Zn/B ≤ u|Yn} − Φ(u)| → 0 a.s.

Proof. We prove the almost sure convergence.

Denote

Ω1 = {ω : sup
u∈R

|P{Zn/Bn ≤ u|Yn(ω)} − Φ(u)| → 0}

and

Ω2 = {ω : Bn(w) = Bn(Yn(ω)) → B}.

By the almost sure definition we have P (Ω1 ∩ Ω2) = 1.

We have

sup
u∈R

| P{Zn/Bn(Yn(ω)) ≤ u|Yn(ω)} − Φ(u)| → 0,
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for any ω ∈ Ω1. Since ω is fixed and Bn(ω) = Bn(Yn(ω)) is also fixed, equivalently, we have

sup
u∈R

| P{Zn ≤ u|Yn(ω)} − Φ(u/Bn(ω))| → 0,

for any ω ∈ Ω1.

Furthermore we claim that

sup
u∈R

| Φ(u/B)− Φ(u/Bn(ω))| → 0

for any ω ∈ Ω2.

Hence for any ω ∈ Ω1 ∩ Ω2

sup
u∈R

| P{Zn ≥ u|Yn(ω)} − Φ(u/B) |

≤ sup
u∈R

| P{Zn ≥ u|Yn(ω)} − Φ(u/Bn(ω))|+ sup
u∈R

| Φ(u/B)− Φ(u/Bn(ω)) |

→0.

Since P (Ω1 ∩ Ω2) = 1 we get the almost sure convergence.

To prove the claim, we define a series of i.i.d. Wn ∼ N (0, 1) which are independent with the

probability space (Ω,F , P ). For any fixed ω ∈ Ω2, Bn(ω) → B > 0 and then by Slutsky Theorem

we obtain that

Bn(ω)Wn → N (0, B2),

in distribution and equivalently,

sup
u∈R

| Φ(u/B)− Φ(u/Bn(ω))| → 0.

We also give one similar but more general lemma than Lemma S.1.2 in Bai et al. (2022).

Lemma B.2. For n ≥ 1, let Un and Vn be real-valued random variables and Fn a σ−field generated
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by multivariate random variable Yn. Suppose

P{Un ≤ u | Fn} → Φ(u/τ1)

in probability, where Φ(·) is the standard normal c.d.f. and τ1, τ2 are constants. Further assume

Vn is Fn- measurable and

P{Vn ≤ u} → Φ(u/τ2).

Then

P{Un + Vn ≤ u} → Φ(u/
√
τ21 + τ22 ).

Proof. From the convergence in probability, we choose one sub-array {nk}∞k=1 converging almost

surely. Then without loss of generality, we prove the a.s. convergence.

Denote Ω1 = {ω : P{Un ≤ u | Fn} → Φ(u/τ1/2)}, where P (Ω1) = 1. In the conditional

probability space {Yn = Yn(w)} where ω ∈ Ω1, characteristic function converges too. Hence

E{exp(itUn) | Yn} → exp(itτ21 /2) a.s.

Vn converges to N (0, τ22 ). Then we have

E{exp(itVn)} → exp(itτ22 /2).

Hence

E[exp{it(Vn + Un)}] =E(E[exp{it(Vn + Un)} | Fn])

=E[E{exp(itUn) | Fn} exp(itVn)]

→ exp{it(τ21 + τ22 )/2}.

The three lines come from the tower property, Vn ∈ Fn and the dominated convergence theorem,

respectively.
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C. Stratified Difference-in-means Estimator under CADBCD

Theorem C.1. Under the CADBCD design (Zhang and Hu, 2009), if Assumptions 1–4 are satisfied,

the stratified difference-in-means estimator with the optimal allocation achieves the efficiency bound

in Armstrong (2022).

Proof. Under the CADBCD design, the allocation probability for the (m + 1)-th subject with

covariate Xm+1 is

ρ̂Xm+1,m

(∑m
k=1 ρ̂Xk,m

Nm,1

)γ
ρ̂Xm+1,m

(∑m
k=1 ρ̂Xk,m

Nm,1

)γ
+ (1− ρ̂Xm+1,m)

(
m−

∑m
k=1 ρ̂Xk,m

m−Nm,1

)γ ,
where γ ≥ 0 is the parameter reflecting the degree of randomness, Nm,1 is the number of first m

subjects assigned to W = 1 and ρ̂x,m is the estimate of ρx based on the first m subjects.

Under Assumptions 1–4, and following a similar approach to the proof of Theorem 1, it follows

from the properties of the CADBCD design that

θ̂x → θx, ρ̂x → ρx a.s.

for all x ∈ X . Furthermore, the allocation probabilities with the covariate x converges to ρx a.s.

Hence n(x, 1)/n(x) → ρx a.s.

We utilize the following decomposition to handle the stratified difference-in-means estimator.

Define Ỹi(w) = Yi(w)− µ(Xi, w).

√
n (τ̂ − τ) =

√
n

(∑
x∈X

n(x)

n

{ 1

n(x, 1)

∑
Wi=1,Xi=x

Ỹi(1)−
1

n(x, 0)

∑
Wi=0,Xi=x

Ỹi(0)
}

+

n∑
i=1

1

n
[{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}]

)

=
1√
n

n∑
i=1

({
1

ρXi

WiỸi(1)−
1

1− ρXi

(1−Wi)Ỹi(0)

}

+

[{
n(Xi)

n(Xi, 1)
− 1

ρXi

}
WiỸi(1)−

{
n(Xi)

n(Xi, 0)
− 1

1− ρXi

}
(1−Wi)Ỹi(0)

]

+ [{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}]

)
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:=Rn,1 +Rn,2 +Rn,3.

First we show that Rn,2 is op(1). we have

1√
n

n∑
i=1

{
n(Xi)

n(Xi, 1)
− 1

ρXi

}
WiỸi(1)

=
1√
n

∑
x∈X

{
n(x)

n(x, 1)
− 1

ρx

} ∑
Xi=x

WiỸi(1).

For x ∈ X , define nk(x,w) as the number of units for the first k units in stratum x and treatment w.

Define τj(x,w) = min{k : nk(x,w) = j} where min{∅} = +∞. With the argument of Doob (1936),

we can construct one i.i.d. sequence Y̌i(1) which coincides with Ỹi(1) on the event {n(x, 1) →

∞ for all x ∈ X}. Let Y̌i(x,w) = {Yτi(x,w)(w) − µ(x,w)}I{τi(x,w) < ∞} + ξi(x,w)I{τi(x,w) =

∞}), where {ξi(x,w)} is an independent copy of {Yi(w) − µ(x,w)}, which is also independent

of {Wi}. Then Y̌i(x,w) is a sequence of i.i.d. random variables with the same distribution as

Ỹ1(w)|X1 = x.

Since for all x ∈ X , n(x,1)
n(x) → ρx and n(x) → ∞ a.s., we have

1√
n

∑
Xi=x

WiỸi(1) =
1√
n

∑
1≤j≤n(x,1)

Y̌j(x, 1)

d−→N (0, pxσ
2(x, 1))

=OP (1).

Then we have

1√
n

{
n(x)

n(x, 1)
− 1

ρx

} ∑
Xi=x

WiỸi(1) =oP (1) ·OP (1)

=oP (1).

Since x is discrete, we combine the terms for each x ∈ X .

1√
n

∑
x∈X

{
n(x)

n(x, 1)
− 1

ρx

} ∑
Xi=x

WiỸi(1) = oP (1).
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Similarly we have

1√
n

∑
x∈X

{
n(x)

n(x, 0)
− 1

1− ρx

} ∑
Xi=x

(1−Wi)Ỹi(0) = oP (1).

We obtain that Rn,2 = oP (1).

Note that Rn,3 is function of X(n) and has the asymptotic normality.

√
n

n∑
i=1

1

n
[{µ(Xi, 1)− µ(Xi, 0)} − {µ(1)− µ(0)}]

d−→N(0,Var{µ(Xi, 1)− µ(Xi, 0))}.

From the similar idea as the proof of Theorem 2, it is sufficient to show that Rn,1|X(n) conditionally

converges to N
(
0,
∑

x∈X p(x)
{

1
ρx
σ2(x, 1) + 1

1−ρx
σ2(x, 0)

})
.

GivenX(n), define Fi = σ(W1, · · · ,Wi;Y1, · · · , Yi) and Gi = σ(W1, · · · ,Wi;Y1, · · · , Yi;X1, · · · , Xi, Xi+1).

We have

Rn,1 =
1√
n

n∑
i=1

{Wi

ρXi

Ỹi(1)−
1−Wi

1− ρXi

Ỹi(0)}

:=
1√
n

∑
i

(∆Qi(1) −∆Qi(0)).

Since the Xi is i.i.d. and Wi is only dependent on Gi, we have that given X(n), {∆Qi(w),Fi−1; i =

1, 2, · · · , n} is martingale difference for w ∈ W.

Var{∆Qi(1)|σ(Fi−1, X
(n))}

=E{Wi

ρ2Xi

Ỹ 2
i (1)|σ(Fi−1, X

(n))}

=
σ2(Xi, 1)

ρ2Xi

E{Wi|σ(Fi−1, X
(n))}

=
σ2(Xi, 1)

ρ2Xi

E{Wi|Gi−1}

=
σ2(Xi, 1)

ρ2Xi

ρXi + o(1) a.s.

=
σ2(Xi, 1)

ρXi

+ o(1) a.s.
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Similarly we have

Var{∆Qi(0)|σ(Fi−1, X
(n))} =

σ2(Xi, 0)

1− ρXi

+ o(1) a.s.

Notice that

Cov{∆Qi(1),∆Qi(0)|σ(Fi−1, X
(n))}

=E{Wi

ρXi

Ỹi(1)
1−Wi

1− ρXi

Ỹi(0)|σ(Fi−1, X
(n))}

=0.

Then we have

1

n

n∑
i=1

Var{∆Qi(1) −∆Qi(0)|σ(Fi−1, X
(n))}

=
∑
i

{ 1

ρXi

σ2(Xi, 1) +
1

1− ρXi

σ2(Xi, 0)}

→
∑
x∈X

p(x)

{
1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

}
a.s.

Note that given X(n), n(x, 1)/n(x) → ρx a.s. uniformly for all x ∈ X . On the other hand, for

some ε > 0,

1

n1+ε/2

∑
i

E{|∆Qi(1) −∆Qi(0)|2+ε|σ(Fi−1, X
(n))}

≤ 1

n1+ε/2

∑
i

E{|∆Qi(1)|2+ε + |∆Qi(0)|2+ε|σ(Fi−1, X
(n))}

≤ 1

n1+ε/2
[
∑
i

{E{Ỹi(1)|2+ε|Xi}
ρ2+ε
Xi

,+
E{Ỹi(0)|2+ε|Xi}
(1− ρXi)

2+ε
}+ o(1)] a.s.

≤C1 + o(1)

nε/2
a.s.

→0 a.s.

where C1 is some positive constant. Hence the conditional Lyapunov condition holds. Therefore
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by the central limit theorem of the martingale, we have that conditional on X(n),

Rn,1
d−→ N

(
0,
∑
x∈X

p(x)

{
1

ρx
σ2(x, 1) +

1

1− ρx
σ2(x, 0)

})
.

Finally we use Lemma 2 to combine Rn,1 and Rn,2.

D. Additional Simulations

D.1. Additional simulation results with the binary response

In this subsection, we consider two strata, where heterogeneity of the treatment effect exists between

them. More specifically, for w ∈ {0, 1} and 1 ≤ i ≤ n, the potential outcomes are generated using

the equation:

Yi(w) = gw(Xi),

where

g0(Xi) ∼ Bernoulli(0.5)

and

g1(Xi) ∼


Bernoulli(0.9), Xi = 1,

Bernoulli(0.5), Xi = 2.

The other settings are the same as those in the main text. We use complete randomization (CR)

with a 1:1 allocation ratio as the baseline for comparison. Similar to the case of continuous response,

the simulation results with binary response also support our theoretical results.

The results for the case without observed X are shown in Table 3. When c ≤ 0.60, Neyman

allocation does not meet the constraint and the bound increases as c decreases, indicating stricter

constraints lead to higher bounds. In other words, the constraint is active in sense of Boyd and

Vandenberghe (2004), i.e., affects c̃ and forced it close to c. Total expected outcome c̃ meets the

constraint c on average for all the scenarios. We also find difference-in-means estimator under RAR

has the negligible bias and the variance matching the bound.

Table 4 shows the results in the case with observed X. In this case, when c ≤ 0.60 the constraint
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Table 3: Simulation results with binary response and no observed X (RAR vs. CR).

DIM

Rand. c Bound c̃ Bias Variance

CR – 0.00170 0.63352 -0.00040 0.00173
RAR ∞ 0.00170 0.62237 0.00045 0.00170
RAR 0.65 0.00170 0.62120 0.00093 0.00168
RAR 0.60 0.00175 0.59912 0.00538 0.00173
RAR 0.55 0.00253 0.56704 0.00466 0.00241

c, constraint of total expected outcome; c̃, total ex-
pected outcome.
Bound, theoretical bound under the constraint of total
expected outcome.
DIM, difference-in-means.

in stratum with X = 1 is active and affects c̃1. In our simulation, the constraint in the stratum

with X = 2 remains inactive. Total expected outcome c̃ meets the constraint c on average. We

find that the stratified difference-in-means estimator under CARA has the negligible bias and the

variance matching the bound while the difference-in-means estimator under CARA has large bias.

Table 4: Simulation results with binary response and observed X (CARA vs. CR).

DIM S-DIM

Rand. c Bound c̃1 c̃2 Bias Variance Bias Variance

CR – 0.00159 0.70012 0.49938 0.00066 0.00173 0.00055 0.00167
CARA ∞ 0.00159 0.64510 0.50039 -0.02991 0.00158 0.00144 0.00163
CARA 0.65 0.00159 0.63652 0.50042 -0.03566 0.00202 0.00219 0.00160
CARA 0.60 0.00166 0.60183 0.50037 -0.06644 0.00315 0.00265 0.00168
CARA 0.55 0.00209 0.57711 0.50033 -0.10026 0.00301 -0.00034 0.00204

c, constraint of total expected outcome; c̃x, total expected outcome in stratum with
X = x.
Bound, variance bound under the constraint of total expected outcome.
DIM, difference-in-means; S-DIM, stratified difference-in-means.

D.2. Comparisons with non-optimal allocations and other randomization meth-

ods

In this subsection we focus on the comparisons with non-optimal allocations and other randomiza-

tion methods. We use the same model and setting as those in the main text.

In the case with no constraint and observed X, we consider complete randomization (1:1 al-
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location ratio), Efron’s biased coin design (Efron, 1971) (1:1 allocation ratio and 0.75 biased coin

probability), RAR with optimal allocation, and two additional non-optimal allocations, one pro-

posed by Bandyopadhyay and Biswas (2001) and the RSIHR allocation (Rosenberger et al., 2001a;

Hu and Rosenberger, 2006, p. 13), respectively. Assume that the response is normal and σ2w and

µw are the variance and expectation for treatment w,w ∈ {0, 1}, respectively, then the target

allocation proposed by Bandyopadhyay and Biswas (2001) has the following form:

ρ(θ) = Φ

(
µ1 − µ0
T

)
, θ = (µ1, µ0) ,

where Φ(·) is the cumulative density function of standard normal distribution and T is a constant

set by 30 in the simulation. The generalized RSIHR allocation (Hu and Rosenberger, 2006, p. 13)

is in the form

ρ(θ) =
σ1

√
µ0

σ1
√
µ0 + σ0

√
µ1

where θ =
(
µ1, σ

2
1, µ0, σ

2
0

)
. When the response is binary, the generalized RSIHR allocation will

reduce to the original and familiar form (Rosenberger et al., 2001a)

ρ(θ) =

√
µ0√

µ0 +
√
µ1

where θ = (µ1, µ0) since σ1 = σ0 =
√
µ1µ0 in the binary case.

In the case with no constraint but observed X, we consider complete randomization (1:1 al-

location ratio), minimization method (Pocock and Simon, 1975) (1:1 allocation ratio, with equal

weight and 0.75 biased coin probability), stratified DBCD and CADBCD (Zhang and Hu, 2009)

with optimal allocation and other two non-optimal allocations, one proposed by Bandyopadhyay

and Biswas (2001) and the RSIHR allocation (Rosenberger et al., 2001a; Hu and Rosenberger, 2006,

p. 13), respectively. We let γ = 2 in stratified DBCD and CADBCD.

The results are summarized in Tables 5 and 6, with the optimal variances highlighted in bold.

Both minimization and Efron’s biased coin design slightly outperform complete randomization but

still perform worse than CARA and RAR with the optimal allocation. The simulations demonstrate

that our proposed method, stratified DBCD with optimal allocation, achieves the lowest variance

across all methods. Both RAR and CARA with optimal allocation outperform their counterparts
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Table 5: Comparisons with non-optimal allocations and other randomization methods (without
observed X).

DIM

Rand. c Bound c̃ Bias Variance

CR – 0.249 16.819 -0.005 0.274
BCD – 0.249 16.820 -0.006 0.267
RAROptimal – 0.249 14.722 -0.019 0.246
RARBandBis – 0.249 19.435 0.003 0.367
RARRSIHR – 0.249 13.324 -0.028 0.267

c, constraint of total expected outcome; c̃, total ex-
pected outcome.
Bound, theoretical bound under the constraint of to-
tal expected outcome.
DIM, difference-in-means.
BCD, Efron’s biased coin design.
RAR*, RAR based on the allocation rule ∗.

using non-optimal allocation rules in every scenario. The simulations suggest that non-optimal

methods do not achieve the efficiency bound, nor do CAR methods like Efron’s biased coin design

and minimization in general.

Table 6: Comparisons with non-optimal allocations and other randomization methods (with ob-
served X, 500 units).

DIM S-DIM

Rand. c Bound c̃1 c̃2 c̃3 Bias Variance Bias Variance

CR – 0.135 11.778 19.746 18.919 -0.004 0.271 -0.003 0.170
MIN – 0.135 11.787 19.757 18.919 -0.006 0.176 -0.005 0.175
SDBCDOptimal – 0.135 8.573 23.536 16.063 1.408 0.450 -0.011 0.135
SDBCDBandBis – 0.135 16.168 22.519 20.044 -0.714 0.294 0.005 0.191
SDBCDRSIHR – 0.135 5.057 22.330 15.737 2.463 0.395 -0.023 0.141
CADBCDOptimal – 0.135 8.773 22.861 16.378 1.233 0.498 -0.008 0.140
CADBCDBandBis – 0.135 15.993 22.492 20.123 -0.592 0.410 0.011 0.196
CADBCDRSIHR – 0.135 5.675 21.367 16.020 2.009 0.429 -0.014 0.143

c, constraint of total expected outcome; c̃x, total expected outcome in stratum with X = x.
Bound, variance bound under the constraint of total expected outcome.
DIM, difference-in-means; S-DIM, stratified difference-in-means.
MIN, minimization method.
SDBCD*, stratified DBCD based on the allocation rule ∗.
CADBCD*, CADBCD based on the allocation rule ∗.

Notably, in our simulation, CADBCD performs comparably to stratified DBCD across all three
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allocation rules. We also present a larger-sample simulation with 2000 units, compared to the

original 500 units; see Table 7. The results show that both stratified DBCD and CADBCD with

the optimal allocation achieve the efficiency bound, while other randomization methods do not, as

expected. The simulation coincides with our theoretical results.

Table 7: Comparisons with non-optimal allocations and other randomization methods (with ob-
served X).

DIM S-DIM

Rand. c Bound c̃1 c̃2 c̃3 Bias Variance Bias Variance

CR – 0.0339 11.7874 19.7567 18.9202 -0.0075 0.0678 -0.0064 0.0418
MIN – 0.0339 11.7859 19.7568 18.9208 -0.0079 0.0421 -0.0078 0.0421
SDBCDOptimal – 0.0339 8.6210 23.4984 16.0960 1.3810 0.1217 -0.0080 0.0336
SDBCDBandBis – 0.0339 16.1928 22.5410 20.0524 -0.7244 0.0764 -0.0024 0.0493
SDBCDRSIHR – 0.0339 5.0282 22.2962 15.7484 2.4695 0.1104 -0.0121 0.0351
CADBCDOptimal – 0.0339 8.6669 23.3314 16.1721 1.3383 0.1479 -0.0090 0.0338
CADBCDBandBis – 0.0339 16.1521 22.5299 20.0741 -0.6987 0.1041 -0.0046 0.0489
CADBCDRSIHR – 0.0339 5.2004 22.0493 15.8204 2.3461 0.1244 -0.0122 0.0352

c, constraint of total expected outcome; c̃x, total expected outcome in stratum with X = x.
Bound, variance bound under the constraint of total expected outcome.
DIM, difference-in-means; S-DIM, stratified difference-in-means.
MIN, minimization method.
SDBCD*, stratified DBCD based on the allocation rule ∗.
CADBCD*, CADBCD based on the allocation rule ∗.

D.3. Estimated allocation probabilities based on burn-in samples and all sam-

ples

In this subsection, we show the estimated allocation probabilities affected by the different constraint

levels and compare the allocation probabilities estimated with burn-in samples and all samples. We

use the same model and setting as those in the main text with 2000 replications.

Refer to Figure 1 for the results under RAR. The true allocation probability decreases as the

constraint level tightens. In the simulation, both the all-sample estimates and the burn-in estimates

are generally close to the true values, though the all-sample estimates show lower variances. This

suggests that a burn-in size of 10 is effective for start-up design.

See Figure 2 for the results under CARA. The true allocation probabilities decrease as the

constraint level decreases, particularly in stratum 2. The optimal allocation probabilities differ
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Figure 1: Estimated allocation probability for different constraint level under RAR. The red trian-
gular marks the target values.

across strata, while both the all-sample estimates and burn-in estimates are generally close to the

true values. (Similar to Figure 1, the all-sample estimates show lower variances.) This indicates

that a burn-in size of 10 works well to provide a start-up estimate in our model and setting.

D.4. Boxplots for Tables 1 and 2

In this subsection, we generate boxplots corresponding to the results in Tables 1 and 2 to provide

additional visual comparisons. Specifically, Figure 3 corresponds to the data presented in Table

1, while Figure 4 correspond to the data in Table 2. However, we found that boxplots are not as

effective for comparing variances in our setting, as they do not offer the level of clarity required to

illustrate the differences. Therefore, we retain Tables 1 and 2 in the main text, as they provide a

more precise and comprehensive comparison of the variances.
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Figure 2: Estimated allocation probability for different constraint level under CARA. The red
triangular marks the true values.

Figure 3: Boxplots of difference-in-means under different randomization methods (RAR vs. CR).
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(a) Boxplots of difference-in-means.

(b) Boxplots of stratified difference-in-means.

Figure 4: Boxplots of difference-in-means and stratified difference-in-means under different ran-
domization methods (CARA vs. CR).
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